[go: up one dir, main page]

JP2011045169A - Intermediate connection structure of superconducting cable - Google Patents

Intermediate connection structure of superconducting cable Download PDF

Info

Publication number
JP2011045169A
JP2011045169A JP2009190536A JP2009190536A JP2011045169A JP 2011045169 A JP2011045169 A JP 2011045169A JP 2009190536 A JP2009190536 A JP 2009190536A JP 2009190536 A JP2009190536 A JP 2009190536A JP 2011045169 A JP2011045169 A JP 2011045169A
Authority
JP
Japan
Prior art keywords
superconducting
support member
connection structure
layer
intermediate connection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009190536A
Other languages
Japanese (ja)
Other versions
JP5416509B2 (en
Inventor
Yuichi Ashibe
祐一 芦辺
Shoichi Honjo
昇一 本庄
Tomoo Mimura
智男 三村
Yutaka Noguchi
野口  裕
Yutaka Kito
豊 鬼頭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Tokyo Electric Power Co Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Sumitomo Electric Industries Ltd filed Critical Tokyo Electric Power Co Inc
Priority to JP2009190536A priority Critical patent/JP5416509B2/en
Publication of JP2011045169A publication Critical patent/JP2011045169A/en
Application granted granted Critical
Publication of JP5416509B2 publication Critical patent/JP5416509B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Gas Or Oil Filled Cable Accessories (AREA)

Abstract

【課題】接続時の作業性に優れ、通電に伴う損失を低減することができる超電導ケーブルの中間接続構造を提供する。
【解決手段】中間接続構造1Aは、超電導導体202の外周に順に電気絶縁層203、超電導シールド層204、常電導層205を具える一対の超電導ケーブル同士を接続する。この中間接続構造1Aは、超電導線材から構成されて、超電導シールド層204同士を接続する超電導接続部20と、超電導接続部20が接合され、常電導層205に接合されない銅製の支持部材21Aと、銅から構成されて常電導層205同士を接続する常電導接続部3とを具える。超電導シールド層204同士の接続部材と、常電導層205同士の接続部材とを別個に具えることで、接続作業が行い易い。支持部材21Aの内周側に超電導接続部20を具えることで、大電流を流しても、銅からなる支持部材21Aに分流が生じ難い。
【選択図】図1
An intermediate connection structure for a superconducting cable, which is excellent in workability at the time of connection and can reduce a loss due to energization.
In an intermediate connection structure, a pair of superconducting cables including an electrical insulating layer, a superconducting shield layer, and a normal conducting layer are connected in order to the outer periphery of a superconducting conductor. This intermediate connection structure 1A is composed of a superconducting wire, a superconducting connection part 20 that connects the superconducting shield layers 204, a superconducting connection part 20 is joined, and a copper support member 21A that is not joined to the normal conducting layer 205, And a normal conductive connection portion 3 made of copper and connecting the normal conductive layers 205 to each other. By providing the connection member between the superconducting shield layers 204 and the connection member between the normal conductive layers 205 separately, the connection work can be easily performed. By providing the superconducting connection portion 20 on the inner peripheral side of the support member 21A, even if a large current is passed, it is difficult for a shunt to occur in the support member 21A made of copper.
[Selection] Figure 1

Description

本発明は、超電導導体及び超電導シールド層を具える超電導ケーブル同士を接続する超電導ケーブルの中間接続構造に関するものである。特に、接続作業が行い易く、接続箇所の通電損失を低減し易い超電導ケーブルの中間接続構造に関するものである。   The present invention relates to an intermediate connection structure of superconducting cables for connecting superconducting cables having a superconducting conductor and a superconducting shield layer. In particular, the present invention relates to an intermediate connection structure of a superconducting cable that facilitates connection work and easily reduces current loss at a connection point.

超電導材料、特に冷媒に液体窒素を利用する高温超電導材料からなる超電導導体を具える超電導ケーブルが開発されつつある。超電導ケーブルは、代表的には、内側から順に超電導導体、電気絶縁層、超電導シールド層を有するケーブルコアと、このケーブルコアを収納すると共に、上記冷媒が満たされる断熱管とを具える。超電導シールド層には、通常運転時、超電導導体に流れる電流(導体電流)と逆向きでほぼ同じ大きさの電流が誘起され、この誘導電流(シールド電流)による磁場で導体電流による磁場を打ち消し、超電導ケーブルの外部への漏れ磁場をほぼゼロにすることができる。上記超電導シールド層の外周に更に銅からなる常電導層を具え、この常電導層を短絡などの事故時に事故電流を流すための流路に利用する超電導ケーブルもある(特許文献1)。   Superconducting cables having superconducting conductors made of superconducting materials, particularly high-temperature superconducting materials that use liquid nitrogen as a refrigerant, are being developed. The superconducting cable typically includes a cable core having a superconducting conductor, an electrical insulating layer, and a superconducting shield layer in order from the inside, and a heat insulating tube that houses the cable core and is filled with the refrigerant. In the superconducting shield layer, during normal operation, a current of approximately the same magnitude is induced in the opposite direction to the current flowing through the superconducting conductor (conductor current), and the magnetic field due to the conductor current is canceled by the magnetic field due to this induced current (shield current), The leakage magnetic field to the outside of the superconducting cable can be made almost zero. There is also a superconducting cable that further includes a normal conducting layer made of copper on the outer periphery of the superconducting shield layer, and uses this normal conducting layer as a flow path for flowing an accident current in the event of a short circuit or the like (Patent Document 1).

長距離に亘る超電導ケーブル線路を構築する場合、線路途中で異なる超電導ケーブル同士を接続する中間接続が必要となる。上記常電導層を具える超電導ケーブルの中間接続構造として、特許文献1は、銅からなる筒状部材の表面に超電導線材が半田により接合された接続用シールド部材を具える構造を開示している。より具体的には、上記筒状部材の両端が、接続する一対の超電導ケーブルの常電導層にそれぞれ接続され、上記超電導線材の両端が、接続する一対の超電導ケーブルの超電導シールド層にそれぞれ接続されている。   When constructing a superconducting cable line over a long distance, an intermediate connection for connecting different superconducting cables in the middle of the line is required. As an intermediate connection structure of a superconducting cable including the normal conductive layer, Patent Document 1 discloses a structure including a connecting shield member in which a superconducting wire is bonded to the surface of a cylindrical member made of copper. . More specifically, both ends of the cylindrical member are respectively connected to the normal conducting layers of the pair of superconducting cables to be connected, and both ends of the superconducting wire are respectively connected to the superconducting shield layers of the pair of superconducting cables to be connected. ing.

特開2005-353379号公報JP 2005-353379 A

しかし、特許文献1に開示される接続用シールド部材では、筒状部材と超電導線材とが一体であるため、超電導ケーブルに具える常電導層と上記筒状部材とを接続する際に接続し難いことがある。   However, in the connecting shield member disclosed in Patent Document 1, since the tubular member and the superconducting wire are integral, it is difficult to connect the normal conducting layer included in the superconducting cable and the tubular member. Sometimes.

例えば、上記常電導層が銅テープを巻回して形成されている場合、銅テープに巻き癖がつき、巻き癖の状態によっては上記筒状部材との接合が行い難いことがある。従って、超電導シールド層の外周に常電導層を具える超電導ケーブル同士を接続するにあたり、接続時の作業性を向上することが望まれている。   For example, when the normal conducting layer is formed by winding a copper tape, the copper tape may have a curl and depending on the curl state, it may be difficult to join the tubular member. Therefore, when connecting superconducting cables having a normal conducting layer on the outer periphery of the superconducting shield layer, it is desired to improve workability at the time of connection.

また、超電導ケーブルの送電容量を更に増大することが望まれており、3000A級といった大容量の電流が流されることが予想される。このような大電流が流された場合であっても、通電に伴う損失(代表的には、ジュール損)を低減することができる中間接続構造の開発が望まれている。   Further, it is desired to further increase the transmission capacity of the superconducting cable, and it is expected that a large capacity current such as 3000A class will flow. Even when such a large current flows, it is desired to develop an intermediate connection structure that can reduce loss (typically Joule loss) associated with energization.

そこで、本発明の目的の一つは、接続時の作業性に優れる超電導ケーブルの中間接続構造を提供することにある。また、本発明の他の目的は、大電流が流された場合であっても通電に伴う損失を低減することができる超電導ケーブルの中間接続構造を提供することにある。   Accordingly, one of the objects of the present invention is to provide an intermediate connection structure for a superconducting cable that is excellent in workability during connection. Another object of the present invention is to provide an intermediate connection structure of a superconducting cable that can reduce a loss due to energization even when a large current flows.

本発明は、超電導シールド層同士を接続する部材と、超電導シールド層の外周に具える常電導層同士を接続する部材とを機械的な接続がなされていない別部材とすることで上記目的を達成する。   The present invention achieves the above object by using a member that connects the superconducting shield layers and a member that connects the normal conducting layers provided on the outer periphery of the superconducting shield layer as separate members that are not mechanically connected. To do.

本発明は、超電導導体の外周に順に電気絶縁層、超電導シールド層、常電導層を具える一対の超電導ケーブル同士を接続する超電導ケーブルの中間接続構造に係るものである。この中間接続構造は、超電導材料から構成されて、上記各超電導ケーブルの超電導シールド層同士を接続する超電導接続部と、常電導材料から構成されて、上記各超電導ケーブルの常電導層同士を接続する常電導接続部と、上記常電導層に接続されず、上記超電導接続部が接合された支持部材とを具える。   The present invention relates to an intermediate connection structure for a superconducting cable for connecting a pair of superconducting cables having an electric insulating layer, a superconducting shield layer, and a normal conducting layer in order on the outer periphery of the superconducting conductor. This intermediate connection structure is composed of a superconducting material, and is composed of a superconducting connection part that connects the superconducting shield layers of each of the superconducting cables, and a normal conducting material, and connects the normal conducting layers of each of the superconducting cables. A normal conductive connection portion; and a support member that is not connected to the normal conductive layer and is joined to the superconductive connection portion.

上述した従来の接続用シールド部材では、筒状部材が超電導線材の支持機能と常電導層同士の電気的な接続機能とを兼ね備える構成であり、部品点数が少ないものの、上述のように常電導層同士の接続作業を行い難い場合がある。これに対して、本発明中間接続構造は、超電導接続部を支持する部材(支持部材)と、常電導層同士を接続する部材(常電導接続部)とを独立した部材とし、上記支持部材は、常電導層に機械的な接続がなされない構成とする。従って、本発明中間接続構造は、超電導シールド層同士を接続するための部材と、常電導層同士を接続する部材とを独立して扱えるため、超電導シールド層同士の接続作業、及び常電導層同士の接続作業を別々に行い易く、接続時の作業性に優れる。また、超電導材料、特に酸化物超電導材料は、引っ張りなどに弱い脆性材料が多いが、本発明中間接続構造では、超電導接続部が支持部材に接合されて一体物になっていることで、例えば、超電導ケーブルを冷却したときの熱収縮による応力を支持部材で受けられる。従って、本発明中間接続構造は、上記応力などによる上記超電導接続部の損傷(折損や破断など)を防止することができ、施工後、長期に亘り良好に使用することができる。即ち、本発明中間接続構造は、通常運転時、上記超電導接続部により、一方の超電導ケーブルの超電導シールド層から他方の超電導ケーブルの超電導シールド層に誘導電流(シールド電流)を十分に流すことができる。また、本発明中間接続構造は、事故時、上記常電導接続部により、一方の超電導ケーブルの常電導層から他方の超電導ケーブルの常電導層に事故電流を流すことができる。   In the conventional shield member for connection described above, the cylindrical member is configured to have both the support function of the superconducting wire and the electrical connection function between the normal conductive layers, and although the number of parts is small, the normal conductive layer as described above. It may be difficult to connect each other. In contrast, the intermediate connection structure of the present invention is a member that supports the superconducting connection part (support member) and a member that connects the normal conductive layers (normal conductive connection part) as independent members, and the support member is The mechanical connection is not made to the normal conductive layer. Accordingly, since the intermediate connection structure of the present invention can independently handle the member for connecting the superconducting shield layers and the member for connecting the normal conducting layers, the connection work between the superconducting shield layers and the normal conducting layers It is easy to perform the connection work separately, and the workability at the time of connection is excellent. In addition, superconducting materials, particularly oxide superconducting materials, are often brittle materials that are vulnerable to tension, etc., but in the intermediate connection structure of the present invention, the superconducting connection portion is joined to the support member to form an integral body. Stress due to thermal contraction when the superconducting cable is cooled can be received by the support member. Therefore, the intermediate connection structure of the present invention can prevent damage (breakage, breakage, etc.) of the superconducting connection part due to the stress or the like, and can be used satisfactorily for a long time after construction. That is, according to the intermediate connection structure of the present invention, during normal operation, the superconducting connection portion can sufficiently cause an induction current (shield current) to flow from the superconducting shield layer of one superconducting cable to the superconducting shield layer of the other superconducting cable. . In the intermediate connection structure of the present invention, in the event of an accident, an accident current can flow from the normal conducting layer of one superconducting cable to the normal conducting layer of the other superconducting cable by the normal conducting connecting portion.

本発明の一形態として、上記支持部材が銅から構成され、上記超電導接続部が上記支持部材における超電導導体側に接合された形態が挙げられる。   As one form of this invention, the said supporting member is comprised from copper, and the said superconducting connection part has the form joined to the superconducting conductor side in the said supporting member.

銅は、液体窒素といった冷媒の温度、及びその近傍の温度での使用実績が十分にあり、銅からなる構成部材を利用することで信頼性の高い中間接続構造を提供することができる。しかし、銅は、上記冷媒の温度などでも良導体であることから、特に、3000A級といった大電流を使用する場合、超電導材料からなる超電導接続部だけでなく、銅からなる支持部材にも誘導電流が分岐する(分流が生じる)ことがある。銅からなる支持部材にも僅かながら誘導電流が流れることで、ジュール損といった損失が生じる。また、ジュール熱により、接続箇所の温度が上昇する恐れがある。ここで、超電導ケーブル同士の接続箇所は、補強絶縁層などを設けたりするため、本線部分よりも熱が篭り易い傾向にある。そのため、ジュール熱による接続箇所の温度の上昇により、最悪の場合、クエンチ(超電導状態から常電導状態に移行すること)を生じる恐れがある。一方、誘導電流は、起磁力の発生源である導体に近い側(内周側)ほど、磁束密度が高くなるため、より大きく流れる傾向にある。従って、上記銅からなる支持部材における超電導導体側に超電導接続部を配置することで、超電導接続部に優先的に誘導電流が流れ、支持部材に分流する量を低減して、通電に伴う損失を効果的に低減することができる。   Copper has a sufficient track record of use at the temperature of a refrigerant such as liquid nitrogen and a temperature in the vicinity thereof, and a reliable intermediate connection structure can be provided by using a component made of copper. However, since copper is a good conductor even at the temperature of the above-mentioned refrigerant, in particular, when using a large current of 3000 A class, an induced current is generated not only in a superconducting connection made of a superconducting material but also in a support member made of copper. It may diverge (a diversion will occur). A small amount of induced current flows through the support member made of copper, which causes a loss such as Joule loss. Moreover, there exists a possibility that the temperature of a connection location may rise by Joule heat. Here, since the connection place between the superconducting cables is provided with a reinforcing insulating layer or the like, heat tends to be generated more easily than the main line portion. Therefore, in the worst case, there is a risk of quenching (shifting from the superconducting state to the normal conducting state) due to the temperature rise at the connection location due to Joule heat. On the other hand, the induced current tends to flow more because the magnetic flux density is higher on the side closer to the conductor (inner peripheral side) that is the source of magnetomotive force. Therefore, by arranging the superconducting connection portion on the superconducting conductor side in the support member made of copper, the induced current flows preferentially to the superconducting connection portion, the amount of the shunting to the support member is reduced, and the loss due to energization is reduced. It can be effectively reduced.

本発明の一形態として、支持部材の少なくとも一部が、固有抵抗値(20℃)が1.0×10-6Ω・m以上の材料から構成された形態が挙げられる。 As one form of the present invention, a form in which at least a part of the support member is made of a material having a specific resistance value (20 ° C.) of 1.0 × 10 −6 Ω · m or more can be cited.

上述のように良導体の銅ではなく、銅よりも電気抵抗(固有抵抗値(20℃):約1.7×10-8Ω・m)が高い材料を支持部材の構成材料に利用することで、支持部材への分流を効果的に低減することができる。また、支持部材の構成材料は、機械的強度が高いものが好ましい。上記固有抵抗値を満たし、かつ銅よりも高強度な材料として、例えば、Cu-Ni合金(キュプロニッケル)とった銅合金などの金属材料が挙げられる。或いは、ガラス繊維強化プラスチック(GFRP)、エポキシ樹脂などの樹脂材料といった通常絶縁性材料として扱われる材料が挙げられる。上記高抵抗な材料により支持部材の全体が構成されている場合、分流を効果的に低減することができ、上記絶縁性材料により支持部材の全体が構成されている場合、実質的に分流を無くすことができる。そのため、上記高抵抗材料や絶縁性材料により支持部材の全体が構成されている場合、上記超電導接続部の配置位置は、支持部材の内周側(超電導導体側)でも外周側でもよい。 As described above, it is not a good conductor copper, but a material having a higher electrical resistance (specific resistance (20 ° C): approx.1.7 × 10 -8 Ω ・ m) than copper is used as a constituent material for the support member. The diversion to the member can be effectively reduced. Further, the constituent material of the support member is preferably a material having high mechanical strength. As a material satisfying the above specific resistance value and having higher strength than copper, for example, a metal material such as a copper alloy such as a Cu—Ni alloy (cupronickel) can be cited. Or the material normally treated as insulating materials, such as resin materials, such as glass fiber reinforced plastic (GFRP) and an epoxy resin, is mentioned. When the entire support member is composed of the high resistance material, the diversion can be effectively reduced. When the entire support member is composed of the insulating material, the diversion is substantially eliminated. be able to. Therefore, when the entire support member is composed of the high resistance material or the insulating material, the superconducting connection portion may be arranged on the inner peripheral side (superconducting conductor side) or the outer peripheral side of the support member.

本発明の一形態として、支持部材の一部に固有抵抗値(20℃)が1.0×10-6Ω・m以上の材料から構成された絶縁部を有する形態が挙げられる。 As one form of the present invention, a form in which a part of the support member has an insulating portion made of a material having a specific resistance value (20 ° C.) of 1.0 × 10 −6 Ω · m or more can be cited.

例えば、支持部材の一部が銅で構成されていても、他部が上記固有抵抗値を満たす材料により構成されていれば、導体断面積を減らせるため、分流の量を低減することができる。特に、支持部材は、その一端側の領域と他端側の領域との間に上記絶縁部が介在されて、上記両領域が当該絶縁部により電気的に絶縁された構成とすると、上述のように支持部材の全体が絶縁性材料や高抵抗材料により構成された場合と同様に、実質的に分流を無くすことができる。   For example, even if a part of the support member is made of copper, if the other part is made of a material that satisfies the above specific resistance value, the conductor cross-sectional area can be reduced, so that the amount of diversion can be reduced. . In particular, when the support member has a configuration in which the insulating portion is interposed between a region on one end side and a region on the other end side, and the both regions are electrically insulated by the insulating portion, In addition, as in the case where the entire support member is made of an insulating material or a high-resistance material, the shunt can be substantially eliminated.

本発明の一形態として、上記支持部材が一対の半割れ片を組み合わせて筒状体となる組物である形態が挙げられる。   As one form of this invention, the said support member is a form which is a braid which becomes a cylindrical body combining a pair of half crack piece.

上記構成によれば、超電導導体同士を接続した箇所の外周に、超電導接続部が接合された支持部材を容易に配置することができ、中間接続構造を構築する際の作業性に優れる。また、上記支持部材が筒状であることで、上記接続した箇所の全周を覆うように支持部材を存在させることができる。従って、この支持部材は、超電導接続部を上記接続した箇所の全周に配置する場合でも、当該超電導接続部を十分に支持することができる。   According to the said structure, the support member by which the superconducting connection part was joined can be arrange | positioned easily in the outer periphery of the location which connected the superconducting conductors, and it is excellent in the workability | operativity at the time of constructing | attaching an intermediate connection structure. Moreover, a support member can exist so that the perimeter of the said connected location may be covered because the said support member is cylindrical. Therefore, this support member can sufficiently support the superconducting connection portion even when the superconducting connection portion is disposed around the entire circumference of the connected portion.

本発明の一形態として、上記支持部材が筒状体であって、その周方向に沿って設けられた弧状のスリットを具える形態が挙げられる。   As one form of this invention, the said support member is a cylindrical body, Comprising: The form which provides the arc-shaped slit provided along the circumferential direction is mentioned.

上述のように支持部材が筒状であることで、上記接続した箇所の全周を支持部材により覆うことができる上に、上記超電導接続部を十分に支持することができる。かつ、上記構成によれば、スリットを具えることで、支持部材の内側に液体窒素といった冷媒を浸入させ易く、支持部材の内側に存在する上記接続した箇所を効率よく冷却することができる。上記スリットを具える支持部材の構成材料は、上述した銅でもよいし、銅よりも固有抵抗値が高い材料でもよい。銅や銅合金などの金属材料により支持部材が構成されている場合、上記弧状のスリットを具えることで、断面積が小さい部分が存在するため、分流の量を低減することができる。従って、この構成によれば、上述した分流による損失を効果的に低減することができる。   Since the support member is cylindrical as described above, the entire circumference of the connected portion can be covered with the support member, and the superconducting connection portion can be sufficiently supported. And according to the said structure, by providing a slit, it is easy to infiltrate refrigerant | coolants, such as liquid nitrogen, inside a supporting member, and the said connected location which exists inside a supporting member can be cooled efficiently. The constituent material of the support member having the slit may be copper as described above, or a material having a higher specific resistance value than copper. In the case where the support member is made of a metal material such as copper or copper alloy, by providing the arc-shaped slit, there is a portion having a small cross-sectional area, so that the amount of diversion can be reduced. Therefore, according to this configuration, it is possible to effectively reduce the loss caused by the above-described diversion.

本発明の一形態として、上記支持部材の一部の厚さが他部の厚さよりも薄い薄肉部を有する形態が挙げられる。   As one form of this invention, the form which has the thin part in which the thickness of a part of said support member is thinner than the thickness of another part is mentioned.

上記支持部材は、上記超電導接続部を支持することができれば、その厚さは適宜選択することができる。特に、支持部材が上記銅や銅合金といった金属材料から構成される場合、部分的に厚さを変える、即ち、上記薄肉部を具えることで、断面積が小さい部分が存在するため、分流の量を低減することができる。従って、この構成によれば、上述した分流による損失を効果的に低減することができる。   If the said supporting member can support the said superconducting connection part, the thickness can be selected suitably. In particular, when the support member is made of a metal material such as copper or copper alloy, the thickness is partially changed, i.e., by providing the thin portion, there is a portion having a small cross-sectional area. The amount can be reduced. Therefore, according to this configuration, it is possible to effectively reduce the loss caused by the above-described diversion.

本発明超電導ケーブルの中間接続構造は、接続時の作業性に優れる。特に、支持部材の構成材料や超電導接続部の配置位置を工夫することで、通電に伴う損失を低減することができる。   The intermediate connection structure of the superconducting cable of the present invention is excellent in workability at the time of connection. In particular, by devising the constituent material of the support member and the arrangement position of the superconducting connection part, it is possible to reduce the loss due to energization.

図1は、実施形態1の超電導ケーブルの中間接続構造の概略構成を示す部分縦断面図である。FIG. 1 is a partial longitudinal sectional view showing a schematic configuration of an intermediate connection structure of a superconducting cable of Embodiment 1. 図2は、三心一括型の超電導ケーブルの概略構成を示す横断面図である。FIG. 2 is a transverse cross-sectional view showing a schematic configuration of a three-core collective superconducting cable. 図3は、複数の異なる材料で構成された支持部材の概略構成を示す正面図である。FIG. 3 is a front view showing a schematic configuration of a support member made of a plurality of different materials. 図4は、実施形態2の超電導ケーブルの中間接続構造において、超電導ケーブルとシールド接続部との接続箇所の概略構成を拡大して示す部分縦断面図である。FIG. 4 is a partial vertical cross-sectional view showing, in an enlarged manner, a schematic configuration of a connection portion between a superconducting cable and a shield connection portion in the superconducting cable intermediate connection structure according to the second embodiment.

以下、図面を参照して本発明の実施の形態を説明する。なお、図1,4の中間接続構造では、その中心線から上半分のみを示し、下半分を省略している。また、以下の図面において同一符号は同一名称物を示す。   Embodiments of the present invention will be described below with reference to the drawings. In the intermediate connection structure in FIGS. 1 and 4, only the upper half is shown from the center line, and the lower half is omitted. Moreover, the same code | symbol shows the same name thing in the following drawings.

(実施形態1)
以下、図1,2を参照して、実施形態1の超電導ケーブルの中間接続構造を説明する。この中間接続構造1Aは、異なる一対の超電導ケーブル同士を接続するものであり、その特徴とするところは、各超電導ケーブルに具える超電導シールド層204同士、及びその外周に具える常電導層205同士を接続する構造にある。以下、各構成をより詳細に説明する。
(Embodiment 1)
Hereinafter, the intermediate connection structure of the superconducting cable according to the first embodiment will be described with reference to FIGS. This intermediate connection structure 1A connects a pair of different superconducting cables, and the feature thereof is that the superconducting shield layers 204 provided in each superconducting cable and the normal conducting layers 205 provided on the outer periphery thereof. Is in a structure to connect. Hereinafter, each configuration will be described in more detail.

[超電導ケーブル]
まず、超電導ケーブルを説明する。ここでは、複数心のケーブルコアを一つの断熱管に収納した多心ケーブルを説明するが、一心のケーブルコアを一つの断熱管に収納した単心ケーブルでもよい。図2に示す超電導ケーブル100は、3心のケーブルコア101が撚り合わされて断熱管102に収納されている。各ケーブルコア101は、中心から順にフォーマ201、超電導導体202、電気絶縁層203、超電導シールド層204、常電導層205、保護層206を具える。
[Superconducting cable]
First, a superconducting cable will be described. Here, a multi-core cable in which a plurality of cable cores are housed in one heat insulation pipe will be described, but a single-core cable in which a single core cable core is housed in one heat insulation pipe may be used. A superconducting cable 100 shown in FIG. 2 has a three-core cable core 101 twisted and housed in a heat insulating tube 102. Each cable core 101 includes a former 201, a superconducting conductor 202, an electrically insulating layer 203, a superconducting shield layer 204, a normal conducting layer 205, and a protective layer 206 in order from the center.

断熱管102は、内管102iと外管102oとからなる二重構造管であり、内管102iと外管102oとの間が真空引きされた真空断熱構造である。内管102i内には、液体窒素といった冷媒103が充填され、この冷媒103によりケーブルコア101の超電導導体202及び超電導シールド層204が冷却されて、超電導状態に維持される。外管102oの外周には、ポリ塩化ビニルといった耐食性に優れる材料を押出して形成した防食層104を具える。   The heat insulating tube 102 is a double structure tube composed of an inner tube 102i and an outer tube 102o, and is a vacuum heat insulating structure in which a vacuum is drawn between the inner tube 102i and the outer tube 102o. The inner tube 102i is filled with a refrigerant 103 such as liquid nitrogen, and the superconducting conductor 202 and the superconducting shield layer 204 of the cable core 101 are cooled by the refrigerant 103 and maintained in a superconducting state. On the outer periphery of the outer tube 102o, an anticorrosion layer 104 formed by extruding a material having excellent corrosion resistance such as polyvinyl chloride is provided.

フォーマ201は、超電導導体202の支持体として機能する他、事故などでクエンチした場合、瞬間的に生じる大きな事故電流(短絡電流)の流路に利用されることから、銅やアルミニウムなどの導電性の常電導材料にて形成された中実状や中空状(管体)が挙げられる。ここでは、エナメルなどの絶縁被覆を具える銅線を複数本撚り合わせて構成された中実体としている。   In addition to functioning as a support for the superconducting conductor 202, the former 201 is used for the flow path of a large accident current (short-circuit current) that occurs instantaneously when quenched due to an accident. Solid or hollow (tube) formed of the normal conductive material. Here, the solid body is formed by twisting a plurality of copper wires having an insulating coating such as enamel.

超電導導体202及び超電導シールド層204は、例えば、酸化物超電導体を具えるテープ状線材、代表的にはBi2223系超電導テープ線(Ag-Mnシース線)を単層又は多層に螺旋状に巻回することで構成することができる。ここでは、超電導導体202が四層構造、超電導シールド層204が内側層204i(図1)、外側層204o(図1)の二層構造である。各層の間には、クラフト紙などの絶縁紙を巻回した層間絶縁層を設けることができる。超電導導体202は、上記フォーマ201の上に、超電導シールド層204は、後述する電気絶縁層203の上に形成され、後述する常電導層205の内周側に位置することで、超電導状態が維持されている通常時、誘導電流(シールド電流)が流れ易い。   The superconducting conductor 202 and the superconducting shield layer 204 are formed by, for example, winding a tape-like wire rod having an oxide superconductor, typically a Bi2223-based superconducting tape wire (Ag-Mn sheath wire) in a single layer or multiple layers in a spiral manner. It can be configured by doing. Here, the superconducting conductor 202 has a four-layer structure, and the superconducting shield layer 204 has a two-layer structure of an inner layer 204i (FIG. 1) and an outer layer 204o (FIG. 1). Between each layer, an interlayer insulating layer in which insulating paper such as kraft paper is wound can be provided. The superconducting conductor 202 is formed on the former 201, and the superconducting shield layer 204 is formed on the electric insulating layer 203 described later, and is located on the inner peripheral side of the normal conductive layer 205 described later, so that the superconducting state is maintained. In normal times, an induced current (shield current) flows easily.

電気絶縁層203は、クラフト紙といった絶縁紙や、クラフト紙とプラスチックとを複合した半合成絶縁紙からなるテープ状の絶縁性材料を巻回することで構成することができる。ここでは、半合成絶縁紙(住友電気工業株式会社製PPLP:登録商標)により構成されている。また、後述する常電導層205の外周に上記クラフト紙などを巻回することで、保護層206を構成することができる。   The electrical insulating layer 203 can be configured by winding a tape-like insulating material made of insulating paper such as kraft paper or semi-synthetic insulating paper in which kraft paper and plastic are combined. Here, it is made of semi-synthetic insulating paper (PPLP: registered trademark manufactured by Sumitomo Electric Industries, Ltd.). Further, the protective layer 206 can be formed by winding the craft paper or the like around the outer periphery of a normal conductive layer 205 described later.

常電導層205は、主として、事故などでクエンチした場合、瞬間的に生じる大きな事故電流の流路に利用されることから上記フォーマ201と同様に、上記常電導材料により構成する。ここでは、上記超電導シールド層204の上に、銅テープを螺旋状に多層に巻回することで構成されている。   The normal conductive layer 205 is composed of the normal conductive material, like the former 201, because it is used mainly for a flow path of a large accident current that occurs instantaneously when quenched due to an accident or the like. Here, a copper tape is spirally wound in multiple layers on the superconducting shield layer 204.

上記構成を具える超電導ケーブル100を一対用意し、各超電導ケーブル100の端部からそれぞれ、ケーブルコア101を引き出して図1に示すように段剥ぎし、フォーマ201、超電導導体202、電気絶縁層203、超電導シールド層204、常電導層205を露出させ、後述する手順により中間接続構造1Aを構築することができる。   A pair of superconducting cables 100 having the above-described configuration is prepared, and the cable core 101 is pulled out from the end of each superconducting cable 100 and stepped off as shown in FIG. 1, and the former 201, the superconducting conductor 202, and the electric insulation layer 203 are prepared. Then, the superconducting shield layer 204 and the normal conducting layer 205 are exposed, and the intermediate connection structure 1A can be constructed by the procedure described later.

[中間接続構造]
次に、中間接続構造1Aを説明する。中間接続構造1Aは、上記構成を具える一対のケーブルコア101同士を接続する箇所に設けられる構造であり、特に、超電導シールド層204同士を接続する部材と、常電導層205同士を接続する部材とをそれぞれ別個に具える。具体的には、中間接続構造1Aは、各ケーブルコア101の超電導シールド層204同士を接続するシールド接続部2Aと、各ケーブルコア101の常電導層205同士を接続する常電導接続部3とを具える。
[Intermediate connection structure]
Next, the intermediate connection structure 1A will be described. The intermediate connection structure 1A is a structure provided at a location where the pair of cable cores 101 having the above-described configuration are connected to each other, and in particular, a member that connects the superconducting shield layers 204 to each other and a member that connects the normal conductive layers 205 to each other Are provided separately. Specifically, the intermediate connection structure 1A includes a shield connection part 2A that connects the superconducting shield layers 204 of the cable cores 101 and a normal conductive connection part 3 that connects the normal conductive layers 205 of the cable cores 101 to each other. Have.

《シールド接続部》
シールド接続部2Aは、超電導材料から構成されて、接続する一対のケーブルコア101の超電導シールド層204同士を接続する超電導接続部20と、超電導接続部20が接合された支持部材21Aとを具える。そして、支持部材21Aは、ケーブルコア101の常電導層205に機械的な接続がなされず、常電導接続部3とは独立した部材である。
《Shield connection part》
The shield connecting portion 2A is made of a superconducting material, and includes a superconducting connecting portion 20 that connects the superconducting shield layers 204 of the pair of cable cores 101 to be connected, and a support member 21A to which the superconducting connecting portion 20 is joined. . The support member 21A is a member that is not mechanically connected to the normal conductive layer 205 of the cable core 101 and is independent of the normal conductive connection portion 3.

超電導接続部20は、超電導シールド層204を構成する超電導線材と同様の超電導線材から構成されている。支持部材21Aは、一対の半円筒状の分割片を組み合わせて円筒状となる組物である。より具体的には、支持部材21Aは、中央部分が円筒状で、その両端部が周縁に向かって先細る形状である。また、支持部材21Aを構成する各分割片の厚さは、一端側から他端側に向かって概ね均一的な厚さとしている。この支持部材21Aの表面に沿って超電導接続部20を構成する超電導線材が接合されることから、当該超電導線材が過度に折り曲げられないように上記先細り部分の傾斜を設けている。また、図1に示すように、支持部材21Aの外径は、後述する電界遮蔽層13の外周面との間に隙間が設けられる大きさであり、支持部材21Aの長手方向の長さは、接続する一対の超電導シールド層204間に渡される超電導接続部20を十分に支持可能な長さを有する。ここでは、支持部材21Aは、銅から構成されている。   The superconducting connection portion 20 is composed of a superconducting wire similar to the superconducting wire constituting the superconducting shield layer 204. The support member 21A is a braid that becomes a cylindrical shape by combining a pair of semi-cylindrical divided pieces. More specifically, the support member 21A has a cylindrical shape at the center, and both ends thereof taper toward the periphery. In addition, the thickness of each divided piece constituting the support member 21A is substantially uniform from one end side to the other end side. Since the superconducting wire constituting the superconducting connection portion 20 is joined along the surface of the support member 21A, the tapered portion is inclined so that the superconducting wire is not excessively bent. Further, as shown in FIG. 1, the outer diameter of the support member 21A is such that a gap is provided between the outer peripheral surface of the electric field shielding layer 13 described later, and the length of the support member 21A in the longitudinal direction is It has a length that can sufficiently support the superconducting connection portion 20 passed between the pair of superconducting shield layers 204 to be connected. Here, the support member 21A is made of copper.

上記各分割片の表裏を貫通する孔やスリットを適宜設けたり、分割片間に若干の隙間を設けて両分割片を固定するなどして、支持部材21Aの内周側に液体窒素といった冷媒が浸入し易いようにしてもよい。スリットは、各分割片の長手方向に沿った線状でもよいし、各分割片の周方向に沿った弧状でもよい。弧状のスリットとすると、各分割片の一端側の領域と他端側の領域との間で断面積が低減されるため、超電導導体202に大電流が流れた場合でも、両領域間に生じる誘導電流の分流を低減することができる。上記孔の大きさ(直径など)やスリットの大きさ(幅、長さ)、個数などは適宜選択することができる。なお、スリットなどを設けなくても、超電導ケーブルのケーブルコア101に含浸された冷媒は、ケーブルコア101の構成要素を介して支持部材21A内に充填される。   A coolant such as liquid nitrogen is provided on the inner peripheral side of the support member 21A by appropriately providing holes and slits penetrating the front and back of each of the divided pieces, or by providing a slight gap between the divided pieces and fixing both divided pieces. You may make it easy to penetrate. The slit may be linear along the longitudinal direction of each divided piece, or may be arcuate along the circumferential direction of each divided piece. The arc-shaped slit reduces the cross-sectional area between the region on one end side and the region on the other end side of each divided piece. Therefore, even when a large current flows through the superconducting conductor 202, induction that occurs between both regions Current shunting can be reduced. The size of the hole (diameter and the like), the size of the slit (width and length), the number and the like can be appropriately selected. Note that the coolant impregnated in the cable core 101 of the superconducting cable is filled into the support member 21A via the components of the cable core 101 without providing a slit or the like.

上記支持部材21Aの内周面の周方向に沿って、上記超電導線材が並列に並べられ、半田(通常の半田でよい)により接合されて支持部材21Aと上記超電導線材とが一体化されている。即ち、シールド接続部2Aの横断面をとった場合、上記超電導線材は、その端面が円形状に並んで配置されている。上記超電導線材がこのように円形状に配置されることで、円筒状に配置された超電導シールド層204に沿って当該超電導線材を配置させることができ、当該超電導線材と超電導シールド層204とを接合し易い。支持部材21Aに接合されている上記超電導線材は、超電導シールド層204の内側層204iに接合される内側線材20iと、外側層204oに接合される外側線材20oとが積層されて支持部材21Aに接合されている。内側線材20i及び外側線材20oはそれぞれ、段剥ぎされた超電導シールド層204の内側層204i同士、外側層204o同士に渡して接合するために十分な長さとしており、内側線材20iの方が外側線材20oよりも短い。なお、図1では、各線材20i,20oが折り曲げられた角部が角ばって示されているが、実際には湾曲するように緩やかに曲げられている。   The superconducting wires are arranged in parallel along the circumferential direction of the inner peripheral surface of the support member 21A, and are joined by solder (which may be ordinary solder) so that the support member 21A and the superconducting wire are integrated. . That is, when the cross section of the shield connecting portion 2A is taken, the superconducting wires are arranged such that the end faces are arranged in a circular shape. By arranging the superconducting wire in a circular shape in this way, the superconducting wire can be disposed along the superconducting shield layer 204 disposed in a cylindrical shape, and the superconducting wire and the superconducting shield layer 204 are joined. Easy to do. The superconducting wire joined to the support member 21A is formed by laminating the inner wire 20i joined to the inner layer 204i of the superconducting shield layer 204 and the outer wire 20o joined to the outer layer 204o to join the support member 21A. Has been. Each of the inner wire 20i and the outer wire 20o has a length sufficient to cross over and join the inner layers 204i of the stepped superconducting shield layer 204, and the inner wire 20i is the outer wire. Shorter than 20o. In FIG. 1, the corner portions where the wire rods 20i and 20o are bent are shown in a square shape, but are actually bent gently so as to be bent.

《常電導接続部》
常電導接続部3は、上記超電導接続部20を構成する超電導線材よりも機械的強度に優れると共に、超電導ケーブルの使用温度(冷媒温度)において電気抵抗が小さい材料から構成されることが好ましい。例えば、銅やアルミニウム、及びこれらの合金などが挙げられる。ここでは、銅線からなる編組材であって、事故電流などの大電流を流すことができる程度の容量(導体断面積)を有するものを利用している。
《Normal conductive connection》
The normal conducting connection part 3 is preferably made of a material that is superior in mechanical strength to the superconducting wire constituting the superconducting connection part 20 and has a low electric resistance at the use temperature (refrigerant temperature) of the superconducting cable. Examples thereof include copper, aluminum, and alloys thereof. Here, a braided material made of copper wire is used which has a capacity (conductor cross-sectional area) that allows a large current such as an accident current to flow.

[中間接続構造の組立手順]
次に、上記中間接続構造1Aの組立手順を説明する。接続箱(図示せず)に、接続する一対の超電導ケーブル100の端部をそれぞれ導入し、各ケーブル100から引き出したケーブルコア101の端部を段剥ぎして、フォーマ201、超電導導体202、電気絶縁層203、超電導シールド層204、常電導層205を露出させる。そして、接続する一対のフォーマ201を銅製の接続スリーブ10の挿入孔に挿入して圧縮し、フォーマ201同士を接続する。
[Assembly procedure of intermediate connection structure]
Next, the assembly procedure of the intermediate connection structure 1A will be described. Introduce the ends of a pair of superconducting cables 100 to be connected to a connection box (not shown), strip the ends of the cable core 101 drawn from each cable 100, and form the former 201, the superconducting conductor 202, the electrical Insulating layer 203, superconducting shield layer 204, and normal conducting layer 205 are exposed. Then, the pair of formers 201 to be connected is inserted into the insertion hole of the copper connection sleeve 10 and compressed to connect the formers 201 to each other.

次に、接続用超電導線材11により、接続する一対のケーブルコア101に具える超電導導体202同士を接続する。四層構造の超電導導体202に合わせて、接続用超電導線材11も積層構造である。各接続用超電導線材11は、一方の超電導導体202から他方の超電導導体202に渡すことが可能な十分な長さを有し、フォーマ201側から外周に向かうほど長さが長い。これらの接続用超電導線材11を外周側に向かって広がる階段状に積層し、各接続用超電導線材11の一端部を一方の超電導導体202を構成する超電導層に、他端部を他方の超電導導体202を構成する超電導層にそれぞれ半田などにより接合する。各接続用超電導線材11は、超電導導体202を構成する超電導線材と同様のものを利用することが好ましい。また、最外側の接続用超電導線材11の外周に補強材(図示せず)を配置すると、この補強材が上記接続スリーブ10に作用する張力を分担して、中間接続構造1Aをより強固にすることができる。補強材の構成材料は、接続スリーブ10と同じ材料(例えば、銅やアルミニウム)でも、別の材料(例えば、ステンレス鋼)でもよい。その他、接続スリーブの一部を圧縮してフォーマ同士を接続すると共に、接続スリーブの挿入孔に超電導導体202を構成する超電導線材を挿入して、半田により接続した形態としてもよい。   Next, the superconducting conductors 202 included in the pair of cable cores 101 to be connected are connected by the connecting superconducting wire 11. The superconducting wire 11 for connection has a laminated structure in accordance with the superconducting conductor 202 having a four-layer structure. Each superconducting wire 11 for connection has a sufficient length that can be passed from one superconducting conductor 202 to the other superconducting conductor 202, and the length increases from the former 201 side toward the outer periphery. These connecting superconducting wires 11 are laminated in a stepped manner extending toward the outer peripheral side, one end of each connecting superconducting wire 11 is used as a superconducting layer constituting one superconducting conductor 202, and the other end is used as the other superconducting conductor. Each of the superconducting layers constituting 202 is joined with solder or the like. Each connecting superconducting wire 11 is preferably the same as the superconducting wire constituting the superconducting conductor 202. Further, when a reinforcing material (not shown) is disposed on the outer periphery of the outermost connecting superconducting wire 11, the reinforcing material shares the tension acting on the connecting sleeve 10 to further strengthen the intermediate connecting structure 1A. be able to. The constituent material of the reinforcing material may be the same material (for example, copper or aluminum) as the connection sleeve 10 or another material (for example, stainless steel). In addition, a part of the connecting sleeve may be compressed to connect the formers, and a superconducting wire constituting the superconducting conductor 202 may be inserted into the insertion hole of the connecting sleeve and connected by soldering.

上記接続用超電導線材11、超電導導体202、電気絶縁層203の外周を覆うように補強絶縁層12を形成する。補強絶縁層12は、その中央部が円筒状、超電導シールド層側の両端部が超電導シールド層204に向かって先細りするテーパ状となるように、クラフト紙やPPLP(登録商標)を巻回することで構成することができる。特に、円筒状部分からテーパ状部分に向かう角部、及びテーパ状部分の先端側の部分は、電界的なストレスを緩和できる角度としている。この補強絶縁層12の外周に電界遮蔽層13を形成する。電界遮蔽層13は、クレープカーボン紙を巻回してなるカーボン層13aと、このカーボン層13aの外周に設けた軟銅線からなる銅層13bとを具える。   The reinforcing insulating layer 12 is formed so as to cover the outer periphery of the connecting superconducting wire 11, the superconducting conductor 202, and the electric insulating layer 203. The reinforced insulating layer 12 is wound with kraft paper or PPLP (registered trademark) so that the central part is cylindrical and both ends on the superconducting shield layer side are tapered toward the superconducting shield layer 204. Can be configured. In particular, the corner portion from the cylindrical portion toward the tapered portion and the portion on the distal end side of the tapered portion are at an angle at which electric field stress can be reduced. An electric field shielding layer 13 is formed on the outer periphery of the reinforcing insulating layer 12. The electric field shielding layer 13 includes a carbon layer 13a formed by winding crepe carbon paper, and a copper layer 13b made of an annealed copper wire provided on the outer periphery of the carbon layer 13a.

上記支持部材21Aの内周側に超電導接続部20が接合されたシールド接続部2Aを、上記電界遮蔽層13の外周を覆うように配置する。次に、内側線材20iの各端部及び外側線材20oの各端部を超電導シールド層204の内側層204i、外側層204oにそれぞれ半田にて接合する。この半田は、電気絶縁層203の熱劣化を低減するために融点が70℃以上170℃以下の低融点半田が好ましい。超電導接続部20を超電導シールド層204に接合することで、超電導接続部20が接合された支持部材21Aも、超電導シールド層204に固定される。   A shield connection portion 2A in which a superconducting connection portion 20 is joined to the inner peripheral side of the support member 21A is disposed so as to cover the outer periphery of the electric field shielding layer 13. Next, each end of the inner wire 20i and each end of the outer wire 20o are joined to the inner layer 204i and the outer layer 204o of the superconducting shield layer 204 by soldering. This solder is preferably a low melting point solder having a melting point of 70 ° C. or more and 170 ° C. or less in order to reduce thermal deterioration of the electrical insulating layer 203. By joining the superconducting connection part 20 to the superconducting shield layer 204, the support member 21A to which the superconducting connection part 20 is joined is also fixed to the superconducting shield layer 204.

上記シールド接続部2Aの装着が終わったら、ケーブルコア101の常電導層205に常電導接続部3を取り付けて、常電導層205同士を接続する。ここでは、常電導層205を構成する銅テープの端部に端子30を取り付けて、端子30を介して常電導接続部3を接続している。   When the attachment of the shield connection part 2A is finished, the normal conductive connection part 3 is attached to the normal conductive layer 205 of the cable core 101 to connect the normal conductive layers 205 to each other. Here, the terminal 30 is attached to the end of the copper tape constituting the normal conductive layer 205, and the normal conductive connection portion 3 is connected via the terminal 30.

上記工程により、一対の超電導ケーブル100のケーブルコア101同士を接続する中間接続構造1Aを構築することができる。また、上記工程をケーブルコア101ごとに行い、3心のケーブルコア101を接続する三つの中間接続構造1Aの外周を接続箱(図示せず)に収納することで、多心のケーブルコア101を一つの接続箱に収納した中間接続構造を構築することができる。   Through the above steps, the intermediate connection structure 1A for connecting the cable cores 101 of the pair of superconducting cables 100 can be constructed. In addition, the above process is performed for each cable core 101, and the outer periphery of the three intermediate connection structures 1A connecting the three-core cable cores 101 is housed in a connection box (not shown), so that the multi-core cable core 101 is An intermediate connection structure housed in one connection box can be constructed.

接続箱は、特許文献1に記載されるような長手方向に分割可能な半割れ片を組み合わせて一体化する構成のものを利用すると、組立作業が行い易い。また、円筒状の接続箱とすると、当該箱内部に流通される加圧冷媒による圧損を低減することができる。特に、ステンレス鋼といった強度に優れる材料から構成され、真空断熱構造である接続箱が好ましい。接続箱は、公知の構成のものが利用できる。また、接続箱内には、上記中間接続構造1Aを支持する支持部材を配置させることができる。   When a connection box having a structure in which half-divided pieces that can be divided in the longitudinal direction are combined and integrated as described in Patent Document 1, assembly work is easily performed. Moreover, if it is set as a cylindrical connection box, the pressure loss by the pressurized refrigerant | coolant distribute | circulated inside the said box can be reduced. In particular, a junction box made of a material having excellent strength such as stainless steel and having a vacuum heat insulating structure is preferable. A connection box having a known configuration can be used. A support member that supports the intermediate connection structure 1A can be disposed in the connection box.

[効果]
上記構成を具える中間接続構造1Aは、超電導シールド層204同士を接続する部材(シールド接続部2A)と、常電導層205同士を接続する部材(常電導接続部3)とが機械的に接続されていないことで、接続作業を行い易く、作業性に優れる。また、常電導接続部3を支持部材21Aと独立した別部材とすることで、超電導接続部20を支持するための剛性が求められないため、上述のような編組材といった可撓性に優れる部材を常電導接続部3に利用することができ、この点からも接続作業を行い易い。
[effect]
The intermediate connection structure 1A having the above configuration mechanically connects a member that connects the superconducting shield layers 204 (shield connecting portion 2A) and a member that connects the normal conducting layers 205 (normal conducting connection portion 3). Since it is not done, it is easy to perform the connection work and the workability is excellent. Moreover, since the rigidity for supporting the superconducting connection portion 20 is not required by making the normal conducting connection portion 3 a separate member independent of the support member 21A, a member having excellent flexibility such as a braided material as described above Can be used for the normal conducting connection part 3, and it is easy to perform the connection work from this point.

更に、中間接続構造1Aでは、シールド接続部2Aの支持部材21Aを銅で構成していることで、液体窒素などの冷媒による冷却下で利用された場合でも、信頼性が高い。かつ、中間接続構造1Aでは、銅からなる支持部材21Aよりも内周側(超電導導体側)に超電導接続部20を配置させたことで、超電導接続部20に誘導電流を流し易く、超電導導体202に大電流が流れた場合でも、支持部材21Aへの誘導電流の分流を低減することができる。従って、中間接続構造1Aでは、当該分流による損失(主としてジュール損)を低減することができ、十分な大きさの誘導電流(シールド電流)を確保することができる。そのため、中間接続構造1Aでは、上記シールド電流による磁場により、超電導導体202に流れる電流による磁場を打ち消すことができ、漏れ磁場も少ない。特に、上述したように支持部材21Aにスリットを具えた構成とすると、支持部材21Aの内側に存在する接続箇所の冷却効果を向上することができると共に、上記分流による損失を低減することができる。   Furthermore, in the intermediate connection structure 1A, since the support member 21A of the shield connection portion 2A is made of copper, the reliability is high even when used under cooling with a refrigerant such as liquid nitrogen. In addition, in the intermediate connection structure 1A, the superconducting connection part 20 is arranged on the inner peripheral side (superconducting conductor side) than the support member 21A made of copper, so that an induced current can easily flow through the superconducting connection part 20, and the superconducting conductor 202 Even when a large current flows through the support member 21A, the shunting of the induced current to the support member 21A can be reduced. Therefore, in the intermediate connection structure 1A, it is possible to reduce the loss due to the shunt (mainly Joule loss) and to secure a sufficiently large induced current (shield current). Therefore, in the intermediate connection structure 1A, the magnetic field due to the current flowing in the superconducting conductor 202 can be canceled out by the magnetic field due to the shield current, and the leakage magnetic field is also small. In particular, when the support member 21A is provided with a slit as described above, it is possible to improve the cooling effect of the connection location existing inside the support member 21A, and to reduce the loss due to the diversion.

更に、中間接続構造1Aでは、超電導接続部20と支持部材21Aとが一体に接合されていることで、ケーブル冷却時の熱収縮による応力に十分に耐え得る。そのため、この応力により超電導接続部20が損傷することを低減することができる。また、このような一体物であることで、超電導接続部20と支持部材21Aとを同時に配置することができる。特に、支持部材21Aが一対の分割片から構成されることで、所定の位置に容易に配置することができる。更に、中間接続構造1Aは、常電導接続部3を具えることで、万が一事故などによりクエンチしても、常電導接続部3を利用して事故電流を流すことが可能である。加えて、中間接続構造1Aでは、支持部材21Aが常電導層205に接続されないことから、常電導層に接続される従来の筒状部材と比較して、支持部材21Aの長手方向の長さを短くすることができる。   Furthermore, in the intermediate connection structure 1A, the superconducting connection portion 20 and the support member 21A are integrally joined, so that the intermediate connection structure 1A can sufficiently withstand the stress caused by thermal contraction during cable cooling. Therefore, damage to the superconducting connection portion 20 due to this stress can be reduced. In addition, the superconducting connection portion 20 and the support member 21A can be disposed at the same time by being such an integral body. In particular, since the support member 21A is composed of a pair of divided pieces, it can be easily arranged at a predetermined position. Furthermore, the intermediate connection structure 1A includes the normal conductive connection part 3, so that even if the intermediate connection structure 1A is quenched due to an accident or the like, it is possible to flow an accident current using the normal conductive connection part 3. In addition, in the intermediate connection structure 1A, since the support member 21A is not connected to the normal conductive layer 205, the length of the support member 21A in the longitudinal direction is longer than that of the conventional cylindrical member connected to the normal conductive layer. Can be shortened.

<変形例1>
実施形態1では、銅といった導電性材料からなる支持部材21Aを説明したが、導電性材料に代えて、強度に優れる絶縁性材料(固有抵抗値(20℃)が1.0×10-6Ω・m以上、好ましくは、2.0×10-6Ω・m以上)、例えば、エポキシ樹脂やガラス繊維強化プラスチック(GFRP)といった高強度な樹脂を利用することができる。或いは、銅(固有抵抗値(20℃)が1.7×10-8Ω・m)といった良導体に比較して電気抵抗が大きく、高強度な金属材料、例えば、Cu-Ni合金(銅に比較して103〜104倍程度の電気抵抗を有する)を利用することができる。支持部材が絶縁性材料や銅よりも高抵抗な材料から構成されることで、超電導導体202に大電流が流れた場合でも、当該支持部材に分流し難く、或いは実質的に分流せず、分流による損失を低減することができる、或いは実質的に損失を無くすことができる。
<Modification 1>
In the first embodiment, the support member 21A made of a conductive material such as copper has been described, but instead of the conductive material, an insulating material having excellent strength (specific resistance (20 ° C.) is 1.0 × 10 −6 Ω · m As described above, preferably 2.0 × 10 −6 Ω · m or more), for example, a high-strength resin such as epoxy resin or glass fiber reinforced plastic (GFRP) can be used. Alternatively, it has a large electrical resistance compared to a good conductor such as copper (specific resistance (20 ° C) is 1.7 × 10 -8 Ωm), for example, a Cu-Ni alloy (compared to copper). Having an electric resistance of about 10 3 to 10 4 times). Since the support member is made of an insulating material or a material having a higher resistance than copper, even when a large current flows through the superconducting conductor 202, it is difficult to divert to the support member or it is not substantially diverted. Loss can be reduced, or the loss can be substantially eliminated.

支持部材が絶縁性材料や高抵抗材料から構成される場合、誘導電流が実質的に流れない(分流が実質的に生じない)、或いは分流が非常に少ないため、超電導接続部は、支持部材の内周側でも外周側でもいずれに配置されていてもよい。   When the support member is made of an insulating material or a high resistance material, the induced current does not flow substantially (no shunting occurs) or the shunt current is very small. It may be arranged on either the inner peripheral side or the outer peripheral side.

なお、超電導接続部を支持部材に接合する場合、上記エポキシ樹脂やGFRPなどからなる支持部材の表面には、半田を付着し易くするために金属層(例えば、銀)を蒸着や塗布などにより形成しておくことが好ましい。   When joining a superconducting connection to a support member, a metal layer (for example, silver) is formed on the surface of the support member made of epoxy resin, GFRP, or the like by vapor deposition or coating to make it easier to attach solder. It is preferable to keep it.

<変形例2>
実施形態1では、銅といった導電性材料のみからなる支持部材21Aを説明したが、導電性材料と、上記変形例1で説明したエポキシ樹脂やGFRPなどの絶縁性材料、銅合金といった高抵抗材料とを組み合わせて支持部材を構成してもよい。例えば、図3に示す支持部材21Bは、一対の半円筒状の分割片210を組み合わせて円筒状となる組物であり、各分割片210を銅とエポキシ樹脂とで構成している。より具体的には、各分割片210は、短い半円筒状の銅片からなる一対の筒状片211をエポキシ樹脂からなる連結部212(絶縁部)により接合して、一体の分割片210としている。つまり、各分割片210は、実施形態1の支持部材を構成する分割片をその長手方向に二分割して、連結部212により接合した形状である。
<Modification 2>
In the first embodiment, the support member 21A made of only a conductive material such as copper has been described. However, the conductive material, the insulating material such as epoxy resin and GFRP described in Modification 1 above, and a high resistance material such as a copper alloy You may comprise a support member combining. For example, the support member 21B shown in FIG. 3 is an assembly that combines a pair of semi-cylindrical divided pieces 210 into a cylindrical shape, and each divided piece 210 is made of copper and epoxy resin. More specifically, each divided piece 210 is formed by joining a pair of cylindrical pieces 211 made of a short semi-cylindrical copper piece by a connecting portion 212 (insulating portion) made of epoxy resin to form an integral divided piece 210. Yes. That is, each divided piece 210 has a shape in which the divided pieces constituting the support member of Embodiment 1 are divided into two in the longitudinal direction and joined by the connecting portion 212.

上記構成を具える支持部材21Bは、絶縁性材料からなる連結部212が介在することで、銅から構成される一方の筒状片211(支持部材21Bの一端側の領域)と他方の筒状片211(同他端側の領域)との間が電気的に絶縁されて、両筒状片211間に誘導電流が実質的に流れない(分流が実質的に生じない)。そのため、超電導接続部は、上記支持部材21Bの内周側でも外周側でもいずれに配置されていても、上記分流による損失が生じ得ない。   The supporting member 21B having the above configuration has one cylindrical piece 211 (a region on one end side of the supporting member 21B) made of copper and the other cylindrical shape made by interposing a connecting portion 212 made of an insulating material. The piece 211 (the region on the other end side) is electrically insulated, and the induced current does not substantially flow between the two cylindrical pieces 211 (no shunting occurs substantially). Therefore, even if the superconducting connection portion is arranged on either the inner peripheral side or the outer peripheral side of the support member 21B, loss due to the above-mentioned diversion cannot occur.

なお、支持部材21Bでは、両分割片210の大部分を銅製とすることで、信頼性の高い中間接続構造とすることができる上に、超電導接続部を半田により容易に接合することができる。また、支持部材21Bでは、連結部212を構成する樹脂により、一対の筒状片211を簡単に一体化することができる。分割片に占める連結部の割合(長手方向の長さ)は、適宜選択することができる。両筒状片211間を絶縁できれば、連結部の長手方向の長さが短くても構わない。また、支持部材21Bでは、各分割片210に連結部212を一つ具える構成としたが、複数としてもよい。更に、連結部212を上述した銅合金により構成してもよく、この場合、分割片を銅のみとする場合に比較して、分流を低減できる。   In support member 21B, most of both divided pieces 210 are made of copper, so that a highly reliable intermediate connection structure can be obtained, and the superconducting connection portion can be easily joined by solder. Further, in the support member 21B, the pair of cylindrical pieces 211 can be easily integrated with the resin constituting the connecting portion 212. The ratio (length in the longitudinal direction) of the connecting portion in the divided pieces can be selected as appropriate. As long as the two cylindrical pieces 211 can be insulated, the length of the connecting portion in the longitudinal direction may be short. Further, in the support member 21B, each divided piece 210 is provided with one connecting portion 212, but a plurality of connecting portions 212 may be provided. Further, the connecting portion 212 may be made of the above-described copper alloy. In this case, the diversion can be reduced as compared with the case where the divided piece is made of only copper.

<変形例3>
実施形態1では、一端側から他端側に向かって厚さが一様である支持部材21Aを説明したが、部分的に厚さを変えることができる。即ち、支持部材は、薄肉部を具えた形態とすることができる。例えば、支持部材を構成する各分割片の一端側の領域と他端側の領域との間に、支持部材の周方向に沿って環状に設けられた薄肉部を具えていてもよいし、弧状に設けられた薄肉部を具えていてもよい。或いは、支持部材の長手方向に沿って帯状に設けられた薄肉部を具えていてもよい。支持部材21Aのように特に銅といった良導体で支持部材が構成される場合、このような薄肉部を具えることで、断面積が小さい部分を有することができるため、上記分流を低減して、当該分流による損失を低減することができる。
<Modification 3>
In the first embodiment, the support member 21A having a uniform thickness from one end side to the other end side has been described, but the thickness can be partially changed. That is, the support member can have a thin wall portion. For example, a thin portion provided in an annular shape along the circumferential direction of the support member may be provided between the region on one end side and the region on the other end side of each divided piece constituting the support member. It may have a thin-walled portion provided in Or you may provide the thin part provided in strip | belt shape along the longitudinal direction of a supporting member. When the support member is composed of a good conductor such as copper, like the support member 21A, by providing such a thin portion, it is possible to have a portion having a small cross-sectional area. Loss due to the diversion can be reduced.

(実施形態2)
以下、図4を参照して、実施形態2の超電導ケーブルの中間接続構造を説明する。この中間接続構造1Cの基本的構成は、実施形態1の中間接続構造1Aと同様であり、相違点は、シールド接続部2Cの構成にある。以下、この相違点を説明し、その他の構成の説明は省略する。
(Embodiment 2)
Hereinafter, the intermediate connection structure of the superconducting cable of Embodiment 2 will be described with reference to FIG. The basic configuration of the intermediate connection structure 1C is the same as that of the intermediate connection structure 1A of the first embodiment, and the difference is in the configuration of the shield connection portion 2C. Hereinafter, this difference will be described, and description of other configurations will be omitted.

シールド接続部2Cは、実施形態1のシールド接続部2Aと同様に、超電導線材から構成される超電導接続部20と、銅から構成される支持部材21Cとを具える。特に、シールド接続部2Cでは、支持部材21Cの外周面に上記超電導線材が半田により接合されている。   Similarly to the shield connection part 2A of the first embodiment, the shield connection part 2C includes a superconducting connection part 20 made of a superconducting wire and a support member 21C made of copper. In particular, in the shield connection portion 2C, the superconducting wire is joined to the outer peripheral surface of the support member 21C by solder.

支持部材21Cは、実施形態1のシールド接続部2Aと概ね同様の形状であり、一対の半円筒状の分割片を組み合わせて円筒状となる組物である。そして、各分割片の外周面に、内側線材20i及び外側線材20oが積層されて接合されている。更に、外側線材20oの外周面の一部、具体的には、支持部材21Cのテーパ状部分に沿って配置された部分からケーブルコアの超電導シールド層204までの範囲に補強材22を半田により接合して、一体化させている。補強材22の構成材料は、例えば、Cu-Ni合金やステンレス鋼などの強度に優れる材料が挙げられる。   The support member 21C has substantially the same shape as the shield connection portion 2A of the first embodiment, and is a combination that is formed into a cylindrical shape by combining a pair of semi-cylindrical divided pieces. And the inner side wire 20i and the outer side wire 20o are laminated | stacked and joined to the outer peripheral surface of each division | segmentation piece. Further, the reinforcing member 22 is joined by solder to a part of the outer peripheral surface of the outer wire 20o, specifically, from the portion disposed along the tapered portion of the support member 21C to the superconducting shield layer 204 of the cable core. And integrated. Examples of the constituent material of the reinforcing material 22 include materials having excellent strength such as a Cu—Ni alloy and stainless steel.

上記超電導接続部20の内側線材20iが超電導シールド層204の内側層204iに接合され、外側線材20oが外側層204oに接合される。超電導接続部20が超電導シールド層204に接合されることで、支持部材21Cも超電導シールド層204に固定される。   The inner wire 20i of the superconducting connection portion 20 is joined to the inner layer 204i of the superconducting shield layer 204, and the outer wire 20o is joined to the outer layer 204o. The superconducting connection portion 20 is joined to the superconducting shield layer 204, so that the support member 21C is also fixed to the superconducting shield layer 204.

上記構成を具える中間接続構造1Cは、実施形態1の中間接続構造1Aと同様に、シールド接続部2Cと常電導接続部3とが物理的に接続されていない別部材であることで、接続時の作業性に優れる。また、超電導接続部20と支持部材21Cとが一体化されていることで、ケーブルコアの熱収縮時の応力により超電導接続部20が損傷することを低減できる。特に、中間接続構造1Cでは、補強材22を具えることで、超電導接続部20の折損などを効果的に防止することができる。   The intermediate connection structure 1C having the above configuration is connected to the shield connection part 2C and the normal conductive connection part 3 in a separate member that is not physically connected in the same manner as the intermediate connection structure 1A of the first embodiment. Excellent workability at the time. In addition, since the superconducting connection part 20 and the support member 21C are integrated, it is possible to reduce damage to the superconducting connection part 20 due to stress during thermal contraction of the cable core. In particular, the intermediate connection structure 1C can effectively prevent breakage of the superconducting connection portion 20 by including the reinforcing member 22.

但し、中間接続部1Cでは、支持部材21Cが導電性材料により構成されることで、大電流を使用した場合、分流による損失が生じ得る。そこで、大電流の用途では、実施形態1で説明したように、超電導接続部20を内周側、支持部材を外周側に配置させたり、変形例1,2で説明したように支持部材の少なくとも一部を高抵抗材料、特に絶縁性材料により構成することが好ましい。   However, in the intermediate connection portion 1C, the support member 21C is made of a conductive material, so that when a large current is used, a loss due to shunting may occur. Therefore, in the application of high current, as described in the first embodiment, the superconducting connection portion 20 is disposed on the inner peripheral side, the support member is disposed on the outer peripheral side, or at least the support member as described in the first and second modifications. It is preferable that a part is made of a high resistance material, particularly an insulating material.

上述した実施形態は、本発明の要旨を逸脱することなく、適宜変更することが可能であり、上述した構成に限定されるものではない。   The above-described embodiment can be appropriately changed without departing from the gist of the present invention, and is not limited to the above-described configuration.

本発明超電導ケーブルの中間接続構造は、超電導ケーブル同士の接続部分に好適に利用することができる。   The intermediate connection structure of the superconducting cable of the present invention can be suitably used for a connecting portion between the superconducting cables.

1A,1C 中間接続構造 2A,2C シールド接続部 3 常電導接続部
10 接続スリーブ 11 接続用超電導線材 12 補強絶縁層 13 電界遮蔽層
13a カーボン層 13b 銅層
20 超電導接続部 20i 内側線材 20o 外側線材 21A,21B,21C 支持部材
22 補強材
30 端子
100 超電導ケーブル 101 ケーブルコア 102 断熱管 102i 内管
102o 外管 103 冷媒 104 防食層
201 フォーマ 202 超電導導体 203 電気絶縁層 204 超電導シールド層
204i 内側層 204o 外側層 205 常電導層 206 保護層
210 分割片 211 筒状片 212 連結部
1A, 1C intermediate connection structure 2A, 2C shield connection 3 normal conduction connection
10 Connection sleeve 11 Superconducting wire for connection 12 Reinforcing insulation layer 13 Electric field shielding layer
13a Carbon layer 13b Copper layer
20 Superconducting connection 20i Inner wire 20o Outer wire 21A, 21B, 21C Support member
22 Reinforcing material
30 terminals
100 Superconducting cable 101 Cable core 102 Insulated tube 102i Inner tube
102o Outer tube 103 Refrigerant 104 Anticorrosion layer
201 Former 202 Superconducting conductor 203 Electrical insulation layer 204 Superconducting shield layer
204i Inner layer 204o Outer layer 205 Normal conducting layer 206 Protective layer
210 Dividing piece 211 Cylindrical piece 212 Connecting part

Claims (7)

超電導導体の外周に順に電気絶縁層、超電導シールド層、常電導層を具える一対の超電導ケーブル同士を接続する超電導ケーブルの中間接続構造であって、
超電導材料から構成されて、前記各超電導ケーブルの超電導シールド層同士を接続する超電導接続部と、
常電導材料から構成されて、前記各超電導ケーブルの常電導層同士を接続する常電導接続部と、
前記常電導層に接続されず、前記超電導接続部が接合された支持部材とを具えることを特徴とする超電導ケーブルの中間接続構造。
An intermediate connection structure of superconducting cables for connecting a pair of superconducting cables including an electric insulating layer, a superconducting shield layer, and a normal conducting layer in order on the outer periphery of the superconducting conductor,
A superconducting connection portion that is composed of a superconducting material and connects the superconducting shield layers of each superconducting cable;
A normal conducting connection portion that is composed of a normal conducting material and connects the normal conducting layers of each superconducting cable;
An intermediate connection structure for a superconducting cable, comprising: a support member that is not connected to the normal conducting layer and to which the superconducting connecting portion is joined.
前記支持部材は、銅から構成されており、
前記超電導接続部は、前記支持部材における超電導導体側に接合されていることを特徴とする請求項1に記載の超電導ケーブルの中間接続構造。
The support member is made of copper,
2. The intermediate connection structure for a superconducting cable according to claim 1, wherein the superconducting connection portion is joined to a superconducting conductor side of the support member.
前記支持部材の少なくとも一部は、固有抵抗値(20℃)が1.0×10-6Ω・m以上の材料から構成されていることを特徴とする請求項1に記載の超電導ケーブルの中間接続構造。 2. The intermediate connection structure for a superconducting cable according to claim 1, wherein at least a part of the support member is made of a material having a specific resistance value (20 ° C.) of 1.0 × 10 −6 Ω · m or more. . 前記支持部材は、その一端側の領域と他端側の領域との間に、固有抵抗値(20℃)が1.0×10-6Ω・m以上の材料から構成された絶縁部が介在されており、前記両領域が前記絶縁部により電気的に絶縁されていることを特徴とする請求項3に記載の超電導ケーブルの中間接続構造。 The support member has an insulating portion made of a material having a specific resistance value (20 ° C.) of 1.0 × 10 −6 Ω · m or more interposed between a region on one end side and a region on the other end side. 4. The superconducting cable intermediate connection structure according to claim 3, wherein the two regions are electrically insulated by the insulating portion. 前記支持部材は、一対の半割れ片を組み合わせて筒状体となる組物であることを特徴とする請求項1〜4のいずれか1項に記載の超電導ケーブルの中間接続構造。   5. The intermediate connection structure for a superconducting cable according to claim 1, wherein the support member is a braid that is formed by combining a pair of half-breaking pieces to form a cylindrical body. 前記支持部材は、筒状体であって、その周方向に沿って設けられた弧状のスリットを具えることを特徴とする請求項1〜5のいずれか1項に記載の超電導ケーブルの中間接続構造。   6. The intermediate connection of a superconducting cable according to claim 1, wherein the support member is a cylindrical body, and includes an arc-shaped slit provided along a circumferential direction thereof. Construction. 前記支持部材は、長手方向の一部の厚さが他部の厚さよりも薄い薄肉部を有することを特徴とする請求項1〜6のいずれか1項に記載の超電導ケーブルの中間接続構造。   The intermediate connection structure for a superconducting cable according to any one of claims 1 to 6, wherein the support member has a thin portion in which a part of the thickness in the longitudinal direction is thinner than a thickness of the other part.
JP2009190536A 2009-08-19 2009-08-19 Intermediate connection structure of superconducting cable Expired - Fee Related JP5416509B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009190536A JP5416509B2 (en) 2009-08-19 2009-08-19 Intermediate connection structure of superconducting cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009190536A JP5416509B2 (en) 2009-08-19 2009-08-19 Intermediate connection structure of superconducting cable

Publications (2)

Publication Number Publication Date
JP2011045169A true JP2011045169A (en) 2011-03-03
JP5416509B2 JP5416509B2 (en) 2014-02-12

Family

ID=43832169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009190536A Expired - Fee Related JP5416509B2 (en) 2009-08-19 2009-08-19 Intermediate connection structure of superconducting cable

Country Status (1)

Country Link
JP (1) JP5416509B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013157513A1 (en) * 2012-04-19 2013-10-24 古河電気工業株式会社 Connection structure for superconducting cable
WO2014132765A1 (en) * 2013-02-28 2014-09-04 住友電気工業株式会社 Super-electroconductive cable, covered heat-insulated pipe, and method of producing covered heat-insulated pipe
CN104078162A (en) * 2013-03-29 2014-10-01 昭和电线电缆系统株式会社 Tail structural body for superconducting cable
KR20150032645A (en) * 2013-09-19 2015-03-27 넥쌍 Superconducting cable joint
US9042951B2 (en) 2012-05-28 2015-05-26 Furukawa Electric Co., Ltd. Intermediate connection unit of superconducting cables
WO2015136813A1 (en) * 2014-03-13 2015-09-17 住友電気工業株式会社 Superconducting cable intermediate connection member and superconducting cable intermediate connection structure
CN110085368A (en) * 2013-07-25 2019-08-02 尼克桑斯公司 The method of conductive connection for two hyperconductive cables
CN114242334A (en) * 2021-12-16 2022-03-25 深圳供电局有限公司 An intermediate joint of a three-phase coaxial superconducting AC cable

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005353379A (en) * 2004-06-09 2005-12-22 Sumitomo Electric Ind Ltd Intermediate connection structure of superconductive cable
JP2008243699A (en) * 2007-03-28 2008-10-09 Sumitomo Electric Ind Ltd Superconducting cable connection structure and superconducting cable connection method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005353379A (en) * 2004-06-09 2005-12-22 Sumitomo Electric Ind Ltd Intermediate connection structure of superconductive cable
JP2008243699A (en) * 2007-03-28 2008-10-09 Sumitomo Electric Ind Ltd Superconducting cable connection structure and superconducting cable connection method

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103688433A (en) * 2012-04-19 2014-03-26 古河电气工业株式会社 Connection structure of superconducting cable
US9123455B2 (en) 2012-04-19 2015-09-01 Furukawa Electric Co., Ltd. Connection structure for superconducting cables
WO2013157513A1 (en) * 2012-04-19 2013-10-24 古河電気工業株式会社 Connection structure for superconducting cable
JPWO2013157513A1 (en) * 2012-04-19 2015-12-21 古河電気工業株式会社 Superconducting cable connection structure
CN103688433B (en) * 2012-04-19 2017-05-24 古河电气工业株式会社 Connection structure for superconducting cable
US9042951B2 (en) 2012-05-28 2015-05-26 Furukawa Electric Co., Ltd. Intermediate connection unit of superconducting cables
WO2014132765A1 (en) * 2013-02-28 2014-09-04 住友電気工業株式会社 Super-electroconductive cable, covered heat-insulated pipe, and method of producing covered heat-insulated pipe
CN104078162A (en) * 2013-03-29 2014-10-01 昭和电线电缆系统株式会社 Tail structural body for superconducting cable
CN110085368A (en) * 2013-07-25 2019-08-02 尼克桑斯公司 The method of conductive connection for two hyperconductive cables
KR20150032645A (en) * 2013-09-19 2015-03-27 넥쌍 Superconducting cable joint
JP2015060836A (en) * 2013-09-19 2015-03-30 ネクサン Superconducting cable joint
KR102280963B1 (en) * 2013-09-19 2021-07-23 넥쌍 Superconducting cable joint
WO2015136813A1 (en) * 2014-03-13 2015-09-17 住友電気工業株式会社 Superconducting cable intermediate connection member and superconducting cable intermediate connection structure
KR101823814B1 (en) * 2014-03-13 2018-01-30 스미토모 덴키 고교 가부시키가이샤 Joint part for superconducting cable and joint structure for superconducting cable
JP2015177605A (en) * 2014-03-13 2015-10-05 住友電気工業株式会社 Intermediate connection member of superconducting cable and intermediate connection structure of superconducting cable
CN114242334A (en) * 2021-12-16 2022-03-25 深圳供电局有限公司 An intermediate joint of a three-phase coaxial superconducting AC cable
CN114242334B (en) * 2021-12-16 2024-05-24 深圳供电局有限公司 Intermediate joint of three-phase coaxial superconducting alternating current cable

Also Published As

Publication number Publication date
JP5416509B2 (en) 2014-02-12

Similar Documents

Publication Publication Date Title
JP5416509B2 (en) Intermediate connection structure of superconducting cable
JP4300517B2 (en) Superconducting cable
JP4283710B2 (en) Intermediate connection of superconducting cable
CN101361143B (en) superconducting cable
JP4374613B2 (en) Intermediate connection structure of superconducting cable
JP2004265715A (en) Terminal structure of DC superconducting cable
JP2015162367A (en) Terminal structure of superconducting cable and manufacturing method therefor
JP6364502B2 (en) Superconducting coil
JP3691692B2 (en) Superconducting cable
JP2005012927A (en) Phase branching structure of multiphase superconducting cable
WO2007122670A1 (en) Superconducting cable
JP5268805B2 (en) Superconducting wire connection structure and superconducting coil device
JP5003942B2 (en) Superconducting cable and superconducting cable connection
JP4751424B2 (en) Superconducting cable core connection structure
JP2006141186A (en) Superconducting cable connection structure
JP5252324B2 (en) Superconducting power transmission system
JP4947434B2 (en) Superconducting conductor
JP4716160B2 (en) Superconducting cable
JP5418772B2 (en) Superconducting cable
JP5829634B2 (en) Superconducting cable terminal structure
JP5252323B2 (en) Room-temperature insulated superconducting cable and manufacturing method thereof
JP4135184B2 (en) Superconducting conductor
JP2002008459A (en) Superconducting cable
JPWO2020067335A1 (en) Oxide superconducting coil and its manufacturing method
JP2013178960A (en) Connecting member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120522

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131115

R150 Certificate of patent or registration of utility model

Ref document number: 5416509

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees