JP2011052032A - 2,3,3,3−テトラフルオロプロペンを用いた冷凍空調装置 - Google Patents
2,3,3,3−テトラフルオロプロペンを用いた冷凍空調装置 Download PDFInfo
- Publication number
- JP2011052032A JP2011052032A JP2009199191A JP2009199191A JP2011052032A JP 2011052032 A JP2011052032 A JP 2011052032A JP 2009199191 A JP2009199191 A JP 2009199191A JP 2009199191 A JP2009199191 A JP 2009199191A JP 2011052032 A JP2011052032 A JP 2011052032A
- Authority
- JP
- Japan
- Prior art keywords
- refrigerant
- compressor
- refrigerating
- oil
- heat exchanger
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 0 C*(C)[N+]([O-])O* Chemical compound C*(C)[N+]([O-])O* 0.000 description 2
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B9/00—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
- F25B9/002—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B39/00—Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
- F04B39/02—Lubrication
- F04B39/0215—Lubrication characterised by the use of a special lubricant
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C29/00—Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
- F04C29/02—Lubrication; Lubricant separation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B1/00—Compression machines, plants or systems with non-reversible cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/12—Inflammable refrigerants
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Lubricants (AREA)
- Compressor (AREA)
Abstract
【課題】2,3,3,3−テトラフルオロプロペン冷媒単独もしくは該冷媒とジフルオロメタンとの混合冷媒を用いた冷凍空調装置において、圧縮機への油戻り性が確保でき、漏洩電流値を低減できる、かつ環境に配慮した冷凍空調装置を提供する。
【解決手段】2,3,3,3−テトラフルオロプロペン冷媒単独もしくは該冷媒とジフルオロメタンとの混合冷媒を吸入圧縮する密閉型電動圧縮機と、前記圧縮機から吐出された冷媒を放熱する熱交換器と、前記熱交換器から流出する冷媒を減圧する減圧器と、前記減圧器にて減圧された冷媒を吸熱させる熱交換器を介し循環する冷凍サイクルにおいて、密閉型電動圧縮機の冷凍機油として、該冷媒との二層分離が−40から80℃の範囲で起こらない冷凍機油を用いたことを特徴とする冷凍空調装置。
【選択図】 図1
【解決手段】2,3,3,3−テトラフルオロプロペン冷媒単独もしくは該冷媒とジフルオロメタンとの混合冷媒を吸入圧縮する密閉型電動圧縮機と、前記圧縮機から吐出された冷媒を放熱する熱交換器と、前記熱交換器から流出する冷媒を減圧する減圧器と、前記減圧器にて減圧された冷媒を吸熱させる熱交換器を介し循環する冷凍サイクルにおいて、密閉型電動圧縮機の冷凍機油として、該冷媒との二層分離が−40から80℃の範囲で起こらない冷凍機油を用いたことを特徴とする冷凍空調装置。
【選択図】 図1
Description
本発明は、2,3,3,3−テトラフルオロプロペンを用いた冷凍空調装置に関する。
冷凍空調機器分野における地球環境対策としては、オゾン層破壊物質として冷媒や断熱材に用いられていたCFC(Chloro Fluoro Carbons)やHCFC(Hydro Chloro Fluoro Carbons)の代替え並びに、地球温暖化対策としての高効率化や冷媒に用いられているHFC(Hydro Fluoro Carbons)の代替えが挙げられ、この対策を積極的に進めてきた。
オゾン層破壊物質であるCFCやHCFCの代替えとして、オゾン層を破壊しないこと、毒性や燃焼性が低いこと、効率を確保できることを主眼として冷媒や断熱材の選定、並びに機器開発が進められた。その結果、冷蔵庫の断熱材ではCFC11→HCFC141b→シクロペンタンへと発泡剤を代替えしていき、現在は真空断熱材との併用に移行している。冷媒としては、冷蔵庫やカーエアコンがCFC12C→HFC134a(GWP(Global Warming Potentail)=1430)、ルームエアコンやパッケージエアコンがHCFC22→R410A(GWP=2088)へと代替えした。しかし、1997年に京都で開催された気候変動枠組条約第3回締約国会議(COP3)で、HFC排出量が温室効果ガスとしてCO2換算されて規制対象となったため、HFCの削減が進められることとなった。そこで、家庭用冷蔵庫では冷媒封入量が少なく可燃性冷媒も製造上使用可能と判断し、HFC134aを可燃性のR600a(イソブタン:GWP=3)へと更に代替えした。さらに世論の高まりにより、現在はカーエアコン用のHFC134aやルームエアコン・パッケージエアコン用のR410Aにも目が向けられている。また、業務用冷蔵庫ではR600aの封入量が多く可燃性の危惧から現在でもHFC134aを使用している。
現実には2001年に施行された家電リサイクル法(特定家庭用機器再商品化法)や2003年施行の自動車リサイクル法(使用済自動車の再資源化等に関する法律)により機器のリサイクルが義務化され、冷媒として用いられているHFC等が回収され処理されている。しかし、EU(欧州連合)では、2006年指令(Directive 2006/40/EC)において、2011年1月出荷のカーエアコンから、これに用いる冷媒としてGWP>150の冷媒の使用を禁じた。これを受けてカーエアコン業界では様々な動きをみせており、ルームエアコンでもR410Aがいずれは規制されるのではないかと言う懸念が生じている。これら代替え冷媒としては、HFC134aと同等の熱物性を有し、低GWP,低毒性,低可燃性などの理由から2,3,3,3−テトラフルオロプロペン(HFO1234yf(Hydro Fluoro Clefin)(GWP=4)単独もしくはこの混合冷媒(GWP<150)が候補とされている。2,3,3,3−テトラフルオロプロペンと混合する冷媒としては、特許文献1〜9などに開示された、トリフルオロヨードメタン、二酸化炭素、ジフルオロエタン(HFC152a)などの共沸となるハイドロフルオロカーボンが挙げられているが、毒性・安定性・熱物性からこれらの混合冷媒でルームエアコンを効率よく運転することは難しい。
一方、冷凍機油は密閉型電動圧縮機に使用され、その摺動部の潤滑,密封,冷却等の役割を果たすものである。2006月から改正された省エネ法(エネルギーの使用の合理化に関する法律)により、実使用状態に沿った省エネ性能を示す指標としてAPF(Annual Performance Factor)が採用され、圧縮機にも更なる省エネルギー化,高効率化が必要であり、使用条件が厳しくなることから信頼性確保の面において潤滑性が良い冷凍機油が要求される。また、圧縮機内にはエステル系絶縁フィルム(主に耐熱PET:Poly Ethylene Terephtalate)が使用されていることから、吸水性が低い冷凍機油が好ましい。2,3,3,3−テトラフルオロプロペンとの冷媒単独もしくは該冷媒を含む混合冷媒を用いた圧縮機に用いる冷凍機油としては、前記からポリアルキレングリコール油,ポリオールエステル油,鉱油,ポリαアレフィン油,アルキルベンゼン油が開示されている。カーエアコンのように開放系圧縮機ではポリアルキレングリコールのように電気絶縁性が劣る冷凍機油においても適用が可能である。しかし、ルームエアコンのような密閉系圧縮機ではポリアルキレングリコール油は電気絶縁油としての体積抵抗率の規格である1013Ω・cmを大きく下回り、更に誘電率が約5.0と非常に高いためシステム運転時における漏れ電流が増大し、電気用品安全法(電気用品の製造,輸入,販売等を規制するとともに、電気用品の安全性の確保につき民間事業者の自主的な活動を促進することにより、電気用品による危険及び障害の発生を防止することを目的)に定められる漏れ(リーク)電流値1.0mA以下を満足することが難しい。そのため漏洩電流低減回路(キャンセラ回路)を追加したり、雑音端子電圧フィルタ(ノイズフィルタ)を最適化する必要が生じる。更にポリアルキレングリコール油は非常に吸水性が高く、水分を管理するために設備や時間を要する。ポリアルキレングリコール油は加水分解に対して安定であるため油中水分は圧縮機内のエステル系絶縁フィルムの加水分解に寄与してしまう問題がある。また、鉱油,ポリαオレフィン油,アルキルベンゼン油などは2,3,3,3−テトラフルオロプロペン冷媒との相溶性が劣るため圧縮機への油戻り特性低下の懸念がある。更には基材単独では潤滑性が劣るという問題があるため、環境漏洩時の生態毒性が大きく、バーゼル条約の規制物質(国内法:特定有害廃棄物等の輸出入等の規制に関する法律)に該当しているTCP:トリクレジルホスフェートのようなリン系極圧剤などを配合しなくてはならない。
上記した理由から冷凍空調装置には、2,3,3,3−テトラフルオロプロペン単独もしくは該冷媒とジフルオロメタンとの混合冷媒と相溶性を示し、かつ電気絶縁性,潤滑性の良好な冷凍機油を用いることが好ましい。
本発明は上記に鑑み、2,3,3,3−テトラフルオロプロペン冷媒単独もしくは該冷媒とジフルオロメタンとの混合冷媒を用いた冷凍空調機器の漏れ電流を容易に低減でき、圧縮機の長期信頼性,油戻り特性を確保しつつ、かつ省エネルギー化,高効率化が可能な環境に配慮した冷凍空調装置を提供することにある。
課題の具体的解決手段は、下記の通りである。
(1)2,3,3,3−テトラフルオロプロペン冷媒単独もしくは該冷媒とジフルオロメタンとの混合冷媒を吸入圧縮する密閉型電動圧縮機と、前記圧縮機から吐出された冷媒を放熱する熱交換器と、前記熱交換器から流出する冷媒を減圧する減圧器と、前記減圧器にて減圧された冷媒を吸熱させる熱交換器を介し循環する冷凍サイクルにおいて、密閉型電動圧縮機の冷凍機油として、該冷媒との二層分離が−40から80℃の範囲で起こらない冷凍機油を用いたことを特徴とする冷凍空調装置。
(2)前記(1)記載の密閉型電動圧縮機の冷凍機油として、次の一般式(式中、Rは炭素数5〜12のアルキル基を表す。)のポリオールエステル油を用いたことを特徴とする冷凍空調装置。
(1)2,3,3,3−テトラフルオロプロペン冷媒単独もしくは該冷媒とジフルオロメタンとの混合冷媒を吸入圧縮する密閉型電動圧縮機と、前記圧縮機から吐出された冷媒を放熱する熱交換器と、前記熱交換器から流出する冷媒を減圧する減圧器と、前記減圧器にて減圧された冷媒を吸熱させる熱交換器を介し循環する冷凍サイクルにおいて、密閉型電動圧縮機の冷凍機油として、該冷媒との二層分離が−40から80℃の範囲で起こらない冷凍機油を用いたことを特徴とする冷凍空調装置。
(2)前記(1)記載の密閉型電動圧縮機の冷凍機油として、次の一般式(式中、Rは炭素数5〜12のアルキル基を表す。)のポリオールエステル油を用いたことを特徴とする冷凍空調装置。
(3)2,3,3,3−テトラフルオロプロペン単独もしくは該冷媒とジフルオロメタンとの混合冷媒を吸入圧縮する密閉型電動圧縮機と、前記圧縮機から吐出された冷媒を放熱する熱交換器と、前記熱交換器から流出する冷媒を減圧する減圧器と、前記減圧器にて減圧された冷媒を吸熱させる熱交換器を介し循環する冷凍サイクルにおいて、密閉型電動圧縮機の冷凍機油として、次の一般式(式中、Rは炭素数5〜12のアルキル基を表す。)のポリオールエステル油を用いたことを特徴とする冷凍空調装置。
(4)前記(3)記載の該冷凍機油に酸捕捉剤としてエポキシ環を有する化合物もしくはビス(2,6−イソプロピルフェニル)カルボジイミドを1.0重量%以下配合したことを特徴とする冷凍空調装置。
(5)前記(3)記載の密閉型電動圧縮機がスクロール式圧縮機であり、ポリオールエステル油の動粘度が40℃で40〜80mm2/sの粘度範囲であることを特徴とする空調装置。
(6)前記(3)記載の密閉型電動圧縮機がレシプロ式圧縮機であり、ポリオールエステル油の動粘度が40℃で5〜30mm2/sの粘度範囲であることを特徴とする冷蔵庫。
(7)前記(3)記載の冷凍空調装置に用いる圧縮機内の有機絶縁材料が、物理的及び化学的に劣化を受けない材料であることを特徴とする冷凍空調装置。
(8)前記(3)記載の密閉型電動圧縮機の冷凍機油として、冷凍空調装置のフィルタ回路の一方を交流電源とアースに接続し、もう一方の端子間の交流電圧を測定し、この電圧を1kΩで除した漏れ電流値が1mA以下となる冷凍機油を用いることを特徴とする冷凍空調装置。
(9)2,3,3,3−テトラフルオロプロペン単独もしくは該冷媒とジフルオロメタンとの混合冷媒を吸入圧縮する密閉型電動圧縮機と、前記圧縮機から吐出された冷媒を放熱する熱交換器と、前記熱交換器から流出する冷媒を減圧する減圧器と、前記減圧器にて減圧された冷媒を吸熱させる熱交換器を介し循環する冷凍サイクルにおいて、密閉型電動圧縮機の冷凍機油として、冷凍空調装置のフィルタ回路の一方を交流電源とアースに接続し、もう一方の端子間の交流電圧を測定し、この電圧を1kΩで除した漏れ電流値が1mA以下となる冷凍機油を用いることを特徴とする冷凍空調装置。
(5)前記(3)記載の密閉型電動圧縮機がスクロール式圧縮機であり、ポリオールエステル油の動粘度が40℃で40〜80mm2/sの粘度範囲であることを特徴とする空調装置。
(6)前記(3)記載の密閉型電動圧縮機がレシプロ式圧縮機であり、ポリオールエステル油の動粘度が40℃で5〜30mm2/sの粘度範囲であることを特徴とする冷蔵庫。
(7)前記(3)記載の冷凍空調装置に用いる圧縮機内の有機絶縁材料が、物理的及び化学的に劣化を受けない材料であることを特徴とする冷凍空調装置。
(8)前記(3)記載の密閉型電動圧縮機の冷凍機油として、冷凍空調装置のフィルタ回路の一方を交流電源とアースに接続し、もう一方の端子間の交流電圧を測定し、この電圧を1kΩで除した漏れ電流値が1mA以下となる冷凍機油を用いることを特徴とする冷凍空調装置。
(9)2,3,3,3−テトラフルオロプロペン単独もしくは該冷媒とジフルオロメタンとの混合冷媒を吸入圧縮する密閉型電動圧縮機と、前記圧縮機から吐出された冷媒を放熱する熱交換器と、前記熱交換器から流出する冷媒を減圧する減圧器と、前記減圧器にて減圧された冷媒を吸熱させる熱交換器を介し循環する冷凍サイクルにおいて、密閉型電動圧縮機の冷凍機油として、冷凍空調装置のフィルタ回路の一方を交流電源とアースに接続し、もう一方の端子間の交流電圧を測定し、この電圧を1kΩで除した漏れ電流値が1mA以下となる冷凍機油を用いることを特徴とする冷凍空調装置。
本発明により、漏れ電流を容易に低減でき、圧縮機の長期信頼性,油戻り特性を確保しつつ、かつ省エネルギー化,高効率化が可能な環境に配慮した冷凍空調装置を提供することができる。
以下、本発明を実施例により詳細に説明する。本実施例では2,3,3,3−テトラフルオロプロペン冷媒単独もしくは該冷媒とジフルオロメタンとの混合冷媒を用いたルームエアコンに関して記載するが、これに限定されるものではなく、2,3,3,3−テトラフルオロプロペン冷媒単独もしくは該冷媒とジフルオロメタンとの混合冷媒を用いた電動カーエアコン,パッケージエアコン,業務用の冷蔵庫等にも適用される。
本発明の冷凍空調装置の冷媒は2,3,3,3−テトラフルオロプロペン単独もしくは該冷媒とジフルオロメタンとの混合冷媒である。電動カーエアコンや業務用の冷蔵庫といったHFC134a代替えには2,3,3,3−テトラフルオロプロペン冷媒単独が好ましく、ルームエアコン,パッケージエアコンといった空調機器には冷媒流量を確保するためジフルオロメタンとの混合冷媒が良い。ジフルオロメタンの混合比率はGWP<150が好ましく、気候変動に関する政府間パネル(IPCC)の第4次レポートの100年後のGWPで計算するとジフルオロメタンの混合量は23重量%以下であれば150以下を満足できる。但し、非共沸であるため熱交換効率の低下や冷媒組成の変動、更には熱交換器での温度勾配などが起こる問題がある。
本発明のように、2,3,3,3−テトラフルオロプロペン単独もしくは該冷媒とジフルオロメタンとの混合冷媒を吸入圧縮する密閉型電動圧縮機と、前記圧縮機から吐出された冷媒を放熱する熱交換器と、前記熱交換器から流出する冷媒を減圧する減圧器と、前記減圧器にて減圧された冷媒を吸熱させる熱交換器を介し循環する冷凍サイクルにおいて、密閉型電動圧縮機に該冷媒との任意の濃度における二層分離温度が−40から80℃の範囲で起こらず、電気絶縁性が優れる冷凍機油としては、ポリビニルエーテル油やポリオールエステル油が挙げられる。ポリオールエステル油としては、ヘキサン二酸(アジピン酸)などのジカルボン酸を用いた二価脂肪酸コンプレックスエステル油や更に好ましくは多価アルコールと1価の脂肪酸とから合成され、熱安定性に優れるヒンダードタイプが良い。例えば、多価アルコールとしては、ネオペンチルグリコール,トリメチロールプロパン,ペンタエリスリトールがある。1価の脂肪酸としては、ペンタン酸,ヘキサン酸,ヘプタン酸,オクタン酸,2−メチルブタン酸,2−メチルペンタン酸,2−メチルヘキサン酸,2−エチルヘキサン酸,イソオクタン酸、3,5,5−トリメチルヘキサン酸等があり、これら単独又は2種類以上の混合脂肪酸を用いる。特に、冷凍機油の基油として、分子中にエステル結合を少なくとも2ケ保有する下記の一般式(1)乃至(4)で示される脂肪酸のエステル油の群から選ばれる少なくとも1種が好ましい。
但し、R:炭素数5〜12のアルキル基
本発明のルームエアコン,パッケージエアコンなどの空調機器に用いる冷凍機油の粘度グレードは圧縮機の種類により異なるが、スクロール式冷媒圧縮機では40℃における粘度が40〜80mm2/sの範囲が好ましい。また、業務用の冷蔵庫などに用いるレシプロ式圧縮機では、5〜30mm2/sの範囲が良い。
本発明のルームエアコン,パッケージエアコンなどの空調機器に用いる冷凍機油の粘度グレードは圧縮機の種類により異なるが、スクロール式冷媒圧縮機では40℃における粘度が40〜80mm2/sの範囲が好ましい。また、業務用の冷蔵庫などに用いるレシプロ式圧縮機では、5〜30mm2/sの範囲が良い。
電気絶縁の耐熱クラスは電気絶JEC−6147(電気学会電気規格調査標準規格)で規定されており、冷凍空調機用圧縮機に採用されている絶縁材料も前記規格の耐熱種により選定される。しかし、冷凍空調機器用の有機絶縁材料の場合、冷媒雰囲気中という特殊な環境で使用されるため、温度以外にも圧力による変形・変性を抑制すること、更には冷媒や冷凍機油といった有極性化合物にも接触するため耐溶剤性,耐抽出性,熱的・化学的・機械的安定性,耐冷媒性(クレージング(皮膜にストレスを与えた後、冷媒に浸漬すると発生する微細な蛇腹状クラック)、ブリスタ(皮膜に吸収された冷媒が、温度上昇によって引き起こされる皮膜の気泡))等も考慮しなくてはいけない。このため高い耐熱クラス(E種120℃以上)の絶縁材料を使用する必要がある。圧縮機内で最も多く使用される絶縁材料はPET(ポリエチレンテレフタレート)である。用途としては、分布巻モータの鉄心とのコイル絶縁にフィルム材が用いられ、コイルの縛り糸、モータの口出し線の被覆材に繊維状のPETが使用されている。これ以外の絶縁フィルムとしては、PPS(ポリフェニレンサルファイド),PEN(ポリエチレンナフタレート),PEEK(ポリエーテルエーテルケトン),PI(ポリイミド),PA(ポリアミド)などが挙げられる。また、コイルの主絶縁被覆材料には、THEIC変性ポリエステル,ポリアミド,ポリアミドイミド,ポリエステルイミド,ポリエステルアミドイミド等が使用され、ポリエステルイミド−アミドイミドのダブルコートを施した二重被覆銅線が好ましく使用される。
本発明では前記した冷凍機油に潤滑性向上剤,酸化防止剤,酸捕捉剤,消泡剤,金属不活性剤等を添加しても全く問題はない。特にポリオールエステル油は、水分共存下で加水分解に起因する劣化が生じるため、酸化防止剤,酸捕捉剤の配合は必須である。酸化防止剤としては、フェノール系であるDBPC(2,6−ジ−t−ブチル−p−クレゾール)が好ましい。酸捕捉剤としては、一般にエポキシ環を有する化合物として脂肪族のエポキシ化合物が使用される。特にカルボジイミド系化合物は脂肪酸との反応性が極めて高く、脂肪酸から解離した水素イオンを捕捉することからポリオールエステル油の加水分解反応が抑制される効果が非常に大きい。カルボジイミド系化合物としてはビス(2,6−イソプロピルフェニル)カルボジイミドが挙げられる。酸捕捉剤の配合量は冷凍機油に対して0.05〜1.0重量%以下とすることが好ましい。
本実施例で用いた冷暖房兼用のルームエアコンの概略を図1に示す。室内を冷房する場合、圧縮機1の吐出パイプより断熱的に圧縮された高温高圧の冷媒ガスは四方弁2を通り室外熱交換器3(凝縮手段として使用される)で冷却され、高圧の液冷媒となる。この冷媒は膨張手段4(例えば、キャピラリーチューブや温度式膨張弁など)で膨張され、僅かにガスを含む低温低圧液となって室内熱交換器5(蒸発手段として使用される)に至り、室内の空気から熱を得て低温ガスの状態で再び四方弁2を通って圧縮機1に至る。室内を暖房する場合は、四方弁2によって冷媒の流れは逆方向に変えられ、逆作用となる。
圧縮機としてはスクロール式圧縮機を用いた。その概略構造を図2に示す。圧縮機は固定スクロール部材6の端板7に直立する渦巻状ラップ8と、この固定スクロール部材6と実質的に同一形状の端板9,ラップ10からなる旋回スクロール部材とをお互いにラップ8とラップ10とを向い合わせにして噛み合わせて圧縮機構部を形成し、旋回スクロール部材をクランクシャフト11によって旋回運動させる。固定スクロール部材6及び旋回スクロール部材によって形成される圧縮室12(12a,12b……)のうち、最も外側に位置している圧縮室は、旋回運動にともなって容積が次第に縮小しながら、両スクロール部材の中心に向かって移動していく。両圧縮室12a,12bが両スクロール部材の中心近傍に達したとき、両圧縮室12a,12bが吐出口13と連通して、両圧縮室内の圧縮ガスが吐出パイプ16から圧縮機外に吐出される。
本圧縮機では、圧力容器15内に電動モータ17が内蔵されており、圧縮機は一定速あるいは図示しないインバータによって制御された電圧に応じた回転速度でクランクシャフト11が回転し、圧縮動作を行う。また、前記電動モータ17の下部に油溜め部が設けられており、この油は圧力差によってクランクシャフトに設けられた油孔18を通って、旋回スクロール部材とクランクシャフト11との摺動部、滑り軸受け19等の潤滑に供される。
〔実施例1〜3〕及び〔比較例1〜5〕
表1に示す冷凍機油を用い相溶性(溶解性)試験を行った。
冷媒:HFO1234yf(2,3,3,3−テトラフルオロプロペン)
冷凍機油:
(A)ヒンダードタイプポリオールエステル油(POE) 40℃粘度61.8mm2/s
(ペンタエリスリトール系の分岐鎖混合脂肪酸エステル)
(B)ヒンダードタイプポリオールエステル油(POE) 40℃粘度101mm2/s
(ペンタエリスリトール系の分岐鎖混合脂肪酸エステルとジペンタエリスリトー ル系の分岐鎖混合脂肪酸エステルとの混合エステル油)
(C)ポリビニルエーテル油(PVE) 40℃粘度65mm2/s
(D)ポリアルキレングリコール油(PAG) 40℃粘度71.8mm2/s
(ポリプロピレングリコールジメチルエーテル)
(E)ポリアルキレングリコール油(PAG) 40℃粘度52.7mm2/s
(ポリエチレングリコール/ポリプロピレングリコールモノメチルエーテルの共 重合タイプ)
(F)ナフテン系鉱油(MO) 40℃粘度55.1mm2/s
(G)ポリαアレフィン油(PAO) 40℃粘度69.4mm2/s
(H)ハード型アルキルベンゼン油(AB) 40℃粘度60.1mm2/s
(I)パラフィン系鉱油 40℃粘度61.16mm2/s
HFO1234yfと上記冷凍機油との相溶性評価はJIS K 2211に準じて測定した。耐圧ガラス容器に20重量%の油濃度において冷媒を封入し、温度を変化させた状態での内容物の観察を行った。内容物が白濁していれば分離,透明であれば溶解と判定した。
表1に示す冷凍機油を用い相溶性(溶解性)試験を行った。
冷媒:HFO1234yf(2,3,3,3−テトラフルオロプロペン)
冷凍機油:
(A)ヒンダードタイプポリオールエステル油(POE) 40℃粘度61.8mm2/s
(ペンタエリスリトール系の分岐鎖混合脂肪酸エステル)
(B)ヒンダードタイプポリオールエステル油(POE) 40℃粘度101mm2/s
(ペンタエリスリトール系の分岐鎖混合脂肪酸エステルとジペンタエリスリトー ル系の分岐鎖混合脂肪酸エステルとの混合エステル油)
(C)ポリビニルエーテル油(PVE) 40℃粘度65mm2/s
(D)ポリアルキレングリコール油(PAG) 40℃粘度71.8mm2/s
(ポリプロピレングリコールジメチルエーテル)
(E)ポリアルキレングリコール油(PAG) 40℃粘度52.7mm2/s
(ポリエチレングリコール/ポリプロピレングリコールモノメチルエーテルの共 重合タイプ)
(F)ナフテン系鉱油(MO) 40℃粘度55.1mm2/s
(G)ポリαアレフィン油(PAO) 40℃粘度69.4mm2/s
(H)ハード型アルキルベンゼン油(AB) 40℃粘度60.1mm2/s
(I)パラフィン系鉱油 40℃粘度61.16mm2/s
HFO1234yfと上記冷凍機油との相溶性評価はJIS K 2211に準じて測定した。耐圧ガラス容器に20重量%の油濃度において冷媒を封入し、温度を変化させた状態での内容物の観察を行った。内容物が白濁していれば分離,透明であれば溶解と判定した。
相溶性評価結果を表2に示す表2中の○は溶解、×が分離を示す。冷媒と冷凍機油との相溶性は、圧縮機への油戻り量を確保するための重要な特性である。冷凍空調サイクルでは冷媒と同様に冷凍機油も循環することが必要である。相溶性が劣ると圧縮機から機械的要素により吐出された冷凍機油が循環せず特に低温部で分離した油が滞留するため圧縮機の油量が少なくなり、摺動部の潤滑油支障をきたす。このためサイクル中での運転条件温度範囲で冷媒と冷凍機油とが溶解していることが必須である。表2で示すようにHFO1234yfと全温度範囲で相溶する冷凍機油は実施例1〜3で示すポリオールエステル油とポリビニルエーテル油である。比較例1〜5で示した油種は使用範囲温度で分離が見られるので上記の懸念が生じる。
〔実施例4,5〕及び〔比較例6〕
実施例4,5,比較例6では図1に示すルームエアコンを用い、室内機を恒温室(35℃、湿度75%)に設置して2160時間運転する実機試験を行った。冷媒,冷凍機油の組み合わせとしては実施例4,5では(A)ポリオールエステル油、比較例5(D)ポリアルキレングリコール油を取り上げ、水分を100ppm以下にした油を圧縮機に封入した。実施例4と比較例6では、酸捕捉剤としてエポキシ環を有する化合物を、実施例5ではビス(2,6−イソプロピルフェニル)カルボジイミドをそれぞれ冷凍機油に対して0.5重量%配合した。なお、モータの鉄心とのコイル絶縁には耐熱PETフィルム(B種130℃)を、コイル主絶縁には、ポリエステルイミド−アミドイミドのダブルコートを施した二重被覆銅線を用いた。ルームエアコンの評価にはスクロール式圧縮機の摩耗状態に着眼し、試験前後でのフレーム〜シャフト間の摩耗による隙間増加量を測定した。フレーム〜シャフト間の隙間増加量が増えるほど摩耗量が大きいことを示しており、一般に隙間増加量が増えるに伴い振動や騒音が大きくなる。また、試験油の全酸価を測定した。更に、漏れ電流を測定するため、フィルタ回路の一方を交流電源とアースに接続し、もう一方の端子間の交流電圧を測定し、この電圧を1kΩで除した値を漏れ電流として測定した。エアコン起動時に漏れ電流が多くなることから運転開始1分間で最も高い電流値を実施例に記載した。本試験の目標値は試験後の圧縮機内残油量が減少なきこと、フレーム〜シャフト間の摩耗による隙間増加量が10μm以下、冷凍機油の全酸価が0.1mgKOH/g以下であり、漏れ電流値が1.0mA以下であることの全項目を満たすことを目標とした。
実施例4,5,比較例6では図1に示すルームエアコンを用い、室内機を恒温室(35℃、湿度75%)に設置して2160時間運転する実機試験を行った。冷媒,冷凍機油の組み合わせとしては実施例4,5では(A)ポリオールエステル油、比較例5(D)ポリアルキレングリコール油を取り上げ、水分を100ppm以下にした油を圧縮機に封入した。実施例4と比較例6では、酸捕捉剤としてエポキシ環を有する化合物を、実施例5ではビス(2,6−イソプロピルフェニル)カルボジイミドをそれぞれ冷凍機油に対して0.5重量%配合した。なお、モータの鉄心とのコイル絶縁には耐熱PETフィルム(B種130℃)を、コイル主絶縁には、ポリエステルイミド−アミドイミドのダブルコートを施した二重被覆銅線を用いた。ルームエアコンの評価にはスクロール式圧縮機の摩耗状態に着眼し、試験前後でのフレーム〜シャフト間の摩耗による隙間増加量を測定した。フレーム〜シャフト間の隙間増加量が増えるほど摩耗量が大きいことを示しており、一般に隙間増加量が増えるに伴い振動や騒音が大きくなる。また、試験油の全酸価を測定した。更に、漏れ電流を測定するため、フィルタ回路の一方を交流電源とアースに接続し、もう一方の端子間の交流電圧を測定し、この電圧を1kΩで除した値を漏れ電流として測定した。エアコン起動時に漏れ電流が多くなることから運転開始1分間で最も高い電流値を実施例に記載した。本試験の目標値は試験後の圧縮機内残油量が減少なきこと、フレーム〜シャフト間の摩耗による隙間増加量が10μm以下、冷凍機油の全酸価が0.1mgKOH/g以下であり、漏れ電流値が1.0mA以下であることの全項目を満たすことを目標とした。
実施例4,5及び比較例6の結果を表3に示す。表3から明らかなように、実施例4,5で示した本発明のルームエアコンは、比較例6と比べてフレーム〜シャフト間の隙間増加量が大幅に低減でき、摩耗を抑制することからルームエアコンにおいて高い信頼性が得られる。また、試験後の全酸価の増加も少なく、特に実施例5で示すように冷凍機油に酸捕捉剤としてビス(2,6−イソプロピルフェニル)カルボジイミドを配合したものでは、ポリオールエステル油の加水分解を大幅に抑制するため全酸価が低いためより好ましい。比較例6では、相溶性が劣ることから試験後の圧縮機内に存在する油量が少なくなっており、フレーム〜シャフト間の隙間増加量も大きくなっているため信頼性が問題である。さらにポリアルキレングリコール油は誘電率が約5.0と非常に大きいため漏洩電流値が1.0mAを大幅に超えてしまっているため対策が必要である。
試験後の絶縁材料の評価項目について説明する。絶縁フィルムについては、試験前後での引張強度保持率並びに伸び保持率を測定した。保持率50%以上を目標とした。また、エナメル銅線に関しては外観変化や鉛筆硬度変化,巻付特性,絶縁破壊電圧(JIS C 3003)を測定し、耐冷媒性ではクレージングとブリスタを観察した。これらの項目については、試験前後で変化がないことを目標とした。実施例4,5の絶縁フィルムの引張強度保持率は80%、伸び保持率が60%であり問題がないことを確認した。また、エナメル銅線については、鉛筆硬度が5H、巻付特性が自己径に問題はなく良好であった。絶縁破壊電圧も初期値とほぼ同等の14.8kV、クレージングやブリスタも発生していないことを外観から確認でき、目標を満足できた。これに対して、比較例6で示した給湯機の絶縁フィルムは、引張強度保持率と伸び保持率が50%以下であり、目標値を満足していない。さらにPETのオリゴマー成分が多量に油側へ溶出しており、モータの勘合部に入り込み起動不良を引き起こす危険がある。また、エナメル銅線にもおいても、鉛筆硬度の低下がみられ、耐冷媒性で問題になるクレージングやブリスタが観察から発生していることを確認した。
以上の実施例の結果から、本発明の冷凍空調装置は圧縮機の摩耗を抑制し、漏れ電流を大幅に抑制可能であり、長期絶縁信頼性が十分に確保できる冷凍空調装置が得られる。図示はしていないが、冷媒にHFO1234yfとHFC32(20重量%)の混合冷媒を同様に実機試験を行ったが、実施例4,5とほぼ同様な結果が得られ、混合冷媒でも問題がないことを確認した。本実施例では高圧チャンバ方式のスクロール式圧縮機を用いたが、この他、レシプロ式圧縮機,2段圧縮ロータリー式圧縮機やローラとベーンが一体化されたスイング式圧縮機でも同様な効果が得られる。
ルームエアコン以外にもパッケージエアコン,電動カーエアコン,業務用の冷蔵庫などにも適用可能である。
1 圧縮機
2 四方弁
3 室外熱交換器
4 膨張手段
5 室内熱交換器
6 固定スクロール部材
7,9 端板
8 渦巻状ラップ
10 ラップ
11 クランクシャフト
12 圧縮室
13 吐出口
14 フレーム
15 圧縮容器
16 吐出パイプ
17 電動モータ
18 油孔
19 滑り軸受け
2 四方弁
3 室外熱交換器
4 膨張手段
5 室内熱交換器
6 固定スクロール部材
7,9 端板
8 渦巻状ラップ
10 ラップ
11 クランクシャフト
12 圧縮室
13 吐出口
14 フレーム
15 圧縮容器
16 吐出パイプ
17 電動モータ
18 油孔
19 滑り軸受け
Claims (9)
- 2,3,3,3−テトラフルオロプロペン冷媒単独もしくは該冷媒とジフルオロメタンとの混合冷媒を吸入圧縮する密閉型電動圧縮機と、前記圧縮機から吐出された冷媒を放熱する熱交換器と、前記熱交換器から流出する冷媒を減圧する減圧器と、前記減圧器にて減圧された冷媒を吸熱させる熱交換器を介し循環する冷凍サイクルにおいて、密閉型電動圧縮機の冷凍機油として、該冷媒との二層分離が−40から80℃の範囲で起こらない冷凍機油を用いたことを特徴とする冷凍空調装置。
- 請求項3記載の冷凍空調装置において、該冷凍機油に酸捕捉剤としてエポキシ環を有する化合物もしくはビス(2,6−イソプロピルフェニル)カルボジイミドを1.0重量%以下配合したことを特徴とする冷凍空調装置。
- 請求項3記載の密閉型電動圧縮機がスクロール式圧縮機であり、ポリオールエステル油の動粘度が40℃で40〜80mm2/sの粘度範囲であることを特徴とする空調装置。
- 請求項3記載の密閉型電動圧縮機がレシプロ式圧縮機であり、ポリオールエステル油の動粘度が40℃で5〜30mm2/sの粘度範囲であることを特徴とする冷蔵庫。
- 請求項3記載の冷凍空調装置に用いる圧縮機内の有機絶縁材料が、物理的及び化学的に劣化を受けない材料であることを特徴とする冷凍空調装置。
- 請求項1記載の冷凍空調装置において、密閉型電動圧縮機の前記冷凍機油として、冷凍空調装置のフィルタ回路の一方を交流電源とアースに接続し、もう一方の端子間の交流電圧を測定し、この電圧を1kΩで除した漏れ電流値が1mA以下となる冷凍機油を用いたことを特徴とする冷凍空調装置。
- 2,3,3,3−テトラフルオロプロペン単独もしくは該冷媒とジフルオロメタンとの混合冷媒を吸入圧縮する密閉型電動圧縮機と、前記圧縮機から吐出された冷媒を放熱する熱交換器と、前記熱交換器から流出する冷媒を減圧する減圧器と、前記減圧器にて減圧された冷媒を吸熱させる熱交換器を介し循環する冷凍サイクルにおいて、密閉型電動圧縮機の冷凍機油として、冷凍空調装置のフィルタ回路の一方を交流電源とアースに接続し、もう一方の端子間の交流電圧を測定し、この電圧を1kΩで除した漏れ電流値が1mA以下となる冷凍機油を用いることを特徴とする冷凍空調装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009199191A JP2011052032A (ja) | 2009-08-31 | 2009-08-31 | 2,3,3,3−テトラフルオロプロペンを用いた冷凍空調装置 |
CN2010102542923A CN102003840A (zh) | 2009-08-31 | 2010-08-12 | 使用2,3,3,3-四氟丙烯的冷冻空调装置 |
KR1020100080280A KR20110023764A (ko) | 2009-08-31 | 2010-08-19 | 2,3,3,3-테트라플루오로프로펜을 이용한 냉동 공조 장치 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009199191A JP2011052032A (ja) | 2009-08-31 | 2009-08-31 | 2,3,3,3−テトラフルオロプロペンを用いた冷凍空調装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2011052032A true JP2011052032A (ja) | 2011-03-17 |
Family
ID=43811412
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009199191A Pending JP2011052032A (ja) | 2009-08-31 | 2009-08-31 | 2,3,3,3−テトラフルオロプロペンを用いた冷凍空調装置 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2011052032A (ja) |
KR (1) | KR20110023764A (ja) |
CN (1) | CN102003840A (ja) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011094039A (ja) * | 2009-10-30 | 2011-05-12 | Hitachi Appliances Inc | 冷媒圧縮機,冷凍サイクル装置 |
WO2013051271A1 (ja) * | 2011-10-06 | 2013-04-11 | パナソニック株式会社 | 冷凍装置 |
WO2014136207A1 (ja) * | 2013-03-05 | 2014-09-12 | 三菱電機株式会社 | 圧縮機 |
JP2015017730A (ja) * | 2013-07-10 | 2015-01-29 | 日立アプライアンス株式会社 | 空気調和機 |
JP2015510002A (ja) * | 2012-01-26 | 2015-04-02 | アルケマ フランス | 潤滑油との混和性が改善された熱伝達組成物 |
JP2015140994A (ja) * | 2014-01-30 | 2015-08-03 | 日立アプライアンス株式会社 | 空気調和機及び冷凍機油 |
WO2017145278A1 (ja) * | 2016-02-24 | 2017-08-31 | 三菱電機株式会社 | 冷凍装置 |
JP2019534936A (ja) * | 2016-10-10 | 2019-12-05 | アルケマ フランス | テトラフルオロプロペンをベースにした組成物の使用 |
WO2022164764A1 (en) * | 2021-01-26 | 2022-08-04 | The Chemours Company Fc, Llc | Vapor compression systems containing lubricant-refrigerant compositions |
WO2024106516A1 (ja) * | 2022-11-18 | 2024-05-23 | Eneos株式会社 | 作動流体組成物及び冷凍機 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013038706A1 (ja) * | 2011-09-16 | 2013-03-21 | パナソニック株式会社 | 冷凍装置 |
KR101898436B1 (ko) | 2011-10-26 | 2018-10-29 | 제이엑스티지 에네루기 가부시키가이샤 | 냉동기용 작동 유체 조성물 및 냉동기유 |
CN104145009B (zh) | 2012-03-27 | 2018-01-30 | 吉坤日矿日石能源株式会社 | 冷冻机用工作流体组合物 |
JP6479177B2 (ja) | 2015-05-27 | 2019-03-06 | 三菱電機株式会社 | 圧縮機及び冷凍サイクル装置 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008105366A1 (ja) * | 2007-02-27 | 2008-09-04 | Nippon Oil Corporation | 冷凍機油および冷凍機用作動流体組成物 |
WO2008105256A1 (ja) * | 2007-02-27 | 2008-09-04 | Nippon Oil Corporation | 冷凍機油および冷凍機用作動流体組成物 |
WO2008130026A1 (ja) * | 2007-04-18 | 2008-10-30 | Idemitsu Kosan Co., Ltd. | 冷凍機用潤滑油組成物 |
WO2010029704A1 (ja) * | 2008-09-09 | 2010-03-18 | 株式会社ジャパンエナジー | 冷媒2,3,3,3‐テトラフルオロ‐1‐プロペン用冷凍機油 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3219519B2 (ja) * | 1993-02-12 | 2001-10-15 | 三洋電機株式会社 | 冷凍装置 |
EP0726930B1 (en) * | 1993-11-06 | 1999-01-20 | Castrol Limited | Lubrication of refrigeration compressors |
SG75080A1 (en) * | 1994-11-29 | 2000-09-19 | Sanyo Electric Co | Refrigerating apparatus and lubricating oil composition |
JP4092780B2 (ja) * | 1997-10-17 | 2008-05-28 | ダイキン工業株式会社 | 冷凍・空調装置 |
JP2001099502A (ja) * | 1999-09-29 | 2001-04-13 | Sanyo Electric Co Ltd | 冷凍装置 |
-
2009
- 2009-08-31 JP JP2009199191A patent/JP2011052032A/ja active Pending
-
2010
- 2010-08-12 CN CN2010102542923A patent/CN102003840A/zh active Pending
- 2010-08-19 KR KR1020100080280A patent/KR20110023764A/ko not_active Ceased
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008105366A1 (ja) * | 2007-02-27 | 2008-09-04 | Nippon Oil Corporation | 冷凍機油および冷凍機用作動流体組成物 |
WO2008105256A1 (ja) * | 2007-02-27 | 2008-09-04 | Nippon Oil Corporation | 冷凍機油および冷凍機用作動流体組成物 |
JP2009074017A (ja) * | 2007-02-27 | 2009-04-09 | Nippon Oil Corp | 冷凍機油および冷凍機用作動流体組成物 |
JP2009074018A (ja) * | 2007-02-27 | 2009-04-09 | Nippon Oil Corp | 冷凍機油および冷凍機用作動流体組成物 |
WO2008130026A1 (ja) * | 2007-04-18 | 2008-10-30 | Idemitsu Kosan Co., Ltd. | 冷凍機用潤滑油組成物 |
WO2010029704A1 (ja) * | 2008-09-09 | 2010-03-18 | 株式会社ジャパンエナジー | 冷媒2,3,3,3‐テトラフルオロ‐1‐プロペン用冷凍機油 |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011094039A (ja) * | 2009-10-30 | 2011-05-12 | Hitachi Appliances Inc | 冷媒圧縮機,冷凍サイクル装置 |
WO2013051271A1 (ja) * | 2011-10-06 | 2013-04-11 | パナソニック株式会社 | 冷凍装置 |
JP2015510002A (ja) * | 2012-01-26 | 2015-04-02 | アルケマ フランス | 潤滑油との混和性が改善された熱伝達組成物 |
JP5911637B2 (ja) * | 2013-03-05 | 2016-04-27 | 三菱電機株式会社 | 圧縮機 |
WO2014136207A1 (ja) * | 2013-03-05 | 2014-09-12 | 三菱電機株式会社 | 圧縮機 |
JP2015017730A (ja) * | 2013-07-10 | 2015-01-29 | 日立アプライアンス株式会社 | 空気調和機 |
JP2015140994A (ja) * | 2014-01-30 | 2015-08-03 | 日立アプライアンス株式会社 | 空気調和機及び冷凍機油 |
WO2017145278A1 (ja) * | 2016-02-24 | 2017-08-31 | 三菱電機株式会社 | 冷凍装置 |
KR20180099850A (ko) * | 2016-02-24 | 2018-09-05 | 미쓰비시덴키 가부시키가이샤 | 냉동 장치 |
JPWO2017145278A1 (ja) * | 2016-02-24 | 2018-10-11 | 三菱電機株式会社 | 冷凍装置 |
KR102103225B1 (ko) * | 2016-02-24 | 2020-04-22 | 미쓰비시덴키 가부시키가이샤 | 냉동 장치 |
JP2019534936A (ja) * | 2016-10-10 | 2019-12-05 | アルケマ フランス | テトラフルオロプロペンをベースにした組成物の使用 |
WO2022164764A1 (en) * | 2021-01-26 | 2022-08-04 | The Chemours Company Fc, Llc | Vapor compression systems containing lubricant-refrigerant compositions |
WO2024106516A1 (ja) * | 2022-11-18 | 2024-05-23 | Eneos株式会社 | 作動流体組成物及び冷凍機 |
Also Published As
Publication number | Publication date |
---|---|
CN102003840A (zh) | 2011-04-06 |
KR20110023764A (ko) | 2011-03-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2011052032A (ja) | 2,3,3,3−テトラフルオロプロペンを用いた冷凍空調装置 | |
JP5466772B2 (ja) | 冷凍空調用圧縮機及び冷凍空調装置 | |
KR101280701B1 (ko) | 냉동 공조용 압축기 및 냉동 공조 장치 | |
JP6545338B1 (ja) | 冷凍サイクル装置 | |
CN103733003B (zh) | 制冷空调用压缩机和制冷空调装置 | |
JP6545337B1 (ja) | 冷凍サイクル装置 | |
JP6271102B1 (ja) | 冷凍サイクル装置 | |
WO2013146683A1 (ja) | 冷凍機用作動流体組成物 | |
JP6450896B1 (ja) | 冷媒組成物及びこれを用いた冷凍サイクル装置 | |
CN104379713B (zh) | 压缩机及空调装置 | |
JP5248960B2 (ja) | 冷凍機油および冷凍機用作動流体ならびに冷蔵庫 | |
JP2009222351A (ja) | 冷凍装置 | |
JP2015014395A (ja) | 空気調和機 | |
JP2016023902A (ja) | 空気調和機 | |
JP2010031134A (ja) | 冷媒圧縮機 | |
WO2022024342A1 (ja) | 冷凍サイクル装置および圧縮機 | |
CN117365902A (zh) | 压缩机和制冷装置 | |
JP5149714B2 (ja) | 冷凍機油組成物 | |
JP2015140994A (ja) | 空気調和機及び冷凍機油 | |
CN1546594A (zh) | 含有1,1,2,2-四氟乙烷的混合制冷剂 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110805 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110805 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120117 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20120522 |