[go: up one dir, main page]

JP2011061048A - Plasma treatment apparatus - Google Patents

Plasma treatment apparatus Download PDF

Info

Publication number
JP2011061048A
JP2011061048A JP2009209929A JP2009209929A JP2011061048A JP 2011061048 A JP2011061048 A JP 2011061048A JP 2009209929 A JP2009209929 A JP 2009209929A JP 2009209929 A JP2009209929 A JP 2009209929A JP 2011061048 A JP2011061048 A JP 2011061048A
Authority
JP
Japan
Prior art keywords
vpp
voltage
detecting
high frequency
detection means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009209929A
Other languages
Japanese (ja)
Other versions
JP5358364B2 (en
Inventor
Yasuo Ogoshi
康雄 大越
Tsutomu Iida
勉 飯田
Atsushi Ito
温司 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2009209929A priority Critical patent/JP5358364B2/en
Publication of JP2011061048A publication Critical patent/JP2011061048A/en
Application granted granted Critical
Publication of JP5358364B2 publication Critical patent/JP5358364B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Plasma Technology (AREA)
  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

【課題】プラズマ負荷の影響によって高周波電力の伝送路上で高調波成分が発生し波形歪みが起きた場合においても、安定した静電吸着電圧に制御する手段を提供する。
【解決手段】真空容器105内でウエハを載置する下部電極と、該電極にウエハ113を静電吸着させる直流電源107と、下部電極に接続された高周波バイアス電源110と、上部電極103と、該電極に接続されたプラズマ生成用高周波電源101と、下部電極に印加されている高周波電圧Vppを検出する高周波電圧Vpp検出手段119と、を有し、ウエハの静電吸着力を所定範囲に制御するためにVppを用いて静電吸着用直流電圧を制御するプラズマ処理装置において、高周波電圧Vpp検出手段は、Vppの基本周波数成分を検出する基本波成分Vpp検出手段115と、Vppの平均値を検出する平均値Vpp検出手段116と、Vppの実効値を検出する実効値Vpp検出手段117とを有する。
【選択図】図1
Provided is a means for controlling a stable electrostatic attraction voltage even when a harmonic component is generated on a high-frequency power transmission line due to the influence of a plasma load and waveform distortion occurs.
A lower electrode on which a wafer is placed in a vacuum vessel, a DC power source that electrostatically attracts a wafer to the electrode, a high-frequency bias power source connected to the lower electrode, an upper electrode, A plasma generating high frequency power supply 101 connected to the electrode and a high frequency voltage Vpp detecting means 119 for detecting the high frequency voltage Vpp applied to the lower electrode, and controlling the electrostatic attraction force of the wafer within a predetermined range. Therefore, in the plasma processing apparatus that controls the DC voltage for electrostatic adsorption using Vpp, the high frequency voltage Vpp detection means includes a fundamental wave component Vpp detection means 115 for detecting a fundamental frequency component of Vpp, and an average value of Vpp. Mean value Vpp detecting means 116 for detecting, and effective value Vpp detecting means 117 for detecting the effective value of Vpp are provided.
[Selection] Figure 1

Description

本発明は、プラズマ処理装置に係わり、特にプラズマを用いて半導体素子などの表面処理を行うのに好適なプラズマ処理装置に関するものである。   The present invention relates to a plasma processing apparatus, and more particularly to a plasma processing apparatus suitable for performing surface treatment of a semiconductor element or the like using plasma.

特許文献1には基板電極に印加されている高周波電圧Vppをモニタし、モニタされたVpp信号を元に静電吸着用直流電源の出力電圧を制御することによって、静電吸着膜にかかる電圧を所望の値に保つことが開示されている。次に、高周波バイアス電源110のピークトゥピーク電圧(以下Vppと表記する)と自己バイアス電圧(以下Vdcと表記する)の関係について説明する。 In Patent Document 1, the high frequency voltage Vpp applied to the substrate electrode is monitored, and the voltage applied to the electrostatic adsorption film is controlled by controlling the output voltage of the electrostatic adsorption DC power source based on the monitored Vpp signal. It is disclosed to maintain the desired value. Next, (referred to as less V pp) peak-to-peak voltage of the high frequency bias power supply 110 and a description will be given of the relationship of the self-bias voltage (hereinafter referred to as V dc).

図2において、静電吸着電極109には静電吸着用直流電源107によって直流電圧がかけられるようになっている。この電圧の値を静電吸着用直流電圧と呼ぶ(以下ESC電圧と表記する)。高周波バイアス電源110の出力がコンデンサを介して静電吸着電極109に印加されることによって、半導体ウエハ113の平均電位は負の直流電圧であるVdcと等しくなる。このとき静電吸着膜108と半導体ウエハ113間の電位差、即ちESC電圧とVdcの差が静電吸着電圧(以下Vchuckと表記する)になる。またVdcは、静電吸着膜108にかかる高周波バイアス電源110のVppに依存し、次式のような関係がある。 In FIG. 2, a DC voltage is applied to the electrostatic chucking electrode 109 by a DC power supply 107 for electrostatic chucking. This voltage value is referred to as an electrostatic adsorption DC voltage (hereinafter referred to as an ESC voltage). By applying the output of the high frequency bias power supply 110 to the electrostatic chucking electrode 109 via a capacitor, the average potential of the semiconductor wafer 113 becomes equal to V dc which is a negative DC voltage. At this time, a potential difference between the electrostatic adsorption film 108 and the semiconductor wafer 113, that is, a difference between the ESC voltage and Vdc becomes an electrostatic adsorption voltage (hereinafter referred to as V chuck ). Further, V dc depends on V pp of the high frequency bias power supply 110 applied to the electrostatic adsorption film 108 and has a relationship as shown in the following equation.

Figure 2011061048
Figure 2011061048

αは装置に依存して変わる定数であり、一般的なプラズマ処理装置においては0.3から0.45程度の値になる。   α is a constant that varies depending on the apparatus, and is about 0.3 to 0.45 in a general plasma processing apparatus.

次に図3を用いてVchuckとESC電圧の関係について説明する。図3は前記ESC電圧,Vdc,高周波バイアス電源110のVppとVchuckの関係を示したものである。負の電圧であるVdcは、正の値である高周波バイアス電源110のVppのα倍の大きさで負側に現れる。Vdcの値に対して、同一のVchuckを生じるESC電圧が正側と負側の二つ存在することが分かる。ここでVdcに対して正側のESC電圧をVESC +と呼び、負側のESC電圧をVESC -と呼ぶことにする。 Next, the relationship between V chuck and the ESC voltage will be described with reference to FIG. FIG. 3 shows the relationship between the ESC voltage, V dc , V pp of the high frequency bias power supply 110 and V chuck . The negative voltage V dc appears on the negative side with a positive value that is α times as large as V pp of the high-frequency bias power supply 110. It can be seen that there are two ESC voltages that produce the same V chuck with respect to the value of V dc, the positive side and the negative side. Here, the positive ESC voltage with respect to V dc is referred to as V ESC +, and the negative ESC voltage is referred to as V ESC .

このときESC電圧とVchuck,Vdcの関係は次式で表される。 At this time, the relationship between the ESC voltage and V chuck and V dc is expressed by the following equation.

Figure 2011061048
Figure 2011061048

ただしVdcは負、Vchuckは正の値である。どちらのESC電圧を使用するかは、異常放電対策,電極基板耐圧,装置(静電吸着用直流電源)の仕様により選択される。どちらのESC電圧を使用するかは、ESC電圧制御部114にて事前に設定しておき、ESC電圧制御部114は、バイアス用高周波電源Vpp電圧モニタ検出回路112によって検出された高周波バイアス電源110のVppから、(1)式によりVdcを算出し、また(2)式によりVchuckがほぼ一定となるように、静電吸着用直流電源107に対して、ESC電圧の出力指令を行う。 However, V dc is negative and V chuck is a positive value. Which ESC voltage to use is selected according to abnormal discharge countermeasures, electrode substrate breakdown voltage, and specifications of the device (DC power supply for electrostatic adsorption). Which ESC voltage is used is set in advance by the ESC voltage control unit 114, and the ESC voltage control unit 114 detects the high frequency bias power supply 110 detected by the bias high frequency power supply Vpp voltage monitor detection circuit 112. From V pp , V dc is calculated by equation (1), and an ESC voltage output command is issued to the electrostatic chucking DC power source 107 so that V chuck is substantially constant according to equation (2).

次に、プラズマ放電による問題点を説明する。プラズマ106は非線形な負荷のため、高調波が発生する。その高調波の影響により、バイアス用高周波電源ピークトゥピーク電圧モニタ検出回路112で検出される高周波バイアス電源110のピークトゥピーク電圧(Vpp)の信頼性が低下する問題点があった。 Next, problems due to plasma discharge will be described. Since the plasma 106 is a non-linear load, harmonics are generated. Due to the influence of the harmonics, there is a problem that the reliability of the peak-to-peak voltage (V pp ) of the high-frequency bias power supply 110 detected by the bias high-frequency power supply peak-to-peak voltage monitor detection circuit 112 is lowered.

従って従来の装置では、プラズマ放電により生じた高調波成分や、複数の高周波電力の導入によって生じる変調波によって、高周波電源が誤動作する可能性があることから、特許文献2では、変調波や高調波を除去する技術が開示されている。また、特許文献3では、複数の高周波電力の導入によって、その他周波数のピークトゥピーク電圧が混在するため、目的の周波数で検出されるピークトゥピーク電圧値の信頼性が低くなることから、ローパスフィルタやハイパスフィルタを準備する技術が開示されている。   Therefore, in the conventional apparatus, there is a possibility that the high frequency power supply malfunctions due to harmonic components generated by plasma discharge or modulated waves generated by the introduction of a plurality of high frequency powers. A technique for removing the is disclosed. Further, in Patent Document 3, since the introduction of a plurality of high-frequency powers causes the peak-to-peak voltage of other frequencies to coexist, the reliability of the peak-to-peak voltage value detected at the target frequency becomes low. And a technique for preparing a high-pass filter is disclosed.

特開2008−71981号公報JP 2008-71981 A 特開2003−179030号公報JP 2003-179030 A 特開2008−41795号公報JP 2008-41795 A

次に、図4,図5は、高調波が発生したときの負荷側に発生する高周波バイアス電源110のVpp電圧の波形歪みイメージの一例を示すものである。図4では、実際に発生した真のVpp131(実線)と、基本周波数で検出するVpp′132(破線)では、前者の真のVpp131(実線)のVpp電圧が小さいことがわかる。逆に、図5の波形歪みイメージの一例では、前者の真のVpp131(実線)のVpp電圧が、基本周波数で検出するVpp′132(破線)よりも大きいことがわかる。従って、基本周波数のみでの高周波バイアス電源110のVpp電圧の検出では、真のVpp131(実線)の値を誤って検出してしまう可能性がある。Vdcを算出し、安定したVchuckを確保するためのESC電圧の設定値を決定するためには、高周波バイアス電源110のVpp電圧の検出値の信頼性が、静電吸着の信頼性を大きく左右することになる。 Next, FIGS. 4 and 5 show examples of waveform distortion images of the Vpp voltage of the high-frequency bias power supply 110 generated on the load side when harmonics are generated. In FIG. 4, it can be seen that the Vpp voltage of the former true Vpp 131 (solid line) is small between the actually generated true Vpp 131 (solid line) and Vpp ′ 132 (broken line) detected at the fundamental frequency. Conversely, in the example of the waveform distortion image of FIG. 5, it can be seen that the Vpp voltage of the former true Vpp 131 (solid line) is larger than Vpp ′ 132 (broken line) detected at the fundamental frequency. Therefore, in the detection of the Vpp voltage of the high-frequency bias power supply 110 using only the fundamental frequency, the true Vpp 131 (solid line) value may be erroneously detected. In order to calculate V dc and determine the set value of the ESC voltage for ensuring a stable V chuck , the reliability of the detected value of the Vpp voltage of the high-frequency bias power supply 110 increases the reliability of electrostatic adsorption. It will be influenced.

本発明においては、プラズマ負荷の影響によって、高周波バイアス電力の伝送路上で高調波成分が発生し、波形歪みが起きた場合でも、静電吸着電極109に発生する高周波バイアス電源110のVpp電圧を正確に検出することによって、所望のVchuckに制御するプラズマ処理装置を提供することを目的とする。 In the present invention, even when a harmonic component is generated on the transmission path of the high frequency bias power due to the influence of the plasma load and the waveform distortion occurs, the Vpp voltage of the high frequency bias power supply 110 generated in the electrostatic chucking electrode 109 is accurately determined. It is an object of the present invention to provide a plasma processing apparatus that controls the voltage to a desired V chuck by detecting the current.

本発明は、真空容器と、前記真空容器内でウエハを載置する下部電極と、前記下部電極に印加する前記ウエハを静電吸着させる直流電源と、前記下部電極に印加する高周波バイアス電源と、前記下部電極と対向する上部電極と、前記上部電極に印加するプラズマ生成用高周波電源と、前記下部電極に印加されている高周波電圧Vppを検出する高周波電圧Vpp検出回路を有し、前記ウエハの静電吸着力を一定にするために、前記Vppを用いて静電吸着用直流電圧を制御するプラズマ処理装置において、
前記高周波電圧Vpp検出回路は、前記高周電力Vppの基本周波数成分を検出する基本波成分Vpp検出回路と、前記高周波バイアス電力Vppの平均値を検出する平均値Vpp検出回路と、前記高周波バイアス電力Vppの実効値を検出する実効値Vpp検出回路とを有することを特徴とする。
The present invention includes a vacuum vessel, a lower electrode on which a wafer is placed in the vacuum vessel, a DC power source for electrostatically attracting the wafer applied to the lower electrode, a high-frequency bias power source applied to the lower electrode, An upper electrode facing the lower electrode; a high frequency power source for plasma generation applied to the upper electrode; and a high frequency voltage Vpp detection circuit for detecting a high frequency voltage Vpp applied to the lower electrode, In the plasma processing apparatus for controlling the DC voltage for electrostatic adsorption using the Vpp in order to make the electroadsorption force constant,
The high frequency voltage Vpp detection circuit includes a fundamental wave component Vpp detection circuit that detects a fundamental frequency component of the high frequency power Vpp, an average value Vpp detection circuit that detects an average value of the high frequency bias power Vpp, and the high frequency bias power. And an effective value Vpp detection circuit for detecting an effective value of Vpp.

本発明の高周波バイアス電力のVpp電圧検出方法を用いることで、プラズマ負荷の影響によって、高周波バイアス電力の伝送路上で高調波成分が発生し、波形歪みが起きた場合でも、正確な高周波バイアス電力のVpp電圧を検出することによって、安定した静電吸着電圧制御が可能となる。   By using the method of detecting the Vpp voltage of the high-frequency bias power of the present invention, even when a harmonic component is generated on the transmission path of the high-frequency bias power due to the influence of the plasma load and waveform distortion occurs, the accurate high-frequency bias power can be generated. By detecting the Vpp voltage, stable electrostatic chucking voltage control is possible.

本発明のプラズマエッチング装置の概略図。Schematic of the plasma etching apparatus of the present invention. 従来のプラズマエッチング装置のブロック図。The block diagram of the conventional plasma etching apparatus. 高周波バイアス電力のVpp電圧値と静電吸着電圧と静電吸着電源電圧の関係図。The relationship figure of Vpp voltage value of high frequency bias electric power, electrostatic adsorption voltage, and electrostatic adsorption power supply voltage. 負荷側に発生する高周波バイアス電力のVpp電圧波形の例。An example of a Vpp voltage waveform of high-frequency bias power generated on the load side. 負荷側に発生する高周波バイアス電力のVpp電圧波形のその他の例。The other example of the Vpp voltage waveform of the high frequency bias electric power which generate | occur | produces on the load side. 本発明のESC電圧制御部の機能ブロック図。The functional block diagram of the ESC voltage control part of this invention. 本発明のESC電圧制御部内の判定部の機能フローチャート。The functional flowchart of the determination part in the ESC voltage control part of this invention.

以下、本発明の実施の形態を、図を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

ここで図1は、本発明のプラズマエッチング装置の概略図である。真空容器105には、アルミの導電体である平板状のアンテナ電極103と、電磁波を透過可能な石英からなる誘導体104で構成され、真空容器105の外周部には処理室を囲んで磁場発生用コイル120が設けてある。アンテナ電極103はエッチングガスを流すための多孔構造となっている。CF4,C46,C48,C58,CHF3,CH22等のフロロカーボンガス,Ar,N2等の不活性ガス,O2,CO等の酸化含有ガスは、ガス供給装置118に内設したMFCからなる流量調整手段(図省略)で制御し、前記ガス供給装置118を介して真空容器105内に導入する。また、真空容器105には真空排気装置123が接続され、前記真空排気装置に内設したターボ分子ポンプ(TMP)からなる真空排気手段(図省略)と自動圧力制御(APC)からなる調圧手段(図省略)により、真空容器105内を所定圧力に保持する。アンテナ電極103の上部には整合器102,同軸ケーブル121を介してプラズマ生成用の高周波電源101(周波数100MHz〜450MHz)が接続されている。真空容器105内の下部には半導体ウエハ113を配置可能な静電吸着電極109が設けられている。この静電吸着電極109には、半導体ウエハ113を静電吸着させるための静電吸着機能を兼備し、静電吸着用直流電源107が接続されている。 Here, FIG. 1 is a schematic view of the plasma etching apparatus of the present invention. The vacuum vessel 105 includes a flat antenna electrode 103 that is an aluminum conductor and a derivative 104 made of quartz that can transmit electromagnetic waves. The vacuum vessel 105 surrounds a processing chamber and generates a magnetic field. A coil 120 is provided. The antenna electrode 103 has a porous structure for flowing an etching gas. Fluorocarbon gases such as CF 4 , C 4 F 6 , C 4 F 8 , C 5 F 8 , CHF 3 and CH 2 F 2 , inert gases such as Ar and N 2 , and oxidation-containing gases such as O 2 and CO Then, it is controlled by a flow rate adjusting means (not shown) made of MFC provided in the gas supply device 118 and introduced into the vacuum vessel 105 through the gas supply device 118. Further, a vacuum evacuation device 123 is connected to the vacuum vessel 105, and a vacuum evacuation means (not shown) including a turbo molecular pump (TMP) provided in the vacuum evacuation device and a pressure adjusting means including automatic pressure control (APC). The inside of the vacuum vessel 105 is held at a predetermined pressure by (not shown). A high-frequency power source 101 (frequency 100 MHz to 450 MHz) for plasma generation is connected to the upper part of the antenna electrode 103 via a matching unit 102 and a coaxial cable 121. An electrostatic chucking electrode 109 on which a semiconductor wafer 113 can be placed is provided in the lower part of the vacuum vessel 105. The electrostatic chucking electrode 109 has an electrostatic chucking function for electrostatically chucking the semiconductor wafer 113 and is connected to a DC power source 107 for electrostatic chucking.

また、静電吸着電極109には整合器111,同軸ケーブル122を介してイオン引き込み用の高周波バイアス電源110(周波数400kHz〜5MHz)が接続されている。整合器111は、高周波バイアス電源110の、所定の周波数の高周波電力が効率良く静電吸着電極109に投入されるようにするために、インピーダンス整合を行う機能を持つ。整合器102も同様に、プラズマ生成用の高周波電源101の、所定の周波数の高周波電力が効率良く真空容器105内に投入されるようにするために、インピーダンス整合を行う機能を持つ。   Further, a high-frequency bias power source 110 (frequency 400 kHz to 5 MHz) for ion attraction is connected to the electrostatic adsorption electrode 109 via a matching unit 111 and a coaxial cable 122. The matching unit 111 has a function of performing impedance matching so that high-frequency power of a predetermined frequency of the high-frequency bias power source 110 is efficiently input to the electrostatic chucking electrode 109. Similarly, the matching unit 102 has a function of performing impedance matching so that high-frequency power of a predetermined frequency of the high-frequency power source 101 for generating plasma is efficiently input into the vacuum vessel 105.

そして、前記高周波バイアス電力のVpp電圧値の検出手段は、高周波バイアス電力のVpp電圧値を高周波バイアス電源110の基本周波数成分で、Vpp電圧を検出する基本波成分検出回路115と、高周波バイアス電力のVpp電圧平均値を検出する平均値検出回路116と、さらに高周波バイアス電力のVpp電圧実効値を検出する実効値検出回路117で構成されたバイアス用高周波電源Vpp電圧モニタ検出回路119である。また、前記基本波成分検出回路115で検出されたVpp電圧値と、平均値検出回路116で検出されたVpp電圧値と、さらに実効値検出回路117で検出されたVpp電圧値は、ESC電圧制御部124にてモニタリングされる。さらに、図1の実施形態が、図2の従来技術と異なる点は、ESC電圧制御部124にある。ESC電圧制御部114は、高周波バイアス電力のVpp電圧値から、所定のVchuckとなるように、静電吸着用直流電源107に対して設定するESC電圧の演算,出力指令を行うだけであるが、本発明のESC電圧制御部124は、図6に示すように、前記基本波成分検出回路115と、平均値検出回路116と、さらに実効値検出回路117で検出された値から、どの回路で検出した値を高周波バイアス電力のVpp電圧値とするかを判定する判定部201と、前記で決定した値によって静電吸着用直流電源107に対して設定するESC電圧の演算を行う演算部202と、判定部201の判定結果と演算部202で演算された演算結果を保存するデータベース203と、また静電吸着用直流電源107に対して、ESC電圧を指令値として出力する機能を持つ電圧司令部204から構成される。以下、バイアス用高周波電源Vpp電圧モニタ検出回路119内の基本波成分検出回路115と、平均値検出回路116と、実効値検出回路117の動作、及びESC電圧制御部124の動作について説明する。 The means for detecting the Vpp voltage value of the high-frequency bias power includes a fundamental wave component detection circuit 115 that detects the Vpp voltage using the Vpp voltage value of the high-frequency bias power as a fundamental frequency component of the high-frequency bias power supply 110, and a high-frequency bias power. The bias high-frequency power supply Vpp voltage monitor detection circuit 119 includes an average value detection circuit 116 that detects the average value of the Vpp voltage and an effective value detection circuit 117 that detects the effective value of the Vpp voltage of the high-frequency bias power. Further, the Vpp voltage value detected by the fundamental wave component detection circuit 115, the Vpp voltage value detected by the average value detection circuit 116, and the Vpp voltage value detected by the effective value detection circuit 117 are determined by ESC voltage control. Monitored by the unit 124. Further, the embodiment shown in FIG. 1 is different from the prior art shown in FIG. The ESC voltage control unit 114 merely calculates and outputs an ESC voltage to be set to the electrostatic attraction DC power source 107 so that a predetermined V chuck is obtained from the Vpp voltage value of the high frequency bias power. As shown in FIG. 6, the ESC voltage control unit 124 of the present invention uses any circuit based on values detected by the fundamental wave component detection circuit 115, the average value detection circuit 116, and the effective value detection circuit 117. A determination unit 201 that determines whether the detected value is a Vpp voltage value of the high-frequency bias power; a calculation unit 202 that calculates an ESC voltage that is set for the electrostatic adsorption DC power source 107 based on the determined value; The ESC voltage is output as a command value to the database 203 for storing the determination result of the determination unit 201 and the calculation result calculated by the calculation unit 202, and to the DC power supply 107 for electrostatic adsorption. The voltage command unit 204 has a function of The operations of the fundamental wave component detection circuit 115, the average value detection circuit 116, the effective value detection circuit 117, and the operation of the ESC voltage control unit 124 in the bias high frequency power supply Vpp voltage monitor detection circuit 119 will be described below.

基本波成分検出回路115は、高周波バイアス電源110の基本周波数成分で、高周波バイアス電力のVpp電圧値を検出する機能を持つ。平均値検出回路116は、平均値でバイアス用高周波電源の電圧を検出する機能を持つ。また、実効値検出回路117は、実効値でバイアス用高周波電源の電圧を検出する機能を持つ。次にESC電圧制御部124は、前記それぞれの検出回路で検出された高周波バイアス電力のVpp電圧のどの値を用いてESC電圧を制御するかを判定部201で判定するが、その前記判定手法のひとつとして、図7を用いて以下に説明する。まず、ダミーウエハを用いて、使用するプロセス条件毎にプラズマを発生させる。それぞれのプロセス条件毎に発生する高調波成分の大きさを事前に確認し、高調波成分の発生レベルが、基本周波数成分のある一定レベルより低い(高調波発生レベルが基本周波数成分の進行波電力Pfの−30dBより小さい)レベルのプロセス条件の場合は、基本波成分検出回路115で検出した高周波バイアス電力のVpp電圧でESC電圧を制御するということをデータベース203に記憶させる。また、高調波成分の発生レベルが、基本周波数成分のある一定レベルより高い(高調波発生レベルが基本周波数成分の進行波電力Pfの−30dBより大きい)レベルのプロセス条件の場合には、平均値検出回路116で検出した値、もしくは実効値検出回路117で検出した値で、ESC電圧を制御することとする。   The fundamental wave component detection circuit 115 is a fundamental frequency component of the high frequency bias power supply 110 and has a function of detecting the Vpp voltage value of the high frequency bias power. The average value detection circuit 116 has a function of detecting the voltage of the high frequency power supply for bias with the average value. Further, the effective value detection circuit 117 has a function of detecting the voltage of the bias high frequency power supply using the effective value. Next, the ESC voltage control unit 124 determines which value of the Vpp voltage of the high-frequency bias power detected by each of the detection circuits is used to determine the ESC voltage by the determination unit 201. One example will be described below with reference to FIG. First, using a dummy wafer, plasma is generated for each process condition to be used. Check the magnitude of the harmonic component generated for each process condition in advance, and the harmonic component generation level is lower than a certain level of the fundamental frequency component (the harmonic generation level is the traveling wave power of the fundamental frequency component). In the case of a process condition of a level (less than −30 dB of Pf), the fact that the ESC voltage is controlled by the Vpp voltage of the high frequency bias power detected by the fundamental wave component detection circuit 115 is stored in the database 203. In the case of a process condition where the harmonic component generation level is higher than a certain level of the fundamental frequency component (the harmonic generation level is greater than −30 dB of the traveling wave power Pf of the fundamental frequency component), the average value The ESC voltage is controlled by the value detected by the detection circuit 116 or the value detected by the effective value detection circuit 117.

また前記判定手段においては、高調波成分の発生レベルが、基本周波数成分のある一定レベルの大小による判定方法ではなく、高周波バイアス電力の波形歪み率レベルの大小(式(3)において、歪み率が0.1以下)で判断する手段を用いることもできる。   Further, in the determination means, the generation level of the harmonic component is not a determination method based on the level of a certain level of the fundamental frequency component, but the level of the waveform distortion rate level of the high frequency bias power (in Equation (3), the distortion rate is It is also possible to use a means for judging at 0.1 or less.

Figure 2011061048
次に平均値検出回路116で検出した高周波バイアス電力の電圧値と、実効値検出回路117で検出した高周波バイアス電力値の電圧値のどちらを使用するかの判定手法のひとつとして、以下に説明する。負荷側に発生する高周波バイアス電源110のVpp電圧の波形において、1周期内の正負の振幅が対称の場合は、平均値検出回路116で検出した高周波バイアス電力の電圧値で制御することとし、逆に1周期内の正負の振幅が非対称の場合は、実効値検出回路117で検出した高周波バイアス電力の電圧値で制御するといった方法がある。
Figure 2011061048
Next, as one of the determination methods for using the voltage value of the high frequency bias power detected by the average value detection circuit 116 or the voltage value of the high frequency bias power detected by the effective value detection circuit 117, a description will be given below. . In the waveform of the Vpp voltage of the high-frequency bias power supply 110 generated on the load side, when the positive and negative amplitudes in one cycle are symmetric, control is performed with the voltage value of the high-frequency bias power detected by the average value detection circuit 116, and vice versa. When the positive and negative amplitudes in one cycle are asymmetric, there is a method of controlling with the voltage value of the high frequency bias power detected by the effective value detection circuit 117.

演算部202の動作について説明する。前記基本波成分検出回路115で検出された高周波バイアス電力のVpp電圧値と、平均値検出回路116で検出された平均値と、実効値検出回路117で検出された実効値をデータベース203に記憶し、演算部202は、平均値検出回路116で検出された平均値と、実効値検出回路117で検出された実効値については、高周波バイアス電力のVpp電圧値に補正演算する。補正演算された値はデータベース203に記憶される。   The operation of the calculation unit 202 will be described. The Vpp voltage value of the high frequency bias power detected by the fundamental wave component detection circuit 115, the average value detected by the average value detection circuit 116, and the effective value detected by the effective value detection circuit 117 are stored in the database 203. The arithmetic unit 202 corrects and calculates the average value detected by the average value detection circuit 116 and the effective value detected by the effective value detection circuit 117 to the Vpp voltage value of the high-frequency bias power. The corrected value is stored in the database 203.

次に、前記検出した平均値及び実効値から、高周波バイアス電力のVpp電圧に補正演算する補正係数を算出する手法について、以下説明をする。まず、ダミーウエハを用いて、プラズマを発生させる。その際、使用するプラズマは、高調波成分がほとんど発生しない、また例えば高調波発生レベルが基本周波数成分の進行波電力Pfより−30dBより小さいレベルのプロセス条件が望ましい。ここでまず、基本波成分検出回路115で検出された基本周波数成分での高周波バイアス電力のVpp電圧はデータベース203に記憶される。次に、演算部202は、前記データベース203に記憶した基本波成分検出回路115で検出された基本周波数成分での高周波バイアス電力のVpp電圧と、平均値検出回路116で検出された高周波バイアス電力のVpp電圧の平均値が同等の値となる補正係数を算出する。前記補正係数は、Vpp電圧の平均値から検出した高周波バイアス電力のVpp電圧を算出するための補正としてデータベース203に記憶する。また演算部202は同様に、前記データベース203に記憶した基本波成分検出回路115で検出された基本周波数成分での高周波バイアス電力のVpp電圧と、実効値検出回路117で検出された高周波バイアス電力のVpp電圧の実効値が同等の値となる補正係数を算出する。前記補正係数は、Vpp電圧の実効値から検出した高周波バイアス電力のVpp電圧を算出するための補正係数としてデータベース203に記憶する。   Next, a method for calculating a correction coefficient for correcting the high-frequency bias power to the Vpp voltage from the detected average value and effective value will be described below. First, plasma is generated using a dummy wafer. At that time, it is desirable that the plasma to be used has a process condition in which almost no harmonic component is generated, and for example, the harmonic generation level is lower than the traveling wave power Pf of the fundamental frequency component by −30 dB. First, the Vpp voltage of the high frequency bias power at the fundamental frequency component detected by the fundamental wave component detection circuit 115 is stored in the database 203. Next, the calculation unit 202 stores the Vpp voltage of the high frequency bias power at the fundamental frequency component detected by the fundamental wave component detection circuit 115 stored in the database 203 and the high frequency bias power detected by the average value detection circuit 116. A correction coefficient is calculated so that the average value of the Vpp voltage becomes an equivalent value. The correction coefficient is stored in the database 203 as a correction for calculating the Vpp voltage of the high-frequency bias power detected from the average value of the Vpp voltage. Similarly, the arithmetic unit 202 stores the Vpp voltage of the high frequency bias power at the fundamental frequency component detected by the fundamental wave component detection circuit 115 stored in the database 203 and the high frequency bias power detected by the effective value detection circuit 117. A correction coefficient for calculating an effective value of the Vpp voltage is calculated. The correction coefficient is stored in the database 203 as a correction coefficient for calculating the Vpp voltage of the high-frequency bias power detected from the effective value of the Vpp voltage.

以上のように、高調波成分のレベルが十分小さい状態で、各Vpp電圧検出回路の検出値が同等となるような補正係数を算出し、データベース203に記憶しておく。またここでは、ダミーウエハを用いたプラズマ負荷での補正係数算出手段を説明したが、例えば50Ωダミー負荷を接続し、高調波成分が全く存在しない環境下で、事前に前記補正係数を算出する手法もある。   As described above, the correction coefficient is calculated so that the detection values of the respective Vpp voltage detection circuits are equivalent in a state where the level of the harmonic component is sufficiently small, and is stored in the database 203. Although the correction coefficient calculation means for the plasma load using a dummy wafer has been described here, there is also a method for calculating the correction coefficient in advance in an environment in which, for example, a 50Ω dummy load is connected and no harmonic component is present. is there.

次に演算部202は、上記で説明した通り、平均値検出回路116で検出された高周波バイアス電力のVpp電圧の平均値に乗算する補正係数と、また実効値検出回路117で検出された高周波バイアス電力のVpp電圧の実効値に乗算する補正係数を、それぞれVpp電圧の平均値とVpp電圧の実効値に乗算し、ESC電圧制御部124は、前記補正された平均値の高周波バイアス電力のVpp電圧と、前記補正された実効値の高周波バイアス電力のVpp電圧と、基本波成分検出回路115で検出した基本周波数成分での高周波バイアス電力のVpp電圧の3つの手段で検出した高周波バイアス電力のVpp電圧をそれぞれデータベース203に記憶する。   Next, as described above, the arithmetic unit 202 corrects the average value of the Vpp voltage of the high frequency bias power detected by the average value detection circuit 116 and the high frequency bias detected by the effective value detection circuit 117. The correction coefficient that multiplies the effective value of the Vpp voltage of the power by the average value of the Vpp voltage and the effective value of the Vpp voltage, respectively, and the ESC voltage control unit 124 determines the Vpp voltage of the corrected high-frequency bias power of the average value. Vpp voltage of the high frequency bias power detected by three means of the corrected effective value of the high frequency bias power Vpp voltage and the Vpp voltage of the high frequency bias power at the fundamental frequency component detected by the fundamental wave component detection circuit 115 Are stored in the database 203.

そして電圧指令部204は、前記データベース203に記憶された判定部201の判定結果とデータベース203に記憶した高周波バイアス電力のVpp電圧により、数式(1)によりVdcを求め、数式(2)により、静電吸着膜108にかかる所望のVchuckが所定の範囲に制御できるように、リアルタイム、あるいは所定の周期に基づいて算出されたESC電圧を自動制御する。前述した所定の周期とは、1s間隔の周期でESC電圧を制御するといったものである。制御周期については、任意で設定可能とする。 Then, the voltage command unit 204 obtains V dc according to Equation (1) from the determination result of the determination unit 201 stored in the database 203 and the Vpp voltage of the high frequency bias power stored in the database 203, and according to Equation (2). The ESC voltage calculated based on real time or a predetermined cycle is automatically controlled so that a desired V chuck applied to the electrostatic adsorption film 108 can be controlled within a predetermined range. The predetermined cycle mentioned above is such that the ESC voltage is controlled at a cycle of 1 s. The control cycle can be set arbitrarily.

以上の実施の形態によれば、静電吸着電極109に発生する高周波バイアス電力のVpp電圧の検出方法として、基本波成分検出回路115,平均値検出回路116、及び実効値検出回路117を準備し、それぞれの回路で検出された値から、ESC電圧制御部124の演算部202によって、それぞれ補正した高周波バイアス電力のVpp電圧値を算出し、データベース203に記憶し、またESC電圧制御部124の判定部201により、プロセス条件毎に発生する高調波レベルの大小と、波形歪みの状態により、どの回路で検出した高周波バイアス電力のVpp電圧を使用するかを判定することにより、非線形なプラズマ負荷により高調波が発生した場合でも、安定した静電吸着電圧制御を行うことができる。   According to the above embodiment, the fundamental wave component detection circuit 115, the average value detection circuit 116, and the effective value detection circuit 117 are prepared as a method for detecting the Vpp voltage of the high-frequency bias power generated in the electrostatic chucking electrode 109. The Vpp voltage value of the corrected high-frequency bias power is calculated from the values detected by the respective circuits by the calculation unit 202 of the ESC voltage control unit 124, stored in the database 203, and determined by the ESC voltage control unit 124. The unit 201 determines which circuit to use the Vpp voltage of the high-frequency bias power detected by which circuit based on the magnitude of the harmonic level generated for each process condition and the state of waveform distortion, thereby generating a harmonic by a non-linear plasma load. Even when a wave is generated, stable electrostatic adsorption voltage control can be performed.

以上説明した実施例では、プラズマ生成用の高周波電源及び静電吸着電極にイオン引き込み用のバイアス用高周波電源,静電吸着させるための静電吸着用直流電源を有するエッチング装置について述べたが、誘導結合型プラズマ装置及び平行平板型プラズマ装置等の他のエッチング装置、及びアッシング装置,プラズマCVD装置など、静電吸着電極へ高周波電力を供給し、静電吸着膜を用いて静電吸着電極へ吸着するその他のプラズマ処理装置においても同様の効果がある。   In the embodiments described above, an etching apparatus having a high frequency power source for plasma generation, a high frequency power source for biasing ions to the electrostatic adsorption electrode, and a direct current power source for electrostatic adsorption for electrostatic adsorption has been described. High-frequency power is supplied to the electrostatic adsorption electrode such as a coupled plasma apparatus and a parallel plate type plasma apparatus, as well as an ashing apparatus and a plasma CVD apparatus, and the electrostatic adsorption film is used to attract the electrostatic adsorption electrode. The same effect can be obtained in other plasma processing apparatuses.

また、上述した実施の形態では、イオン引き込み用のバイアス用高周波電源のVpp電圧の検出方法について説明したが、プラズマ生成用の高周波電源のVpp電圧の検出において、同様の手段を用いてもよい。   In the above-described embodiment, the method for detecting the Vpp voltage of the high frequency power supply for biasing ions is described. However, the same means may be used for detecting the Vpp voltage of the high frequency power supply for generating plasma.

上述した実施の形態では、プラズマ生成用の高周波電源及び静電吸着電極のイオン引き込み用バイアス用高周波電源の2つの異なる周波数の高周波電力が供給される場合について説明したが、印加される高周波電力は、3つ以上あってもよい。   In the above-described embodiment, the case where high-frequency power of two different frequencies of the high-frequency power source for generating plasma and the high-frequency power source for biasing ions of the electrostatic adsorption electrode is supplied has been described. There may be three or more.

上述した実施の形態では、基本波成分検出回路115で検出した基本周波数成分での高周波バイアス電力のVpp電圧と、平均値から算出した高周波バイアス電力のVpp電圧と、また実効値から算出した高周波バイアス電力のVpp電圧のいずれかの値を用いて、ESC電圧の制御を行う例について説明したが、それぞれで検出した3つのVpp検出値の平均値を用いて、ESC電圧の制御を行っても良い。   In the embodiment described above, the Vpp voltage of the high frequency bias power at the fundamental frequency component detected by the fundamental wave component detection circuit 115, the Vpp voltage of the high frequency bias power calculated from the average value, and the high frequency bias calculated from the effective value. The example in which the ESC voltage is controlled using any value of the power Vpp voltage has been described. However, the ESC voltage may be controlled using the average value of the three detected Vpp values. .

上述した実施の形態では、平均値検出回路116で検出したバイアス用高周波電源のVpp電圧の平均値と、また実効値検出回路117で検出したバイアス用高周波電源のVpp電圧の実効値を、演算部202でそれぞれ補正した値を用いてESC電圧を制御する場合について説明したが、補正する前の真のVpp電圧の平均値及び実効値で、ESC電圧を制御する方法をとってもよい。   In the above-described embodiment, the average value of the Vpp voltage of the bias high-frequency power source detected by the average value detection circuit 116 and the effective value of the Vpp voltage of the bias high-frequency power source detected by the effective value detection circuit 117 are calculated. Although the case where the ESC voltage is controlled using the values corrected in 202 has been described, a method of controlling the ESC voltage using the average value and effective value of the true Vpp voltage before correction may be used.

また上述した実施の形態では、ESC電圧制御部124によって、各プロセス条件毎に事前に決定しておいた高周波バイアス電力のVpp電圧を用いてESC電圧を制御する場合について説明したが、該プロセス中にプラズマ状態が変化し、高調波発生レベルが変化した場合には、事前に記憶しておいた選択する高周波バイアス電力のVpp電圧を変更して、ESC電圧を制御するようにしてもよい。   In the above-described embodiment, the case where the ESC voltage control unit 124 controls the ESC voltage using the Vpp voltage of the high-frequency bias power determined in advance for each process condition has been described. When the plasma state changes and the harmonic generation level changes, the Vpp voltage of the selected high-frequency bias power stored in advance may be changed to control the ESC voltage.

101 高周波電源
102,111 整合器
103 アンテナ電極
104 誘導体
105 真空容器
106 プラズマ
107 静電吸着用直流電源
108 静電吸着膜
109 静電吸着電極
110 高周波バイアス電源
112,119 バイアス用高周波電源Vpp電圧モニタ検出回路
113 半導体ウエハ
114,124 ESC電圧制御部
115 基本波成分検出回路
116 平均値検出回路
117 実効値検出回路
118 ガス供給装置
120 磁場発生用コイル
121,122 同軸ケーブル
123 真空排気装置
131 真のVpp
132 基本周波数成分で検出するVpp′
201 判定部
202 演算部
203 データベース
204 電圧司令部
DESCRIPTION OF SYMBOLS 101 High frequency power supply 102, 111 Matching device 103 Antenna electrode 104 Derivative 105 Vacuum vessel 106 Plasma 107 Electrostatic adsorption DC power supply 108 Electrostatic adsorption film 109 Electrostatic adsorption electrode 110 High frequency bias power supply 112, 119 Bias high frequency power supply Vpp voltage monitor detection Circuit 113 Semiconductor wafers 114 and 124 ESC voltage control unit 115 Fundamental wave component detection circuit 116 Average value detection circuit 117 Effective value detection circuit 118 Gas supply device 120 Magnetic field generating coils 121 and 122 Coaxial cable 123 Vacuum exhaust device 131 True Vpp
132 Vpp 'detected by fundamental frequency component
201 Determination Unit 202 Calculation Unit 203 Database 204 Voltage Command Unit

Claims (3)

真空容器と、前記真空容器内でウエハを載置する下部電極と、前記下部電極に前記ウエハを静電吸着させる直流電圧電源と、前記下部電極に印加された高周波バイアス電源と、前記下部電極と対向する上部電極と、前記上部電極に印加されたプラズマ生成用高周波電源と、前記下部電極に印加されている高周波電圧Vppを検出する高周波電圧Vpp検出手段を有し、前記ウエハの静電吸着力を所定の範囲に制御するために、前記高周波電圧Vppを用いて静電吸着用直流電圧を制御するプラズマ処理装置において、
前記高周波電圧Vpp検出手段は、前記高周波電圧Vppの基本周波数成分を検出する基本波成分Vpp検出手段と、前記高周波電圧Vppの平均値を検出する平均値Vpp検出手段と、前記高周波電圧Vppの実効値を検出する実効値Vpp検出手段とを有することを特徴とするプラズマ処理装置。
A vacuum vessel, a lower electrode for mounting a wafer in the vacuum vessel, a DC voltage power source for electrostatically adsorbing the wafer to the lower electrode, a high-frequency bias power source applied to the lower electrode, and the lower electrode, An upper electrode opposed to the upper electrode; a high-frequency power source for plasma generation applied to the upper electrode; and a high-frequency voltage Vpp detection means for detecting the high-frequency voltage Vpp applied to the lower electrode, In the plasma processing apparatus for controlling the DC voltage for electrostatic adsorption using the high-frequency voltage Vpp in order to control the voltage within a predetermined range,
The high frequency voltage Vpp detection means includes a fundamental wave component Vpp detection means for detecting a fundamental frequency component of the high frequency voltage Vpp, an average value Vpp detection means for detecting an average value of the high frequency voltage Vpp, and an effective value of the high frequency voltage Vpp. An effective value Vpp detecting means for detecting a value.
請求項1記載のプラズマ処理装置は、前記静電吸着用直流電圧を制御する静電吸着用直流電圧制御部を有し、前記静電吸着用直流電圧制御部は、前記基本波成分Vpp検出手段と前記平均値Vpp検出手段と前記実効値Vpp検出手段のそれぞれから最適なVppの判定を行う判定部と、前記Vppから前記静電吸着用直流電圧を算出する演算部と、前記判定部から得られた判定結果と前記演算部から得られた演算結果を蓄積するデータベースと、前記演算結果を前記直流電圧電源に出力する電圧司令部から構成されていることを特徴とするプラズマ処理装置。   The plasma processing apparatus according to claim 1, further comprising an electrostatic adsorption DC voltage control unit that controls the electrostatic adsorption DC voltage, wherein the electrostatic adsorption DC voltage control unit includes the fundamental wave component Vpp detection unit. Obtained from each of the average value Vpp detection means and the effective value Vpp detection means, a calculation section for calculating the DC voltage for electrostatic adsorption from the Vpp, and the determination section. A plasma processing apparatus comprising: a database for accumulating the determined determination results and the calculation results obtained from the calculation unit; and a voltage command unit for outputting the calculation results to the DC voltage power source. 請求項2記載のプラズマ処理装置の前記演算部において、前記基本波成分Vpp検出手段と前記平均値Vpp検出手段と前記実効値Vpp検出手段のそれぞれから検出されたVppの平均値を算出し、前記平均値を前記直流電圧電源に出力することを特徴とするプラズマ処理装置。   In the said calculating part of the plasma processing apparatus of Claim 2, the average value of Vpp detected from each of the said fundamental wave component Vpp detection means, the said average value Vpp detection means, and the said effective value Vpp detection means is calculated, An average value is output to the DC voltage power supply.
JP2009209929A 2009-09-11 2009-09-11 Plasma processing equipment Active JP5358364B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009209929A JP5358364B2 (en) 2009-09-11 2009-09-11 Plasma processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009209929A JP5358364B2 (en) 2009-09-11 2009-09-11 Plasma processing equipment

Publications (2)

Publication Number Publication Date
JP2011061048A true JP2011061048A (en) 2011-03-24
JP5358364B2 JP5358364B2 (en) 2013-12-04

Family

ID=43948325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009209929A Active JP5358364B2 (en) 2009-09-11 2009-09-11 Plasma processing equipment

Country Status (1)

Country Link
JP (1) JP5358364B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016131235A (en) * 2015-01-09 2016-07-21 株式会社日立ハイテクノロジーズ Plasma processing apparatus and plasma processing method
US9779919B2 (en) 2015-01-09 2017-10-03 Hitachi High-Technologies Corporation Plasma processing apparatus and plasma processing method
US11282732B2 (en) 2014-02-07 2022-03-22 Trek, Inc. System and method for clamping a work piece

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11340308A (en) * 1998-05-25 1999-12-10 Hitachi Ltd Electrostatic suction device
JP2005203444A (en) * 2004-01-13 2005-07-28 Hitachi High-Technologies Corp Plasma processing equipment
JP2006073723A (en) * 2004-09-01 2006-03-16 Hitachi High-Technologies Corp Plasma processing equipment
JP2008071981A (en) * 2006-09-15 2008-03-27 Hitachi High-Technologies Corp Plasma processing method and apparatus
JP2009206344A (en) * 2008-02-28 2009-09-10 Hitachi High-Technologies Corp Apparatus and method for processing plasma

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11340308A (en) * 1998-05-25 1999-12-10 Hitachi Ltd Electrostatic suction device
JP2005203444A (en) * 2004-01-13 2005-07-28 Hitachi High-Technologies Corp Plasma processing equipment
JP2006073723A (en) * 2004-09-01 2006-03-16 Hitachi High-Technologies Corp Plasma processing equipment
JP2008071981A (en) * 2006-09-15 2008-03-27 Hitachi High-Technologies Corp Plasma processing method and apparatus
JP2009206344A (en) * 2008-02-28 2009-09-10 Hitachi High-Technologies Corp Apparatus and method for processing plasma

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11282732B2 (en) 2014-02-07 2022-03-22 Trek, Inc. System and method for clamping a work piece
JP2016131235A (en) * 2015-01-09 2016-07-21 株式会社日立ハイテクノロジーズ Plasma processing apparatus and plasma processing method
KR101777253B1 (en) * 2015-01-09 2017-09-11 가부시키가이샤 히다치 하이테크놀로지즈 Plasma processing apparatus and plasma processing method
US9779919B2 (en) 2015-01-09 2017-10-03 Hitachi High-Technologies Corporation Plasma processing apparatus and plasma processing method
US9887070B2 (en) 2015-01-09 2018-02-06 Hitachi High-Technologies Corporation Plasma processing apparatus and plasma processing method

Also Published As

Publication number Publication date
JP5358364B2 (en) 2013-12-04

Similar Documents

Publication Publication Date Title
JP7455174B2 (en) RF generator and method
US11742181B2 (en) Control method and plasma processing apparatus
JP2019024090A (en) Particle generation suppressing device by DC bias modulation
JP4922705B2 (en) Plasma processing method and apparatus
JP7000521B2 (en) Plasma processing equipment and control method
JP4920991B2 (en) Plasma processing apparatus and plasma processing method
TW201601188A (en) Plasma processing apparatus and plasma processing method
JP2011082180A (en) Plasma treatment device and plasma treatment method
US20060037704A1 (en) Plasma Processing apparatus and method
JP7231671B2 (en) Plasma processing equipment
JP2023533499A (en) Systems and methods for extracting process control information from a radio frequency delivery system of a plasma processing system
US8366833B2 (en) Plasma processing apparatus and plasma processing method
JP5358364B2 (en) Plasma processing equipment
JP2011060984A (en) Plasma processing apparatus and plasma processing method
JP2014165437A (en) Plasma processing apparatus
JP2017028092A (en) Plasma processing apparatus and plasma processing method
KR20200124159A (en) Method of determining correction function
JP2000208485A (en) Plasma processing method and apparatus
JP2021158264A (en) Substrate processing equipment, substrate processing system, control method of substrate processing apparatus and control method of substrate processing system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120613

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130319

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130618

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130902

R150 Certificate of patent or registration of utility model

Ref document number: 5358364

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350