JP2011025298A - Gas shielded arc welding method - Google Patents
Gas shielded arc welding method Download PDFInfo
- Publication number
- JP2011025298A JP2011025298A JP2009175882A JP2009175882A JP2011025298A JP 2011025298 A JP2011025298 A JP 2011025298A JP 2009175882 A JP2009175882 A JP 2009175882A JP 2009175882 A JP2009175882 A JP 2009175882A JP 2011025298 A JP2011025298 A JP 2011025298A
- Authority
- JP
- Japan
- Prior art keywords
- welding
- flux
- wire
- value
- shielded arc
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000003466 welding Methods 0.000 title claims abstract description 162
- 238000000034 method Methods 0.000 title claims abstract description 19
- 150000001875 compounds Chemical class 0.000 claims abstract description 16
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims abstract description 14
- 229910002092 carbon dioxide Inorganic materials 0.000 claims abstract description 7
- 239000001569 carbon dioxide Substances 0.000 claims abstract description 7
- 229910000831 Steel Inorganic materials 0.000 claims description 36
- 239000010959 steel Substances 0.000 claims description 36
- 239000007789 gas Substances 0.000 claims description 24
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 21
- 229910052802 copper Inorganic materials 0.000 claims description 21
- 239000010949 copper Substances 0.000 claims description 21
- 230000004907 flux Effects 0.000 claims description 21
- 239000001257 hydrogen Substances 0.000 claims description 21
- 229910052739 hydrogen Inorganic materials 0.000 claims description 21
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 20
- 238000007747 plating Methods 0.000 claims description 19
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 18
- 238000006243 chemical reaction Methods 0.000 claims description 13
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 10
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 9
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 8
- 150000002222 fluorine compounds Chemical class 0.000 claims description 8
- 229910000640 Fe alloy Inorganic materials 0.000 claims description 3
- 239000012535 impurity Substances 0.000 claims description 3
- 238000009628 steelmaking Methods 0.000 claims description 2
- 229910052748 manganese Inorganic materials 0.000 abstract description 5
- 229910052710 silicon Inorganic materials 0.000 abstract description 5
- 229910052750 molybdenum Inorganic materials 0.000 abstract description 4
- 229910052799 carbon Inorganic materials 0.000 abstract description 2
- 229910052751 metal Inorganic materials 0.000 description 46
- 239000002184 metal Substances 0.000 description 46
- 238000012360 testing method Methods 0.000 description 37
- 239000002893 slag Substances 0.000 description 33
- 239000011734 sodium Substances 0.000 description 14
- 239000011324 bead Substances 0.000 description 12
- 239000011572 manganese Substances 0.000 description 12
- 239000010936 titanium Substances 0.000 description 9
- 238000005538 encapsulation Methods 0.000 description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 238000005336 cracking Methods 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 230000000149 penetrating effect Effects 0.000 description 4
- PUZPDOWCWNUUKD-UHFFFAOYSA-M sodium fluoride Chemical compound [F-].[Na+] PUZPDOWCWNUUKD-UHFFFAOYSA-M 0.000 description 4
- 238000001816 cooling Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 229910052700 potassium Inorganic materials 0.000 description 3
- 239000004576 sand Substances 0.000 description 3
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 3
- 229910052845 zircon Inorganic materials 0.000 description 3
- GFQYVLUOOAAOGM-UHFFFAOYSA-N zirconium(iv) silicate Chemical compound [Zr+4].[O-][Si]([O-])([O-])[O-] GFQYVLUOOAAOGM-UHFFFAOYSA-N 0.000 description 3
- 229910018134 Al-Mg Inorganic materials 0.000 description 2
- 229910018467 Al—Mg Inorganic materials 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 229910000616 Ferromanganese Inorganic materials 0.000 description 2
- 229910000519 Ferrosilicon Inorganic materials 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- 239000004115 Sodium Silicate Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000009863 impact test Methods 0.000 description 2
- DALUDRGQOYMVLD-UHFFFAOYSA-N iron manganese Chemical compound [Mn].[Fe] DALUDRGQOYMVLD-UHFFFAOYSA-N 0.000 description 2
- PYLLWONICXJARP-UHFFFAOYSA-N manganese silicon Chemical compound [Si].[Mn] PYLLWONICXJARP-UHFFFAOYSA-N 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 235000019353 potassium silicate Nutrition 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 235000013024 sodium fluoride Nutrition 0.000 description 2
- 239000011775 sodium fluoride Substances 0.000 description 2
- 229910052911 sodium silicate Inorganic materials 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N titanium dioxide Inorganic materials O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 229910001309 Ferromolybdenum Inorganic materials 0.000 description 1
- 239000004111 Potassium silicate Substances 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- GEIAQOFPUVMAGM-UHFFFAOYSA-N ZrO Inorganic materials [Zr]=O GEIAQOFPUVMAGM-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- DLHONNLASJQAHX-UHFFFAOYSA-N aluminum;potassium;oxygen(2-);silicon(4+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[Al+3].[Si+4].[Si+4].[Si+4].[K+] DLHONNLASJQAHX-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- NNHHDJVEYQHLHG-UHFFFAOYSA-N potassium silicate Chemical compound [K+].[K+].[O-][Si]([O-])=O NNHHDJVEYQHLHG-UHFFFAOYSA-N 0.000 description 1
- 229910052913 potassium silicate Inorganic materials 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000007665 sagging Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 238000005491 wire drawing Methods 0.000 description 1
Landscapes
- Arc Welding In General (AREA)
- Nonmetallic Welding Materials (AREA)
Abstract
Description
本発明は490〜520MPa級高張力鋼のガスシールドアーク溶接方法に関し、特に全姿勢溶接における溶接作業性に優れるフラックス入りワイヤを用いて大入熱および高パス間温度の溶接施工条件で溶接するさい、高能率で機械的性能の優れた溶接金属を得ることができるガスシールドアーク溶接方法に関する。 The present invention relates to a gas shielded arc welding method for 490 to 520 MPa class high-strength steel, and in particular, when welding with high heat input and high pass temperature welding conditions using a flux-cored wire excellent in welding workability in all-position welding. The present invention relates to a gas shielded arc welding method capable of obtaining a weld metal with high efficiency and excellent mechanical performance.
近年、建築鉄骨分野において、溶接施工のさらなる能率向上を図るため、大入熱および高パス間温度の溶接施工条件に対応するガスシールドアーク溶接用ソリッドワイヤが開発され、JIS Z3312 YGW18に規定されている。このガスシールドアーク溶接用ソリッドワイヤは、490MPa級高張力鋼に対して、最大入熱40kJ/cmで最高パス間温度が350℃の溶接施工条件が許容される。また520MPa級高張力鋼に対しては、最大入熱30kJ/cmで最高パス間温度が250℃の溶接施工条件が許容される。 In recent years, in order to further improve the efficiency of welding in the building steel frame field, a solid wire for gas shielded arc welding corresponding to welding conditions with high heat input and high interpass temperature has been developed, and is specified in JIS Z3312 YGW18. Yes. This solid wire for gas shielded arc welding allows welding conditions with a maximum heat input of 40 kJ / cm and a maximum interpass temperature of 350 ° C. with respect to 490 MPa class high strength steel. For 520 MPa class high strength steel, welding conditions with a maximum heat input of 30 kJ / cm and a maximum interpass temperature of 250 ° C. are allowed.
このような大入熱、高パス間温度の溶接施工条件に対応したガスシールドアーク溶接用ソリッドワイヤは、例えば特開平10−230387号公報(特許文献1)、特開平11−90678号公報(特許文献2)および特開2001−287086号公報(特許文献3)等に示されている。これらによると大入熱、高パス間温度の溶接施工条件においても強度を確保するために、Si、Mnや必要に応じてMo、Cr等を多く含み、靭性を確保するためにTiおよびBを含んでいる。 For example, Japanese Patent Laid-Open No. 10-230387 (Patent Document 1) and Japanese Patent Laid-Open No. 11-90678 (Patent Document 1) disclose a solid wire for gas shielded arc welding corresponding to such welding conditions of high heat input and high interpass temperature. Document 2) and Japanese Patent Application Laid-Open No. 2001-287086 (Patent Document 3). According to these, in order to ensure the strength even under welding conditions of large heat input and high pass temperature, it contains a large amount of Si, Mn, Mo, Cr, etc. as necessary, and Ti and B to ensure toughness. Contains.
また、大入熱、高パス間温度の溶接施工条件においてもスラグ剥離性を確保するために、特開2006−26643号公報(特許文献4)、特開2006−88187号公報(特許文献5)および特開2007−301597号公報(特許文献6)等にあるように、生成スラグのスラグ剥離性を良好にする技術の開示がある。 Moreover, in order to ensure slag peelability even under welding conditions with high heat input and high interpass temperature, JP 2006-26643 A (Patent Document 4), JP 2006-88187 A (Patent Document 5). As disclosed in Japanese Patent Application Laid-Open No. 2007-301597 (Patent Document 6) and the like, there is a disclosure of a technique for improving the slag peelability of the generated slag.
しかし、前記特許文献1〜6は、ガスシールドアーク溶接用ソリッドワイヤであるのでスパッタの発生量が多く、また、特に立向上進姿勢溶接においては溶融メタルが垂れやすいという問題がある。 However, since Patent Documents 1 to 6 are solid wires for gas shielded arc welding, there is a large amount of spatter generation, and there is a problem that the molten metal tends to sag particularly in the standing improvement posture welding.
一方、スパッタ発生量を低くできるガスシールドアーク溶接用フラックス入りワイヤを用いて、大入熱、高パス間温度の溶接施工条件で機械的性能を満足する技術が特開2005−279683号公報(特許文献7)に開示されている。しかし、特許文献7に記載のガスシールドアーク溶接用フラックス入りワイヤは、スラグ剤が非常に少ない金属粉(メタル)系フラックス入りであるので、立向上進姿勢溶接においてはガスシールドアーク溶接用ソリッドワイヤと同様に溶融メタルが垂れやすいという問題がある。さらに、スパッタ発生量についても満足できるものではなかった。 On the other hand, Japanese Patent Application Laid-Open No. 2005-279683 (Patent Document) discloses a technique that satisfies the mechanical performance under the welding conditions of high heat input and high pass temperature using a flux-cored wire for gas shield arc welding that can reduce the amount of spatter generated. Reference 7). However, the flux-cored wire for gas shielded arc welding described in Patent Document 7 is a metal powder based flux with very little slag agent. Similar to the above, there is a problem that the molten metal tends to sag. Furthermore, the amount of spatter generated was not satisfactory.
本発明は、大入熱、高パス間温度の溶接施工条件を採用することによって溶接能率を向上し、スパッタ発生量が少なく全姿勢溶接においても溶接作業性が良好で、溶接金属の機械的性能が優れるなど高品質な溶接部が得られるガスシールドアーク溶接方法を提供することを目的とする。 The present invention improves welding efficiency by adopting welding conditions with high heat input and high interpass temperature, with low spatter generation and good welding workability in all position welding, and mechanical performance of weld metal An object of the present invention is to provide a gas shielded arc welding method capable of obtaining a high-quality welded portion such as excellent in quality.
本発明の要旨は、鋼製外皮内にフラックスを充填したフラックス入りワイヤを使用するガスシールドアーク溶接方法において、ワイヤ全質量に対する質量%で、C:0.03〜0.10%、Si:0.4〜1.0%、Mn:1.7〜2.8%、Mo:0.1〜0.3%、Mg:0.35〜0.65%、Ti酸化物のTiO2換算値:4.8〜6.5%、Si酸化物のSiO2換算値:0.3〜0.8%、Zr酸化物のZrO2換算値:0.2〜0.5%、AlのAl2O3換算値およびAl2O3の1種または2種の合計:0.4〜1.2%、Na化合物およびK化合物のNa2O換算値およびK2O換算値の1種または2種の合計:0.06〜0.20%を含有し、弗素化合物のF換算値が0.03%以下で、残部は鉄粉、鉄合金のFe分、鋼製外皮のFe分および不可避不純物からなるフラックス入りワイヤを用いて、溶接入熱量20〜40kJ/cm、パス間温度200〜350℃の溶接施工条件で炭酸ガスシールドアーク溶接することを特徴とするガスシールドアーク溶接方法にある。ここにおいて、フラックス入りワイヤは製鋼外皮に貫通した合わせ目が無く、ワイヤ表面に厚さ0.3〜0.9μmの銅めっきを有すること、また、フラックス入りワイヤは全水素量が20ppm以下であることも特徴とする。 The gist of the present invention is that, in a gas shielded arc welding method using a flux-cored wire in which a steel sheath is filled with a flux, C: 0.03 to 0.10%, Si: 0 with respect to the total mass of the wire. 0.4 to 1.0%, Mn: 1.7 to 2.8%, Mo: 0.1 to 0.3%, Mg: 0.35 to 0.65%, TiO 2 equivalent value of Ti oxide: 4.8 to 6.5%, SiO 2 conversion value of Si oxides: 0.3~0.8%, ZrO 2 conversion value of Zr oxide: 0.2 to 0.5%, Al of Al 2 O 3 one or of the sum of the converted values and Al 2 O 3: 0.4~1.2%, the terms of Na 2 O values and K 2 O conversion value of Na compounds and K compounds one or two Total: 0.06 to 0.20% contained, F compound value of fluorine compound is 0.03% or less, balance is iron powder, iron alloy Carbon dioxide shielded arc welding under the welding conditions of welding heat input of 20-40 kJ / cm and interpass temperature of 200-350 ° C. using a flux-cored wire consisting of Fe content of steel, Fe content of steel outer sheath and inevitable impurities A gas shielded arc welding method characterized by Here, the flux-cored wire has no seam penetrated through the steel-making outer shell, and has a copper plating with a thickness of 0.3 to 0.9 μm on the wire surface, and the flux-cored wire has a total hydrogen content of 20 ppm or less. It is also characterized.
本発明のガスシールドアーク溶接方法によれば、490〜520MPa級高張力鋼に対し、大入熱および高パス間温度の溶接施工条件で溶接を行うのに際し、用いるフラックス入りワイヤの成分組成を適正にすることによって、全姿勢溶接においてもスパッタ発生量が少なく良好な溶接作業性が得られる。その結果、溶接パス数の減少および各パス毎の冷却待ち時間の短縮が図れることによる高能率溶接が達成でき、かつ機械的性能の良好な溶接部を得ることができる。 According to the gas shielded arc welding method of the present invention, the component composition of the flux-cored wire to be used is appropriate when welding is performed on 490 to 520 MPa class high strength steel under welding conditions of high heat input and high pass temperature. By doing so, spatter generation amount is small even in all position welding, and good welding workability can be obtained. As a result, it is possible to achieve high-efficiency welding by reducing the number of welding passes and shortening the cooling waiting time for each pass, and it is possible to obtain a welded portion with good mechanical performance.
本発明者らは、全姿勢溶接で溶接作業性が良好であり、大入熱および高パス間温度の溶接施工条件で高能率に溶接した場合においても機械的性能の優れた溶接金属を得るべく、フラックス入りワイヤの成分組成について種々検討を行った。その結果、最大入熱量40kJ/cm、最高パス間温度350℃という高能率で溶接施工が可能な条件で多層盛溶接した場合の強度および靭性を確保するためには、用いるフラックス入りワイヤのC、Si、Mn、Moを適量とし、強脱酸剤であるMgを比較的多く含みTiO2を適量含み、さらに弗素化合物を低減することことが効果的であることが判明した。 In order to obtain a weld metal having excellent mechanical performance even when welding is performed with high efficiency under welding conditions of high heat input and high pass temperature, the present inventors have good welding workability in all-position welding. Various studies were made on the component composition of the flux-cored wire. As a result, in order to ensure the strength and toughness when performing multi-layer welding under conditions where welding can be performed at a high efficiency of a maximum heat input amount of 40 kJ / cm and a maximum interpass temperature of 350 ° C., It has been found effective to use Si, Mn, and Mo in appropriate amounts, to contain relatively large amounts of Mg, which is a strong deoxidizer, to contain TiO 2 in appropriate amounts, and to further reduce fluorine compounds.
また、全姿勢溶接における溶接作業性は、ワイヤのフラックス中にTiO2、SiO2、ZrO2、Al2O3、Na2OおよびK2Oを適量含有することによって良好になることを見出した。さらに、ワイヤ表面の銅めっき厚さを限定することによって高電流の溶接施工条件においてもアークが安定し、ワイヤの全水素量を限定することによって多層盛溶接における耐割れ性を向上させることができた。
以下、本発明のガスシールドアーク溶接方法の施工条件および用いるフラックス入りワイヤ成分組成の限定理由について説明する。
Moreover, weldability in all position welding has been found to be a good by containing an appropriate amount of TiO 2, SiO 2, ZrO 2 , Al 2 O 3, Na 2 O and K 2 O in the flux in the wire . Furthermore, by limiting the copper plating thickness on the wire surface, the arc is stable even under high current welding conditions, and by limiting the total hydrogen content of the wire, crack resistance in multi-layer welding can be improved. It was.
Hereinafter, the construction conditions of the gas shield arc welding method of the present invention and the reasons for limiting the flux-cored wire component composition to be used will be described.
[溶接入熱量:20〜40kJ/cm]
溶接入熱量が大きくなれば、1パス当りの溶着量が増すので溶接能率が向上する。溶接入熱量が20kJ/cm未満であると1パス当りの溶着量が少ないので溶接パス数が多くなり溶接能率が低下する。一方、溶接入熱量が大きいと冷却速度が遅くなって、一般的に溶接金属の組織が粗大化して強度および靭性が低下する。また、高温割れも生じやすくなる。後述する本発明に用いるフラックス入りワイヤを用いても40kJ/cmを超えた溶接入熱量では強度および靭性が確保できず、高温割れも生じやすくなる。したがって、溶接入熱量は20〜40kJ/cmとする。
[Welding heat input: 20 to 40 kJ / cm]
If the welding heat input is increased, the welding amount per pass increases, so that the welding efficiency is improved. If the welding heat input is less than 20 kJ / cm, the amount of welding per pass is small, so the number of welding passes increases and the welding efficiency decreases. On the other hand, when the welding heat input is large, the cooling rate is slowed, and generally the structure of the weld metal is coarsened and the strength and toughness are lowered. Moreover, it becomes easy to produce a hot crack. Even if the flux-cored wire used in the present invention to be described later is used, the strength and toughness cannot be ensured with a heat input of welding exceeding 40 kJ / cm, and hot cracking is likely to occur. Therefore, the welding heat input is 20 to 40 kJ / cm.
[パス間温度:200〜350℃]
パス間温度も溶接入熱量と同様に溶接能率に影響する。パス間温度を低くすると、特に溶接長の短い部材の溶接においてはパス毎の冷却待ち時間が長くなるので溶接能率が低下する。パス間温度が200℃未満であると本発明が目的とする溶接能率向上の効果が得られない。一方、パス間温度が350℃を超えると強度および靭性が著しく低下する。したがって、パス間温度は200〜350℃とする。
[Interpass temperature: 200-350 ° C]
The temperature between passes affects the welding efficiency as well as the welding heat input. When the temperature between passes is lowered, particularly in welding of a member having a short welding length, the cooling waiting time for each pass becomes long, so that the welding efficiency is lowered. If the interpass temperature is less than 200 ° C., the effect of improving the welding efficiency which is the object of the present invention cannot be obtained. On the other hand, when the interpass temperature exceeds 350 ° C., the strength and toughness are significantly reduced. Therefore, the interpass temperature is 200 to 350 ° C.
また本発明のガスシールドアーク溶接方法においてはシールドガスとして炭酸ガスを使用する。炭酸ガスはアルゴンを主成分とする混合ガスよりも安価であり、シールドガスとして炭酸ガスを使用した場合においてもスパッタの発生が少ないというフラックス入りワイヤの利点を発揮させることができるからである。このようなことから本発明に使用するフラックス入りワイヤはシールドガスとして炭酸ガスを使用したときに性能を最大限に発揮できるような成分となっている。 In the gas shielded arc welding method of the present invention, carbon dioxide is used as the shielding gas. This is because carbon dioxide gas is cheaper than a mixed gas containing argon as a main component, and even when carbon dioxide gas is used as a shielding gas, the advantage of the flux-cored wire that less spatter is generated can be exhibited. For these reasons, the flux-cored wire used in the present invention is a component that can exhibit its performance to the maximum when carbon dioxide is used as the shielding gas.
[C:0.03〜0.10質量%]
Cは、溶接金属の焼入れ性を高め、強度および靭性を確保するうえで重要な元素である。Cは鋼製外皮とフラックスの一方または両方に含有させるがこれらの合計が、ワイヤ全質量に対し(以下の各成分についても同様)0.03質量%(以下、%という)未満であると、必要な強度と靭性が得られない。一方、0.10%を超えると溶接金属の高温割れ感受性が高くなる。したがってCは0.03〜0.10%とする。
[C: 0.03-0.10 mass%]
C is an important element for enhancing the hardenability of the weld metal and ensuring strength and toughness. C is contained in one or both of the steel outer sheath and the flux, but the total of these is less than 0.03% by mass (hereinafter referred to as “%”) with respect to the total mass of the wire (the same applies to the following components). Necessary strength and toughness cannot be obtained. On the other hand, when it exceeds 0.10%, the hot cracking sensitivity of the weld metal becomes high. Therefore, C is 0.03 to 0.10%.
[Si:0.4〜1.0%]
Siは、溶接金属の酸素量を低下させて靭性の向上に重要な元素である。しかしながら、多くなりすぎると大入熱、高パス間温度での溶接施工条件では溶接金属を脆化させる。また、大入熱、高パス間温度での溶接施工条件ではSiの消耗が多いが、Siが適量溶接金属に歩留まって強度を確保する必要がある。鋼製外皮とフラックスの一方または両方に含有するSiの合計が0.4%未満であると、所定の強度が得られず靭性も低下する。一方、1.0%を超えると溶接金属の靭性が悪くなる。したがってSiは0.4〜1.0%とする。Siはフラックス成分としては、フェロシリコン、金属Si、シリコンマンガンなどとして添加される。
[Si: 0.4 to 1.0%]
Si is an important element for improving the toughness by reducing the oxygen content of the weld metal. However, when the amount is too large, the weld metal is embrittled under welding conditions with high heat input and high pass temperature. In addition, although there is a large amount of Si consumption under the welding conditions with high heat input and high interpass temperature, it is necessary to secure the strength by yielding an appropriate amount of Si in the weld metal. When the total amount of Si contained in one or both of the steel outer shell and the flux is less than 0.4%, a predetermined strength cannot be obtained and the toughness is also lowered. On the other hand, if it exceeds 1.0%, the toughness of the weld metal becomes worse. Therefore, Si is 0.4 to 1.0%. Si is added as a flux component such as ferrosilicon, metal Si, or silicon manganese.
[Mn:1.7〜2.8%]
Mnは、溶接金属の酸素量を下げて靭性を得るための重要な元素である。また、強度の改善にも有効な元素である。さらに、高融点のMnSを形成して硫化物が溶接金属の粒界に晶出するのを防止し割れを抑制する。反面、多くなりすぎると大入熱、高パス間温度の溶接施工条件では、Siと同様に溶接金属を脆化させる。鋼製外皮とフラックスの一方または両方に含有するMnの合計が1.7%未満であると、所定の強度と安定した靭性が得られない。一方、2.8%を超えると溶接金属の靭性が低下する。したがってMnは1.7〜2.8%とする。Mnはフラックス成分としては、フェロマンガン、金属Mn、シリコンマンガンなどとして添加される。
[Mn: 1.7 to 2.8%]
Mn is an important element for obtaining toughness by lowering the oxygen content of the weld metal. It is also an effective element for improving the strength. Furthermore, MnS having a high melting point is formed to prevent the sulfide from crystallizing out at the grain boundaries of the weld metal and to suppress cracking. On the other hand, if the amount is too large, the weld metal is embrittled under the welding conditions of high heat input and high-pass temperature in the same manner as Si. When the total amount of Mn contained in one or both of the steel outer shell and the flux is less than 1.7%, the predetermined strength and stable toughness cannot be obtained. On the other hand, if it exceeds 2.8%, the toughness of the weld metal decreases. Therefore, Mn is set to 1.7 to 2.8%. Mn is added as a flux component as ferromanganese, metal Mn, silicon manganese or the like.
[Mo:0.1〜0.3%]
Moは、溶接金属の焼入れ性を高める元素である。特に大入熱、高パス間温度の溶接施工条件では溶接金属の焼入れ性が不足するので、強度を確保するうえで必須の元素である。鋼製外皮とフラックスの一方または両方に含有するMoの合計が0.1%未満であると、必要な強度が得られない。一方、0.3%を超えると強度が高くなりすぎ靭性が低下する。したがってMoは0.1〜0.3%とする。Moはフラックス成分としては、フェロモリブデンなどとして添加される。
[Mo: 0.1 to 0.3%]
Mo is an element that enhances the hardenability of the weld metal. In particular, it is an indispensable element for securing strength because the hardenability of the weld metal is insufficient under the welding conditions of high heat input and high pass temperature. If the total amount of Mo contained in one or both of the steel outer shell and the flux is less than 0.1%, the required strength cannot be obtained. On the other hand, if it exceeds 0.3%, the strength becomes too high and the toughness decreases. Therefore, Mo is 0.1 to 0.3%. Mo is added as a flux component such as ferromolybdenum.
[Mg:0.35〜0.65%]
Mgは、強脱酸剤として溶接金属の酸素を低減して溶接金属の靭性を向上させる。特に、大入熱、高パス間温度の溶接施工条件では溶融プールが大きくなって他の脱酸剤(C、Si、Mn)の消耗が多いので、主にMgで脱酸して靭性を確保する。Mgは金属MgやAl−Mg合金としてフラックス中に添加されるが、Mgが0.35%未満であると溶接金属の酸素が多くなって靭性が低下する。一方、0.65%を超えるとスパッタ発生量が多くなる。したがって、Mgは0.35〜0.65%とする。
[Mg: 0.35-0.65%]
Mg as a strong deoxidizer reduces oxygen in the weld metal and improves the toughness of the weld metal. Especially in welding conditions with high heat input and high interpass temperature, the molten pool becomes large and the consumption of other deoxidizers (C, Si, Mn) is large. To do. Mg is added to the flux as metallic Mg or Al—Mg alloy, but if Mg is less than 0.35%, the oxygen of the weld metal increases and the toughness decreases. On the other hand, if it exceeds 0.65%, the amount of spatter generated increases. Therefore, Mg is 0.35 to 0.65%.
[Ti酸化物のTiO2換算値:4.8〜6.5%]
フラックス中のルチール、チタンスラグ等のTi酸化物は、アーク安定剤であるとともにビード形状を良好にする。また、立向上進溶接では適度な粘性と融点のスラグにより溶融メタルが垂れるのを防止する。さらに、一部がTi酸化物として溶接金属に歩留り、再結晶の核となることにより溶接金属のミクロ組織を微細化して靭性を向上する。Ti酸化物のTiO2換算値が4.8%未満であるとアークが不安定でスパッタが多くビード形状も不良となる。また、立向上進溶接で溶融メタルが垂れるようになる。さらに、溶接金属へのTi酸化物の歩留りが少なくなってミクロ組織が粗大となって靭性が低下する。一方、6.5%を超えるとアークは安定してスパッタ発生量も少なくなるが、多層盛溶接でスラグ量が多くなりスラグ剥離性が不良となる。また、溶接金属へのTi酸化物の歩留りが過剰になり非金属介在物が多くなって靭性が低下する。したがって、Ti酸化物のTiO2換算値は4.8〜6.5%とする。
[TiO 2 converted value of Ti oxides: 4.8 to 6.5%]
Ti oxides such as rutile and titanium slag in the flux are an arc stabilizer and improve the bead shape. Further, in the vertical advance welding, molten metal is prevented from dripping due to slag having an appropriate viscosity and melting point. Furthermore, a part of the titanium oxide is retained in the weld metal and becomes a nucleus of recrystallization, whereby the microstructure of the weld metal is refined and the toughness is improved. When the TiO 2 equivalent value of the Ti oxide is less than 4.8%, the arc is unstable, the spatter is large, and the bead shape is also poor. In addition, the molten metal drips during the vertical improvement welding. Furthermore, the yield of Ti oxide to the weld metal is reduced, the microstructure is coarsened, and the toughness is reduced. On the other hand, if it exceeds 6.5%, the arc is stable and the amount of spatter is reduced, but the amount of slag is increased by multi-layer welding, resulting in poor slag peelability. In addition, the yield of Ti oxide to the weld metal becomes excessive, non-metallic inclusions increase, and toughness decreases. Therefore, the TiO 2 equivalent value of the Ti oxide is 4.8 to 6.5%.
[Si酸化物のSiO2換算値:0.3〜0.8%]
フラックス中の珪砂やジルコンサンド、珪酸ソーダ等のSi酸化物は、大入熱、高パス間温度の溶接施工条件においても溶融スラグの粘性を高めてスラグ被包性を向上させてビード外観およびスラグ剥離性を向上する。Si酸化物のSiO2換算値が0.3%未満であると溶融スラグの粘性が低くなりスラグ被包性が悪くビード形状が不良でスラグが焼き付くようになる。一方、0.8%を超えると溶接金属のミクロ組織の硬化相生成を促進して溶接金属の靭性が低下する。したがって、Si酸化物のSiO2換算値は0.3〜0.8%とする。
[SiO 2 converted value of Si oxide: 0.3 to 0.8%]
Si oxides such as silica sand, zircon sand, and sodium silicate in the flux increase the viscosity of the molten slag and improve the slag encapsulation even under welding conditions of high heat input and high pass temperature. Improves peelability. When the SiO 2 conversion value of the Si oxide is less than 0.3%, the viscosity of the molten slag is lowered, the slag encapsulation is poor, the bead shape is poor, and the slag is seized. On the other hand, if it exceeds 0.8%, the hardened phase formation of the microstructure of the weld metal is promoted and the toughness of the weld metal is lowered. Therefore, the SiO 2 equivalent value of the Si oxide is set to 0.3 to 0.8%.
[Zr酸化物のZrO2換算値:0.2〜0.5%]
フラックス中のジルコンサンド、酸化ジルコン等のZr酸化物は、溶融スラグの凝固温度を高くして立向上進姿勢溶接で溶融メタルを垂れにくくする。また、下向溶接のさいスラグ被包性を高めてビード形状を良好にする。Zr酸化物のZrO2換算値が0.2%未満であると立向上進姿勢溶接で溶融メタルが垂れやすくなり、下向溶接ではスラグ被包性が悪くビード形状が不良となる。一方、0.5%を超えるとスラグが緻密で固くなりスラグ剥離性が不良となる。したがって、Zr酸化物のZrO2換算値は0.2〜0.5%とする。
[ZrO 2 converted value of Zr oxide: 0.2 to 0.5%]
Zr oxide such as zircon sand and zircon oxide in the flux raises the solidification temperature of the molten slag and makes it difficult for the molten metal to sag during the vertical improvement welding. In addition, the slag encapsulation is improved during downward welding to improve the bead shape. When the ZrO 2 conversion value of the Zr oxide is less than 0.2%, the molten metal tends to sag in the vertical improvement posture welding, and in the downward welding, the slag encapsulation is poor and the bead shape is poor. On the other hand, if it exceeds 0.5%, the slag becomes dense and hard, resulting in poor slag peelability. Therefore, the ZrO 2 conversion value of the Zr oxide is 0.2 to 0.5%.
[AlのAl2O3換算値およびAl2O3の1種または2種の合計:0.4〜1.2%]
Alは鋼製外皮とフラックスの一方または両方から添加されるが、フラックスには金属Al、Al−Mg合金、フェロアルミ等として添加される。またAl2O3としてフラックスに添加されることもある。Alは酸化物となってAl2O3とともに溶融スラグの粘性および凝固点を調整してスラグ被包性を高めてビード形状を良好にする。AlのAl2O3換算値およびAl2O3の1種または2種の合計が0.4%未満であると下向溶接のさいスラグ被包性が悪くビード形状不良となる。一方、1.2%を超えると溶接金属中にAl2O3が非金属介在物として残留し靭性が低下する。また、立向上進姿勢溶接で溶融メタルが垂れやすくなる。したがって、AlのAl2O3換算値およびAl2O3の1種または2種の合計は0.4〜1.2%とする。
[Total Al 2 O 3 conversion value of Al and one or two of Al 2 O 3 : 0.4 to 1.2%]
Al is added from one or both of the steel outer shell and the flux, but the flux is added as metal Al, Al—Mg alloy, ferroaluminum, or the like. Also sometimes added to the flux as Al 2 O 3. Al becomes an oxide and, together with Al 2 O 3 , adjusts the viscosity and freezing point of the molten slag to improve the slag encapsulation and improve the bead shape. If the Al 2 O 3 conversion value of Al and the total of one or two of Al 2 O 3 is less than 0.4%, the slag encapsulation of the downward welding is poor and the bead shape is poor. On the other hand, if it exceeds 1.2%, Al 2 O 3 remains in the weld metal as non-metallic inclusions and the toughness is lowered. In addition, the molten metal is liable to sag during the vertical improvement welding. Therefore, the Al 2 O 3 equivalent value of Al and the total of one or two of Al 2 O 3 is 0.4 to 1.2%.
[Na化合物およびK化合物のNa2O換算値およびK2O換算値の1種または2種の合計:0.06〜0.20%]
カリ長石、珪酸ソーダや珪酸カリからなる水ガラスの固質成分、弗化ソーダや珪弗化カリ等の弗素化合物からのNaおよびKは、アーク安定剤およびスラグ形成剤として作用する。Na化合物およびK化合物のNa2O換算値およびK2O換算値の1種または2種の合計が0.06%未満であると、アークが不安定でスパッタ発生量が多くなる。一方、0.20%を超えるとスラグ剥離性が不良となる。また、立向上進姿勢溶接で溶融メタルが垂れやすくなる。したがって、Na化合物およびK化合物のNa2O換算値およびK2O換算値の1種または2種の合計は0.06〜0.20%とする。
[Total of one or two Na 2 O converted values and K 2 O converted values of Na compound and K compound: 0.06 to 0.20%]
Solid components of water glass composed of potassium feldspar, sodium silicate and potassium silicate, and Na and K from fluorine compounds such as sodium fluoride and potassium silicofluoride act as arc stabilizers and slag forming agents. When the total of one or two of the Na 2 O equivalent value and the K 2 O equivalent value of the Na compound and K compound is less than 0.06%, the arc is unstable and the amount of spatter generated increases. On the other hand, if it exceeds 0.20%, the slag peelability becomes poor. In addition, the molten metal is liable to sag during the vertical improvement welding. Accordingly, the total of one or two of the Na 2 O converted value and the K 2 O converted value of the Na compound and K compound is 0.06 to 0.20%.
[弗素化合物のF換算値:0.03%以下]
フラックス中の弗化ソーダや珪弗化カリ等の弗素化合物は、アークの指向性を高めて安定した溶融プールを形成するが、大入熱、高パス間温度の溶接施工条件においてはスパッタ発生量が多くなる。したがって、弗素化合物のF換算値は0.03%以下とする。
[F conversion value of fluorine compound: 0.03% or less]
Fluorine compounds such as sodium fluoride and potassium silicofluoride in the flux increase the directivity of the arc to form a stable molten pool, but the amount of spatter generated under high heat input and high pass temperature welding conditions Will increase. Therefore, the F converted value of the fluorine compound is set to 0.03% or less.
[ワイヤ表面の銅めっき厚さ:0.3〜0.9μm]
ワイヤ表面の銅めっきは、チップ先端での通電性を良好にしアークを安定にする。銅めっき厚さが0.3μm未満であると、特に大入熱、高パス間温度の溶接施工条件においてはアークが不安定となる。一方、銅めっき厚さが0.9μmを超えると、溶接時におけるワイヤ表面とコンジットチューブとの接触によって削られた銅めっきが、チップに蓄積されついにはチップに詰まってアークが停止する。したがって、ワイヤ表面の銅めっき厚さは0.3〜0.9μmが好ましい。なおワイヤ表面に銅めっきを施す場合めっき液に浸漬するので、ワイヤは鋼製外皮に貫通した合わせ目が無いものを用いる。
[Copper plating thickness on the wire surface: 0.3 to 0.9 μm]
Copper plating on the surface of the wire improves the electrical conductivity at the tip of the chip and stabilizes the arc. When the thickness of the copper plating is less than 0.3 μm, the arc becomes unstable particularly under welding conditions of high heat input and high pass temperature. On the other hand, when the copper plating thickness exceeds 0.9 μm, the copper plating scraped by the contact between the wire surface and the conduit tube during welding is accumulated in the chip and finally clogs the chip, and the arc stops. Therefore, the copper plating thickness on the wire surface is preferably 0.3 to 0.9 μm. In addition, since it immerses in a plating solution when copper plating is performed on the surface of the wire, a wire having no seam penetrated through the steel outer shell is used.
[全水素量:20ppm以下]
ワイヤの水素は、溶接金属の拡散性水素源となるのでできるだけ低減する必要があり、全水素量が20ppm以下であることが好ましい。ワイヤの全水素量が20ppmを超えると拡散性水素量(JIS Z3118)が4ml/100gを超えるので、多層盛溶接をした場合に低温割れの感受性が高まる。ワイヤ中の全水素量は、不活性ガス融解熱伝導度法などにより測定することができる。
[Total hydrogen content: 20 ppm or less]
Since the hydrogen of the wire becomes a diffusible hydrogen source of the weld metal, it must be reduced as much as possible, and the total hydrogen content is preferably 20 ppm or less. When the total amount of hydrogen in the wire exceeds 20 ppm, the amount of diffusible hydrogen (JIS Z3118) exceeds 4 ml / 100 g, so that the sensitivity to cold cracking increases when multi-layer welding is performed. The total amount of hydrogen in the wire can be measured by an inert gas melting thermal conductivity method or the like.
なお、本発明に用いるフラックス入りワイヤは、鋼帯をパイプ状に成形しその内部にフラックスを充填した構造で、製造の過程で成形した鋼製外皮を溶接した貫通した合わせ目が無いワイヤと、溶接を行わず鋼製外皮に貫通した合わせ目を有するワイヤとに大別できる。本発明においては何れの断面構造も採用できるが、鋼製外皮に貫通した合わせ目を有するワイヤは、水素含有量の低い充填フラックスの選定が必要である。鋼製外皮に貫通した合わせ目の無いワイヤは、ワイヤの全水素量を低減することを目的に650〜1000℃での熱処理が可能であり、また製造後の吸湿がないことから、拡散性水素量を低減して耐割れ性を向上できるので、より好ましい。 In addition, the flux-cored wire used in the present invention is a structure in which a steel strip is formed into a pipe shape and filled with a flux therein, and a seamless seam welded with a steel outer shell formed in the manufacturing process, and It can be roughly divided into wires having seams that penetrate through the steel outer skin without welding. In the present invention, any cross-sectional structure can be adopted, but it is necessary to select a filling flux having a low hydrogen content for a wire having a seam penetrating the steel outer shell. The seamless wire that penetrates the steel outer shell can be heat-treated at 650-1000 ° C. for the purpose of reducing the total hydrogen content of the wire, and has no moisture absorption after production. Since the amount can be reduced and crack resistance can be improved, it is more preferable.
本発明のガスシールドアーク溶接方法に用いるフラックス入りワイヤのその他の成分は、成分調整のために添加した鉄粉、鋼製外皮のFe分、鉄合金(フェロシリコン、フェロマンガン等)のFe分および不可避不純物である。 Other components of the flux-cored wire used in the gas shielded arc welding method of the present invention include iron powder added for component adjustment, Fe content of steel outer sheath, Fe content of iron alloys (ferrosilicon, ferromanganese, etc.) and Inevitable impurities.
以下、本発明の効果を実施例により具体的に説明する。JIS G3141 SPCCの鋼帯を鋼製外皮に使用して表1および表2に示すワイヤ径1.4mmのフラックス入りワイヤを試作した。各試作ワイヤは、伸線途中で650〜800℃で焼鈍を実施したが、鋼製外皮に貫通した合わせ目を有するワイヤ記号W4、W8、W11およびW18は、Ar雰囲気中で焼鈍し、ワイヤ製造後は、ビニール製の袋に封入して溶接時まで保管した。なお、ワイヤ記号W21は、焼鈍およびビニール製の袋への封入は実施しなかった。鋼製外皮に貫通した合わせ目の無いワイヤは、ワイヤ表面に銅めっきを施した。 Hereinafter, the effect of the present invention will be described in detail with reference to examples. Using a steel strip of JIS G3141 SPCC for the steel outer sheath, a flux-cored wire having a wire diameter of 1.4 mm shown in Tables 1 and 2 was manufactured. Each prototype wire was annealed at 650 to 800 ° C. during wire drawing, but wire symbols W4, W8, W11 and W18 having seams penetrating the steel outer shell were annealed in an Ar atmosphere to produce wires. After that, it was sealed in a plastic bag and stored until welding. The wire symbol W21 was not annealed and sealed in a vinyl bag. The seamless wire that penetrated the steel outer skin was subjected to copper plating on the wire surface.
各試作ワイヤにつき(株)堀場製作所製の水素分析装置:EMGA−621を用いて全水素量を測定した。また各試作ワイヤにつき拡散性水素量の測定、スパッタ発生量の測定、立向上進姿勢溶接での溶接作業性、多層盛溶接での溶接作業性および機械的性能の調査をした。拡散性水素量の測定は、JIS Z3118にしたがって測定した。拡散性水素量は4ml/100g以下を良好とした。 The total amount of hydrogen was measured for each prototype wire using a hydrogen analyzer manufactured by HORIBA, Ltd .: EMGA-621. In addition, we measured the amount of diffusible hydrogen, the amount of spatter generated for each prototype wire, the welding workability in standing up position welding, the welding workability in multi-layer welding, and the mechanical performance. The amount of diffusible hydrogen was measured according to JIS Z3118. The amount of diffusible hydrogen was 4 ml / 100 g or less.
スパッタ発生量の測定は銅製の捕集箱を用いて、表3に示す条件No.T1でJIS G3136 SN490B鋼、板厚12mmの試験板に30秒×5回溶接し、スパッタを捕集して1分間当りのスパッタ発生量を算出した。1分間当りのスパッタ発生量が1.0g以下を良好とした。 The spatter generation amount was measured using a copper collection box under condition Nos. Shown in Table 3. At T1, JIS G3136 SN490B steel, 12 mm thick test plate was welded for 30 seconds × 5 times, the spatter was collected, and the amount of spatter generated per minute was calculated. The amount of spatter generated per minute was determined to be 1.0 g or less.
立向上進姿勢溶接での溶接作業性の調査は、表3に示す条件No.T2でJIS G3136 SN490B鋼、板厚12mmの鋼板をT字すみ肉試験体として溶接し、アークの安定性、溶融メタル垂れの有無およびスラグ剥離性について調査した。 The investigation of welding workability in vertical improvement welding is conducted under the condition No. shown in Table 3. At T2, JIS G3136 SN490B steel, a steel plate having a thickness of 12 mm was welded as a T-shaped fillet specimen, and the stability of the arc, the presence or absence of molten metal sagging, and slag peelability were investigated.
下向多層盛溶接は、JIS G3136 SN490B鋼、板厚20mmの鋼板を開先角度45度、ルート間隔12mmの裏当付き試験板として、表3に示す条件No.T3の溶接施工条件範囲で各試験の溶接入熱量およびパス間温度を変えて溶接した。そして溶接パス数、アークの安定性、スラグ剥離性、ビード形状および高温割れの有無を調査した。 The downward multi-layer welding is performed under conditions No. 1 shown in Table 3 using JIS G3136 SN490B steel, a steel plate with a thickness of 20 mm as a test plate with a backing angle of 45 degrees and a root interval of 12 mm. Welding was performed while changing the welding heat input and interpass temperature in each test within the range of welding conditions of T3. The number of welding passes, arc stability, slag peelability, bead shape, and presence of hot cracks were investigated.
下向多層盛溶接においては、さらに溶接金属の板厚中央部から引張試験片(JIS Z2201 A1号)およびシャルピー衝撃試験片(JIS Z2202 4号)を採取して評価した。引張強さは540〜680MPaを合格とし、シャルピー衝撃試験は試験温度0℃で各5本行い平均値が70J以上を合格とした。それらの結果を表4および表5にまとめて示す。 In the downward multi-layer welding, a tensile test piece (JIS Z2201 A1) and a Charpy impact test piece (JIS Z22024) were further collected from the central part of the weld metal plate thickness and evaluated. Tensile strength passed 540-680MPa, and the Charpy impact test was made 5 each at a test temperature of 0 ° C, and the average value passed 70J or more. The results are summarized in Table 4 and Table 5.
表4および表5中試験No.1〜10が本発明例、試験No.11〜26は比較例である。
本発明例である試験No.1〜10は、用いたフラックス入りワイヤの成分組成が適量であるのでスパッタ発生量が少なく、立向上進姿勢溶接での溶接作業性が良好であった。また下向多層盛溶接においても溶接入熱量およびパス間温度が適正であるので溶接パス数が少なく、溶接作業性が良好で高温われも無く、溶接金属の引張強さおよび吸収エネルギーも良好で極めて満足な結果であった。また、用いた何れのフラックス入りワイヤも全水素量が低いので拡散性水素量も低値であった。なお、試験No.4およびNo.8は、用いたフラックス入りワイヤNo.W4およびW8が鋼製外皮の断面に貫通した合わせ目を有し、ワイヤ表面に銅めっきが施されていないので立向上進姿勢溶接および下向多層盛溶接ともにややアークが不安定であった。
In Table 4 and Table 5, Test No. 1 to 10 are examples of the present invention, test Nos. 11 to 26 are comparative examples.
Test No. which is an example of the present invention. In Nos. 1 to 10, since the component composition of the flux-cored wire used was an appropriate amount, the amount of spatter generation was small, and the welding workability in the standing improvement posture welding was good. In downward multi-layer welding, the welding heat input and inter-pass temperature are appropriate, so the number of welding passes is small, welding workability is good, there is no high temperature, and the tensile strength and absorbed energy of the weld metal are very good. It was a satisfactory result. In addition, since any flux-cored wire used had a low total hydrogen content, the amount of diffusible hydrogen was also low. In addition, Test No. 4 and no. 8 shows the flux-cored wire No. used. W4 and W8 had joints that penetrated the cross section of the steel outer shell, and the copper surface was not plated with copper, so that the arc was somewhat unstable in both the vertical improvement welding and the downward multi-layer welding.
比較例中試験No.11は、用いたフラックス入りワイヤNo.W11のCが少ないので、下向多層盛溶接の機械試験で引張強さが低く吸収エネルギーも低値であった。また、ZrO2が少ないので立向上進姿勢溶接で溶融メタルが垂れ、下向多層盛溶接ではスラグの被包性が悪くビード形状が不良であった。さらに、鋼製外皮の断面に貫通した合わせ目を有し銅めっきが施されていないので、立向上進姿勢溶接および下向多層盛溶接ともにややアークが不安定であった。 Test No. in Comparative Examples. 11 is the flux-cored wire No. used. Since there is little C of W11, the tensile strength was low and the absorbed energy was also low in the mechanical test of the downward multi-layer welding. Further, since the amount of ZrO 2 is small, the molten metal drips in the vertical improvement welding, and in the downward multi-layer welding, the slag encapsulation is poor and the bead shape is poor. Furthermore, since the seam penetrated through the cross section of the steel outer shell and copper plating was not applied, the arc was somewhat unstable in both the vertical improvement welding and the downward multi-layer welding.
試験No.12は、用いたフラックス入りワイヤNo.W12のCが多いので、下向多層盛溶接で高温割れが生じた。また、SiO2が多いので下向多層盛溶接の機械試験で吸収エネルギーが低値であった。 Test No. 12 is the flux-cored wire No. used. Since there was much C of W12, the hot crack occurred in the downward multilayer overlay welding. Further, the absorbed energy in the mechanical testing of downward multipass welding was low values since SiO 2 is large.
試験No.13は、用いたフラックス入りワイヤNo.W13のSiが少ないので、下向多層盛溶接の機械試験で引張強さが低く吸収エネルギーも低値であった。また、AlのAl2O3換算値およびAl2O3の合計が少ないので、下向多層盛溶接でスラグの被包性が悪くビード形状が不良であった。 Test No. 13 is the flux-cored wire No. used. Since there is little Si of W13, the tensile strength was low and the absorbed energy was also low in the mechanical test of the downward multi-layer welding. Moreover, since the total of Al 2 O 3 conversion value of Al and Al 2 O 3 was small, the enveloping property of slag was poor and the bead shape was poor in the downward multi-layer welding.
試験No.14は、用いたフラックス入りワイヤNo.W14のSiが多いので、下向多層盛溶接の機械試験で吸収エネルギーが低値であった。また、SiO2が少ないので立向上進姿勢溶接および下向多層盛溶接ともにスラグ剥離性が不良で、下向多層盛溶接ではスラグの被包性が悪くビード形状も不良であった。 Test No. 14 is the flux-cored wire No. used. Since there is much Si of W14, the absorbed energy was a low value in the mechanical test of downward multilayer overlay welding. In addition, since the amount of SiO 2 is small, the slag peelability is poor in both the vertical improvement welding and the downward multi-layer welding, and in the downward multi-layer welding, the encapsulation of the slag is poor and the bead shape is also poor.
試験No.15は、用いたフラックス入りワイヤNo.W15のMnが少ないので、下向多層盛溶接の機械試験で引張強さが低く吸収エネルギーも低値であった。また、弗素化合物のF換算値が多いのでスパッタ発生量が多かった。 Test No. 15 is the flux-cored wire No. used. Since the Mn of W15 is small, the tensile strength was low and the absorbed energy was also low in the mechanical test of the downward multi-layer welding. Further, since the F-converted value of the fluorine compound is large, the amount of spatter generated was large.
試験No.16は、用いたフラックス入りワイヤNo.W16のMnが多いので、下向多層盛溶接の機械試験で吸収エネルギーが低値であった。また、Na化合物およびK化合物のNa2O換算値およびK2O換算値の合計が多いので、立向上進姿勢溶接および下向多層盛溶接ともにスラグ剥離性が不良で、立向上進姿勢溶接では溶融メタルも垂れた。 Test No. 16 is the flux-cored wire No. used. Since there was much Mn of W16, the absorbed energy was a low value in the mechanical test of the downward multi-layer welding. In addition, since the total of Na 2 O converted value and K 2 O converted value of Na compound and K compound is large, the slag peelability is poor in both vertical improvement welding and downward multilayer build-up welding. Molten metal also dripped.
試験No.17は、用いたフラックス入りワイヤNo.W17のMoが少ないので、下向多層盛溶接の機械試験で引張強さが低かった。また、Na金属化合物のNa2O換算値が少なく他にK化合物の添加もないのでスパッタ発生量が多く、立向上進姿勢溶接および下向多層盛溶接ともにアークが不安定であった。 Test No. 17 is the flux-cored wire No. used. Since there is little Mo of W17, the tensile strength was low in the mechanical test of downward multilayer overlay welding. Further, since there is no addition of K compound to other less terms of Na 2 O values of Na metal compound the amount of occurrence of spatter many, arc was unstable in the welding both vertical upward advance position welding and downstream multi-pass.
試験No.18は、用いたフラックス入りワイヤNo.W18のMoが多いので、下向多層盛溶接の機械試験で引張強さが高く吸収エネルギーは低値であった。また、ZrO2が多いので立向上進姿勢溶接および下向多層盛溶接ともにスラグ剥離性が不良で、鋼製外皮の断面に貫通した合わせ目を有し銅めっきが施されていないのでややアークが不安定であった。 Test No. 18 is the flux-cored wire No. used. Since there is much Mo of W18, the tensile strength was high and the absorbed energy was a low value in the mechanical test of the downward multi-layer welding. In addition, because of the large amount of ZrO 2 , both the vertical improvement welding and the downward multi-layer welding have poor slag removability, and there is a seam penetrating the cross section of the steel outer shell and copper plating is not applied, so there is a slight arc. It was unstable.
試験No.19は、用いたフラックス入りワイヤNo.W19のMgが少ないので、下向多層盛溶接の機械試験で吸収エネルギーが低値であった。また、AlのAl2O3換算値およびAl2O3の合計が多いので立向上進姿勢溶接で溶融メタルが垂れた。 Test No. 19 is the flux-cored wire No. used. Since there was little Mg of W19, the absorbed energy was a low value in the mechanical test of the downward multilayer overlay welding. Further, the molten metal in the vertical upward advance position welding sag because the sum of terms of Al 2 O 3 value and Al 2 O 3 of Al is large.
試験No.20は、用いたフラックス入りワイヤNo.W20のMgが多いのでスパッタ発生量が多かった。また、ワイヤ表面の銅めっき厚さが薄いので立向上進姿勢溶接および下向多層盛溶接ともにアークがやや不安定であった。 Test No. No. 20 shows the flux-cored wire No. used. Since there was much W20 Mg, there was much spatter generation amount. Moreover, since the copper plating thickness on the wire surface was thin, the arc was slightly unstable in both the vertical improvement welding and the downward multilayer welding.
試験No.21は、用いたフラックス入りワイヤNo.W21の全水素量が多いので、拡散性水素量が多かった。また、TiO2が多いので立向上進姿勢溶接および下向多層盛溶接ともにスラグ剥離性が不良であった。また鋼製外皮の断面に貫通した合わせ目を有し銅めっきが施されていないので、ややアークも不安定で、下向多層盛溶接の機械試験で吸収エネルギーも低値であった。 Test No. 21 is the flux-cored wire No. used. Since the total hydrogen amount of W21 is large, the amount of diffusible hydrogen was large. Moreover, the slag removability was poor in standing both improve advance position welding and downstream multipass welding because TiO 2 is large. In addition, since there was a seam penetrating in the cross section of the steel outer shell and copper plating was not applied, the arc was somewhat unstable, and the absorbed energy was also low in a mechanical test of downward multilayer welding.
試験No.22は、用いたフラックス入りワイヤNo.W22のTiO2が少ないので、スパッタ発生量が多く立向上進姿勢溶接および下向多層盛溶接ともにアークが不安定で、立向上進姿勢溶接で溶融メタルが垂れ下向多層盛溶接でビード形状が不良で、機械試験の吸収エネルギーが低値であった。さらに、ワイヤ表面の銅めっき厚さが厚いのでコンジットチューブを通過したワイヤ表面の銅めっきが剥離した箇所があった。 Test No. No. 22 is the flux-cored wire No. used. Since TiO 2 of W22 is small, amount of occurrence of spatter arc is unstable within the weld both many elevational improve advance position welding and downstream multi-pass, the bead shape in the downward multipass welding dripping molten metal in vertical upward advance position welding The absorbed energy in the mechanical test was low. Furthermore, since the copper plating thickness on the wire surface was thick, there was a portion where the copper plating on the wire surface that passed through the conduit tube was peeled off.
試験No.23は、溶接入熱量が低いので溶接パス数が多くなり、溶接に要した時間が長かった。
試験No.24は、溶接入熱量が高いので高温割れが生じ、機械試験で引張強さが低く吸収エネルギーも低値であった。
Test No. In No. 23, since the welding heat input was low, the number of welding passes increased, and the time required for welding was long.
Test No. No. 24 had high welding heat input, so high temperature cracking occurred, and the mechanical test showed low tensile strength and low absorbed energy.
試験No.25は、パス間温度が低いので溶接待ち時間が長くなった。また、用いたフラックス入りワイヤNo.W21のTiO2が多いのでスラグ剥離性が不良で、鋼製外皮の断面に貫通した合わせ目を有しワイヤ表面に銅めっきが施されていないので、ややアークも不安定であった。
試験No.26は、パス間温度が高いので機械試験で引張強さが低く吸収エネルギーも低値であった。
Test No. No. 25 has a long welding waiting time because the temperature between passes is low. In addition, the flux-cored wire No. used was used. Since TiO 2 of W21 is larger slag removability is bad, since copper plating is not subjected to the wire surface has a seam that passes through the cross section of the steel sheath, was slightly arc also unstable.
Test No. Since the temperature between passes was high, the tensile strength was low and the absorbed energy was also low in the mechanical test.
Claims (3)
C:0.03〜0.10%、
Si:0.4〜1.0%、
Mn:1.7〜2.8%、
Mo:0.1〜0.3%、
Mg:0.35〜0.65%、
Ti酸化物のTiO2換算値:4.8〜6.5%、
Si酸化物のSiO2換算値:0.3〜0.8%、
Zr酸化物のZrO2換算値:0.2〜0.5%、
AlのAl2O3換算値およびAl2O3の1種または2種の合計:0.4〜1.2%、
Na化合物およびK化合物のNa2O換算値およびK2O換算値の1種または2種の合計:0.06〜0.20%
を含有し、
弗素化合物のF換算値が0.03%以下
で、残部は鉄粉、鉄合金のFe分、鋼製外皮のFe分および不可避不純物からなるフラックス入りワイヤを用いて、溶接入熱量20〜40kJ/cm、パス間温度200〜350℃の溶接施工条件で炭酸ガスシールドアーク溶接することを特徴とするガスシールドアーク溶接方法。 In the gas shielded arc welding method using a flux-cored wire filled with a flux in the steel outer sheath, in mass% with respect to the total mass of the wire,
C: 0.03-0.10%,
Si: 0.4 to 1.0%,
Mn: 1.7-2.8%,
Mo: 0.1 to 0.3%,
Mg: 0.35-0.65%,
TiO 2 conversion value of Ti oxide: 4.8 to 6.5%,
SiO 2 conversion value of Si oxide: 0.3 to 0.8%,
ZrO 2 conversion value of Zr oxide: 0.2 to 0.5%,
Al 2 O 3 equivalent value of Al and total of one or two of Al 2 O 3 : 0.4 to 1.2%,
One or of the sum of terms of Na 2 O values of Na compounds and K compounds and K 2 O converted value: from 0.06 to 0.20 percent
Containing
The F-converted value of the fluorine compound is 0.03% or less, and the balance is made of iron powder, Fe content of the iron alloy, Fe content of the steel outer sheath, and flux-cored wire consisting of inevitable impurities, and the welding heat input is 20 to 40 kJ / A gas shielded arc welding method, characterized in that carbon dioxide shielded arc welding is performed under a welding condition of cm and an interpass temperature of 200 to 350 ° C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009175882A JP5356142B2 (en) | 2009-07-28 | 2009-07-28 | Gas shield arc welding method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009175882A JP5356142B2 (en) | 2009-07-28 | 2009-07-28 | Gas shield arc welding method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011025298A true JP2011025298A (en) | 2011-02-10 |
JP5356142B2 JP5356142B2 (en) | 2013-12-04 |
Family
ID=43634658
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009175882A Active JP5356142B2 (en) | 2009-07-28 | 2009-07-28 | Gas shield arc welding method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5356142B2 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012192422A (en) * | 2011-03-15 | 2012-10-11 | Nippon Steel & Sumikin Welding Co Ltd | Flux-cored wire for gas shield arc welding |
JP2012228704A (en) * | 2011-04-25 | 2012-11-22 | Nippon Steel & Sumikin Welding Co Ltd | Flux-cored wire for carbon dioxide gas-shielded arc welding |
CN104057188A (en) * | 2013-03-19 | 2014-09-24 | 株式会社神户制钢所 | Tandem Gas-shielded Arc Welding Method |
CN104148824A (en) * | 2014-09-01 | 2014-11-19 | 四川大西洋焊接材料股份有限公司 | High-tenacity flux-cored wire for electro-gas welding |
JP2015205303A (en) * | 2014-04-18 | 2015-11-19 | 日鐵住金溶接工業株式会社 | Flux-cored wire for gas shield arc welding |
CN107081506A (en) * | 2017-07-04 | 2017-08-22 | 合肥市大卓电力有限责任公司 | A kind of welding procedure of high-strength alloy steel plate |
EP3208031A4 (en) * | 2014-10-15 | 2018-05-02 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | Wire containing flux for gas shield arc welding |
CN110064823A (en) * | 2019-05-30 | 2019-07-30 | 中铁宝桥集团有限公司 | A kind of bridge founds the welding method of position Combined Welding with Q690qE high-strength steel |
EP3778112A4 (en) * | 2018-03-28 | 2021-10-27 | Nippon Steel Corporation | METHOD FOR PRODUCING A FILLED WIRE, FILLED WIRE AND METHOD FOR PRODUCING A WELDED JOINT |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05285692A (en) * | 1992-04-15 | 1993-11-02 | Nippon Steel Corp | Flux-cored wire for gas shield arc welding |
JPH08174267A (en) * | 1994-12-26 | 1996-07-09 | Nippon Steel Corp | Flux-cored wire for arc welding |
JPH08257785A (en) * | 1995-01-23 | 1996-10-08 | Nippon Steel Corp | Flux-cored wire for arc welding that improves cold crack resistance of steel welds |
JP2003094196A (en) * | 2001-07-16 | 2003-04-02 | Nippon Steel & Sumikin Welding Co Ltd | Flux cored wire for gas shielded arc welding |
JP2005319508A (en) * | 2004-05-11 | 2005-11-17 | Nippon Steel & Sumikin Welding Co Ltd | Flux-cored wire for gas shielded arc welding |
-
2009
- 2009-07-28 JP JP2009175882A patent/JP5356142B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05285692A (en) * | 1992-04-15 | 1993-11-02 | Nippon Steel Corp | Flux-cored wire for gas shield arc welding |
JPH08174267A (en) * | 1994-12-26 | 1996-07-09 | Nippon Steel Corp | Flux-cored wire for arc welding |
JPH08257785A (en) * | 1995-01-23 | 1996-10-08 | Nippon Steel Corp | Flux-cored wire for arc welding that improves cold crack resistance of steel welds |
JP2003094196A (en) * | 2001-07-16 | 2003-04-02 | Nippon Steel & Sumikin Welding Co Ltd | Flux cored wire for gas shielded arc welding |
JP2005319508A (en) * | 2004-05-11 | 2005-11-17 | Nippon Steel & Sumikin Welding Co Ltd | Flux-cored wire for gas shielded arc welding |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012192422A (en) * | 2011-03-15 | 2012-10-11 | Nippon Steel & Sumikin Welding Co Ltd | Flux-cored wire for gas shield arc welding |
JP2012228704A (en) * | 2011-04-25 | 2012-11-22 | Nippon Steel & Sumikin Welding Co Ltd | Flux-cored wire for carbon dioxide gas-shielded arc welding |
CN104057188A (en) * | 2013-03-19 | 2014-09-24 | 株式会社神户制钢所 | Tandem Gas-shielded Arc Welding Method |
JP2014180692A (en) * | 2013-03-19 | 2014-09-29 | Kobe Steel Ltd | Tandem gas shield arc welding method |
JP2015205303A (en) * | 2014-04-18 | 2015-11-19 | 日鐵住金溶接工業株式会社 | Flux-cored wire for gas shield arc welding |
CN104148824A (en) * | 2014-09-01 | 2014-11-19 | 四川大西洋焊接材料股份有限公司 | High-tenacity flux-cored wire for electro-gas welding |
CN104148824B (en) * | 2014-09-01 | 2015-12-09 | 四川大西洋焊接材料股份有限公司 | A kind of high tenacity flux-cored wire for electrogas arc welding |
EP3208031A4 (en) * | 2014-10-15 | 2018-05-02 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | Wire containing flux for gas shield arc welding |
CN107081506A (en) * | 2017-07-04 | 2017-08-22 | 合肥市大卓电力有限责任公司 | A kind of welding procedure of high-strength alloy steel plate |
EP3778112A4 (en) * | 2018-03-28 | 2021-10-27 | Nippon Steel Corporation | METHOD FOR PRODUCING A FILLED WIRE, FILLED WIRE AND METHOD FOR PRODUCING A WELDED JOINT |
CN110064823A (en) * | 2019-05-30 | 2019-07-30 | 中铁宝桥集团有限公司 | A kind of bridge founds the welding method of position Combined Welding with Q690qE high-strength steel |
Also Published As
Publication number | Publication date |
---|---|
JP5356142B2 (en) | 2013-12-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5356142B2 (en) | Gas shield arc welding method | |
JP5768547B2 (en) | High-strength steel flux cored wire for gas shielded arc welding | |
JP5359561B2 (en) | Flux-cored wire for high-tensile steel | |
JP6437327B2 (en) | Flux-cored wire for carbon dioxide shielded arc welding | |
JP6382117B2 (en) | Flux-cored wire for Ar-CO2 mixed gas shielded arc welding | |
JP6033755B2 (en) | Flux-cored wire for Ar-CO2 mixed gas shielded arc welding | |
JP6188621B2 (en) | Flux-cored wire for carbon dioxide shielded arc welding | |
JP2014113615A (en) | Flux-cored wire for carbon dioxide gas shielded arc welding | |
JP5153421B2 (en) | Flux-cored wire for gas shielded arc welding | |
JP2015217393A (en) | Flux-cored wire for carbon dioxide gas shielded arc welding | |
JP2008221231A (en) | Flux cored wire for gas-shielded arc welding | |
JP2018153853A (en) | Flux-cored wire for gas shield arc welding | |
JP5459083B2 (en) | Flux-cored wire for carbon dioxide shielded arc welding for high-tensile steel | |
JP6437419B2 (en) | Flux-cored wire for carbon dioxide shielded arc welding | |
JP6140069B2 (en) | Stainless steel flux cored wire | |
JP4300153B2 (en) | Flux-cored wire for gas shielded arc welding | |
JP6434381B2 (en) | Stainless steel flux cored wire | |
KR102675635B1 (en) | Flux Cored Wire and Welding Methods | |
JP6017406B2 (en) | Stainless steel flux cored wire for self shielded arc welding | |
JP2017094360A (en) | Flux-cored wire for shield-arc welding using argon-carbon dioxide gas mixture | |
JP5558406B2 (en) | Flux-cored wire for carbon dioxide shielded arc welding | |
JP6322096B2 (en) | Flux-cored wire for gas shielded arc welding | |
JP2010064087A (en) | Flux cored wire for gas-shielded arc welding | |
JP2016203179A (en) | Flux-cored wire for gas-shielded arc welding | |
JP6084948B2 (en) | Flux-cored wire for gas shielded arc welding |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20111026 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130827 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130828 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5356142 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |