[go: up one dir, main page]

JP2011073085A - Polishing pad - Google Patents

Polishing pad Download PDF

Info

Publication number
JP2011073085A
JP2011073085A JP2009225354A JP2009225354A JP2011073085A JP 2011073085 A JP2011073085 A JP 2011073085A JP 2009225354 A JP2009225354 A JP 2009225354A JP 2009225354 A JP2009225354 A JP 2009225354A JP 2011073085 A JP2011073085 A JP 2011073085A
Authority
JP
Japan
Prior art keywords
foam
polishing
fine particles
polishing pad
polished
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009225354A
Other languages
Japanese (ja)
Other versions
JP5398454B2 (en
Inventor
Fumio Miyazawa
文雄 宮澤
Masataka Takagi
正孝 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujibo Holdings Inc
Original Assignee
Fujibo Holdings Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujibo Holdings Inc filed Critical Fujibo Holdings Inc
Priority to JP2009225354A priority Critical patent/JP5398454B2/en
Publication of JP2011073085A publication Critical patent/JP2011073085A/en
Application granted granted Critical
Publication of JP5398454B2 publication Critical patent/JP5398454B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

【課題】被研磨物の平坦性を向上させることができる研磨パッドを提供する。
【解決手段】研磨パッド10のポリウレタン樹脂製の発泡シート2を備えている。発泡シート2は発泡3が連続発泡状に形成されている。発泡シート2は、研磨面Pから全体の厚さに対して50%の厚み範囲に中空状の樹脂微粒子4が60%以上局在するように含有されている。発泡シート2の研磨面P側に研削処理が施され、微粒子4は研磨面P側で開孔し開孔5が形成されている。発泡シート2は、研磨面Pの単位面積あたりに形成され開孔径が1μmを超える開孔のうち、微粒子4で形成された開孔5の数が、発泡3で形成された開孔の数より大きくなるように形成されている。スラリの分散供給が均一化される。
【選択図】図1
A polishing pad capable of improving the flatness of an object to be polished is provided.
A foamed sheet 2 made of a polyurethane resin for a polishing pad 10 is provided. The foam sheet 2 is formed by forming foam 3 into a continuous foam shape. The foamed sheet 2 contains hollow resin fine particles 4 in a thickness range of 50% with respect to the entire thickness from the polished surface P so that 60% or more of the resin particles 4 are localized. A grinding process is performed on the polishing surface P side of the foam sheet 2, and the fine particles 4 are opened on the polishing surface P side to form openings 5. The foam sheet 2 is formed per unit area of the polishing surface P, and the number of the openings 5 formed by the fine particles 4 is larger than the number of the openings formed by the foam 3 among the openings having an opening diameter exceeding 1 μm. It is formed to be large. The dispersed supply of slurry is made uniform.
[Selection] Figure 1

Description

本発明は、研磨パッドに係り、特に、湿式成膜法により発泡が連続発泡状に形成され被研磨物を研磨加工するための研磨面を有する樹脂製発泡体を備えた研磨パッドに関する。   The present invention relates to a polishing pad, and more particularly to a polishing pad provided with a resin foam having a polishing surface for polishing an object to be polished, in which foam is formed into a continuous foam by a wet film forming method.

従来、レンズ、平行平面板、反射ミラー等の光学材料、ハードディスク用基板、半導体、半導体デバイス用シリコンウエハ、液晶ディスプレイ用ガラス基板等、高精度に平坦性が要求される材料(被研磨物)では、研磨パッドを使用した研磨加工が行われている。半導体デバイスでは、半導体回路の集積度が急激に増大するにつれて高密度化を目的とした微細化や多層配線化が進み、研磨面を一層高度に平坦化する技術が重要となっている。一方、液晶ディスプレイ用ガラス基板では、液晶ディスプレイの大型化に伴い、表面のより高度な平坦性が要求されている。   Conventional materials such as lenses, parallel flat plates, reflection mirrors, hard disk substrates, semiconductors, silicon wafers for semiconductor devices, glass substrates for liquid crystal displays, etc. Polishing using a polishing pad is performed. In semiconductor devices, as the degree of integration of semiconductor circuits increases rapidly, miniaturization and multilayer wiring for the purpose of higher density have progressed, and techniques for flattening the polished surface have become important. On the other hand, with a glass substrate for a liquid crystal display, higher flatness of the surface is required as the liquid crystal display becomes larger.

一般に、ハードディスク用基板や半導体デバイス用シリコンウエハ等の研磨方法としては、化学的機械的研磨(以下、CMPと略記する。)法が用いられている。CMP法では、通常、研磨加工時に、砥粒(研磨粒子)をアルカリ溶液や酸溶液に分散させたスラリ(研磨液)を供給する、いわゆる遊離砥粒方式が採用されている。すなわち、被研磨物(の加工面)は、スラリ中の砥粒による機械的研磨作用と、アルカリ溶液や酸溶液による化学的研磨作用とで研磨される。加工面に要求される平坦性の高度化に伴い、CMP法に求められる研磨精度や研磨効率等の研磨特性、換言すれば、研磨パッドに要求される性能も高まっている。   In general, a chemical mechanical polishing (hereinafter abbreviated as CMP) method is used as a polishing method for hard disk substrates, semiconductor device silicon wafers, and the like. In the CMP method, a so-called free abrasive grain method is generally employed in which a slurry (polishing liquid) in which abrasive grains (polishing particles) are dispersed in an alkaline solution or an acid solution is supplied during polishing. That is, the object to be polished (the processed surface thereof) is polished by a mechanical polishing action by abrasive grains in the slurry and a chemical polishing action by an alkali solution or an acid solution. With the advancement of flatness required for the processed surface, polishing characteristics such as polishing accuracy and polishing efficiency required for the CMP method, in other words, performance required for the polishing pad is also increasing.

CMP法では、ポリウレタン発泡体を有する研磨パッドが広く使用されている。このような研磨パッドの製造では、湿式成膜法および乾式成形法で形成されたポリウレタン樹脂製の発泡体を備えた研磨パッドが使用されている。湿式成膜法では、ポリウレタン樹脂を水混和性の有機溶媒に溶解させた樹脂溶液をシート状の成膜基材に塗布後、水系凝固液中で樹脂がシート状に凝固再生される。得られた発泡体では、内部にポリウレタン樹脂の凝固再生に伴う多数の発泡が形成されている。すなわち、被研磨物を研磨加工するための研磨面側に微多孔が形成された表面層(スキン層)を有し、表面層より内側に発泡が連続状に形成されている。通常、表面層側に研削処理や、ドレス処理(軽度なサンディング)が施されることで、表面(研磨面)に開孔が形成されている。一方、乾式成形法では、イソシアネート基含有化合物と、活性水素化合物とを反応により硬化させることで、発泡構造のポリウレタン発泡体が形成される。発泡構造を形成するために、例えば、樹脂性の外殻を有する中空球状微粒子を混合する技術(特許文献1〜特許文献5参照)、水を添加する技術(特許文献6参照)、不活性気体を混合する技術(特許文献7参照)、水溶性微粒子を混合する技術(特許文献8参照)が開示されている。得られたポリウレタン発泡体の表面が研削処理されるか、または、ポリウレタン発泡体がシート状にスライスされることで、表面に開孔が形成された研磨パッドが製造される。これらの技術で製造された研磨パッドでは、研磨加工時に研磨面に形成された開孔にスラリが保持されるため、遊離砥粒方式により被研磨物の研磨加工を行うことができる。   In the CMP method, a polishing pad having a polyurethane foam is widely used. In the production of such a polishing pad, a polishing pad provided with a polyurethane resin foam formed by a wet film forming method and a dry molding method is used. In the wet film forming method, a resin solution in which a polyurethane resin is dissolved in a water-miscible organic solvent is applied to a sheet-shaped film forming substrate, and then the resin is solidified and regenerated into a sheet form in an aqueous coagulating liquid. In the obtained foam, a large number of foams are formed inside the polyurethane resin due to coagulation regeneration. That is, it has a surface layer (skin layer) in which micropores are formed on the polishing surface side for polishing the object to be polished, and foam is continuously formed inside the surface layer. Usually, an opening is formed on the surface (polished surface) by performing grinding treatment or dressing treatment (light sanding) on the surface layer side. On the other hand, in the dry molding method, a polyurethane foam having a foam structure is formed by curing an isocyanate group-containing compound and an active hydrogen compound by reaction. In order to form a foam structure, for example, a technique of mixing hollow spherical fine particles having a resinous outer shell (see Patent Documents 1 to 5), a technique of adding water (see Patent Document 6), an inert gas, and the like (See Patent Document 7) and a technique for mixing water-soluble fine particles (see Patent Document 8). The surface of the obtained polyurethane foam is ground, or the polyurethane foam is sliced into a sheet to produce a polishing pad having openings formed on the surface. In the polishing pad manufactured by these techniques, the slurry is held in the opening formed in the polishing surface during the polishing process, so that the object to be polished can be polished by the free abrasive grain method.

特許3013105号公報Japanese Patent No. 3013105 特許3425894号公報Japanese Patent No. 3425894 特許3801998号公報Japanese Patent No. 3801998 特開2006−186394号公報JP 2006-186394 A 特開2007−184638号公報JP 2007-184638 A 特開2005−68168号公報JP 2005-68168 A 特許3455208号公報Japanese Patent No. 3455208 特開2000−34416号公報JP 2000-34416 A

しかしながら、特許文献6〜特許文献7の技術では、水や不活性気体により表面に開孔が形成されるものの、水分がイソシアネート基と反応することでポリウレタン発泡体に発泡不良が生じることがあり、発泡構造が不均一となる。特許文献8の技術では、水溶性微粒子がスラリによって溶出することで表面に開孔が形成されるが、ポリウレタン発泡体中に水溶性微粒子を均一分散させることは容易でなく、開孔径が不均一となりやすい。また、水溶性微粒子が水分を含みやすいため、この僅かな水分によっても巨大発泡が形成され、発泡構造が不均一となり、供給した砥粒が二次凝集を起こし、被研磨物の加工面にスクラッチ(キズ)等を生じさせることもある。この点、特許文献1〜特許文献5の技術では、中空球状微粒子を混合するため、発泡不良を抑制することはできるものの、中空球状微粒子が研磨面で開孔しない場合は、中空球状微粒子の硬さが低減せず、外殻成分が異物としてスクラッチ等を招き被研磨物の平坦性を低下させることがある。   However, in the techniques of Patent Document 6 to Patent Document 7, although pores are formed on the surface by water or inert gas, foaming failure may occur in the polyurethane foam due to the reaction of moisture with isocyanate groups, The foam structure is non-uniform. In the technique of Patent Document 8, pores are formed on the surface by elution of the water-soluble fine particles by slurry, but it is not easy to uniformly disperse the water-soluble fine particles in the polyurethane foam, and the pore sizes are not uniform. It is easy to become. In addition, since water-soluble fine particles tend to contain moisture, even a slight amount of moisture forms huge foam, the foam structure becomes uneven, and the supplied abrasive grains cause secondary agglomeration, scratching the processed surface of the workpiece. (Scratches) may occur. In this regard, in the techniques of Patent Documents 1 to 5, since hollow spherical fine particles are mixed, poor foaming can be suppressed. However, when the hollow spherical fine particles do not open on the polished surface, the hard spherical fine particles are hardened. In some cases, the outer shell component may cause scratches or the like as foreign matter, and reduce the flatness of the object to be polished.

本発明は上記事案に鑑み、被研磨物の平坦性を向上させることができる研磨パッドを提供することを課題とする。   In view of the above-described case, an object of the present invention is to provide a polishing pad that can improve the flatness of an object to be polished.

上記課題を解決するために、湿式成膜法により発泡が連続発泡状に形成され被研磨物を研磨加工するための研磨面に開孔が形成された樹脂製発泡体を備えた研磨パッドにおいて、前記発泡体は、前記研磨面から一定の厚み範囲に局在するように多数の中空状の樹脂微粒子が含有されていると共に、前記研磨面の単位面積あたりに形成され開孔径が1μmを超える開孔のうち、前記微粒子で形成された開孔の数が前記発泡で形成された開孔の数より大きいことを特徴とする。   In order to solve the above problems, in a polishing pad comprising a resin foam in which foam is formed into a continuous foam by a wet film forming method and an opening is formed in a polishing surface for polishing an object to be polished. The foam contains a large number of hollow resin fine particles so as to be localized in a certain thickness range from the polished surface, and is formed per unit area of the polished surface and has an opening diameter exceeding 1 μm. Among the holes, the number of openings formed by the fine particles is larger than the number of openings formed by the foaming.

本発明では、研磨面の単位面積あたりに形成され開孔径が1μmを超える開孔のうち、微粒子で形成された開孔の数が発泡で形成された開孔の数より大きいため、研磨液が略均一に研磨面に保持され安定した研磨加工を行うことができると共に、発泡が連続発泡状に形成されていることでクッション性が発揮され、研磨面の面圧が一定となるように微粒子が支持されるため、スクラッチの抑制効果が高まり、被研磨物の平坦性を向上させることができる。   In the present invention, since the number of openings formed by fine particles is larger than the number of openings formed by foaming among the openings formed per unit area of the polishing surface and having an opening diameter exceeding 1 μm, the polishing liquid is It can be held on the polishing surface substantially uniformly and can perform stable polishing processing, and the foaming is formed in a continuous foam shape to provide cushioning properties, so that the fine particles can be kept at a constant surface pressure on the polishing surface. Since it is supported, the effect of suppressing scratches is increased, and the flatness of the object to be polished can be improved.

この場合において、発泡体は、研磨面から発泡体全体の厚さに対して50%の厚み範囲に微粒子の60%以上が局在するように含有されていることが好ましい。また、発泡体は、研磨面から全体の厚さに対して5%の厚さ分を除いたとき、平均開孔径を5〜40μmの範囲、開孔径が50μmを超える開孔を10個/mm以下に調整することができる。発泡体は、研磨面から全体の厚さに対して50%の厚さ分を除いたとき、開孔径が50μmを超える開孔を15〜50個/mmの範囲としてもよい。発泡体のショアA硬度を20〜90度の範囲とすることができる。発泡体は、湿式成膜法により一体成形されていることが好適である。微粒子は、均一の孔径を有することが好ましい。微粒子を球体状または多面体状とすることができる。更に、発泡体は、微粒子より小さい孔径の微多孔が連続的に形成されていてもよい。 In this case, the foam is preferably contained so that 60% or more of the fine particles are localized in a thickness range of 50% with respect to the entire thickness of the foam from the polished surface. In addition, when the foam is removed from the polished surface by 5% of the total thickness, the average pore diameter is in the range of 5 to 40 μm, and the number of apertures with an aperture diameter exceeding 50 μm is 10 / mm. It can be adjusted to 2 or less. When the foam has a thickness of 50% of the entire thickness removed from the polished surface, the pore diameter may be more than 15 μm / mm 2 . The Shore A hardness of the foam can be in the range of 20 to 90 degrees. The foam is preferably integrally formed by a wet film formation method. The fine particles preferably have a uniform pore size. The fine particles can be spherical or polyhedral. Furthermore, the foam may be continuously formed with micropores having a pore size smaller than that of the fine particles.

本発明によれば、研磨面の単位面積あたりに形成され開孔径が1μmを超える開孔のうち、微粒子で形成された開孔の数が発泡で形成された開孔の数より大きいため、研磨液が略均一に研磨面に保持され安定した研磨加工を行うことができると共に、発泡が連続発泡状に形成されていることでクッション性が発揮され、研磨面の面圧が一定となるように微粒子が支持されるため、スクラッチの抑制効果が高まり、被研磨物の平坦性を向上させることができる、という効果を得ることができる。   According to the present invention, since the number of apertures formed by fine particles is larger than the number of apertures formed by foaming among the apertures formed per unit area of the polished surface and having an aperture diameter exceeding 1 μm, polishing is performed. The liquid is held almost evenly on the polishing surface and stable polishing can be performed, and the foaming is formed in a continuous foam shape to provide cushioning properties, so that the surface pressure of the polishing surface is constant. Since the fine particles are supported, the effect of suppressing scratches is enhanced, and the flatness of the object to be polished can be improved.

本発明を適用した実施形態の研磨パッドを模式的に示す断面図である。It is sectional drawing which shows typically the polishing pad of embodiment to which this invention is applied.

以下、図面を参照して、本発明を適用した研磨パッドの実施の形態について説明する。   Hereinafter, embodiments of a polishing pad to which the present invention is applied will be described with reference to the drawings.

(構成)
図1に示すように、本実施形態の研磨パッド10は、樹脂製発泡体としての発泡シート2を備えている。発泡シート2は湿式成膜法によりポリウレタン樹脂で一体形成され、略平坦な研磨面Pを有している。
(Constitution)
As shown in FIG. 1, the polishing pad 10 of the present embodiment includes a foam sheet 2 as a resin foam. The foam sheet 2 is integrally formed of a polyurethane resin by a wet film forming method and has a substantially flat polished surface P.

発泡シート2は、本例では、湿式成膜時に緻密な微多孔が形成された表面層(スキン層)が研削処理やドレス処理により除去され、その表面に研磨面Pが構成されている。発泡シート2には、中空状の樹脂微粒子4が研磨面Pから一定の厚み範囲に局在するように含有されている。発泡シート2には、発泡シート2の厚さ方向に沿って縦長で丸みを帯びた断面三角形状の発泡3が形成されている。発泡3は、研磨面P側の径の大きさが、研磨面Pと反対の面側の径より小さく形成されている。すなわち、発泡3は研磨面P側で縮径されている。発泡3の間のポリウレタン樹脂中には、発泡3より小さい孔径の微多孔が形成されているが、図1ではそれらの微多孔を省略している。発泡3および微多孔は、不図示の連通孔で網目状につながっている。すなわち、発泡シート2は、湿式成膜法により形成された連続状の発泡構造を有している。   In this example, the foam sheet 2 has a surface layer (skin layer) on which fine micropores are formed during wet film formation removed by grinding or dressing, and a polished surface P is formed on the surface. The foam sheet 2 contains hollow resin fine particles 4 so as to be localized in a certain thickness range from the polishing surface P. The foamed sheet 2 is formed with a foam 3 having a triangular shape that is vertically long and round along the thickness direction of the foamed sheet 2. The foam 3 is formed such that the diameter on the polishing surface P side is smaller than the diameter on the surface opposite to the polishing surface P. That is, the diameter of the foam 3 is reduced on the polishing surface P side. In the polyurethane resin between the foams 3, micropores having a pore size smaller than that of the foams 3 are formed, but these micropores are omitted in FIG. 1. The foam 3 and the micropores are connected in a mesh pattern with communication holes (not shown). That is, the foam sheet 2 has a continuous foam structure formed by a wet film forming method.

微粒子4は、発泡シート2の内部に研磨面Pから全体の厚さに対して50%の厚み範囲に60%以上が局在するように含有されている。微粒子4の含有量は、発泡シート2の100部に対して1〜50部の重量割合に設定されている。含有された微粒子4のうちの60%以上が研磨面P側に局在している。発泡シート2は、研磨面Pに研削処理やドレス処理が施されているため、研磨面Pでは、表面近傍に位置する一部の微粒子4が開孔し開孔5が形成されている。研磨面Pの単位面積あたりに形成され開孔径が1μmを超える開孔のうち、微粒子4で形成された開孔5の数は、発泡3で形成された開孔の数より大きくなるように形成されている。また、微粒子4の孔径は、5〜40μmの範囲に調整され、均一となるように調整されている。このため、研磨加工中に供給されるスラリが被研磨物の加工面に略均一に分散供給される。   The fine particles 4 are contained in the foamed sheet 2 so that 60% or more is localized in a thickness range of 50% with respect to the entire thickness from the polishing surface P. The content of the fine particles 4 is set to a weight ratio of 1 to 50 parts with respect to 100 parts of the foamed sheet 2. 60% or more of the contained fine particles 4 are localized on the polishing surface P side. Since the foamed sheet 2 is subjected to a grinding process or a dressing process on the polishing surface P, some fine particles 4 located in the vicinity of the surface are opened on the polishing surface P to form openings 5. Among the openings formed per unit area of the polished surface P and having an opening diameter exceeding 1 μm, the number of the openings 5 formed by the fine particles 4 is formed to be larger than the number of the openings formed by the foam 3. Has been. Moreover, the pore diameter of the fine particles 4 is adjusted to a range of 5 to 40 μm and is adjusted to be uniform. For this reason, the slurry supplied during the polishing process is distributed and supplied substantially uniformly on the processed surface of the object to be polished.

微粒子4としては、球体状または多面体状のものを用いることができ、例えば、低沸点炭化水素が内包され、外殻が熱可塑性樹脂で形成された微小球体を用いることができる。外殻を形成する熱可塑性樹脂の軟化温度が、内包した低沸点炭化水素の沸点より高温であるものが好ましい。膨張前の微粒子は、熱可塑性樹脂の軟化温度以上の熱が加えられると、熱可塑性樹脂が軟化すると共に低沸点炭化水素が気化することで体積膨張して中空となる。外殻の熱可塑性樹脂としては、例えば、アクリロニトリル−塩化ビニリデン共重合体、アクリロニトリル−メチルメタクリレート共重合体、スチレン系ポリマー、シリコーン樹脂、ウレタン樹脂、アミド樹脂等を挙げることができる。これらの外殻の熱可塑性樹脂は、発泡シート2の作製時に用いるポリウレタン樹脂を溶解可能な水混和性の有機溶媒に対して安定なものがよく、必要に応じて架橋処理等が施されていることが好ましい。内包される低沸点炭化水素としては、例えば、イソブタン、ペンタン、イソペンタン、石油エーテル等を挙げることができる。内包させる低沸点炭化水素の量を調整することで、膨張後の粒径を調整することができるが、本例では、予め膨張させたもので、膨張後の微粒子4の粒径が、5〜40μmの範囲のものを用いる。   As the fine particles 4, spherical or polyhedral particles can be used. For example, microspheres in which low-boiling hydrocarbons are encapsulated and the outer shell is formed of a thermoplastic resin can be used. It is preferable that the softening temperature of the thermoplastic resin forming the outer shell is higher than the boiling point of the encapsulated low-boiling hydrocarbon. When the heat of the thermoplastic resin is higher than the softening temperature of the thermoplastic resin, the unexpanded fine particles are softened while the low-boiling hydrocarbons are vaporized and become hollow. Examples of the outer shell thermoplastic resin include acrylonitrile-vinylidene chloride copolymer, acrylonitrile-methyl methacrylate copolymer, styrene polymer, silicone resin, urethane resin, amide resin, and the like. These outer shell thermoplastic resins are preferably stable with respect to a water-miscible organic solvent capable of dissolving the polyurethane resin used in the production of the foamed sheet 2, and are subjected to a crosslinking treatment or the like as necessary. It is preferable. Examples of the low-boiling hydrocarbons encapsulated include isobutane, pentane, isopentane, petroleum ether, and the like. By adjusting the amount of low-boiling hydrocarbons to be included, the particle size after expansion can be adjusted. In this example, the particle size of the expanded fine particles 4 is 5 to 5 in advance. The thing of the range of 40 micrometers is used.

発泡シート2の全体の厚さtは、0.3〜3mmの範囲に調整されている。研磨面P側から全体の厚さtに対して5%の厚さ(0.05t)分を除いたとき、平均開孔径が5〜40μmの範囲で、開孔径が50μmを超える開孔が10個/mm以下となるように調整されている。また、研磨面P側から全体の厚さtに対して50%の厚さ(0.5t)分を除いたとき、開孔径が50μmを超える開孔が15〜50個/mmの範囲となるように調整されている。発泡シート2では、ショアA硬度は20〜90度の範囲に調整されている。このようにすれば、発泡シート2の硬度が適正化されるため、研磨加工時にスクラッチ等の発生を低減することができる。 The total thickness t of the foam sheet 2 is adjusted to a range of 0.3 to 3 mm. When the 5% thickness (0.05 t) is removed from the polishing surface P side with respect to the total thickness t, the average aperture diameter is 5 to 40 μm, and the aperture diameter exceeds 10 μm. It is adjusted so as to be less than pieces / mm 2 . Further, when the thickness (0.5 t) of 50% of the entire thickness t is removed from the polishing surface P side, the number of apertures having a pore diameter exceeding 50 μm is 15 to 50 / mm 2 . It has been adjusted to be. In the foam sheet 2, the Shore A hardness is adjusted to a range of 20 to 90 degrees. In this way, since the hardness of the foamed sheet 2 is optimized, the occurrence of scratches or the like can be reduced during polishing.

また、研磨パッド10は、発泡シート2の研磨面Pと反対の面側に、研磨機に研磨パッド10を装着するための両面テープ6が貼り合わされている。両面テープ6は、ポリエチレンテレフタレート(以下、PETと略記する。)製フィルム等の基材の両面に接着材層を有している。図1では、基材および接着材層を省略している。接着材層の接着材としては、例えば、アクリル系接着材等を挙げることができる。両面テープ6は、一面側の接着材層で発泡シート2と貼り合わされており、他面側の接着材層が剥離紙7で覆われている。   The polishing pad 10 has a double-sided tape 6 attached to the surface opposite to the polishing surface P of the foam sheet 2 for mounting the polishing pad 10 on a polishing machine. The double-sided tape 6 has an adhesive layer on both surfaces of a substrate such as a polyethylene terephthalate (hereinafter abbreviated as PET) film. In FIG. 1, the base material and the adhesive layer are omitted. Examples of the adhesive of the adhesive layer include an acrylic adhesive. The double-sided tape 6 is bonded to the foam sheet 2 with an adhesive layer on one side, and the adhesive layer on the other side is covered with a release paper 7.

(製造)
研磨パッド10は、ポリウレタン樹脂を溶解させ微粒子4を含有させた樹脂溶液を準備する準備工程、樹脂溶液を成膜基材に連続的に塗布する塗布工程、水系凝固液中でポリウレタン樹脂をシート状に凝固再生させる凝固再生工程、凝固再生したポリウレタン樹脂を洗浄し乾燥させる洗浄・乾燥工程、バフ処理により厚みを均一化させるバフ処理工程、発泡シート2に両面テープ6を貼付するラミネート加工工程を経て製造される。以下、工程順に説明する。
(Manufacturing)
The polishing pad 10 is a preparation step for preparing a resin solution in which a polyurethane resin is dissolved and containing fine particles 4, a coating step for continuously applying the resin solution to a film forming substrate, and a polyurethane resin in a sheet form in an aqueous coagulating liquid. Through a coagulation regeneration process for coagulation and regeneration, a washing / drying process for washing and drying the coagulated and regenerated polyurethane resin, a buffing process for making the thickness uniform by buffing, and a laminating process for attaching the double-sided tape 6 to the foamed sheet 2 Manufactured. Hereinafter, it demonstrates in order of a process.

準備工程では、ポリウレタン樹脂、ポリウレタン樹脂を溶解可能な水混和性の有機溶媒のN、N−ジメチルホルムアミド(以下、DMFと略記する。)、微粒子4および添加剤を混合してポリウレタン樹脂を溶解させる。水混和性の有機溶媒としては、水と任意の割合で混ざり合う有機溶媒であればよく、DMF以外に、例えばN,N−ジメチルアセトアミド(DMAc)、テトラヒドロフラン(THF)、ジメチルスルホキシド(DMSO)、アセトン等を用いてもよい。ポリウレタン樹脂は、ポリエステル系、ポリエーテル系、ポリカーボネート系等の樹脂から選択して用いられ、例えば、ポリウレタン樹脂が30重量%となるようにDMFに溶解させる。微粒子4は略均一に混合、分散させる。添加剤としては、発泡3の厚さ方向の長さや単位体積あたりの個数を制御するため、カーボンブラック等の顔料、発泡の生成を促進させる親水性活性剤及びポリウレタン樹脂の凝固再生を安定化させる疎水性活性剤等を用いることができる。得られた溶液を減圧下で脱泡して樹脂溶液を得る。   In the preparation step, polyurethane resin, N, N-dimethylformamide (hereinafter abbreviated as DMF), a water-miscible organic solvent capable of dissolving polyurethane resin, fine particles 4 and additives are mixed to dissolve the polyurethane resin. . The water-miscible organic solvent may be an organic solvent that mixes with water at an arbitrary ratio. In addition to DMF, for example, N, N-dimethylacetamide (DMAc), tetrahydrofuran (THF), dimethyl sulfoxide (DMSO), Acetone or the like may be used. The polyurethane resin is selected from resins such as polyester, polyether, polycarbonate, and the like. For example, the polyurethane resin is dissolved in DMF so that the polyurethane resin becomes 30% by weight. The fine particles 4 are mixed and dispersed substantially uniformly. As additives, in order to control the length of foam 3 in the thickness direction and the number per unit volume, pigments such as carbon black, a hydrophilic activator that promotes the formation of foam, and the solidification regeneration of polyurethane resin are stabilized. A hydrophobic active agent or the like can be used. The obtained solution is degassed under reduced pressure to obtain a resin solution.

塗布工程では、準備工程で得られた樹脂溶液を常温下でナイフコータ等により帯状の成膜基材に略均一となるように、連続的に塗布する。このとき、ナイフコータ等と成膜基材との間隙(クリアランス)を調整することで、ポリウレタン樹脂溶液の塗布厚さ(塗布量)が調整される。成膜基材にはPET樹脂等の樹脂製の不織布やフィルムを用いることができるが、本例では、成膜基材としてPET製フィルムが用いられる。   In the application step, the resin solution obtained in the preparation step is continuously applied to the belt-shaped film forming substrate with a knife coater or the like at room temperature so as to be substantially uniform. At this time, the application thickness (application amount) of the polyurethane resin solution is adjusted by adjusting the gap (clearance) between the knife coater and the film forming substrate. A resin-made nonwoven fabric or film such as PET resin can be used for the film-forming substrate, but in this example, a PET film is used as the film-forming substrate.

凝固再生工程では、成膜基材に塗布された樹脂溶液を、ポリウレタン樹脂に対して貧溶媒である水を主成分とする凝固液に案内する。凝固液中では、まず、塗布された樹脂溶液の表面側に微多孔が形成され厚さ数μm程度のスキン層が形成される。その後、樹脂溶液中のDMFと凝固液との置換の進行によりポリウレタン樹脂が成膜基材上にシート状に凝固再生する。DMFが樹脂溶液から脱溶媒し、DMFと凝固液とが置換することで、スキン層より内側のポリウレタン樹脂中に発泡3および微多孔が形成され、発泡3および微多孔が網目状に連通する。このとき、成膜基材のPETシートが水を浸透させないため、樹脂溶液の表面側(スキン層側)で脱溶媒が生じて成膜基材側が表面側より大きな発泡3が形成される。DMFが樹脂溶液から脱溶媒され表面側へ移動するに伴い、微粒子4は、表面側に局在するように分散される。   In the coagulation regeneration process, the resin solution applied to the film forming substrate is guided to a coagulation liquid mainly composed of water which is a poor solvent for the polyurethane resin. In the coagulation liquid, first, micropores are formed on the surface side of the applied resin solution, and a skin layer having a thickness of about several μm is formed. Thereafter, the polyurethane resin coagulates and regenerates into a sheet on the film-forming substrate as the substitution of the DMF in the resin solution and the coagulating liquid proceeds. When the DMF is removed from the resin solution and the DMF and the coagulating liquid are replaced, the foam 3 and the micropores are formed in the polyurethane resin inside the skin layer, and the foam 3 and the micropores communicate with each other in a mesh shape. At this time, since the PET sheet of the film forming substrate does not permeate water, desolvation occurs on the surface side (skin layer side) of the resin solution, and foam 3 having a larger film forming substrate side than the surface side is formed. As DMF is desolvated from the resin solution and moves to the surface side, the fine particles 4 are dispersed so as to be localized on the surface side.

洗浄・乾燥工程では、凝固再生工程で凝固再生したシート状のポリウレタン樹脂(以下、成膜樹脂という。)を成膜基材から剥離し、水等の洗浄液中で洗浄して成膜樹脂中に残留するDMFを除去する。洗浄後、成膜樹脂をシリンダ乾燥機で乾燥させる。シリンダ乾燥機は内部に熱源を有するシリンダを備えている。成膜樹脂がシリンダの周面に沿って通過することで乾燥する。乾燥後の成膜樹脂をロール状に巻き取る。   In the cleaning / drying process, the sheet-like polyurethane resin solidified and regenerated in the coagulation regeneration process (hereinafter referred to as a film-forming resin) is peeled off from the film-forming substrate, washed in a cleaning solution such as water and washed into the film-forming resin. Residual DMF is removed. After cleaning, the film forming resin is dried with a cylinder dryer. The cylinder dryer includes a cylinder having a heat source therein. The film-forming resin is dried by passing along the peripheral surface of the cylinder. The film-forming resin after drying is rolled up.

バフ処理工程では、成膜樹脂の表面に形成されたスキン層側にバフ処理を施す。すなわち、圧接治具の略平坦な表面を成膜樹脂のスキン層と反対側の面に圧接し、スキン層側にバフ処理を施す。これにより、一部の微粒子4が研磨面Pに開孔して開孔5が形成され、成膜樹脂の厚みが均一化され、発泡シート2が得られる。   In the buffing process, buffing is performed on the skin layer side formed on the surface of the film-forming resin. That is, the substantially flat surface of the pressure welding jig is pressed against the surface opposite to the skin layer of the film forming resin, and the buff treatment is performed on the skin layer side. Thereby, a part of the fine particles 4 are opened in the polishing surface P to form the openings 5, the thickness of the film forming resin is made uniform, and the foam sheet 2 is obtained.

ラミネート加工工程では、発泡シート2の研磨面Pと反対側の面に両面テープ6を貼り合わせる。両面テープ6の他面側は剥離紙7で覆われている。汚れや異物等の付着がないことを確認する等の検査を行い、研磨パッド10を完成させる。   In the laminating process, the double-sided tape 6 is bonded to the surface opposite to the polishing surface P of the foam sheet 2. The other side of the double-sided tape 6 is covered with a release paper 7. The polishing pad 10 is completed by performing an inspection such as confirming that there is no adhesion of dirt or foreign matter.

(作用等)
次に、本実施形態の研磨パッド10の作用等について説明する。
(Action etc.)
Next, the operation and the like of the polishing pad 10 of this embodiment will be described.

本実施形態の研磨パッド10では、発泡シート2の研磨面P側に微粒子4が局在するように含有されている。研磨面Pでは微粒子4の開孔により開孔5が形成されている。研磨面Pの単位面積あたりに形成され開孔径が1μmを超える開孔のうち、微粒子4で形成された開孔5の数は、発泡3で形成された開孔の数より大きい。このため、研磨加工時に供給されるスラリが開孔5に保持されつつ被研磨物の加工面を略均一に移動することで研磨加工に寄与する、すなわち、スラリの分散供給が均一化されるため、研磨効率や研磨精度等の研磨特性を安定化させることができる。   In the polishing pad 10 of the present embodiment, the fine particles 4 are contained so as to localize on the polishing surface P side of the foam sheet 2. On the polished surface P, apertures 5 are formed by the apertures of the fine particles 4. Of the openings formed per unit area of the polished surface P and having an opening diameter exceeding 1 μm, the number of the openings 5 formed by the fine particles 4 is larger than the number of the openings formed by the foam 3. For this reason, since the slurry supplied at the time of polishing is held in the opening 5 and contributes to the polishing by moving the processing surface of the object to be polished substantially uniformly, that is, the dispersion of the slurry is made uniform. Polishing characteristics such as polishing efficiency and polishing accuracy can be stabilized.

また、本実施形態の研磨パッド10では、発泡3や微多孔が連通孔で網目状につながり、連続発泡状に形成されている。このため、研磨加工時にクッション性が発揮されることで、研磨面Pの面圧が一定となるように、微粒子4が支持される。これにより、微粒子4の外殻により局部的に圧力が上昇することが抑制されるため、スクラッチの抑制効果が高まり、被研磨物の平坦性を向上させることができる。   Further, in the polishing pad 10 of the present embodiment, the foam 3 and the micropores are connected in a mesh shape with the communication holes, and are formed in a continuous foam shape. For this reason, the fine particles 4 are supported so that the surface pressure of the polishing surface P is constant by exhibiting cushioning properties during the polishing process. Thereby, since it is suppressed that a pressure rises locally by the outer shell of the fine particle 4, the suppression effect of a scratch increases and the flatness of a to-be-polished object can be improved.

更に、本実施形態の研磨パッド10では、発泡シート2の研磨面Pから全体の厚さに対して50%の厚み範囲に微粒子4が60%以上局在するように含有され、研磨面Pで微粒子4が開孔して開孔5が形成されている。研磨加工時には、発泡シート2の研磨面P側が摩耗する。また、研磨効率の向上を図るため、ドレス処理が研磨面P側に施される。研磨面P側のドレス処理や摩耗により研磨面Pの近傍に含有された微粒子4が随時開孔され開孔5が形成される。このため、摩耗が進んでも、研磨面Pに開孔5が随時形成されるため、被研磨物の加工面に略均一にスラリを分散させることができると共に、スラリ保持性を維持することができる。発泡シート2の研磨面Pから全体の厚さに対して50%の厚み範囲に微粒子4が60%以上局在していないと、発泡3の孔径が大きくなる部分に含まれる微粒子4の割合が増えるため、研磨に関与しない無駄な微粒子4の割合が増えるばかりか、安定なクッション性を損ないやすくなるので好ましくない。   Furthermore, in the polishing pad 10 of the present embodiment, the fine particles 4 are contained so as to be localized 60% or more in a thickness range of 50% from the polishing surface P of the foam sheet 2 with respect to the total thickness. Fine particles 4 are opened to form openings 5. At the time of polishing, the polishing surface P side of the foam sheet 2 is worn. In addition, a dressing process is performed on the polishing surface P side in order to improve polishing efficiency. The fine particles 4 contained in the vicinity of the polishing surface P are opened at any time by dressing treatment or wear on the polishing surface P side, and the opening 5 is formed. For this reason, even if the wear progresses, the openings 5 are formed on the polishing surface P as needed, so that the slurry can be dispersed substantially uniformly on the processed surface of the object to be polished and the slurry retainability can be maintained. . If the fine particles 4 are not localized in the thickness range of 50% from the polishing surface P of the foam sheet 2 in the thickness range of 60% or more, the ratio of the fine particles 4 contained in the portion where the pore diameter of the foam 3 is large is obtained. Therefore, the ratio of the useless fine particles 4 not involved in the polishing is increased, and the stable cushioning property is easily impaired.

また更に、本実施形態の研磨パッド10では、研磨面Pから全体の厚さに対して5%の厚さ分を除いたとき、平均開孔径が5〜40μmの範囲で、開孔径が50μmを超える開孔が10個/mm以下に調整されている。また、研磨面Pから全体の厚さに対して50%の厚さ分を除いたとき、開孔径が50μmを超える開孔が15〜50個/mmの範囲に調整されている。すわなち、研磨加工時に発泡シート2が摩耗するのに従い、発泡3が開孔し、その孔径が大きくなる。このため、研磨により発生する研磨屑(スラッジ)や微粒子4の外殻成分が発泡3内に入り込むため、被研磨物にスクラッチが形成されることを抑制することができる。研磨面Pから全体の厚さに対して5%の厚さ分を除いたときの平均開孔径が5μmより小さいと、研磨屑(スラッジ)やスラリ凝集物による目詰まりが生じやすく、反対に40μmより大きいと被研磨物の平坦性が得られにくくなるので好ましくない。また、このときの開孔径が50μmを超える開孔が10個/mmを超えると、被研磨物の平坦性が損なわれるので好ましくない。研磨面Pから全体の厚さに対して50%の厚さ分を除いたときに開孔径が50μmを超える開孔が15個/mmより少ないと、十分なクッション性が得られにくくなるので、スクラッチを招きやすく、反対に50個/mmより多いと、研磨面圧にバラツキが生じやすく、被研磨物の平坦性が損なわれるので好ましくない。 Furthermore, in the polishing pad 10 of this embodiment, when 5% of the total thickness is removed from the polishing surface P, the average opening diameter is in the range of 5 to 40 μm, and the opening diameter is 50 μm. The number of openings exceeding 10 holes / mm 2 is adjusted. Further, when the thickness of 50% of the entire thickness is removed from the polished surface P, the number of apertures having an aperture diameter exceeding 50 μm is adjusted to a range of 15 to 50 holes / mm 2 . That is, as the foam sheet 2 wears during polishing, the foam 3 opens and the hole diameter increases. For this reason, since the grinding | polishing waste (sludge) and the outer shell component of the microparticles | fine-particles 4 which generate | occur | produce by grinding | polishing enter in the foam 3, it can suppress that a scratch is formed in a to-be-polished object. If the average hole diameter when the thickness of 5% of the entire thickness is removed from the polished surface P is smaller than 5 μm, clogging due to polishing dust (sludge) and slurry aggregates is likely to occur, and conversely, 40 μm. If it is larger, it is difficult to obtain flatness of the object to be polished, which is not preferable. Further, if the opening diameter at this time exceeds 10 μm / mm 2 , the flatness of the object to be polished is impaired. When removing 50% of the total thickness from the polished surface P, if the number of apertures exceeding 50 μm is less than 15 holes / mm 2 , sufficient cushioning properties are difficult to obtain. On the contrary, if it is more than 50 / mm 2 , the polishing surface pressure is likely to vary and the flatness of the object to be polished is impaired.

また、本実施形態の研磨パッド10では、発泡シート2のショアA硬度が20〜90度の範囲に調整されている。このため、硬度が適正化され、研磨面Pから摩耗屑を除去しやすくなり、ドレス性を向上させることができる。また、摩耗が過度になるおそれがないため、長期間研磨加工を継続することができ、長寿命化を図ることができる。   Moreover, in the polishing pad 10 of this embodiment, the Shore A hardness of the foam sheet 2 is adjusted in the range of 20 to 90 degrees. For this reason, hardness is optimized, it becomes easy to remove wear debris from the polished surface P, and dressability can be improved. In addition, since there is no possibility of excessive wear, the polishing process can be continued for a long time, and the life can be extended.

更に、本実施形態の研磨パッド10では、発泡シート2が湿式成膜法により一体成形されている。このため、発泡シートに他の材質が貼り合わされたものと比較すると、研磨加工中に積層された面で剥離することがない。また、貼り合わされたものは、厚みが増すにつれて研磨パッドの厚みムラが生じることがあるが、研磨パッド10は、発泡シート2が一体成形されているため厚みムラを防ぐことができ、被研磨物の平坦性を向上させることができる。   Furthermore, in the polishing pad 10 of this embodiment, the foam sheet 2 is integrally formed by a wet film forming method. For this reason, compared with what laminated | stacked another material on the foam sheet, it does not peel in the surface laminated | stacked during the grinding process. In addition, the bonded pad may cause uneven thickness of the polishing pad as the thickness increases, but the polishing pad 10 can prevent uneven thickness because the foamed sheet 2 is integrally formed, and the object to be polished can be prevented. The flatness of the film can be improved.

また更に、本実施形態の研磨パッド10では、微粒子4が球体状または多面体状で、均一の孔径となるように調整されている。これにより、開孔5を開孔径が略均一となるように容易に形成することができる。従って、研磨加工時には、スラリが被研磨物の加工面を略均一に移動することができ、スラリの保持性が確保され、目詰まりが抑制されるので、研磨効率や研磨精度を向上させることができる。また、極端に大きな開孔が形成されず目詰まりも抑制されることで研磨粒子等の凝集物の形成が抑制されるので、被研磨物にスクラッチ(キズ)を発生させることなく平坦性を向上させることができる。   Furthermore, in the polishing pad 10 of this embodiment, the fine particles 4 are spherical or polyhedral and are adjusted so as to have a uniform pore diameter. Thereby, the opening 5 can be easily formed so that an opening diameter becomes substantially uniform. Therefore, at the time of polishing, the slurry can move substantially uniformly on the processed surface of the object to be polished, the retention of the slurry is ensured, and clogging is suppressed, so that the polishing efficiency and polishing accuracy can be improved. it can. In addition, the formation of agglomerates such as abrasive particles is suppressed by preventing clogging without forming extremely large apertures, improving flatness without causing scratches on the workpiece. Can be made.

なお、本実施形態では、発泡シートとしてポリウレタン樹脂製のシートを例示したが、本発明はこれに限定されるものではなく、他の樹脂を使用してもよい。例えば、ポリ塩化ビニル樹脂等を使用してもよい。ポリウレタン樹脂を用いるようにすれば、湿式成膜法により連続状の発泡構造を容易に形成することができる。   In the present embodiment, a polyurethane resin sheet is exemplified as the foam sheet, but the present invention is not limited to this, and other resins may be used. For example, polyvinyl chloride resin or the like may be used. If a polyurethane resin is used, a continuous foam structure can be easily formed by a wet film forming method.

また、本実施形態では、発泡シート2の作製時に、ポリウレタン樹脂を凝固再生させた後、成膜基材を剥離して、両面テープ6を貼り合わせる例を示したが、本発明はこれに限定されるものではない。例えば、成膜基材を剥離した後、両面テープ6と発泡シート2との間に支持体を貼り合わせてもよい。また、ポリウレタン樹脂を凝固再生させた後、成膜基材を剥離せず、両面テープ6を貼り合わせ、成膜基材を支持体としてもよい。例えば、成膜基材に不織布を用いた場合は、発泡シートから剥離することが難しいため、成膜基材を剥離せずそのまま乾燥させてもよい。つまり、不織布の成膜基材が研磨パッド10の支持体となる。更に、両面テープ6としては、基材の両面に粘着剤が塗布されていてもよく、基材を有することなく粘着剤のみで構成されてもよい。   In this embodiment, the polyurethane resin is coagulated and regenerated at the time of producing the foam sheet 2, and then the film forming substrate is peeled off and the double-sided tape 6 is bonded. However, the present invention is limited to this. Is not to be done. For example, after peeling off the film forming substrate, a support may be bonded between the double-sided tape 6 and the foamed sheet 2. Alternatively, after the polyurethane resin is solidified and regenerated, the film forming substrate may not be peeled off, and the double-sided tape 6 may be attached to use the film forming substrate as a support. For example, when a non-woven fabric is used as the film forming substrate, it is difficult to peel off the foamed sheet. Therefore, the film forming substrate may be dried as it is without being peeled off. That is, the non-woven fabric film forming substrate serves as a support for the polishing pad 10. Furthermore, as the double-sided tape 6, an adhesive may be applied to both surfaces of the base material, and may be composed of only the adhesive without having the base material.

更に、本実施形態では、発泡シート2に両面テープ6が貼り合わされている例を示したが、本発明はこれに限定されるものではない。例えば、製造工程において、例えば、成膜基材上にPET−PU(ポリウレタン)共重合樹脂を塗布し、乾燥させた後、PET−PU共重合樹脂の成膜基材と反対の面側にポリウレタン樹脂溶液を塗布し、ポリウレタン樹脂を凝固再生させてもよい。このようにすれば、PET−PU共重合樹脂は、成膜基材(支持体)とポリウレタン樹脂(発泡シート)とを定着固定させる接着材の役割を果たすため、研磨加工中に発泡シートと支持体が剥離することを抑制することができる。   Furthermore, in this embodiment, the example in which the double-sided tape 6 is bonded to the foam sheet 2 is shown, but the present invention is not limited to this. For example, in the manufacturing process, for example, a PET-PU (polyurethane) copolymer resin is applied on a film-forming substrate, dried, and then polyurethane is formed on the side opposite to the film-forming substrate of the PET-PU copolymer resin. A resin solution may be applied to coagulate and regenerate the polyurethane resin. In this way, since the PET-PU copolymer resin serves as an adhesive for fixing and fixing the film forming substrate (support) and the polyurethane resin (foamed sheet), the foamed sheet and the support are supported during the polishing process. It can suppress that a body peels.

また更に、本実施形態では、発泡シートの研磨面P側にバフ機やスライス機等により研削処理を施してスキン層を除去する例を示したが、本発明はこれに限定されるものではない。例えば、発泡シート2の研磨面P側と反対面側に研削処理を施してもよい。このようにすれば、スキン層を残したまま厚みのバラツキ等を改善することができる。また、発泡シート2の研磨面P側に研削処理を施さずにスキン層を残してもよい。   Furthermore, in the present embodiment, an example in which the skin layer is removed by performing grinding processing on the polishing surface P side of the foam sheet by a buffing machine, a slicing machine, or the like is shown, but the present invention is not limited to this. . For example, grinding processing may be performed on the surface opposite to the polishing surface P side of the foam sheet 2. In this way, it is possible to improve the thickness variation and the like while leaving the skin layer. Further, the skin layer may be left without performing the grinding process on the polishing surface P side of the foam sheet 2.

更にまた、本実施形態では、特に言及していないが、発泡シート2に、被研磨物の研磨加工状態を光学的に検出するための光透過を許容する光透過部を、例えば、光透過部が発泡シート2の厚み方向の全体にわたり貫通するように形成するようにしてもよい。光透過部を形成するには、例えば、発泡シート2に貫通口を形成しておき、発泡シート2と別の光透過性を有する部材を貫通口にはめ込むことで実現することができる。また、発泡シート2を構成する材料または光透過部を構成する材料が固化する前に両者を接触させて一体化させることで実現することもできる。光透過部を形成すれば、例えば、研磨機側に備えられた発光ダイオード等の発光素子、フォトトランジスタ等の受光素子により、研磨加工中に光透過部を通して被研磨物の加工面の研磨加工状態を検出することができる。これにより、研磨加工の終点を適正に検出することができ、研磨効率の向上を図ることができる。   Furthermore, in the present embodiment, although not particularly mentioned, a light transmissive portion that allows light transmission for optically detecting the polishing state of the object to be polished is provided on the foam sheet 2, for example, a light transmissive portion. May be formed so as to penetrate through the entire thickness direction of the foam sheet 2. Forming the light transmission part can be realized, for example, by forming a through-hole in the foamed sheet 2 and fitting a member having light transmittance different from that of the foamed sheet 2 into the through-hole. Moreover, before the material which comprises the foam sheet 2 or the material which comprises a light transmissive part solidifies, it can also implement | achieve by making both contact and integrate. If the light transmission part is formed, for example, a light-emitting element such as a light-emitting diode provided on the polishing machine side, or a light-receiving element such as a phototransistor, the polishing state of the processing surface of the object to be polished through the light transmission part during polishing processing Can be detected. As a result, the end point of the polishing process can be properly detected, and the polishing efficiency can be improved.

また、本実施形態では、発泡シート2に断面三角形状の発泡3や微多孔が連続発泡状に形成されている例を示したが、本発明はこれに制限されるものではない。例えば、準備工程において、ポリウレタン樹脂溶液に更に別の有機溶媒を加え、凝固再生工程でポリウレタン樹脂溶液の凝固を遅らせることで、発泡3を形成させずに発泡3より小さいミクロ発泡を厚み方向に均一に立体網目状に形成するようにしてもよい。この場合、ポリウレタン樹脂は比較的低い粘度のものを用い、比重の小さい微粒子4を分散させ、成膜基材に塗布後、微粒子4を成膜基材と反対側に局在させてから凝固再生させる。このようにすれば、微粒子4を研磨面から一定の厚み範囲に局在させることができ、上述したように安定した研磨レートで研磨加工を行うことができる。   In the present embodiment, an example in which the foamed sheet 2 is formed with the foam 3 having a triangular cross section and the fine pores in a continuous foam shape is shown, but the present invention is not limited thereto. For example, by adding another organic solvent to the polyurethane resin solution in the preparation step and delaying the solidification of the polyurethane resin solution in the coagulation regeneration step, the micro-foam smaller than the foam 3 is uniformly formed in the thickness direction without forming the foam 3 Alternatively, a three-dimensional network may be formed. In this case, a polyurethane resin having a relatively low viscosity is used. Fine particles 4 having a small specific gravity are dispersed, applied to the film forming substrate, and then the fine particles 4 are localized on the opposite side of the film forming substrate, and then coagulated and regenerated. Let In this way, the fine particles 4 can be localized in a certain thickness range from the polishing surface, and polishing can be performed at a stable polishing rate as described above.

更に、本実施形態では、予め膨張させた微粒子4を用いる例を示したが、本発明はこれに制限されるものではない。例えば、微粒子4を膨張させる前の状態のものを用いてもよい。この場合、微粒子4は、洗浄・乾燥工程で加熱されたときに膨張する。また、本実施形態では、微粒子4に、低沸点炭化水素が内包された微小球体を例示したが、本発明は、これに制限されるものではない。例えば、低沸点炭化水素を内包させず、元々中空のものを用いてもよい。また、外殻は完全に覆われていなくてもよく、例えば実質的にポリウレタン樹脂が空隙を埋めきらない程度に開孔した断面が馬蹄形や半円状の中空微粒子であっても構わない。更に、中空シリカやアルミノシリケート系マイクロバルーンのような外殻が無機系の材質であってもよい。   Furthermore, in this embodiment, although the example using the microparticle 4 expanded beforehand was shown, this invention is not restrict | limited to this. For example, a state before the fine particles 4 are expanded may be used. In this case, the fine particles 4 expand when heated in the cleaning / drying process. In the present embodiment, the microspheres in which the low-boiling point hydrocarbons are encapsulated in the fine particles 4 are exemplified, but the present invention is not limited thereto. For example, a low-boiling hydrocarbon may not be encapsulated and may be originally hollow. Further, the outer shell may not be completely covered. For example, the outer shell may be hollow fine particles having a horseshoe shape or a semicircular shape with a cross section opened to such an extent that the polyurethane resin does not substantially fill the void. Further, the outer shell such as hollow silica or aluminosilicate microballoon may be made of an inorganic material.

次に、本実施形態に従い製造した研磨パッド10の実施例について説明する。なお、比較のために製造した比較例の研磨パッドについても併記する。   Next, examples of the polishing pad 10 manufactured according to the present embodiment will be described. A comparative polishing pad manufactured for comparison is also shown.

(実施例1)
実施例1では、ポリウレタン樹脂としてポリエステルMDI(ジフェニルメタンジイソシアネート)を用いた。このポリウレタン樹脂を30重量%でDMFに溶解させた溶液100部に対して、微粒子4を10部、粘度調整用のDMFの45部、カーボンブラックを30重量%含むDMF分散液の40部、疎水性活性剤の2部を混合してポリウレタン樹脂溶液を調製した。微粒子4は、殻部分がアクリロニトリル−塩化ビニリデン共重合体からなり、殻内にイソブタンガスが内包された既膨張タイプの中空球状微粒子(エクスパンセル社製、商品名:EXPANCEL 551 DE20)であり、平均粒径が20μmである。得られたポリウレタン樹脂溶液を成膜基材に塗布した後、凝固液中で凝固再生させた。洗浄・乾燥させた後、発泡シート2を作製し実施例1の研磨パッド10を製造した。
Example 1
In Example 1, polyester MDI (diphenylmethane diisocyanate) was used as the polyurethane resin. 10 parts of fine particles 4, 45 parts of DMF for viscosity adjustment, 40 parts of DMF dispersion containing 30% by weight of carbon black, 100 parts of a solution obtained by dissolving 30% by weight of this polyurethane resin in DMF, hydrophobic A polyurethane resin solution was prepared by mixing 2 parts of the surfactant. The fine particle 4 is an expanded spherical hollow fine particle (trade name: EXPANCEL 551 DE20 manufactured by Expancel Co., Ltd.) having a shell portion made of an acrylonitrile-vinylidene chloride copolymer and encapsulating isobutane gas in the shell. The average particle size is 20 μm. The obtained polyurethane resin solution was applied to a film forming substrate, and then coagulated and regenerated in a coagulating liquid. After washing and drying, the foam sheet 2 was produced, and the polishing pad 10 of Example 1 was produced.

(比較例1)
比較例1では、微粒子4を含有させなかったこと以外は実施例1と同様にして比較例1の研磨パッドを製造した。すなわち、比較例1は、微粒子4が含有されていない従来の研磨パッドである。
(Comparative Example 1)
In Comparative Example 1, a polishing pad of Comparative Example 1 was produced in the same manner as in Example 1 except that the fine particles 4 were not contained. That is, Comparative Example 1 is a conventional polishing pad that does not contain fine particles 4.

(評価1)
実施例1および比較例1の研磨パッドについて、厚み、研磨面Pにおける平均開孔径、開孔径が50μmを超える開孔数、微粒子4の局在率および発泡シートのショアA硬度を測定した。厚みの測定では、ダイヤルゲージ(最小目盛り0.01mm)を使用し加重100g/cmをかけて測定した。縦1m×横1mの発泡シートを縦横10cmピッチで最小目盛りの10分の1(0.001mm)まで読み取り、厚さの平均値を求めた。ショアA硬度の測定では、発泡シートから試料片(10cm×10cm)を切り出し、複数枚の試料片を厚さが4.5mm以上となるように重ね、A型硬度計(日本工業規格、JIS K 7311)にて測定した。例えば、1枚の試料片の厚さが1.4mmの場合は、4枚を重ねて測定した.平均開孔径および開孔径が50μmを超える開孔数の測定では、走査型電子顕微鏡(日本電子株式会社製、JSM−5500LV)で約1mm四方の範囲を5000倍に拡大し9カ所観察した。この画像を画像処理ソフト(Image Analyzer V20LAB Ver.1.3)により処理し開孔径(平均値)および開孔数を算出した。微粒子4の局在率の測定では、走査型電子顕微鏡で試料片の断面を100倍〜1000倍に拡大し、一定幅に対する厚み方向での微粒子の数を9カ所計数し、発泡体全体の厚さに対して50%の厚み範囲での微粒子の割合を算出した。厚み、研磨面Pにおける平均開孔径、開孔径が50μmを超える開孔数、微粒子4の局在率および発泡シートのショアA硬度の測定結果を下表1に示す。
(Evaluation 1)
With respect to the polishing pads of Example 1 and Comparative Example 1, the thickness, the average hole diameter on the polishing surface P, the number of holes with an opening diameter exceeding 50 μm, the localization rate of the fine particles 4 and the Shore A hardness of the foamed sheet were measured. In the thickness measurement, a dial gauge (minimum scale 0.01 mm) was used and a weight of 100 g / cm 2 was applied. A foam sheet having a length of 1 m and a width of 1 m was read up to 1/10 (0.001 mm) of the minimum scale at a pitch of 10 cm in length and width, and the average value of the thickness was determined. In the Shore A hardness measurement, a sample piece (10 cm × 10 cm) is cut out from the foam sheet, and a plurality of sample pieces are stacked so that the thickness is 4.5 mm or more, and an A-type hardness meter (Japanese Industrial Standard, JIS K). 7311). For example, when the thickness of one sample piece was 1.4 mm, measurement was performed with four sheets stacked. In the measurement of the average hole diameter and the number of holes having an opening diameter exceeding 50 μm, a scanning electron microscope (JSM-5500LV, manufactured by JEOL Ltd.) expanded the range of about 1 mm square to 5000 times and observed nine places. This image was processed with image processing software (Image Analyzer V20LAB Ver. 1.3) to calculate the aperture diameter (average value) and the number of apertures. In the measurement of the localization rate of the fine particles 4, the cross section of the sample piece was enlarged 100 to 1000 times with a scanning electron microscope, the number of fine particles in the thickness direction with respect to a certain width was counted at nine places, and the thickness of the entire foam was measured. The proportion of fine particles in a thickness range of 50% with respect to the thickness was calculated. Table 1 below shows the measurement results of the thickness, the average pore diameter on the polished surface P, the number of apertures having an aperture diameter exceeding 50 μm, the localization rate of the fine particles 4 and the Shore A hardness of the foam sheet.

Figure 2011073085
Figure 2011073085

表1に示すように、比較例1の研磨パッドでは、研磨面から全体の厚さに対して5%の厚さ分を除いたときに形成される開孔の平均開孔径が35μm、開孔径が50μmを超える開孔が24個/mm、研磨面から全体の厚さに対して50%の厚さ分を除いたときに形成される開孔径が50μmを超える開孔が22個/mm、A硬度が38度であった。これに対して、実施例1の研磨パッド10では、平均開孔径が20μm、開孔径が50μmを超える開孔が5個/mm、研磨面から全体の厚さに対して50%の厚さ分を除いたときに形成される開孔径が50μmを超える開孔が21個/mm、A硬度が42度であった。比較例1では微粒子4が含有されておらず、発泡3による開孔のみが形成されたため、研磨面から全体の厚さに対して5%の厚さ分を除いたときに形成される開孔径が50μmを超える開孔数が大きい値を示した。これに対して、実施例1では、微粒子4が含有されている分、比較例1と比較し開孔径が50μmを超える開孔数が小さい値を示した。このため、実施例1では、微粒子4による開孔5に研磨加工中に供給されるスラリが均一に保持されやすくなり、スラリの均一分散性が確保され、研磨特性を向上させることができたと考えられる。また、実施例1では、研磨面Pの単位面積あたりに形成され開孔径が1μmを超える開孔のうち、微粒子4で形成された開孔5の数が、発泡3で形成された開孔の数より大きいため、被研磨物の加工面にスラリが略均一に保持されるため、安定した研磨特性を得ることが期待できる。更に、実施例1では、研磨面Pから発泡シート2全体の厚さに対して50%の厚み範囲に微粒子4の75%が局在しており、研磨面Pから全体の厚さに対して50%の厚さ分を除いたときに形成される開孔径が50μmを超える開孔が21個/mm形成されているので、安定したクッション性を得ることが期待できる。 As shown in Table 1, in the polishing pad of Comparative Example 1, the average opening diameter of the openings formed when the thickness of 5% of the entire thickness was removed from the polishing surface was 35 μm, and the opening diameter was 24 holes / mm 2 with a diameter exceeding 50 μm, and 22 holes / mm with an opening diameter exceeding 50 μm formed when the thickness of the polished surface is removed by 50% of the total thickness. 2. A hardness was 38 degrees. On the other hand, in the polishing pad 10 of Example 1, the average aperture diameter is 20 μm, the number of apertures having an aperture diameter exceeding 50 μm is 5 / mm 2 , and the thickness is 50% of the total thickness from the polishing surface. When the minute was removed, the number of apertures formed when the aperture diameter exceeded 50 μm was 21 holes / mm 2 , and the A hardness was 42 degrees. In Comparative Example 1, fine particles 4 were not contained, and only the pores due to the foam 3 were formed. Therefore, the pore diameter formed when the thickness of 5% of the entire thickness was removed from the polished surface. Shows a large value of the number of openings exceeding 50 μm. On the other hand, in Example 1, since the fine particles 4 were contained, the number of pores having a pore diameter exceeding 50 μm was smaller than that in Comparative Example 1. For this reason, in Example 1, the slurry supplied to the apertures 5 by the fine particles 4 during the polishing process is easily held uniformly, and the uniform dispersibility of the slurry is ensured and the polishing characteristics can be improved. It is done. Further, in Example 1, among the openings formed per unit area of the polishing surface P and having an opening diameter exceeding 1 μm, the number of the openings 5 formed by the fine particles 4 is the number of the openings formed by the foam 3. Since it is larger than the number, the slurry is held substantially uniformly on the processed surface of the object to be polished, so that stable polishing characteristics can be expected. Furthermore, in Example 1, 75% of the fine particles 4 are localized in the thickness range of 50% from the polishing surface P to the entire thickness of the foam sheet 2, and from the polishing surface P to the entire thickness. Since 21 holes / mm 2 having an opening diameter exceeding 50 μm formed when the thickness of 50% is removed are formed, stable cushioning properties can be expected.

(評価2)
実施例1および比較例1の研磨パッドを用いて、以下の研磨条件でアルミニウム基板の研磨加工を行った。研磨後のアルミニウム基板について、目視で表面に対するスクラッチ発生の有無を外観評価した。
(研磨条件)
使用研磨機:スピードファム社製、9B−5Pポリッシングマシン
研磨速度(回転数):30rpm
加工圧力:90g/cm
スラリ:アルミナスラリ(平均粒子径:0.8μm)
スラリ供給量:100cc/min
被研磨物:95mmφハードディスク用アルミニウム基板
研磨時間:300秒
(Evaluation 2)
Using the polishing pads of Example 1 and Comparative Example 1, the aluminum substrate was polished under the following polishing conditions. The appearance of the polished aluminum substrate was visually evaluated for the presence or absence of scratches on the surface.
(Polishing conditions)
Polishing machine used: Speedfam, 9B-5P polishing machine Polishing speed (rotation speed): 30 rpm
Processing pressure: 90 g / cm 2
Slurry: Alumina slurry (average particle size: 0.8 μm)
Slurry supply amount: 100cc / min
Object to be polished: 95 mmφ hard disk aluminum substrate polishing time: 300 seconds

比較例1の研磨パッドで研磨加工を行い、スクラッチ発生の有無を評価した結果、アルミニウム基板の表面に多数のスクラッチが認められた。これに対して、実施例1の研磨パッド10で研磨加工を行い、スクラッチ発生の有無を外観評価したところ、スクラッチは見られなかった。これは、実施例1の研磨パッド10では連続発泡構造が形成されていることで、研磨加工中にクッション性が発揮され、研磨面Pの面圧が一定となるように微粒子4が支持されたことで、スクラッチの抑制効果が向上したためと考えられる。従って、実施例1の研磨パッド10は、スラリ保持性を確保できると共に、被研磨物の平坦性を向上させることができることが判明した。   As a result of polishing with the polishing pad of Comparative Example 1 and evaluating the presence or absence of scratches, many scratches were observed on the surface of the aluminum substrate. On the other hand, when polishing was performed with the polishing pad 10 of Example 1 and the appearance was evaluated for the presence or absence of scratches, no scratches were found. This is because the continuous foam structure is formed in the polishing pad 10 of Example 1, so that cushioning properties are exhibited during the polishing process, and the fine particles 4 are supported so that the surface pressure of the polishing surface P is constant. This is considered to be because the effect of suppressing scratches was improved. Therefore, it has been found that the polishing pad 10 of Example 1 can ensure the slurry retention and improve the flatness of the object to be polished.

本発明は、被研磨物の平坦性を向上させることができる研磨パッドを提供するものであるため、研磨パッドの製造、販売に寄与するので、産業上の利用可能性を有する。   Since the present invention provides a polishing pad that can improve the flatness of an object to be polished, it contributes to the manufacture and sale of the polishing pad, and thus has industrial applicability.

P 研磨面
t 発泡体全体の厚さ
2 発泡シート(樹脂製発泡体)
3 発泡
4 微粒子(樹脂製微粒子)
5 開孔
10 研磨パッド
P Polished surface t Total thickness of foam 2 Foam sheet (resin foam)
3 Foam 4 Fine particles (resin fine particles)
5 Opening 10 Polishing pad

Claims (9)

湿式成膜法により発泡が連続発泡状に形成され被研磨物を研磨加工するための研磨面に開孔が形成された樹脂製発泡体を備えた研磨パッドにおいて、前記発泡体は、前記研磨面から一定の厚み範囲に局在するように多数の中空状の樹脂微粒子が含有されていると共に、前記研磨面の単位面積あたりに形成され開孔径が1μmを超える開孔のうち、前記微粒子で形成された開孔の数が前記発泡で形成された開孔の数より大きいことを特徴とする研磨パッド。   In a polishing pad comprising a resin foam in which foam is formed into a continuous foam by a wet film forming method and an opening is formed in a polishing surface for polishing an object to be polished, the foam is the polishing surface A large number of hollow resin fine particles are contained so as to be localized in a certain thickness range, and are formed with the fine particles out of the pores formed per unit area of the polished surface and having a pore diameter exceeding 1 μm. A polishing pad, wherein the number of openings formed is greater than the number of openings formed by the foaming. 前記発泡体は、前記研磨面から前記発泡体全体の厚さに対して50%の厚み範囲に前記微粒子の60%以上が局在するように含有されていることを特徴とする請求項1に記載の研磨パッド。   2. The foam is contained so that 60% or more of the fine particles are localized in a thickness range of 50% with respect to the thickness of the whole foam from the polished surface. The polishing pad as described. 前記発泡体は、前記研磨面から全体の厚さに対して5%の厚さ分を除いたときに形成される開孔の平均開孔径が5μm〜40μmの範囲であり、開孔径が50μmを超える開孔が10個/mm以下であることを特徴とする請求項2に記載の研磨パッド。 The foam has an average opening diameter of 5 μm to 40 μm, and an opening diameter of 50 μm, when 5% of the total thickness is removed from the polished surface. The polishing pad according to claim 2, wherein the number of openings exceeds 10 holes / mm 2 . 前記発泡体は、前記研磨面から全体の厚さに対して50%の厚さ分を除いたときに形成され開孔径が50μmを超える開孔が15個/mm〜50個/mmの範囲であることを特徴とする請求項3に記載の研磨パッド。 The foam is formed by removing 50% of the total thickness from the polished surface, and the number of apertures having an aperture diameter exceeding 50 μm is 15 / mm 2 to 50 / mm 2 . The polishing pad according to claim 3, wherein the polishing pad is in a range. 前記発泡体は、ショアA硬度が20度〜90度の範囲であることを特徴とする請求項4に記載の研磨パッド。   The polishing pad according to claim 4, wherein the foam has a Shore A hardness in a range of 20 degrees to 90 degrees. 前記発泡体は、湿式成膜法により一体成形されたものであることを特徴とする請求項5に記載の研磨パッド。   The polishing pad according to claim 5, wherein the foam is integrally formed by a wet film forming method. 前記微粒子は、均一の孔径を有することを特徴とする請求項1に記載の研磨パッド。   The polishing pad according to claim 1, wherein the fine particles have a uniform pore diameter. 前記微粒子は、球体状または多面体状であることを特徴とする請求項7に記載の研磨パッド。   The polishing pad according to claim 7, wherein the fine particles are spherical or polyhedral. 前記発泡体は、前記微粒子より小さい孔径の微多孔が連続的に形成されていることを特徴とする請求項8に記載の研磨パッド。   The polishing pad according to claim 8, wherein the foam is continuously formed with micropores having a pore size smaller than the fine particles.
JP2009225354A 2009-09-29 2009-09-29 Polishing pad Active JP5398454B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009225354A JP5398454B2 (en) 2009-09-29 2009-09-29 Polishing pad

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009225354A JP5398454B2 (en) 2009-09-29 2009-09-29 Polishing pad

Publications (2)

Publication Number Publication Date
JP2011073085A true JP2011073085A (en) 2011-04-14
JP5398454B2 JP5398454B2 (en) 2014-01-29

Family

ID=44017629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009225354A Active JP5398454B2 (en) 2009-09-29 2009-09-29 Polishing pad

Country Status (1)

Country Link
JP (1) JP5398454B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015026614A1 (en) * 2013-08-22 2015-02-26 Cabot Microelectronics Corporation Polishing pad with porous interface and solid core, and related apparatus and methods
JP2016068174A (en) * 2014-09-29 2016-05-09 富士紡ホールディングス株式会社 Polishing pad
JP2016196059A (en) * 2015-04-03 2016-11-24 富士紡ホールディングス株式会社 Polishing pad and method for manufacturing the same
WO2019225055A1 (en) * 2018-05-22 2019-11-28 昭和電工株式会社 Resin composition, polishing pad, and method for producing polishing pad

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000344902A (en) * 1999-06-04 2000-12-12 Fuji Spinning Co Ltd Method for producing urethane molding for polishing pad and urethane molding for polishing pad
JP2000344850A (en) * 1999-06-04 2000-12-12 Fuji Spinning Co Ltd Method for producing urethane molded product for polishing pad and urethane molded product for polishing pad
JP2004358584A (en) * 2003-06-03 2004-12-24 Fuji Spinning Co Ltd Polishing cloth and polishing method
JP2006123092A (en) * 2004-10-29 2006-05-18 Okamoto Machine Tool Works Ltd Wafer holding backing material and polishing head structure having this backing material
JP2006210657A (en) * 2005-01-28 2006-08-10 Toray Ind Inc Polishing pad, polishing device, and method of manufacturing semiconductor device
JP2009208165A (en) * 2008-02-29 2009-09-17 Fujibo Holdings Inc Polishing pad and manufacturing method of polishing pad

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000344902A (en) * 1999-06-04 2000-12-12 Fuji Spinning Co Ltd Method for producing urethane molding for polishing pad and urethane molding for polishing pad
JP2000344850A (en) * 1999-06-04 2000-12-12 Fuji Spinning Co Ltd Method for producing urethane molded product for polishing pad and urethane molded product for polishing pad
JP2004358584A (en) * 2003-06-03 2004-12-24 Fuji Spinning Co Ltd Polishing cloth and polishing method
JP2006123092A (en) * 2004-10-29 2006-05-18 Okamoto Machine Tool Works Ltd Wafer holding backing material and polishing head structure having this backing material
JP2006210657A (en) * 2005-01-28 2006-08-10 Toray Ind Inc Polishing pad, polishing device, and method of manufacturing semiconductor device
JP2009208165A (en) * 2008-02-29 2009-09-17 Fujibo Holdings Inc Polishing pad and manufacturing method of polishing pad

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015026614A1 (en) * 2013-08-22 2015-02-26 Cabot Microelectronics Corporation Polishing pad with porous interface and solid core, and related apparatus and methods
US9463551B2 (en) 2013-08-22 2016-10-11 Cabot Microelectronics Corporation Polishing pad with porous interface and solid core, and related apparatus and methods
JP2016068174A (en) * 2014-09-29 2016-05-09 富士紡ホールディングス株式会社 Polishing pad
JP2016196059A (en) * 2015-04-03 2016-11-24 富士紡ホールディングス株式会社 Polishing pad and method for manufacturing the same
WO2019225055A1 (en) * 2018-05-22 2019-11-28 昭和電工株式会社 Resin composition, polishing pad, and method for producing polishing pad
CN111819211A (en) * 2018-05-22 2020-10-23 昭和电工株式会社 Resin composition, polishing pad, and manufacturing method of polishing pad
JPWO2019225055A1 (en) * 2018-05-22 2021-07-01 昭和電工株式会社 Resin composition, polishing pad, and method for manufacturing polishing pad
CN111819211B (en) * 2018-05-22 2023-01-24 昭和电工株式会社 Resin composition, polishing pad, and manufacturing method of polishing pad

Also Published As

Publication number Publication date
JP5398454B2 (en) 2014-01-29

Similar Documents

Publication Publication Date Title
EP2045038B9 (en) Polishing Pad
KR20100072193A (en) Polishing pad
JP5753677B2 (en) Polishing pad and method of manufacturing polishing pad
JP5398454B2 (en) Polishing pad
JP5711525B2 (en) Polishing pad and method of manufacturing polishing pad
JP2012110970A (en) Polishing pad and method for manufacturing the same
JP5433384B2 (en) Abrasive sheet and method for producing abrasive sheet
JP6228546B2 (en) Polishing pad
JP5371661B2 (en) Polishing pad
JP5324998B2 (en) Holding pad
JP2016068250A (en) Polishing pad
JP5873910B2 (en) Polishing pad
JP5544124B2 (en) Polishing pad
JP6859056B2 (en) Polishing pad and its manufacturing method
JP5502560B2 (en) Polishing pad and method of manufacturing polishing pad
JP2010058231A (en) Polishing method
JP5322730B2 (en) Polishing pad
JP5274285B2 (en) Polishing pad manufacturing method
JP5639854B2 (en) Polishing pad and method of manufacturing polishing pad
JP5502539B2 (en) Polishing pad
JP5371662B2 (en) Holding pad
JP5534768B2 (en) Polishing pad
JP6357291B2 (en) Polishing pad
JP5479189B2 (en) Sheet material selection method
JP2011200988A (en) Polishing pad

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120626

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131022

R150 Certificate of patent or registration of utility model

Ref document number: 5398454

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250