[go: up one dir, main page]

JP2011047828A - Creation method of calibration curve of light scattering type particle size measuring device - Google Patents

Creation method of calibration curve of light scattering type particle size measuring device Download PDF

Info

Publication number
JP2011047828A
JP2011047828A JP2009197293A JP2009197293A JP2011047828A JP 2011047828 A JP2011047828 A JP 2011047828A JP 2009197293 A JP2009197293 A JP 2009197293A JP 2009197293 A JP2009197293 A JP 2009197293A JP 2011047828 A JP2011047828 A JP 2011047828A
Authority
JP
Japan
Prior art keywords
particle size
calibration curve
particle diameter
particles
particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009197293A
Other languages
Japanese (ja)
Inventor
Eiji Kamiyama
栄治 神山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Corp
Original Assignee
Sumco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Corp filed Critical Sumco Corp
Priority to JP2009197293A priority Critical patent/JP2011047828A/en
Publication of JP2011047828A publication Critical patent/JP2011047828A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a creation method of a calibration curve enabling a light scattering type particle size measuring device to measure simply the accurate particle size even in the case of particles having a small particle size. <P>SOLUTION: In this creation method of the calibration curve of the light scattering type particle size measuring device, each scattering intensity of particles having two kinds of known particle sizes D<SB>1</SB>, D<SB>2</SB>(D<SB>1</SB><D<SB>2</SB>≤105 nm) is measured respectively by the light scattering type particle size measuring device, and α, β and γ are determined, which satisfy expressions: I<SB>1</SB>=α×(D<SB>1</SB>)<SP>γ</SP>, I<SB>2</SB>=α×(D<SB>2</SB>)<SP>γ</SP>, and I<SB>1</SB>=β×(D<SB>1</SB>)<SP>6</SP>, by using the scattering intensity I<SB>1</SB>of the particle having the particle size D<SB>1</SB>, and the scattering intensity I<SB>2</SB>of the particle having the particle size D<SB>2</SB>, and the calibration curve is created, wherein the particle size D and the scattering intensity I satisfy the expression: D=ä(I/α)<SP>-γ</SP>+(I/β)<SP>-6</SP>}/2 in a domain of the particle size D<D<SB>1</SB>. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、光散乱方式の粒子径測定装置(以下、「光散乱式粒子径測定装置」という)の校正曲線を作成する方法に関し、特に、光散乱式粒子径測定装置で、例えば粒子径が40nm未満の微粒子の粒子径を測定する際に好適に使用し得る校正曲線の作成方法に関するものである。   The present invention relates to a method for creating a calibration curve of a light scattering type particle size measuring device (hereinafter referred to as “light scattering type particle size measuring device”), and in particular, a light scattering type particle size measuring device, for example, having a particle size of The present invention relates to a method for creating a calibration curve that can be suitably used when measuring the particle diameter of fine particles of less than 40 nm.

従来、粒子にレーザー光を照射した際に発生する散乱光の強度(散乱強度)を測定・解析することで粒子の粒子径を測定する装置として、光散乱式粒子径測定装置が知られている。   Conventionally, a light-scattering particle size measuring device is known as a device for measuring the particle size of particles by measuring and analyzing the intensity (scattering intensity) of scattered light generated when the particles are irradiated with laser light. .

そして、光散乱式粒子径測定装置を用いた粒子径測定では、粒子径既知の標準粒子(ポリスチレンラテックス(PSL)粒子など)が存在する粒子径の範囲については、粒子径の異なる標準粒子を用いて、粒子径と散乱強度との関係を示す校正曲線(各標準粒子の散乱強度の実測値を結んで作成した校正曲線)を予め作成した上で、粒子径未知の試料の散乱強度を測定することで試料の粒子径を簡便に求めることが一般に行われている。   In the particle size measurement using the light scattering particle size measuring device, standard particles having different particle sizes are used for the range of particle sizes in which standard particles with known particle sizes (polystyrene latex (PSL) particles, etc.) are present. Then, a calibration curve (a calibration curve created by connecting the measured values of the scattering intensity of each standard particle) showing the relationship between the particle diameter and the scattering intensity is created in advance, and the scattering intensity of a sample with an unknown particle diameter is measured. Thus, it is generally performed to easily determine the particle diameter of a sample.

ここで、特に気体中・液体中に存在する自由粒子については、いわゆるレーリーリミット(粒子の粒子径が入射する光の波長に対して十分小さい極限領域)では散乱強度が粒子径の6乗に比例するが(例えば、非特許文献1参照)、粒子のサイズが入射する光の波長に対して無視できない(但し入射する光の波長よりは十分小さいサイズである)場合には、散乱強度の粒子径への依存性が6乗より弱くなる(小さくなる)ことが知られている。このため、粒子径が小さく、標準粒子が存在しない、現時点では工業的に粒子径の公差保証のトレーサビリティが十分でないとされている粒子径範囲(例えば、40nm未満の範囲)については、従来は粒子径の6乗に比例する校正曲線を活用して、粒子径未知の試料を測定した際の散乱強度の値から試料の粒子径を求めることが行われている(例えば、非特許文献2参照)。なお、基板上等の固体表面上に存在する粒子については、用いる入射光(レーザー等)の基板への入射角度や検出器の構成によっては、レーリーリミットにおいて散乱強度が粒子径の6乗以上の大きさで比例することもあるが、粒子径が入射光(レーザー光)の波長に対して無視できない範囲において散乱強度の粒子径への依存性が弱くなることは自由粒子の場合と同様である。   Here, especially for free particles present in gas and liquid, the scattering intensity is proportional to the sixth power of the particle diameter at the so-called Rayleigh limit (the limit region where the particle diameter of the particle is sufficiently small with respect to the wavelength of the incident light). However, if the particle size is not negligible with respect to the wavelength of the incident light (however, the size is sufficiently smaller than the wavelength of the incident light), the particle diameter of the scattering intensity is used. It is known that the dependence on becomes weaker (smaller) than the sixth power. For this reason, with respect to a particle size range (for example, a range of less than 40 nm) that has a small particle size, no standard particles, and that is currently traceable for ensuring the tolerance of particle size industrially (for example, a range of less than 40 nm) Using a calibration curve proportional to the sixth power of the diameter, the particle diameter of the sample is obtained from the value of the scattering intensity when the sample having an unknown particle diameter is measured (for example, see Non-Patent Document 2). . For particles existing on a solid surface such as a substrate, depending on the incident angle of incident light (laser, etc.) used to the substrate and the configuration of the detector, the scattering intensity at the Rayleigh limit is not less than the sixth power of the particle diameter. Although it may be proportional to the size, the dependence of the scattering intensity on the particle diameter is weak in the range where the particle diameter is not negligible with respect to the wavelength of the incident light (laser light). .

ストコウスキー(S.Stokowski)、ベーズ−イラバーニ(Vaez-Iravani)、「ULSI技術の位置付けおよび計測学(Characterization and Metrology for ULSI Technology)」、第405頁、1998年S. Stokowski, Vaez-Iravani, “Characterization and Metrology for ULSI Technology”, page 405, 1998 セミコンダクターエクイップメントアンドマテリアルズインターナショナル(Semiconductor Equipment and Materials International)、「セミ草案文章4583(SEMI Draft Document 4583)」、第4頁、2008年5月14日Semiconductor Equipment and Materials International, “SEMI Draft Document 4583”, page 4, May 14, 2008

しかしながら、本発明者が検討を行ったところ、既知の標準粒子が存在する粒子径の範囲とレーリーリミットとの間にある粒子径の小さな粒子の散乱強度は、粒子径の6乗に比例する従来の校正曲線で算出した散乱強度と実際には一致せず、正確な粒子径を測定することができないという問題があることが明らかとなった。   However, as a result of investigation by the present inventor, the scattering intensity of a particle having a small particle diameter between the range of the particle diameter in which known standard particles exist and the Rayleigh limit is proportional to the sixth power of the particle diameter. It was revealed that there was a problem that the scattering intensity calculated by using the calibration curve in FIG.

本発明は、上記課題を有利に解決することを目的とするものであり、本発明の光散乱式粒子径測定装置の校正曲線の作成方法は、光散乱式粒子径測定装置で、二種類の既知の粒子径D、D(但し、D<D≦105nm)の粒子の散乱強度をそれぞれ測定し、粒子径Dの粒子の散乱強度Iと、粒子径Dの粒子の散乱強度Iとを用いて、下記式(I)〜(III):
=α×(Dγ ・・・(I)
=α×(Dγ ・・・(II)
=β×(D ・・・(III)
を満たすα、βおよびγを決定し、粒子径D<Dの領域について、粒子径Dと、散乱強度Iとが下記式(IV)
D={(I/α)+(I/β)-6}/2 ・・・(IV)
を満たす校正曲線を作成することを含むことを特徴とする。
An object of the present invention is to advantageously solve the above-described problems, and a method for creating a calibration curve for a light scattering particle size measuring device of the present invention is a light scattering particle size measuring device, which is divided into two types. known particle diameter D 1, D 2 (where, D 1 <D 2 ≦ 105nm ) was measured scattering intensity of the particles respectively, the scattering intensity I 1 of the particles having a particle diameter D 1, the particle diameter D 2 of the particles by using the scattering intensity I 2, the following formula (I) ~ (III):
I 1 = α × (D 1 ) γ (I)
I 2 = α × (D 2 ) γ (II)
I 1 = β × (D 1 ) 6 (III)
Α, β, and γ satisfying the above conditions are determined, and the particle diameter D and the scattering intensity I are expressed by the following formula (IV) in the region where the particle diameter D <D 1
D = {(I / α) −γ + (I / β) −6 } / 2 (IV)
Generating a calibration curve that satisfies:

ここで、本発明の光散乱式粒子径測定装置の校正曲線の作成方法は、前記粒子径Dが40〜50nmであり、前記粒子径Dが50〜105nmであることが好ましい。 Here, how to create a calibration curve of the light scattering particle diameter measurement device of the present invention, the particle diameter D 1 is 40 to 50 nm, it is preferable that the particle diameter D 2 is 50~105Nm.

更に、本発明の光散乱式粒子径測定装置の校正曲線の作成方法は、前記粒子径Dと前記粒子径Dとの差(D−D)が、20nm以下であることが好ましい。 Furthermore, in the method for creating a calibration curve of the light scattering particle size measuring apparatus of the present invention, the difference (D 2 −D 1 ) between the particle size D 1 and the particle size D 2 is preferably 20 nm or less. .

そして、本発明の光散乱式粒子径測定装置の校正曲線の作成方法は、前記粒子径Dが40nm未満であることが好ましい。特に粒子径40nm未満の範囲においては標準粒子のサイズ精度に問題があり、工業的に粒子径の公差保証のトレーサビリティが十分でないから、本発明の作成方法に従い作成した校正曲線を用いることが好ましいからである。   And as for the preparation method of the calibration curve of the light-scattering type particle diameter measuring apparatus of this invention, it is preferable that the said particle diameter D is less than 40 nm. In particular, when the particle diameter is less than 40 nm, there is a problem with the size accuracy of the standard particles, and since the traceability for guaranteeing the tolerance of the particle diameter is not sufficient industrially, it is preferable to use the calibration curve prepared according to the preparation method of the present invention. It is.

本発明によれば、粒子径が小さい、特に粒子径40nm未満の微粒子についても光散乱式粒子径測定装置で正確な粒子径を簡便に測定することを可能とする、光散乱式粒子径測定装置の校正曲線の作成方法を提供することができる。   According to the present invention, a light-scattering particle size measuring device that makes it possible to easily measure an accurate particle size with a light-scattering particle size measuring device even for fine particles having a small particle size, particularly less than 40 nm. A calibration curve generation method can be provided.

本発明に係る光散乱式粒子径測定装置の校正曲線の作成方法を説明するグラフである。It is a graph explaining the preparation method of the calibration curve of the light-scattering type particle diameter measuring device concerning the present invention.

以下、本発明の実施の形態を詳細に説明する。ここに、本発明の光散乱式粒子径測定装置の校正曲線の作成方法は、光散乱式粒子径測定装置で粒子径未知の試料の粒子径を測定する際に用いる校正曲線を作成するための方法である。なお、光散乱式粒子径測定装置には、粒子径と粒度分布の両方の測定を行う装置も含まれる。また、光散乱式粒子径測定装置は、特に限定されることなく、気体中、液体中、固体表面上(例えば、シリコンウェーハやガラス基板のような平坦に加工された面上)に存在する粒子の粒子径測定に用いることができる。   Hereinafter, embodiments of the present invention will be described in detail. Here, the method for creating a calibration curve of the light scattering particle size measuring device of the present invention is for creating a calibration curve used when measuring the particle size of a sample whose particle size is unknown with the light scattering particle size measuring device. Is the method. The light scattering particle size measuring device includes a device that measures both the particle size and the particle size distribution. In addition, the light scattering particle size measuring device is not particularly limited, and particles existing on a solid surface (for example, a flatly processed surface such as a silicon wafer or a glass substrate) in a gas, a liquid, or the like. It can be used for the particle size measurement.

ここで、本発明の校正曲線の作成方法は、粒子径がD、D(但し、D<D≦105nm)の粒子径既知の粒子を用いて、粒子径D<Dの粒子の測定に適用する校正曲線を作成するものである。なお、光散乱式粒子径測定装置を用いて粒子径未知の試料の粒子径を測定する際には、粒子径D≧Dの粒子の測定に適用する校正曲線も必要であるが、粒子径D≧Dの粒子の測定に適用する校正曲線の作成は、既知の方法に従い行うことができる。具体的には、粒子径が異なる粒子径既知の粒子について光散乱式粒子径測定装置で散乱強度の測定を行い、各粒子の散乱強度の実測値を結んで、D≧Dの範囲における粒子径と散乱強度との関係を示す校正曲線を作成することができる。 Here, the calibration curve creation method of the present invention uses particles having a particle diameter of D 1 and D 2 (where D 1 <D 2 ≦ 105 nm) and particles having a particle diameter of D <D 1 . This is to create a calibration curve to be applied to the measurement. Incidentally, when measuring the particle diameter of the sample particles径未knowledge using a light scattering particle diameter measuring apparatus is also required calibration curve to be applied to the measurement of the particle diameter D ≧ D 1, the particle size The calibration curve applied to the measurement of the particle of D ≧ D 1 can be performed according to a known method. Specifically, particles having different particle sizes are measured with a light scattering type particle size measuring device, and the measured values of the scattering intensity of each particle are connected to obtain particles in a range of D ≧ D 1. A calibration curve showing the relationship between the diameter and the scattering intensity can be created.

粒子径がD、Dの粒子径既知の粒子としては、例えばポリスチレンラテックス(PSL)粒子などの標準粒子を用いることができる。なお、より適切な校正曲線を作成する観点からは、使用する粒子の粒子径は、Dが40〜50nmでありDが50〜105nm(但し、D<D)であることが好ましい。また、DとDとの差(D−D)は、20nm以下であることが好ましい。DとDとの差が20nm以下であれば、作成した校正曲線を用いて粒子径を測定した際の誤差を、例えば1%以内と小さくすることができるので、より適切な(精度の高い)校正曲線を作成することができるからである。 Standard particles such as polystyrene latex (PSL) particles can be used as the particles with known particle sizes of D 1 and D 2 . A more in view to create the appropriate calibration curve, the particle diameter of the particles used is preferably D 2 is D 1 is 40~50nm is 50~105Nm (where, D 1 <D 2) . Also, D 1 and the difference between D 2 (D 2 -D 1) is preferably 20nm or less. If the difference between D 1 and D 2 is 20 nm or less, the error when measuring the particle diameter using the created calibration curve can be reduced to, for example, 1% or less. This is because a (high) calibration curve can be created.

そして、本発明の校正曲線の作成方法では、上述した標準粒子および既知の光散乱式粒子径測定装置を用いて、例えば以下のようにして校正曲線を作成する。   In the calibration curve creation method of the present invention, the calibration curve is created, for example, in the following manner using the above-described standard particles and a known light scattering particle size measuring apparatus.

まず、作成した校正曲線を使用することとなる光散乱式粒子径測定装置で、既知の粒子径D、D(但し、D<D≦105nm)の粒子の散乱強度を測定し、粒子径Dの粒子の散乱強度Iと、粒子径Dの粒子の散乱強度Iとを求める。 First, with a light scattering particle size measuring device that will use the created calibration curve, the scattering intensity of particles with known particle diameters D 1 and D 2 (where D 1 <D 2 ≦ 105 nm) is measured, a scattering intensity I 1 of the particles having a particle diameter D 1, obtaining a scattering intensity I 2 of the particle diameter D 2 particles.

次に、下記式(I)〜(III)を満たすα、βおよびγを求める。
=α×(Dγ ・・・(I)
=α×(Dγ ・・・(II)
=β×(D ・・・(III)
なお、γは、例えば、式(I)の両辺を式(II)の両辺で割って下記式(V)とし、
/I=(D/Dγ ・・・(V)
式(V)の両辺の対数をとって下記式(VI)とし、式(VI)を整理して式(VII)とすることにより求めることができる。
log(I/I)=γlog(D/D) ・・・(VI)
γ=log(I/I)/log(D/D) ・・・(VII)
また、αは、例えば、式(I)を整理して下記式(VIII)とし、上述のようにして求めたγを代入することにより求めることができる。
α=I/(Dγ ・・・(VIII)
更に、βは、式(III)を整理して下記式(IX)とし、求めることができる。
β=I/(D ・・・(IX)
Next, α, β and γ satisfying the following formulas (I) to (III) are obtained.
I 1 = α × (D 1 ) γ (I)
I 2 = α × (D 2 ) γ (II)
I 1 = β × (D 1 ) 6 (III)
Note that γ is, for example, the following formula (V) obtained by dividing both sides of the formula (I) by both sides of the formula (II):
I 1 / I 2 = (D 1 / D 2 ) γ (V)
The logarithm of both sides of the formula (V) is taken as the following formula (VI), and the formula (VI) is rearranged into the formula (VII).
log (I 1 / I 2 ) = γlog (D 1 / D 2 ) (VI)
γ = log (I 1 / I 2 ) / log (D 1 / D 2 ) (VII)
Further, α can be obtained, for example, by rearranging the formula (I) into the following formula (VIII) and substituting γ obtained as described above.
α = I 1 / (D 1 ) γ (VIII)
Furthermore, β can be obtained by rearranging the formula (III) into the following formula (IX).
β = I 1 / (D 1 ) 6 (IX)

最後に、粒子径D<Dの領域について、粒子径Dと、散乱強度Iとが下記式(IV)を満たす校正曲線を作成する。
D={(I/α)+(I/β)-6}/2 ・・・(IV)
なお、この校正曲線を適用する粒子径の範囲は、特に40nm未満の領域であることが好ましい。
Finally, the region of the particle diameter D <D 1, to create a calibration curve and the particle diameter D, and a scattering intensity I satisfies the following formula (IV).
D = {(I / α) −γ + (I / β) −6 } / 2 (IV)
In addition, it is preferable that the range of the particle diameter to which this calibration curve is applied is particularly an area of less than 40 nm.

ここで、上述した方法を用いて作成した校正曲線の一例を図1に示す。ここに、図1の実測線は、粒子径D以上の粒子径の異なる複数の標準粒子に対して散乱強度を実際に測定した結果に基づき作成した、各標準粒子の散乱強度の実測値を結んだ線である。また、外挿線は、式(X):I=α×Dγで表される線であり、理論線は、式(XI):I=β×Dで表される線である。更に、本発明の校正曲線は、式(IV):D={(I/α)+(I/β)-6}/2で表される、外挿線と理論線とのx軸(粒子径Dの軸)方向中間点を通る線である。なお、α、βおよびγは上述のようにして求めることができる。 Here, an example of a calibration curve created using the method described above is shown in FIG. Here, the measured line of FIG. 1 were prepared based on the results of actual measurement of the scattering intensity versus the different standard particles particle diameter D 1 or more particle diameter, the measured values of the scattering intensity of each standard particles It is a connected line. Also, extrapolation of the formula (X): a line represented by I = α × D γ, theoretical line has the formula (XI): is a line expressed by I = β × D 6. Furthermore, the calibration curve of the present invention is an x-axis between an extrapolated line and a theoretical line represented by the formula (IV): D = {(I / α) −γ + (I / β) −6 } / 2 (Axis of particle diameter D) is a line passing through the intermediate point in the direction. Α, β and γ can be obtained as described above.

そして、図1では、粒子径D<Dの範囲においては本発明の校正曲線を、粒子径D≧Dの範囲においては実測線を用いて、光散乱式粒子径測定装置で測定した粒子径未知の試料の散乱強度から粒子径を求めることができる。ここで、粒子の粒子径が入射する光の波長に対して十分小さい極限領域のいわゆるレーリーリミットでは散乱強度が粒子径の6乗に比例するが、粒子の粒子径が入射する光の波長に対して無視できない範囲では、散乱強度の粒子径への依存性が6乗より漸次弱くなるので、本発明に係る方法で作成した、外挿線と理論線との中間を取った校正曲線を用いれば、外挿線や理論線を校正曲線として用いた場合と比較して正確な粒子径を求めることができる。 In FIG. 1, particles measured with a light scattering particle size measurement apparatus using the calibration curve of the present invention in the range of particle size D <D 1 and the actual measurement line in the range of particle size D ≧ D 1. The particle diameter can be obtained from the scattering intensity of a sample with an unknown diameter. Here, in the so-called Rayleigh limit in the limit region where the particle diameter of the particles is sufficiently small with respect to the wavelength of the incident light, the scattering intensity is proportional to the sixth power of the particle diameter. In the non-negligible range, the dependence of the scattering intensity on the particle diameter gradually becomes weaker than the sixth power. Therefore, if a calibration curve created by the method according to the present invention and taking the middle between the extrapolated line and the theoretical line is used. Compared to the case where an extrapolation line or a theoretical line is used as a calibration curve, an accurate particle diameter can be obtained.

なお、本発明の校正曲線の作成方法には、適宜改変を加えることができる。具体的には、基板上の粒子の粒子径測定に用いる校正曲線を作成する場合には、用いる入射光(レーザー)の基板への入射角度や検出器の構成に応じてシミュレーションを行い、レーリーリミットにおけるサイズ依存性(図1における理論線の傾き)を求め、その理論線と、上述した外挿線とのx軸(粒子径Dの軸)方向中間点を通る線を校正曲線としても良い。   The calibration curve creation method of the present invention can be modified as appropriate. Specifically, when creating a calibration curve used to measure the particle size of particles on a substrate, simulation is performed according to the incident angle of the incident light (laser) used to the substrate and the detector configuration, and the Rayleigh limit. The size dependence (the slope of the theoretical line in FIG. 1) is obtained, and a line passing through the intermediate point between the theoretical line and the extrapolated line in the x-axis (particle diameter D) direction may be used as the calibration curve.

以下、実施例により本発明を更に詳細に説明するが、本発明は下記の実施例に何ら限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to the following Example at all.

光散乱式粒子径測定装置を用いて、粒子径60nm(D)と83nm(D)のPSL粒子(Duke社製)の散乱強度を測定した。その結果、粒子径60nmのPSL粒子の散乱強度(I)は0.5814(任意単位)であり、粒子径83nmのPSL粒子の散乱強度(I)は3.1960(任意単位)であった。そして、D、D、I、Iの値より、前述のようにしてα、βおよびγを算出した。その結果、α=1.568025×10−10、β=5.2519、γ=7.33025×10−12であった。 The scattering intensity of PSL particles (manufactured by Duke) having particle diameters of 60 nm (D 1 ) and 83 nm (D 2 ) was measured using a light scattering particle size measuring apparatus. As a result, the scattering intensity (I 1 ) of PSL particles having a particle diameter of 60 nm was 0.5814 (arbitrary unit), and the scattering intensity (I 2 ) of PSL particles having a particle diameter of 83 nm was 3.1960 (arbitrary unit). It was. Then, α, β and γ were calculated from the values of D 1 , D 2 , I 1 and I 2 as described above. As a result, α = 1.568025 × 10 −10 , β = 5.2519, and γ = 7.333025 × 10 −12 .

また、同様の装置を用いて、粒子径50nmと40nmのPSL粒子(Duke社製)の散乱強度を測定した。その結果、粒子径50nmのPSL粒子の散乱強度は0.2142(任意単位)であり、粒子径40nmのPSL粒子の散乱強度は0.0570(任意単位)であった。   Moreover, the scattering intensity of PSL particles (manufactured by Duke) having a particle diameter of 50 nm and 40 nm was measured using the same apparatus. As a result, the scattering intensity of PSL particles having a particle diameter of 50 nm was 0.2142 (arbitrary unit), and the scattering intensity of PSL particles having a particle diameter of 40 nm was 0.0570 (arbitrary unit).

(実施例1、比較例1〜2)
式(IV)、式(X)、式(XI)に対して、算出したα、β、γを代入した。そして、α、β、γを代入して得られた各式のI(散乱強度)に粒子径50nmのPSL粒子の散乱強度の実測値(0.2142)を代入して、各式に基づき算出される粒子径D(D50)を求めた。また、同様にして粒子径40nmのPSL粒子の散乱強度の実測値(0.0570)を代入して、各式に基づき算出される粒子径D(D40)を求めた。結果を表1に示す
(Example 1, Comparative Examples 1-2)
The calculated α, β, and γ were substituted into the formula (IV), the formula (X), and the formula (XI). Then, by substituting the measured value (0.2142) of the scattering intensity of PSL particles with a particle diameter of 50 nm into I (scattering intensity) of each formula obtained by substituting α, β, and γ, and calculating based on each formula The particle diameter D (D 50 ) to be obtained was determined. Similarly, the measured value (0.0570) of the scattering intensity of PSL particles having a particle size of 40 nm was substituted to determine the particle size D (D 40 ) calculated based on each formula. The results are shown in Table 1.

Figure 2011047828
Figure 2011047828

表1の実施例1および比較例1〜2より、本発明の校正曲線の作成方法に従い作成した校正曲線によれば、より正確な粒子径を求めることができることが明らかになった。   From Example 1 and Comparative Examples 1 and 2 in Table 1, it became clear that a more accurate particle diameter can be obtained according to the calibration curve created according to the calibration curve creation method of the present invention.

本発明によれば、粒子径が小さい微粒子についても光散乱式粒子径測定装置で正確な粒子径を簡便に測定することを可能とすることができる。   According to the present invention, it is possible to easily measure an accurate particle size of a fine particle having a small particle size with a light scattering particle size measuring apparatus.

Claims (4)

光散乱式粒子径測定装置で、二種類の既知の粒子径D、D(但し、D<D≦105nm)の粒子の散乱強度をそれぞれ測定し、
粒子径Dの粒子の散乱強度Iと、粒子径Dの粒子の散乱強度Iとを用いて、下記式:
=α×(Dγ
=α×(Dγ
=β×(D
を満たすα、βおよびγを決定し、
粒子径D<Dの領域について、粒子径Dと、散乱強度Iとが
D={(I/α)+(I/β)-6}/2
を満たす校正曲線を作成すること
を含む、光散乱式粒子径測定装置の校正曲線の作成方法。
With a light scattering particle size measuring device, the scattering intensity of each of two types of known particle sizes D 1 and D 2 (where D 1 <D 2 ≦ 105 nm) is measured,
A scattering intensity I 1 of the particles having a particle diameter D 1, by using the scattering intensity I 2 of the particle diameter D 2 particles, the following formula:
I 1 = α × (D 1 ) γ
I 2 = α × (D 2 ) γ
I 1 = β × (D 1 ) 6
Determine α, β and γ that satisfy
The region of the particle diameter D <D 1, and the particle diameter D, a scattering intensity I D = {(I / α) -γ + (I / β) -6} / 2
A method for creating a calibration curve for a light scattering particle size measuring apparatus, comprising creating a calibration curve that satisfies the following conditions.
前記粒子径Dが40〜50nmであり、前記粒子径Dが50〜105nmである、請求項1に記載の光散乱式粒子径測定装置の校正曲線の作成方法。 Wherein a particle diameter D 1 is 40 to 50 nm, the particle diameter D 2 is 50~105Nm, how to create a calibration curve of the light scattering type particle size measuring apparatus according to claim 1. 前記粒子径Dと前記粒子径Dとの差(D−D)が、20nm以下である、請求項1または2に記載の光散乱式粒子径測定装置の校正曲線の作成方法。 The difference between the particle diameter D 1 and the particle diameter D 2 (D 2 -D 1) is at 20nm or less, how to create a calibration curve of the light scattering type particle size measuring apparatus according to claim 1 or 2. 前記粒子径Dが40nm未満である、請求項1〜3のいずれか1項に記載の光散乱式粒子径測定装置の校正曲線の作成方法。   The method for creating a calibration curve for a light scattering particle size measuring apparatus according to any one of claims 1 to 3, wherein the particle size D is less than 40 nm.
JP2009197293A 2009-08-27 2009-08-27 Creation method of calibration curve of light scattering type particle size measuring device Withdrawn JP2011047828A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009197293A JP2011047828A (en) 2009-08-27 2009-08-27 Creation method of calibration curve of light scattering type particle size measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009197293A JP2011047828A (en) 2009-08-27 2009-08-27 Creation method of calibration curve of light scattering type particle size measuring device

Publications (1)

Publication Number Publication Date
JP2011047828A true JP2011047828A (en) 2011-03-10

Family

ID=43834301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009197293A Withdrawn JP2011047828A (en) 2009-08-27 2009-08-27 Creation method of calibration curve of light scattering type particle size measuring device

Country Status (1)

Country Link
JP (1) JP2011047828A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015138002A (en) * 2014-01-24 2015-07-30 株式会社島津製作所 Particle size measuring device, particle size measuring method, and particle size measuring program
CN109883896A (en) * 2019-03-06 2019-06-14 中国石油大学(北京) A kind of aerosol detection method and system
JP2019148585A (en) * 2018-01-31 2019-09-05 ジック エンジニアリング ゲーエムベーハーSICK Engineering GmbH Analysis device for determining particulate matter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015138002A (en) * 2014-01-24 2015-07-30 株式会社島津製作所 Particle size measuring device, particle size measuring method, and particle size measuring program
JP2019148585A (en) * 2018-01-31 2019-09-05 ジック エンジニアリング ゲーエムベーハーSICK Engineering GmbH Analysis device for determining particulate matter
CN109883896A (en) * 2019-03-06 2019-06-14 中国石油大学(北京) A kind of aerosol detection method and system

Similar Documents

Publication Publication Date Title
Meli et al. Traceable size determination of nanoparticles, a comparison among European metrology institutes
Kim et al. Thermal conductivity of metal-oxide nanofluids: particle size dependence and effect of laser irradiation
WO2016002357A1 (en) X-ray fluorescence analysis device and method
Wurm et al. Deep ultraviolet scatterometer for dimensional characterization of nanostructures: system improvements and test measurements
Rejvani et al. Optimal characteristics and heat transfer efficiency of SiO2/water nanofluid for application of energy devices: a comprehensive study
KR100382721B1 (en) Methods and systems for measuring microroughness of substrate surface combining particle counter and atomic force microscope measurements
JP2011047828A (en) Creation method of calibration curve of light scattering type particle size measuring device
CN104501949A (en) Method for measuring absorption rates of cavities on basis of substitution process and efficiency of detectors
CN202511772U (en) X-ray metal material thickness measurement device
Mohajerani et al. Evaluation of local free carrier concentrations in individual heavily-doped GaN: Si micro-rods by micro-Raman spectroscopy
Gertych et al. Thermal properties of thin films made from MoS2 nanoflakes and probed via statistical optothermal Raman method
CN109164023B (en) Industrial tail gas particulate matter concentration on-line monitoring device
US10234281B2 (en) Method for evaluating haze
CN106092515B (en) A method of with Fabry-Perot etalon focal length measurement and corner
Kerckhofs et al. High-resolution micro-CT as a tool for 3D surface roughness measurement of 3D additive manufactured porous structures
Niewelt et al. Interstitial oxygen imaging from thermal donor growth—A fast photoluminescence based method
Schauer et al. Overview of S (T) EM electron detectors with garnet scintillators: Some potentials and limits
JP2017522571A5 (en)
JP2011053090A (en) Method of preparing calibration line for light scattering type grain size measuring instrument
KR101242699B1 (en) Method for measuring spreaded quantity of coating layer
CN105092431B (en) The measuring system and measuring method of metal nanoparticle average grain diameter
Scholze et al. Comparison of CD measurements of an EUV photomask by EUV scatterometry and CD-AFM
Abegão et al. Correlating scatterer concentration and intensity threshold of random laser in niobium oxide particle colloids with dye solution
CN105092432A (en) Measurement system of particle size of metal nanoparticles
Bobretsova et al. Optical absorption in a waveguide based on an n-type AlGaAs heterostructure

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20121106