[go: up one dir, main page]

JP2011057932A - Transportation equipment element - Google Patents

Transportation equipment element Download PDF

Info

Publication number
JP2011057932A
JP2011057932A JP2009211839A JP2009211839A JP2011057932A JP 2011057932 A JP2011057932 A JP 2011057932A JP 2009211839 A JP2009211839 A JP 2009211839A JP 2009211839 A JP2009211839 A JP 2009211839A JP 2011057932 A JP2011057932 A JP 2011057932A
Authority
JP
Japan
Prior art keywords
polyamide
acid
mol
dicarboxylic acid
acid unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009211839A
Other languages
Japanese (ja)
Inventor
Takahiko Sumino
隆彦 住野
Hisamasa Kuwabara
久征 桑原
Takashi Ogawa
俊 小川
Shinichi Ayuba
慎市 阿由葉
Kentaro Ishii
健太郎 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2009211839A priority Critical patent/JP2011057932A/en
Publication of JP2011057932A publication Critical patent/JP2011057932A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polyamides (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide transportation equipment elements having excellent heat resistance and excellent in various properties such as low water absorptivity, toughness, chemical resistance, boiling water resistance and weight reduction. <P>SOLUTION: There are provided transportation equipment elements comprising a polyamide resin composition containing a polyamide (A) comprising a diamine unit containing ≥70 mol% paraxylylenediamine unit and a dicarboxylic acid unit containing ≥70 mol% 6-18C linear aliphatic dicarboxylic acid unit, and a fibrous filler (B), wherein, the polyamide resin composition contains 5-200 pts.mass fibrous filler (B) per 100 pts.mass polyamide (A). <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、耐熱性に優れたポリアミド樹脂組成物に関する。詳しくは、耐熱性に優れ、力学強度、靭性、耐衝撃性、低吸水性、耐薬品性に優れた熱可塑性ポリアミド樹脂からなる輸送機器部品に関する。 The present invention relates to a polyamide resin composition having excellent heat resistance. More specifically, the present invention relates to a transportation equipment component made of a thermoplastic polyamide resin having excellent heat resistance, mechanical strength, toughness, impact resistance, low water absorption, and chemical resistance.

ナイロン6、ナイロン66に代表される脂肪族ポリアミドは耐熱性、耐薬品性、剛性、耐磨耗性、成形性、軽量性などの優れた性質を持つために、自動車エンジンルーム内部品を始めとする自動車部品用として使用されている。その一方で、従来の脂肪族ポリアミドは吸水率が大きく、寸法安定性、耐水性、耐沸水性などの性能に欠点があった。さらに、近年の自動車エンジンの高性能化に伴い、エンジンルーム内の温度が高くなってきており従来の樹脂では耐熱性の点も充分ではなくなってきている。 Aliphatic polyamides such as nylon 6 and nylon 66 have excellent properties such as heat resistance, chemical resistance, rigidity, wear resistance, moldability, and light weight. Used for automotive parts. On the other hand, conventional aliphatic polyamides have a large water absorption rate and have disadvantages in performance such as dimensional stability, water resistance, and boiling water resistance. Furthermore, as the performance of automobile engines in recent years has increased, the temperature in the engine room has increased, and the heat resistance of conventional resins has become insufficient.

このような世の中の要求に対し、1,6‐ヘキサンジアミンとテレフタル酸を主成分とする6T系半芳香族ポリアミドが提案され、自動車用部品として適用できることが開示されている(特許文献1〜4参照)。しかしながら、1,6‐ヘキサンジアミンとテレフタル酸からなるポリアミドは融点が370℃付近にあるため、溶融重合、溶融成形を分解温度以上で実施する必要があり、実用に耐え得るものではない。そのため実際には、アジピン酸、イソフタル酸、ε‐カプロラクタム等を30〜40モル%共重合することにより、実使用可能温度領域である280℃〜320℃程度まで低融点化した組成で実用化されている。このように第3成分および第4成分を共重合することは低融点化には有効であるが、その一方で結晶化速度、到達結晶化度の低下を招く。その結果、高温下での剛性、耐薬品性、寸法安定性などの諸物性が低下するだけでなく、成形サイクルの延長に伴う生産性の低下も懸念される。また、溶融滞留時に粘度低下し易いため成形性にも難点がある。 In response to such demands in the world, 6T semi-aromatic polyamides based on 1,6-hexanediamine and terephthalic acid have been proposed and disclosed as being applicable as automotive parts (Patent Documents 1 to 4). reference). However, since the polyamide composed of 1,6-hexanediamine and terephthalic acid has a melting point of around 370 ° C., it is necessary to carry out melt polymerization and melt molding at the decomposition temperature or higher, and it cannot be practically used. Therefore, in practice, it has been put to practical use with a composition having a low melting point of about 280 ° C. to 320 ° C., which is an actually usable temperature range, by copolymerizing 30 to 40 mol% of adipic acid, isophthalic acid, ε-caprolactam, etc. ing. The copolymerization of the third component and the fourth component in this manner is effective for lowering the melting point, but on the other hand causes a decrease in crystallization speed and ultimate crystallinity. As a result, not only the physical properties such as rigidity, chemical resistance and dimensional stability at high temperatures are lowered, but also there is a concern that productivity is lowered due to extension of the molding cycle. In addition, the moldability is also difficult because the viscosity is likely to decrease during melt residence.

6T系半芳香族ポリアミド以外の高融点ポリアミドとして、1,9‐ノナンジアミンおよび2‐メチル‐1,8‐オクタンジアミンの混合物とテレフタル酸からなる9T系半芳香族ポリアミドを自動車部品用途として適用することが提案されている(特許文献5参照)。9T系半芳香族ポリアミドは上記6T系半芳香族ポリアミドに比べ、高い結晶化速度、到達結晶化度および低吸水性を有しているが、上記問題と同様に共重合による諸物性の低下、芳香族ジカルボン酸を主成分とする影響として溶融滞留時に粘度低下し易く成形性に難点があるという問題は解決できていなかった。 Applying 9T semi-aromatic polyamide consisting of a mixture of 1,9-nonanediamine and 2-methyl-1,8-octanediamine and terephthalic acid as a high melting point polyamide other than 6T semi-aromatic polyamide for automotive parts Has been proposed (see Patent Document 5). 9T semi-aromatic polyamide has higher crystallization speed, ultimate crystallinity and low water absorption than the above 6T semi-aromatic polyamide. As a result of having aromatic dicarboxylic acid as a main component, the problem that the viscosity is liable to decrease during melt residence and the moldability is difficult has not been solved.

特開平3−7761号公報Japanese Patent Laid-Open No. 3-7761 特開平3−72564号公報JP-A-3-72564 特開平4−239530号公報JP-A-4-239530 特開平4−239531号公報JP-A-4-239531 特開平7−228769号公報JP 7-228769 A

本発明の目的は上記課題を解決し、耐熱性に優れると共に、低吸水性、靭性、耐薬品性、耐沸水性、軽量性などの諸物性に優れた輸送機器部品であるポリアミド樹脂組成物を提供することにある。 The object of the present invention is to provide a polyamide resin composition that is a transportation equipment part that solves the above-mentioned problems and has excellent heat resistance and excellent physical properties such as low water absorption, toughness, chemical resistance, boiling water resistance, and light weight. It is to provide.

本発明者らは鋭意研究を重ねた結果、パラキシリレンジアミンを主成分とするジアミン成分と炭素数6〜18の直鎖脂肪族ジカルボン酸を主成分とするジカルボン酸成分からなるポリアミドおよび特定のガラス繊維を含むポリアミド樹脂組成物が耐熱性、低吸水性、靭性、耐薬品性、耐沸水性、軽量性のいずれの性能に優れた輸送機器部品を得ることができることを見出した。 As a result of intensive studies, the present inventors have found that a polyamide comprising a diamine component mainly composed of paraxylylenediamine and a dicarboxylic acid component mainly composed of a linear aliphatic dicarboxylic acid having 6 to 18 carbon atoms and a specific one It has been found that a polyamide resin composition containing glass fibers can provide a transportation device part having excellent performances of heat resistance, low water absorption, toughness, chemical resistance, boiling water resistance, and light weight.

すなわち本発明は、パラキシリレンジアミン70モル%以上含むジアミン成分と炭素数6〜18の直鎖ジカルボン酸を70モル%以上含むジカルボン酸成分からなるポリアミド(A)、繊維状充填剤(B)を含むポリアミド樹脂組成物であり、ポリアミド(A)100質量部に対して繊維状充填剤(B)10〜200質量部を含むポリアミド樹脂組成物に関する。また、本発明は該ポリアミド樹脂組成物よりなる輸送機器部品に関する。 That is, the present invention provides a polyamide (A) and a fibrous filler (B) comprising a diamine component containing 70 mol% or more of paraxylylenediamine and a dicarboxylic acid component containing 70 mol% or more of a linear dicarboxylic acid having 6 to 18 carbon atoms. It is related with the polyamide resin composition containing 10-200 mass parts of fibrous fillers (B) with respect to 100 mass parts of polyamides (A). The present invention also relates to a transportation equipment part comprising the polyamide resin composition.

本発明のポリアミド樹脂組成物は耐熱性に優れると共に、低吸水性、靭性、耐薬品性、耐沸水性、軽量性などの諸物性に優れ、輸送機器部品に好適に用いることができる。 The polyamide resin composition of the present invention is excellent in heat resistance and excellent in various physical properties such as low water absorption, toughness, chemical resistance, boiling water resistance and light weight, and can be suitably used for transportation equipment parts.

本発明の輸送機器部品は後述するジアミン単位とジカルボン酸単位からなるポリアミド(A)および繊維状充填剤(B)を含有するポリアミド樹脂組成物からなるものである。ここで、ジアミン単位とは原料ジアミン成分に由来する構成単位を指し、ジカルボン酸単位とは原料ジカルボン酸成分に由来する構成単位を指す。 The transportation equipment part of the present invention comprises a polyamide resin composition containing a polyamide (A) comprising a diamine unit and a dicarboxylic acid unit, which will be described later, and a fibrous filler (B). Here, the diamine unit refers to a structural unit derived from the raw material diamine component, and the dicarboxylic acid unit refers to a structural unit derived from the raw material dicarboxylic acid component.

ポリアミド(A)は、パラキシリレンジアミン単位を70モル%以上含むジアミン単位と炭素数6〜18の直鎖脂肪族ジカルボン酸単位を70モル%以上含むジカルボン酸単位からなるポリアミドである。ジアミン単位中のパラキシリレンジアミン単位は、80モル%以上が好ましく、90モル%以上がより好ましく、100モル%が最も好ましい。ジカルボン酸単位中の炭素数6〜18の直鎖脂肪族ジカルボン酸単位は、80モル%以上が好ましく、90モル%以上がより好ましく、100モル%が最も好ましい。 The polyamide (A) is a polyamide comprising a diamine unit containing 70 mol% or more of paraxylylenediamine units and a dicarboxylic acid unit containing 70 mol% or more of a linear aliphatic dicarboxylic acid unit having 6 to 18 carbon atoms. The paraxylylenediamine unit in the diamine unit is preferably 80 mol% or more, more preferably 90 mol% or more, and most preferably 100 mol%. 80 mol% or more is preferable, as for a C6-C18 linear aliphatic dicarboxylic acid unit in a dicarboxylic acid unit, 90 mol% or more is more preferable, and 100 mol% is the most preferable.

ポリアミド(A)は、パラキシリレンジアミンを70モル%以上含むジアミン成分と炭素数6〜18の直鎖脂肪族ジカルボン酸を70モル%以上含むジカルボン酸成分を重縮合させることにより得られる。 The polyamide (A) is obtained by polycondensing a diamine component containing 70 mol% or more of paraxylylenediamine and a dicarboxylic acid component containing 70 mol% or more of a linear aliphatic dicarboxylic acid having 6 to 18 carbon atoms.

ポリアミド(A)に用いる原料のジアミン成分は、パラキシリレンジアミンを70モル%以上含むものであり、さらには80モル%以上であることが好ましく、90モル%以上が特に好ましく、100モル%が最も好ましい。ジアミン成分中のパラキシリレンジアミンが70モル%以上とすることで得られるポリアミドは、高融点、高結晶性を示し、耐熱性、耐薬品性などに優れるポリアミドとして輸送機器部品として好適に用いることができる。原料のジアミン成分中のパラキシリレンジアミンが70モル%未満の場合、耐熱性、耐薬品性などの諸物性が低下するため好ましくない。 The starting diamine component used for the polyamide (A) contains 70 mol% or more of paraxylylenediamine, more preferably 80 mol% or more, particularly preferably 90 mol% or more, and 100 mol%. Most preferred. Polyamide obtained by adjusting paraxylylenediamine in the diamine component to 70 mol% or more should be suitably used as a transportation equipment part as a polyamide having a high melting point and high crystallinity and excellent in heat resistance and chemical resistance. Can do. When paraxylylenediamine in the diamine component of the raw material is less than 70 mol%, various physical properties such as heat resistance and chemical resistance are lowered, which is not preferable.

パラキシリレンジアミン以外の原料成分としては1,4‐ブタンジアミン、1,6‐ヘキサンジアミン、1,8‐オクタンジアミン、1,10‐デカンジアミン、1,12‐ドデカンジアミン、3‐メチル‐1,5‐ペンタンジアミン、2,2,4‐トリメチル‐1,6‐ヘキサンジアミン、2,4,4‐トリメチル‐1,6‐ヘキサンジアミン、2‐メチル‐1,8‐オクタンジアミン、5‐メチル‐1,9‐ノナンジアミンなどの脂肪族ジアミン、1,3‐ビス(アミノメチル)シクロへキサン、1,4‐ビス(アミノメチル)シクロヘキサン、シクロヘキサンジアミン、メチルシクロヘキサンジアミン、イソホロンジアミンなどの脂環式ジアミン、メタキシリレンジアミンなどの芳香脂肪族ジアミン、あるいはこれらの混合物が例示できるがこれらに限定されるものではない。 As raw material components other than paraxylylenediamine, 1,4-butanediamine, 1,6-hexanediamine, 1,8-octanediamine, 1,10-decanediamine, 1,12-dodecanediamine, 3-methyl-1 , 5-pentanediamine, 2,2,4-trimethyl-1,6-hexanediamine, 2,4,4-trimethyl-1,6-hexanediamine, 2-methyl-1,8-octanediamine, 5-methyl Aliphatic diamines such as -1,9-nonanediamine, 1,3-bis (aminomethyl) cyclohexane, 1,4-bis (aminomethyl) cyclohexane, cyclohexanediamine, methylcyclohexanediamine, isophoronediamine, etc. Examples include diamines, araliphatic diamines such as metaxylylenediamine, or mixtures thereof. That although the present invention is not limited to these.

ポリアミド(A)の原料に用いるジカルボン酸成分は、炭素数6〜18の直鎖脂肪族カルボン酸を70モル%以上含むものであり、さらには80モル%以上が好ましく、90モル%以上が特に好ましく、100モル%が最も好ましい。炭素数6〜18の直鎖脂肪族カルボン酸を70モル%以上とすることで得られるポリアミドは溶融加工時の流動性、高結晶性、低吸水率を示し、耐熱性、耐薬品性、寸法安定性、成形加工性に優れるポリアミドとして輸送機器部品として好適に用いることができる。原料ジカルボン酸成分中の炭素数6〜18の直鎖脂肪族ジカルボン酸濃度が70モル%未満の場合、耐熱性、耐薬品性、成形加工性が低下するため好ましくない。 The dicarboxylic acid component used for the raw material of the polyamide (A) contains 70 mol% or more of a linear aliphatic carboxylic acid having 6 to 18 carbon atoms, more preferably 80 mol% or more, and particularly preferably 90 mol% or more. Preferably, 100 mol% is most preferable. Polyamide obtained by adjusting the straight chain aliphatic carboxylic acid having 6 to 18 carbon atoms to 70 mol% or more exhibits fluidity, high crystallinity, and low water absorption during melt processing, heat resistance, chemical resistance, and dimensions. Polyamide excellent in stability and moldability can be suitably used as a transportation equipment part. When the concentration of the straight-chain aliphatic dicarboxylic acid having 6 to 18 carbon atoms in the raw material dicarboxylic acid component is less than 70 mol%, the heat resistance, chemical resistance and molding processability are lowered, which is not preferable.

炭素数6〜18の直鎖脂肪族ジカルボン酸としては、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカン二酸、ドデカン二酸、トリデカン二酸、テトラデカン二酸、ペンタデカン二酸、ヘキサデカン二酸などが例示できる。中でもアゼライン酸、セバシン酸、ウンデカン二酸、ドデカン二酸が好ましく、特に好ましいのはセバシン酸、アゼライン酸である。これらの代わりに炭素数が5以下の脂肪族ジカルボン酸を使用した場合、ジカルボン酸の融点、沸点が低いために重縮合反応時に反応系外に留出してジアミンとジカルボン酸の反応モル比が崩れ、得られるポリアミドの機械物性や熱安定性が低くなるため好ましくない。また、炭素数が19以上の脂肪族ジカルボン酸を使用した場合は性状の安定したポリアミドは得られるが、融点が大きく低下し、耐熱性が得られなくなるため好ましくない。 Examples of the linear aliphatic dicarboxylic acid having 6 to 18 carbon atoms include adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid, dodecanedioic acid, tridecanedioic acid, tetradecanedioic acid, pentadecanedioic acid, Examples include hexadecanedioic acid. Among them, azelaic acid, sebacic acid, undecanedioic acid, and dodecanedioic acid are preferable, and sebacic acid and azelaic acid are particularly preferable. If an aliphatic dicarboxylic acid having 5 or less carbon atoms is used in place of these, the melting point and boiling point of the dicarboxylic acid are low, so that the reaction molar ratio of the diamine and the dicarboxylic acid collapses during the polycondensation reaction. This is not preferred because the mechanical properties and thermal stability of the resulting polyamide are lowered. When an aliphatic dicarboxylic acid having 19 or more carbon atoms is used, a polyamide having stable properties can be obtained, but this is not preferable because the melting point is greatly lowered and heat resistance cannot be obtained.

炭素数6〜18の直鎖脂肪族ジカルボン酸以外の原料ジカルボン酸としてはマロン酸、コハク酸、2‐メチルアジピン酸、トリメチルアジピン酸、2,2‐ジメチルグルタル酸、2,4‐ジメチルグルタル酸、3,3−ジメチルグルタル酸、3,3‐ジエチルコハク酸、1,3‐シクロペンタンジカルボン酸、1,3‐シクロヘキサンジカルボン酸、1,4‐シクロヘキサンジカルボン酸、イソフタル酸、テレフタル酸、2,6‐ナフタレンジカルボン酸、1,5‐ナフタレンジカルボン酸、1,4‐ナフタレンジカルボン酸、2,7‐ナフタレンジカルボン酸、あるいはこれらの混合物が例示できるが、これらに限定されるものではない。 As raw material dicarboxylic acids other than straight chain aliphatic dicarboxylic acids having 6 to 18 carbon atoms, malonic acid, succinic acid, 2-methyladipic acid, trimethyladipic acid, 2,2-dimethylglutaric acid, 2,4-dimethylglutaric acid 3,3-dimethylglutaric acid, 3,3-diethylsuccinic acid, 1,3-cyclopentanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, isophthalic acid, terephthalic acid, 2, Examples thereof include, but are not limited to, 6-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, and mixtures thereof.

前記ジアミン成分、ジカルボン酸成分以外にも、本発明の効果を損なわない範囲でε−カプロラクタムやラウロラクタム等のラクタム類、アミノカプロン酸、アミノウンデカン酸等の脂肪族アミノカルボン酸類も共重合成分として使用できる。 In addition to the diamine component and dicarboxylic acid component, lactams such as ε-caprolactam and laurolactam, and aliphatic aminocarboxylic acids such as aminocaproic acid and aminoundecanoic acid are also used as copolymerization components as long as the effects of the present invention are not impaired. it can.

ポリアミド(A)の重縮合時に分子量調整剤として、ポリアミドの末端アミノ基またはカルボキシル基と反応性を有する単官能化合物を少量添加しても良い。使用できる化合物としては酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、カプリル酸、ラウリン酸、トリデシル酸、ミリスチン酸、パルミチン酸、ステアリン酸、ピバリン酸などの脂肪族モノカルボン酸、安息香酸、トルイル酸、ナフタレンカルボン酸などの芳香族モノカルボン酸、ブチルアミン、アミルアミン、イソアミルアミン、ヘキシルアミン、ヘプチルアミン、オクチルアミンなどの脂肪族モノアミン、ベンジルアミン、メチルベンジルアミンなどの芳香脂肪族モノアミン、あるいはこれらの混合物が例示できるがこれらに限定されるものではない。 A small amount of a monofunctional compound having reactivity with the terminal amino group or carboxyl group of the polyamide may be added as a molecular weight modifier during the polycondensation of the polyamide (A). The compounds that can be used include aliphatic monocarboxylic acids such as acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, caprylic acid, lauric acid, tridecylic acid, myristic acid, palmitic acid, stearic acid, pivalic acid, benzoic acid, and toluyl Acids, aromatic monocarboxylic acids such as naphthalenecarboxylic acid, aliphatic monoamines such as butylamine, amylamine, isoamylamine, hexylamine, heptylamine and octylamine, araliphatic monoamines such as benzylamine and methylbenzylamine, or these Although a mixture can be illustrated, it is not limited to these.

ポリアミド(A)の重縮合時に分子量調整剤を使用する場合、好適な使用量については、用いる分子量調整剤の反応性や沸点、反応条件などにより異なるものとなるが、通常、原料ジアミン成分とジカルボン酸成分の合計に対して0.1〜10質量%程度である。 When a molecular weight modifier is used during the polycondensation of the polyamide (A), the preferred amount varies depending on the reactivity, boiling point, reaction conditions, etc. of the molecular weight modifier used. It is about 0.1-10 mass% with respect to the sum total of an acid component.

ポリアミドの重合度の指標としてはいくつかあるが、相対粘度は一般的に使われるものである。ポリアミド(A)において好ましい相対粘度は1.8〜4.2であり、さらには1.9〜3.5であることが好ましく、2.0〜3.0であることが特に好ましい。ポリアミド(A)の相対粘度が1.8未満の場合には、溶融したポリアミド(A)の流動性が不安定になりやすく成形品の外観が悪化することがある。またポリアミド(A)の相対粘度が4.2を超えると、ポリアミド(A)の溶融粘度が高すぎて成形加工が不安定になることがある。尚、ここで言う相対粘度は、ポリアミド1gを96%硫酸100mLに溶解し、キャノンフェンスケ型粘度計にて25℃で測定した落下時間(t)と、同様に測定した96%硫酸そのものの落下時間(t0)の比であり、下記式(1)で示される。
相対粘度=t/t0 ・・・(1)
There are several indicators of the degree of polymerization of polyamide, but the relative viscosity is generally used. In the polyamide (A), the preferred relative viscosity is 1.8 to 4.2, more preferably 1.9 to 3.5, and particularly preferably 2.0 to 3.0. When the relative viscosity of the polyamide (A) is less than 1.8, the fluidity of the melted polyamide (A) tends to be unstable and the appearance of the molded product may be deteriorated. On the other hand, if the relative viscosity of the polyamide (A) exceeds 4.2, the melt viscosity of the polyamide (A) may be too high and the molding process may become unstable. The relative viscosity here refers to the drop time (t) measured by dissolving 1 g of polyamide in 100 mL of 96% sulfuric acid at 25 ° C. with a Canon Fenceke viscometer, and the drop of 96% sulfuric acid itself measured in the same manner. It is a ratio of time (t0) and is represented by the following formula (1).
Relative viscosity = t / t0 (1)

ポリアミド(A)は、ゲル浸透クロマトグラフィー(GPC)測定における数平均分子量(Mn)が10,000〜50,000の範囲であることが好ましく、14,000〜30,000の範囲であることが特に好ましい。Mnを10,000〜50,000の範囲にすることで、成形品とした場合の機械的強度が安定し、また成形性の上でも加工性良好となる適度な溶融粘度を持つものとなる。また、分散度(重量平均分子量/数平均分子量=Mw/Mn)は1.5〜5.0の範囲であることが好ましく、1.5〜3.5の範囲であることが特に好ましい。分散度を上記範囲とすることにより溶融時の流動性や溶融粘度の安定性が増し、溶融混練や溶融成形の加工性が良好となる。また靭性が良好であり、耐吸水性、耐薬品性、耐熱老化性といった諸物性も良好となる。 The polyamide (A) preferably has a number average molecular weight (Mn) in the range of 10,000 to 50,000 in the gel permeation chromatography (GPC) measurement, and is preferably in the range of 14,000 to 30,000. Particularly preferred. By setting Mn in the range of 10,000 to 50,000, the mechanical strength in the case of forming a molded article is stable, and the mold has a suitable melt viscosity that provides good workability in terms of moldability. Further, the dispersity (weight average molecular weight / number average molecular weight = Mw / Mn) is preferably in the range of 1.5 to 5.0, and particularly preferably in the range of 1.5 to 3.5. By setting the degree of dispersion in the above range, the fluidity at the time of melting and the stability of the melt viscosity are increased, and the workability of melt kneading and melt molding is improved. Also, the toughness is good, and various physical properties such as water absorption resistance, chemical resistance, and heat aging resistance are also good.

ポリアミド(A)は(a)溶融状態における重縮合、(b)溶融状態で重縮合して低分子量のポリアミドを得た後に固相状態で加熱処理するいわゆる固相重合、(c)溶融状態で重縮合して低分子量のポリアミドを得た後混練押出機を使用して溶融状態で高分子量化する押出重合など公知のポリアミド合成方法で得ることができる。 Polyamide (A) is (a) polycondensation in the molten state, (b) so-called solid phase polymerization in which a low molecular weight polyamide is obtained by polycondensation in the molten state and then heat-treated in the solid phase, (c) in the molten state After obtaining a low molecular weight polyamide by polycondensation, it can be obtained by a known polyamide synthesis method such as extrusion polymerization in which a high molecular weight is obtained in a molten state using a kneading extruder.

溶融状態における重縮合方法は特に限定されるものではないが、ジアミン成分とジカルボン酸成分とのナイロン塩の水溶液を加圧下で加熱し、水及び縮合水を除きながら溶融状態で重縮合させる方法、ジアミン成分を溶融状態のジカルボン酸に直接加えて、常圧または水蒸気加圧雰囲気下で重縮合する方法を例示できる。ジアミンを溶融状態のジカルボン酸に直接加えて重合する場合、反応系を均一な液状状態で保つためにジアミン成分を溶融ジカルボン酸相に連続的に加え、生成するオリゴアミドおよびポリアミドの融点を下回らないように反応温度を制御しつつ重縮合が進められる。 Although the polycondensation method in the molten state is not particularly limited, a method in which an aqueous solution of a nylon salt of a diamine component and a dicarboxylic acid component is heated under pressure and polycondensed in a molten state while removing water and condensed water, Examples thereof include a method in which a diamine component is directly added to a dicarboxylic acid in a molten state and polycondensed in an atmosphere of atmospheric pressure or steam. When polymerizing by directly adding diamine to the molten dicarboxylic acid, the diamine component is continuously added to the molten dicarboxylic acid phase in order to keep the reaction system in a uniform liquid state, so as not to fall below the melting point of the resulting oligoamide and polyamide. The polycondensation proceeds while controlling the reaction temperature.

溶融重縮合で得られたポリアミドは一旦取り出され、ペレット化された後、乾燥して使用される。また更に重合度を高めるために固相重合しても良い。乾燥乃至固相重合で用いられる加熱装置としては、連続式の加熱乾燥装置やタンブルドライヤー、コニカルドライヤー、ロータリードライヤー等と称される回転ドラム式の加熱装置およびナウタミキサーと称される内部に回転翼を備えた円錐型の加熱装置が好適に使用できるが、これらに限定されることなく公知の方法、装置を使用することができる。特にポリアミドの固相重合を行う場合は、上述の装置の中で回分式加熱装置が、系内を密閉化でき、着色の原因となる酸素を除去した状態で重縮合を進めやすいことから好ましく用いられる。 The polyamide obtained by melt polycondensation is once taken out, pelletized, and dried before use. In order to further increase the degree of polymerization, solid phase polymerization may be performed. As a heating device used in drying or solid phase polymerization, a continuous heating drying device, a rotary drum type heating device called a tumble dryer, a conical dryer, a rotary dryer or the like, and a rotary blade inside a nauta mixer are used. Although a conical heating apparatus provided with can be used suitably, a well-known method and apparatus can be used without being limited to these. Particularly in the case of solid-phase polymerization of polyamide, a batch heating apparatus is preferably used because it can seal the inside of the system and easily proceed with polycondensation in a state where oxygen that causes coloring is removed. It is done.

ポリアミド(A)の重縮合系内には、重縮合反応の触媒、重縮合計内に存在する酸素によるポリアミドの着色を防止する酸化防止剤としてリン原子含有化合物を添加しても良い。添加するリン原子含有化合物としては次亜リン酸のアルカリ土類金属塩、リン酸のアルカリ金属塩、リン酸のアルカリ土類金属塩、ピロリン酸のアルカリ金属塩、ピロリン酸のアルカリ土類金属塩、メタリン酸のアルカリ金属塩およびメタリン酸のアルカリ土類金属塩が挙げられる。具体的には、次亜リン酸カルシウム、リン酸ナトリウム、リン酸水素二ナトリウム、リン酸二水素ナトリウム、リン酸カリウム、リン酸水素二カリウム、リン酸二水素カリウム、リン酸マグネシウム、リン酸水素二マグネシウム、リン酸二水素マグネシウム、リン酸カルシウム、リン酸水素二カルシウム、リン酸二水素カルシウム、リン酸リチウム、リン酸水素二リチウム、リン酸二水素リチウム、ピロリン酸ナトリウム、ピロリン酸カリウム、ピロリン酸マグネシウム、ピロリン酸カルシウム、ピロリン酸リチウム、メタリン酸ナトリウム、メタリン酸カリウム、メタリン酸マグネシウム、メタリン酸カルシウム、メタリン酸リチウム、あるいはこれらの混合物が例示できるが、これらに限定されるものではない。 In the polycondensation system of the polyamide (A), a phosphorus atom-containing compound may be added as a catalyst for the polycondensation reaction and an antioxidant for preventing the polyamide from being colored by oxygen present in the polycondensation total. Phosphorus atom-containing compounds to be added include alkaline earth metal salts of hypophosphorous acid, alkali metal salts of phosphoric acid, alkaline earth metal salts of phosphoric acid, alkali metal salts of pyrophosphoric acid, alkaline earth metal salts of pyrophosphoric acid And alkali metal salts of metaphosphoric acid and alkaline earth metal salts of metaphosphoric acid. Specifically, calcium hypophosphite, sodium phosphate, disodium hydrogen phosphate, sodium dihydrogen phosphate, potassium phosphate, dipotassium hydrogen phosphate, potassium dihydrogen phosphate, magnesium phosphate, dimagnesium hydrogen phosphate , Magnesium dihydrogen phosphate, calcium phosphate, dicalcium hydrogen phosphate, calcium dihydrogen phosphate, lithium phosphate, dilithium hydrogen phosphate, lithium dihydrogen phosphate, sodium pyrophosphate, potassium pyrophosphate, magnesium pyrophosphate, pyro Examples thereof include, but are not limited to, calcium phosphate, lithium pyrophosphate, sodium metaphosphate, potassium metaphosphate, magnesium metaphosphate, calcium metaphosphate, lithium metaphosphate, or a mixture thereof.

ポリアミド(A)の重縮合系内に添加するリン原子含有化合物の添加量は、ポリアミド(A)中のリン原子濃度換算で50〜400ppmであることが好ましく、さらには、60〜350ppmであることが好ましく、70〜300ppmであることが特に好ましい。リン原子濃度が50ppm未満の場合は、酸化防止剤としての効果を十分に得ることができず、ポリアミド樹脂組成物が着色する傾向にあり好ましくない。また、リン原子濃度が400ppmを超える場合は、ポリアミド樹脂組成物のゲル化反応が促進され、リン原子含有化合物(A)に起因すると考えられる異物が成形品中に混入する場合があり、成形品の外観が悪化する傾向があるため好ましくない。 The addition amount of the phosphorus atom-containing compound added to the polycondensation system of the polyamide (A) is preferably 50 to 400 ppm in terms of the phosphorus atom concentration in the polyamide (A), and more preferably 60 to 350 ppm. Is preferable, and it is especially preferable that it is 70-300 ppm. When the phosphorus atom concentration is less than 50 ppm, the effect as an antioxidant cannot be sufficiently obtained, and the polyamide resin composition tends to be colored, which is not preferable. In addition, when the phosphorus atom concentration exceeds 400 ppm, the gelation reaction of the polyamide resin composition is promoted, and foreign matter that may be attributed to the phosphorus atom-containing compound (A) may be mixed in the molded product. This is not preferable because the external appearance tends to deteriorate.

また、ポリアミド(A)の重縮合系内には、リン原子含有化合物と併用して重合速度調整剤を添加することが好ましい。重縮合中のポリアミドの着色を防止するためにはリン原子含有化合物を十分な量存在させる必要があるが、ポリアミドのゲル化を招く恐れがあるため、アミド化反応速度を調整するためにも重合速度調整剤を共存させることが好ましい。重合速度調整剤としては、アルカリ金属水酸化物、アルカリ土類金属水酸化物、アルカリ金属酢酸塩およびアルカリ土類金属酢酸塩が挙げられ、アルカリ金属水酸化物やアルカリ金属酢酸塩が好ましい。重合速度調整剤としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化ルビジウム、水酸化セシウム、水酸化マグネシウム、水酸化カルシウム、水酸化ストロンチウム、水酸化バリウム、酢酸リチウム、酢酸ナトリウム、酢酸カリウム、酢酸ルビジウム、酢酸セシウム、酢酸マグネシウム、酢酸カルシウム、酢酸ストロンチウム、酢酸バリウム、あるいはこれらの混合物が挙げられるが、これらの化合物に限定されるものではない。 Moreover, it is preferable to add a polymerization rate adjusting agent in combination with the phosphorus atom-containing compound in the polycondensation system of polyamide (A). To prevent coloring of the polyamide during polycondensation, it is necessary to have a sufficient amount of phosphorus atom-containing compound, but there is a risk of causing gelation of the polyamide, so polymerization is also performed to adjust the amidation reaction rate. It is preferable to coexist with a speed regulator. Examples of the polymerization rate adjusting agent include alkali metal hydroxides, alkaline earth metal hydroxides, alkali metal acetates and alkaline earth metal acetates, and alkali metal hydroxides and alkali metal acetates are preferable. Polymerization rate regulators include lithium hydroxide, sodium hydroxide, potassium hydroxide, rubidium hydroxide, cesium hydroxide, magnesium hydroxide, calcium hydroxide, strontium hydroxide, barium hydroxide, lithium acetate, sodium acetate, acetic acid Examples include, but are not limited to, potassium, rubidium acetate, cesium acetate, magnesium acetate, calcium acetate, strontium acetate, barium acetate, or mixtures thereof.

重縮合系内に重合速度調整剤を添加する場合、リン原子含有化合物と重合速度調整剤のグラム当量比(=[重合速度調整剤のグラム当量]/[リン原子含有化合物のグラム当量])が0.4〜1.0となるようにすることが好ましく、さらには0.5〜0.95であることが好ましく、0.6〜0.9であることが特に好ましい0.4未満の場合、リン原子含有化合物のアミド化反応促進効果を抑制する効果が不足することがあり、ポリアミド中のゲルが多くなることがある。また1.0を超えるとリン原子含有化合物のアミド化反応促進効果を抑制しすぎて、重縮合の進行が遅くなり、ポリアミド製造時の熱履歴が増加してポリアミドのゲルが多くなることがあるので好ましくない。 When a polymerization rate modifier is added to the polycondensation system, the gram equivalent ratio of the phosphorus atom-containing compound and the polymerization rate modifier (= [gram equivalent of polymerization rate modifier] / [gram equivalent of phosphorus atom-containing compound]) is In the case of 0.4 to 1.0, more preferably 0.5 to 0.95, and particularly preferably 0.6 to 0.9. The effect of suppressing the amidation reaction promoting effect of the phosphorus atom-containing compound may be insufficient, and the gel in the polyamide may increase. On the other hand, if it exceeds 1.0, the effect of promoting the amidation reaction of the phosphorus atom-containing compound is excessively suppressed, the progress of polycondensation is delayed, the thermal history during polyamide production may increase, and the polyamide gel may increase. Therefore, it is not preferable.

前記ポリアミド樹脂組成物はポリアミド(A)以外の構成成分として繊維状充填剤(B)を含有する。繊維状充填剤(B)としては、ガラス繊維、炭素繊維、金属繊維等が挙げられる。ガラス繊維としては無アルカリ硼珪酸ガラス、あるいはアルカリ含有C‐ガラス製のもので、直径3μmないし30μm、長さ5ないし50mmの長い繊維、あるいは長さ0.05ないし5mmの短い繊維を使用することができる。さらに繊維状充填剤(B)は、樹脂と密着向上の為のシランカップリング剤などによる表面処理や、ハンドリング性改良のための収束や収束剤処理が施されていても良い。 The polyamide resin composition contains a fibrous filler (B) as a constituent component other than the polyamide (A). Examples of the fibrous filler (B) include glass fiber, carbon fiber, and metal fiber. The glass fiber is made of alkali-free borosilicate glass or alkali-containing C-glass, and uses a long fiber with a diameter of 3 to 30 μm and a length of 5 to 50 mm, or a short fiber with a length of 0.05 to 5 mm. Can do. Furthermore, the fibrous filler (B) may be subjected to a surface treatment with a silane coupling agent for improving adhesion to the resin, or a convergence or sizing agent treatment for improving handling properties.

繊維充填剤(B)の配合量は使用する繊維状充填剤の種類によって異なるが、ポリアミド(A)100質量部に対して、5〜200質量部、好ましくは15〜100質量部である。ガラス繊維の配合量が5重量部未満では機械的強度、熱的性質等の改善効果が少なく、200質量部以上では成形時の流動性に劣り成形性が低下するため好ましくない。 Although the compounding quantity of a fiber filler (B) changes with kinds of fibrous filler to be used, it is 5-200 mass parts with respect to 100 mass parts of polyamides (A), Preferably it is 15-100 mass parts. If the blending amount of the glass fiber is less than 5 parts by weight, the effect of improving mechanical strength, thermal properties and the like is small, and if it is 200 parts by weight or more, the fluidity at the time of molding is inferior and the moldability is lowered.

また、上記繊維状充填剤(B)の他に、無機粉末状フィラーなどを配合することが可能である。 In addition to the fibrous filler (B), an inorganic powder filler or the like can be blended.

前記ポリアミド樹脂組成物には、成形時の離型性を向上させるため、離型剤が添加されることが好ましい。具体的には、長鎖アルコール脂肪酸エステル、分岐アルコール脂肪酸エステル、グリセライド、多価アルコール脂肪酸エステル、高分子複合エステル、高級アルコール、ケトンワックス、モンタンワックス、シリコンオイル、シリコンガム、あるいはこれらの混合物が例示できるがこれらに限定されるものではない。 It is preferable that a release agent is added to the polyamide resin composition in order to improve releasability at the time of molding. Specific examples include long-chain alcohol fatty acid esters, branched alcohol fatty acid esters, glycerides, polyhydric alcohol fatty acid esters, polymer composite esters, higher alcohols, ketone waxes, montan waxes, silicone oils, silicone gums, or mixtures thereof. However, it is not limited to these.

前記ポリアミド樹脂組成物には、本発明の効果を損なわない範囲で高分子材料に一般に用いられている各種添加剤を配合してもよい。具体的には、酸化防止剤、艶消剤、耐熱安定剤、耐候安定剤、紫外線吸収剤、核剤、可塑剤、難燃剤、帯電防止剤、着色防止剤、ゲル化防止剤等が例示できるがこれらに限定されることなく、種々の材料を配合することができる。 You may mix | blend the various additives generally used for the polymeric material in the said polyamide resin composition in the range which does not impair the effect of this invention. Specific examples include antioxidants, matting agents, heat stabilizers, weathering stabilizers, ultraviolet absorbers, nucleating agents, plasticizers, flame retardants, antistatic agents, anti-coloring agents, and anti-gelling agents. However, the present invention is not limited to these, and various materials can be blended.

前記ポリアミド樹脂組成物には、本発明の効果を損なわない範囲で、ポリフェニレンエーテル、ポリフェニレンサルファイド、ポリエーテルイミド等の耐熱性樹脂を配合しても良い。 You may mix | blend heat resistant resins, such as polyphenylene ether, polyphenylene sulfide, and polyetherimide, with the said polyamide resin composition in the range which does not impair the effect of this invention.

前記ポリアミド樹脂組成物の製造方法は特に限定されず、ポリアミド(A)、繊維状充填剤(B)、さらに必要に応じてその他添加剤および樹脂を所定量配合して溶融混練することにより製造できる。溶融混練には従来公知の方法で行うことができる。例えば単軸や2軸の押出機、バンバリーミキサー又はこれに類似した装置を用いて、一括で押出機根元から全ての材料を投入して溶融混練してもよいし、先ず樹脂成分を投入して溶融しながらサイドフィードした繊維状強化材と混練する方法により、ペレットを製造してもよい。また、異なる種類のコンパウンド物をペレット化した後にペレットブレンドしてもよいし、一部の粉末成分や液体成分を別途ブレンドする方法でもよい。 The method for producing the polyamide resin composition is not particularly limited, and can be produced by mixing and kneading a predetermined amount of polyamide (A), fibrous filler (B), and other additives and resin as required. . The melt kneading can be performed by a conventionally known method. For example, using a single-screw or twin-screw extruder, a Banbury mixer, or a similar device, all materials may be charged from the root of the extruder and melt kneaded. You may manufacture a pellet by the method of kneading | mixing with the fibrous reinforcing material side-feeded, fuse | melting. Alternatively, pellet blending may be performed after different types of compound materials are pelletized, or a method in which some powder components and liquid components are separately blended may be used.

前記ポリアミド樹脂組成物は射出成形、ブロー成形、押出成形、圧縮成形、延伸、真空成形などの公知の成形方法が適用でき、エンジニアリングプラスチックとしてエンジンマウント、エンジンカバー、トルクコントロールレバー、ウィンドレギュレーター、前照灯反射板、ドアミラーステイ、ラジエタータンク等の自動車用部品、主翼等の航空機部品、等の輸送機器部品に成形可能である。 The polyamide resin composition can be applied to a known molding method such as injection molding, blow molding, extrusion molding, compression molding, stretching, vacuum molding, and the like as an engine plastic, engine mount, engine cover, torque control lever, window regulator, headlamp. It can be molded into transportation equipment parts such as automotive parts such as lamp reflectors, door mirror stays, radiator tanks, and aircraft parts such as main wings.

以下実施例及び比較例により、本発明を更に詳細に説明するが本発明はこれら実施例に限定されるものではない。なお、本実施例において各種測定は以下の方法により行った。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples. In this example, various measurements were performed by the following methods.

(1)ポリアミドの相対粘度
ポリアミド1gを精秤し、96%硫酸100mlに20〜30℃で攪拌溶解した。完全に溶解した後、速やかにキャノンフェンスケ型粘度計に溶液5mlを取り、25℃の恒温漕中で10分間放置後、落下速度(t)を測定した。また、96%硫酸そのものの落下速度(t0)も同様に測定した。tおよびt0から下記式(1)により相対粘度を算出した。
相対粘度=t/t0 ・・・(1)
(1) Relative viscosity of polyamide 1 g of polyamide was accurately weighed and dissolved in 100 ml of 96% sulfuric acid at 20-30 ° C. with stirring. After completely dissolving, 5 ml of the solution was quickly taken into a Cannon-Fenceke viscometer, and left for 10 minutes in a constant temperature bath at 25 ° C., and then the dropping speed (t) was measured. Further, the dropping rate (t0) of 96% sulfuric acid itself was measured in the same manner. The relative viscosity was calculated from t and t0 by the following formula (1).
Relative viscosity = t / t0 (1)

(2)ゲル浸透クロマトグラフィー(GPC)
GPC測定は、昭和電工社製Shodex GPC SYSTEM−11にて行った。溶媒にはヘキサフルオロイソプロパノール(HFIP)を用い、サンプルのポリアミド10mgを10gのHFIPに溶解させて測定に用いた。測定条件は、測定カラム同社製GPC標準カラム(カラムサイズ300×8.0mmI.D.)のHFIP−806Mを2本、リファレンスカラムHFIP−800を2本用い、カラム温度40℃、溶媒流量1.0mL/minとした。標準試料にはpMMA(ポリメタクリル酸メチル)を使用し、データ処理ソフトは同社製SIC−480IIを使用して数平均分子量(Mn)および重量平均分子量(Mw)を求めた。
(2) Gel permeation chromatography (GPC)
GPC measurement was performed with Shodex GPC SYSTEM-11 manufactured by Showa Denko. Hexafluoroisopropanol (HFIP) was used as the solvent, and 10 mg of the sample polyamide was dissolved in 10 g of HFIP and used for the measurement. The measurement conditions were as follows: two HFIP-806M and two reference columns HFIP-800 of GPC standard columns (column size 300 × 8.0 mm ID) manufactured by the same company, column temperature 40 ° C., solvent flow rate 1. 0 mL / min. PMMA (polymethyl methacrylate) was used as the standard sample, and the data processing software used SIC-480II manufactured by the same company to determine the number average molecular weight (Mn) and the weight average molecular weight (Mw).

(3)成形品機械物性
成形品機械物性の測定は表1の条件にて行った。

Figure 2011057932
(3) Mechanical properties of molded products Mechanical properties of molded products were measured under the conditions shown in Table 1.
Figure 2011057932

(4)平衡吸水率
φ50×3mm厚円盤型の試験片を絶乾状態の質量を秤量した後、常圧沸騰水に浸漬し、経時的な質量変化を測定する。質量変化がなくなった時点での吸水率を平衡吸水率とした。
(4) An equilibrium water absorption rate φ50 × 3 mm thick disc-shaped test piece is weighed in an absolutely dry state, then immersed in atmospheric boiling water, and the change in mass over time is measured. The water absorption rate when the mass change disappeared was defined as the equilibrium water absorption rate.

<合成例1>
攪拌機、分縮器、冷却器、温度計、滴下装置及び窒素導入管、ストランドダイを備えた内容積50リットルの反応容器に、精秤したセバシン酸8950g(44.25mol)、次亜リン酸カルシウム12.54g(0.073mol)、酢酸ナトリウム6.45g(0.073mol)を秤量して仕込んだ(次亜リン酸カルシウムと酢酸ナトリウムのグラム当量比は0.5)。反応容器内を十分に窒素置換した後、窒素で0.3MPaに加圧し、攪拌しながら160℃に昇温してセバシン酸を均一に溶融した。次いでパラキシリレンジアミン6026g(44.25mol)を攪拌下で170分を要して滴下した。この間、反応容器内温は281℃まで連続的に上昇させた。滴下工程では圧力を0.5MPaに制御し、生成水は分縮器及び冷却器を通して系外に除いた。分縮器の温度は145〜147℃の範囲に制御した。パラキシリレンジアミン滴下終了後、0.4MPa/hの速度で降圧し、60分間で常圧まで降圧した。この間に内温は300℃まで昇温した。その後0.002MPa/minの速度で降圧し、20分間で0.08MPaまで降圧した。その後攪拌装置のトルクが所定の値となるまで0.08MPaで反応を継続した。その後、系内を窒素で加圧し、ストランドダイからポリマーを取り出してこれをペレット化し、約13kgのポリアミド1(以下PA1と称す)を得た。PA1の相対粘度は2.47、Mw/Mnは2.6であった。
<Synthesis Example 1>
Into a reaction vessel having an internal volume of 50 liters equipped with a stirrer, a condenser, a cooler, a thermometer, a nitrogen introducing tube, and a strand die, 8950 g (44.25 mol) of sebacic acid and calcium hypophosphite were precisely weighed. 54 g (0.073 mol) and 6.45 g (0.073 mol) of sodium acetate were weighed and charged (the gram equivalent ratio of calcium hypophosphite and sodium acetate was 0.5). After sufficiently purging the inside of the reaction vessel with nitrogen, the pressure was increased to 0.3 MPa with nitrogen, and the temperature was raised to 160 ° C. while stirring to uniformly melt sebacic acid. Next, 6026 g (44.25 mol) of paraxylylenediamine was added dropwise over 170 minutes with stirring. During this time, the internal temperature of the reaction vessel was continuously increased to 281 ° C. In the dropping step, the pressure was controlled to 0.5 MPa, and the generated water was removed from the system through a partial condenser and a cooler. The temperature of the partial condenser was controlled in the range of 145 to 147 ° C. After completion of the dropwise addition of paraxylylenediamine, the pressure was reduced at a rate of 0.4 MPa / h, and the pressure was reduced to normal pressure in 60 minutes. During this time, the internal temperature rose to 300 ° C. Thereafter, the pressure was reduced at a rate of 0.002 MPa / min, and the pressure was reduced to 0.08 MPa in 20 minutes. Thereafter, the reaction was continued at 0.08 MPa until the torque of the stirring device reached a predetermined value. Thereafter, the inside of the system was pressurized with nitrogen, and the polymer was taken out from the strand die and pelletized to obtain about 13 kg of polyamide 1 (hereinafter referred to as PA1). The relative viscosity of PA1 was 2.47, and Mw / Mn was 2.6.

<合成例2>
ジカルボン酸成分にアゼライン酸8329g(44.25mol)を使用した以外は実施例1と同様の条件でポリアミドを合成し、ポリアミド2(以下PA2と称す)を得た。PA2の相対粘度は2.22、Mw/Mnは2.5であった。
<Synthesis Example 2>
A polyamide was synthesized under the same conditions as in Example 1 except that 8329 g (44.25 mol) of azelaic acid was used as the dicarboxylic acid component, to obtain polyamide 2 (hereinafter referred to as PA2). The relative viscosity of PA2 was 2.22, and Mw / Mn was 2.5.

<合成例3>
ジアミン成分にパラキシリレンジアミン5423g(39.82mol)、メタキシリレンジアミン603g(4.43mol)を使用した以外は実施例1と同様の条件でポリアミドを合成し、ポリアミド3(以下PA3と称す)を得た。PA3の相対粘度は2.11、Mw/Mnは2.7であった。
<Synthesis Example 3>
A polyamide was synthesized under the same conditions as in Example 1 except that 5423 g (39.82 mol) of paraxylylenediamine and 603 g (4.43 mol) of metaxylylenediamine were used as the diamine component, and polyamide 3 (hereinafter referred to as PA3). Got. The relative viscosity of PA3 was 2.11 and Mw / Mn was 2.7.

本実施例中に用いたポリアミド以外の原材料を一括して示すと以下の通りである。
(1)ガラス繊維
日本電気硝子株式会社製、商品名03T−296GH
The raw materials other than the polyamide used in this example are collectively shown as follows.
(1) Glass fiber manufactured by Nippon Electric Glass Co., Ltd., trade name 03T-296GH

<実施例1>
減圧下150℃で7時間乾燥したPA1を東芝機械株式会社製2軸押出機(商品名:TEM37BS)の基部ホッパーに8kg/hの速度で供給し、シリンダ温度:280〜300℃、スクリュー回転数150rpmで押出し、ガラス繊維を2kg/hの速度でサイドフィードして樹脂ペレットを作成した。得られた組成物を射出成形機(ファナックi100)にてシリンダ温度300℃、金型温度120℃で射出成形し、評価用試験片を得た。評価結果を表2に示す。
<Example 1>
PA1 dried for 7 hours at 150 ° C under reduced pressure is supplied to the base hopper of a twin-screw extruder (trade name: TEM37BS) manufactured by Toshiba Machine Co., Ltd. at a speed of 8 kg / h, cylinder temperature: 280-300 ° C, screw rotation speed Extrusion was performed at 150 rpm, and glass fibers were side fed at a rate of 2 kg / h to prepare resin pellets. The obtained composition was injection-molded with an injection molding machine (FANUC i100) at a cylinder temperature of 300 ° C. and a mold temperature of 120 ° C. to obtain a test piece for evaluation. The evaluation results are shown in Table 2.

<実施例2>
PA1の代わりにPA2を使用した以外は実施例1と同様の方法で評価用試験片を得た。評価結果を表2に示す。
<Example 2>
A test specimen for evaluation was obtained in the same manner as in Example 1 except that PA2 was used instead of PA1. The evaluation results are shown in Table 2.

<実施例3>
PA1の代わりにPA3を使用した以外は実施例1と同様の方法で評価用試験片を得た。評価結果を表2に示す。
<Example 3>
A test specimen for evaluation was obtained in the same manner as in Example 1 except that PA3 was used instead of PA1. The evaluation results are shown in Table 2.

<比較例1>
ポリアミド6T(ソルヴェイ社製、商品名Amodel)を東芝機械株式会社製2軸押出機(商品名:TEM37BS)の基部ホッパーに8kg/hの速度で供給し、シリンダ温度:300〜340℃、スクリュー回転数150rpmで押出し、ガラス繊維を2kg/hの速度でサイドフィードして樹脂ペレットを作成した。得られた組成物を射出成形機(ファナックi100)にてシリンダ温度340℃、金型温度130℃で射出成形し、評価用試験片を得た。評価結果を表2に示す。
<Comparative Example 1>
Polyamide 6T (manufactured by Solvay, trade name Amodel) is supplied to the base hopper of a twin-screw extruder (trade name: TEM37BS) manufactured by Toshiba Machine Co., Ltd. at a speed of 8 kg / h, cylinder temperature: 300 to 340 ° C., screw rotation Extrusion was performed at several 150 rpm, and glass fibers were side fed at a rate of 2 kg / h to prepare resin pellets. The obtained composition was injection molded with an injection molding machine (FANUC i100) at a cylinder temperature of 340 ° C. and a mold temperature of 130 ° C. to obtain test specimens for evaluation. The evaluation results are shown in Table 2.

<比較例2>
ポリアミド46(DSM社製、商品名Stanyl)を東芝機械株式会社製2軸押出機(商品名:TEM37BS)の基部ホッパーに8kg/hの速度で供給し、シリンダ温度:290〜310℃、スクリュー回転数150rpmで押出し、ガラス繊維を2kg/hの速度でサイドフィードして樹脂ペレットを作成した。得られた組成物を射出成形機(ファナックi100)にてシリンダ温度310℃、金型温度120℃で射出成形し、評価用試験片を得た。評価結果を表2に示す。
<Comparative Example 2>
Polyamide 46 (manufactured by DSM, trade name Stanyl) is supplied to the base hopper of a twin-screw extruder (trade name: TEM37BS) manufactured by Toshiba Machine Co., Ltd. at a speed of 8 kg / h, cylinder temperature: 290 to 310 ° C., screw rotation Extrusion was performed at several 150 rpm, and glass fibers were side fed at a rate of 2 kg / h to prepare resin pellets. The obtained composition was injection molded with an injection molding machine (FANUC i100) at a cylinder temperature of 310 ° C. and a mold temperature of 120 ° C. to obtain test specimens for evaluation. The evaluation results are shown in Table 2.

Figure 2011057932
Figure 2011057932

表2から明らかなように各実施例は同等の耐熱性を持ち、機械物性、低吸水率の諸物性に優れている。 As is apparent from Table 2, each example has equivalent heat resistance and is excellent in mechanical properties and various physical properties with low water absorption.

Claims (8)

パラキシリレンジアミン単位を70モル%以上含むジアミン単位と炭素数6〜18の直鎖脂肪族ジカルボン酸単位を70モル%以上含むジカルボン酸単位からなるポリアミド(A)および繊維状充填剤(B)を含むポリアミド樹脂組成物であって、ポリアミド(A)100質量部に対して繊維状充填剤(B)5〜200質量部を含むポリアミド樹脂組成物からなる輸送機器部品。 Polyamide (A) and fibrous filler (B) comprising a diamine unit containing 70 mol% or more of paraxylylenediamine units and a dicarboxylic acid unit containing 70 mol% or more of a linear aliphatic dicarboxylic acid unit having 6 to 18 carbon atoms A transport equipment component comprising a polyamide resin composition containing 5 to 200 parts by mass of a fibrous filler (B) with respect to 100 parts by mass of polyamide (A). 前記直鎖脂肪族ジカルボン酸単位がアゼライン酸単位、セバシン酸単位、ウンデカン二酸単位およびドデカン二酸単位より選ばれる少なくとも1種類である請求項1に記載の輸送機器部品。 The transportation equipment part according to claim 1, wherein the linear aliphatic dicarboxylic acid unit is at least one selected from an azelaic acid unit, a sebacic acid unit, an undecanedioic acid unit, and a dodecanedioic acid unit. 前記直鎖脂肪族ジカルボン酸単位がセバシン酸単位およびアゼライン酸単位より選ばれる少なくとも1種類である請求項1または2に記載の輸送機器部品。 The transport equipment part according to claim 1 or 2, wherein the linear aliphatic dicarboxylic acid unit is at least one selected from sebacic acid units and azelaic acid units. ポリアミド(A)がパラキシリレンジアミン単位を90mol%以上含むジアミン単位とセバシン酸単位およびアゼライン酸単位より選ばれる少なくとも1種類を90mol%以上含むジカルボン酸単位からなるポリアミドである請求項1〜3のいずれかに記載の輸送機器部品。 The polyamide (A) is a polyamide comprising a diamine unit containing 90 mol% or more of paraxylylenediamine units, and a dicarboxylic acid unit containing 90 mol% or more of at least one selected from sebacic acid units and azelaic acid units. A transport equipment part according to any of the above. ポリアミド(A)の相対粘度が1.8〜4.2の範囲である請求項1〜4のいずれかに記載の輸送機器部品。 The transportation equipment part according to any one of claims 1 to 4, wherein the polyamide (A) has a relative viscosity of 1.8 to 4.2. ポリアミド(A)のゲル浸透クロマトグラフィー測定における数平均分子量(Mn)が10,000〜50,000の範囲であり、かつ分散度(重量平均分子量/数平均分子量=Mw/Mn)が1.5〜5.0の範囲である請求項1〜5のいずれかに記載の輸送機器部品。 The number average molecular weight (Mn) in the gel permeation chromatography measurement of the polyamide (A) is in the range of 10,000 to 50,000, and the dispersity (weight average molecular weight / number average molecular weight = Mw / Mn) is 1.5. It is the range of -5.0, The transport equipment component in any one of Claims 1-5. 繊維状充填剤(B)がガラス繊維、炭素繊維および金属繊維から選ばれる少なくとも1種類である請求項1〜6のいずれかに記載の輸送機器部品。 The transport equipment part according to any one of claims 1 to 6, wherein the fibrous filler (B) is at least one selected from glass fiber, carbon fiber and metal fiber. 自動車部品である請求項1〜7のいずれかに記載の輸送機器部品。 The transport equipment part according to claim 1, which is an automobile part.
JP2009211839A 2009-09-14 2009-09-14 Transportation equipment element Pending JP2011057932A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009211839A JP2011057932A (en) 2009-09-14 2009-09-14 Transportation equipment element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009211839A JP2011057932A (en) 2009-09-14 2009-09-14 Transportation equipment element

Publications (1)

Publication Number Publication Date
JP2011057932A true JP2011057932A (en) 2011-03-24

Family

ID=43945924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009211839A Pending JP2011057932A (en) 2009-09-14 2009-09-14 Transportation equipment element

Country Status (1)

Country Link
JP (1) JP2011057932A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013199570A (en) * 2012-03-23 2013-10-03 Mitsubishi Gas Chemical Co Inc Polyamide resin composition and molded product
WO2016002682A1 (en) * 2014-06-30 2016-01-07 宇部興産株式会社 Polyamide resin composition and molded article comprising same
WO2017061363A1 (en) * 2015-10-09 2017-04-13 宇部興産株式会社 Polyamide resin composition
WO2018116837A1 (en) * 2016-12-22 2018-06-28 三菱瓦斯化学株式会社 Polyamide resin composition, molded article, and method for producing polyamide resin pellets

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013199570A (en) * 2012-03-23 2013-10-03 Mitsubishi Gas Chemical Co Inc Polyamide resin composition and molded product
WO2016002682A1 (en) * 2014-06-30 2016-01-07 宇部興産株式会社 Polyamide resin composition and molded article comprising same
JPWO2016002682A1 (en) * 2014-06-30 2017-04-27 宇部興産株式会社 Polyamide resin composition and molded article comprising the same
US10059842B2 (en) 2014-06-30 2018-08-28 Ube Industries, Ltd. Polyamide resin composition and molded article comprising same
WO2017061363A1 (en) * 2015-10-09 2017-04-13 宇部興産株式会社 Polyamide resin composition
CN108137921A (en) * 2015-10-09 2018-06-08 宇部兴产株式会社 Amilan polyamide resin composition
US10995199B2 (en) 2015-10-09 2021-05-04 Ube Industries, Ltd. Polyamide resin composition
JPWO2017061363A1 (en) * 2015-10-09 2018-08-02 宇部興産株式会社 Polyamide resin composition
KR20190091462A (en) * 2016-12-22 2019-08-06 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 Polyamide Resin Compositions, Molded Articles, and Methods for Preparing Polyamide Resin Pellets
CN110114415A (en) * 2016-12-22 2019-08-09 三菱瓦斯化学株式会社 The manufacturing method of Amilan polyamide resin composition, formed products and polyamide resin pellet
JPWO2018116837A1 (en) * 2016-12-22 2019-10-24 三菱瓦斯化学株式会社 Polyamide resin composition, molded article, and method for producing polyamide resin pellets
WO2018116837A1 (en) * 2016-12-22 2018-06-28 三菱瓦斯化学株式会社 Polyamide resin composition, molded article, and method for producing polyamide resin pellets
US11078330B2 (en) 2016-12-22 2021-08-03 Mitsubishi Gas Chemical Company, Inc. Polyamide resin composition, molded article, and method for manufacturing polyamide resin pellet
CN110114415B (en) * 2016-12-22 2021-09-28 三菱瓦斯化学株式会社 Polyamide resin composition, molded article, and method for producing polyamide resin pellet
JP7120025B2 (en) 2016-12-22 2022-08-17 三菱瓦斯化学株式会社 Polyamide resin composition, molded product, and method for producing polyamide resin pellets
KR102433126B1 (en) 2016-12-22 2022-08-17 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 Method for producing polyamide resin composition, molded article and polyamide resin pellets

Similar Documents

Publication Publication Date Title
JP5640975B2 (en) Polyamide resin
JP5857742B2 (en) Flame retardant polyamide resin composition
KR101606606B1 (en) Polyamide resin
JP5708485B2 (en) Polyamide resin composition and molded product
EP2476717B1 (en) Polyamide and polyamide composition
JP5964964B2 (en) Polyamide, polyamide composition and molded article
JPH0912868A (en) Polyamide composition
JP5920543B2 (en) Method for producing polyamide
JP5744439B2 (en) Sliding member
JP2011057932A (en) Transportation equipment element
JP2000086759A5 (en)
JP2019178261A (en) Polyamide composition and molded article
JP2011057930A (en) Impact-resistant polyamide resin composition
JP2011057931A (en) Thermoplastic resin composition
JP3549623B2 (en) Resin composition
JP3523316B2 (en) Production method of semi-aromatic polyamide
JP2011057929A (en) Polyamide resin composition
JP3563099B2 (en) Polyamide manufacturing method
JP2024074668A (en) Polyamide resin composition and molded body
JP5207548B2 (en) Automobile intake system parts made of polyamide composition