[go: up one dir, main page]

JP2011021743A - Sliding bearing - Google Patents

Sliding bearing Download PDF

Info

Publication number
JP2011021743A
JP2011021743A JP2009270684A JP2009270684A JP2011021743A JP 2011021743 A JP2011021743 A JP 2011021743A JP 2009270684 A JP2009270684 A JP 2009270684A JP 2009270684 A JP2009270684 A JP 2009270684A JP 2011021743 A JP2011021743 A JP 2011021743A
Authority
JP
Japan
Prior art keywords
inner ring
ring
peripheral surface
outer ring
sliding bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009270684A
Other languages
Japanese (ja)
Inventor
Naonari Tanigawa
直成 谷川
Norio Ito
紀男 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2009270684A priority Critical patent/JP2011021743A/en
Publication of JP2011021743A publication Critical patent/JP2011021743A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C23/00Bearings for exclusively rotary movement adjustable for aligning or positioning
    • F16C23/02Sliding-contact bearings
    • F16C23/04Sliding-contact bearings self-adjusting
    • F16C23/043Sliding-contact bearings self-adjusting with spherical surfaces, e.g. spherical plain bearings
    • F16C23/045Sliding-contact bearings self-adjusting with spherical surfaces, e.g. spherical plain bearings for radial load mainly, e.g. radial spherical plain bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/20Sliding surface consisting mainly of plastics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2202/00Solid materials defined by their properties
    • F16C2202/50Lubricating properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2208/00Plastics; Synthetic resins, e.g. rubbers
    • F16C2208/20Thermoplastic resins
    • F16C2208/58Several materials as provided for in F16C2208/30 - F16C2208/54 mentioned as option
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2220/00Shaping
    • F16C2220/02Shaping by casting
    • F16C2220/04Shaping by casting by injection-moulding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/30Angles, e.g. inclinations

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Sliding-Contact Bearings (AREA)
  • Support Of The Bearing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sliding bearing low in cost with a small number of components, stable in rotational torque and usable even in a high-load and corrosive atmosphere. <P>SOLUTION: The sliding bearing 1 is made of a combination of an inner ring 2 made of synthetic resin and having a convex outer peripheral surface 2a, and an outer ring 3 made of synthetic resin and having a concave inner peripheral surface 3b corresponding to the outer peripheral surface 2a. The outer ring 3 is formed with inner ring built-in grooves 3a at two opposed parts of the inner peripheral surface 3b. The inner ring built-in grooves 3a are opened to at least one end face of the outer ring 3, and the inner ring 2 is built in the outer ring 3 through the inner ring built-in grooves 3a. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、滑り軸受に関し、特に内輪と外輪とを個別に製造して組み込んだ滑り軸受に関する。   The present invention relates to a sliding bearing, and more particularly to a sliding bearing in which an inner ring and an outer ring are separately manufactured and incorporated.

外周面に凸曲面を有する内輪と、該外周面に対応する凹曲面を内周面に有する外輪との組合せからなる滑り軸受は、公知である。例えば、軸受孔を有する外方部材と、外方部材との間に環状の軸受隙間を介在させて軸受孔に挿入した内方部材とを有する滑り軸受であって、内方部材が溶融樹脂を硬化させた樹脂組成物からなり、かつ、外方部材と内方部材との間の軸受隙間が、内方部材の硬化時における樹脂収縮によって形成された滑り軸受が知られている(特許文献1参照)。   A sliding bearing comprising a combination of an inner ring having a convex curved surface on the outer peripheral surface and an outer ring having a concave curved surface corresponding to the outer peripheral surface on the inner peripheral surface is known. For example, a sliding bearing having an outer member having a bearing hole and an inner member inserted into the bearing hole with an annular bearing gap interposed between the outer member and the inner member made of molten resin. A sliding bearing is known which is made of a cured resin composition and in which a bearing gap between an outer member and an inner member is formed by resin shrinkage when the inner member is cured (Patent Document 1). reference).

また、一対の内輪と外輪とが同軸に組み合わされて成る動圧軸受ユニットにおいて、内輪の外周面と、外輪の内周面とが、微小隙間を持って対抗するとともに軸の方向に対して平行な方向または直交する方向にある一対の面を有するように組み合わされ、内輪の外周面と外輪の内周面との少なくとも一方の動圧溝が形成されている動圧軸受ユニット(特許文献2参照)が知られている。また、合成樹脂製の内輪と、この内輪をその軸心を中心として回転自在となるように支持する合成樹脂製の外輪とを具備し、内輪は、支持する回転軸と共に回転するように当該回転軸を受容する孔と、軸心方向における中央部に配された大径外周面と、この大径外周面の径よりも小径であって当該大径外周面を軸心方向において挟んで配された一対の小径外周面とを有しており、外輪は、その軸心廻りで非回転となるように支持部材に嵌着される外輪本体と、この外輪本体の内周面に一体的に設けられていると共に内輪の一対の小径外周面の夫々を押圧して当該一対の小径外周面の夫々に摺動自在に接触する環状のシール部とを有している滑り軸受(特許文献3参照)が知られている。   Further, in the hydrodynamic bearing unit in which a pair of inner ring and outer ring are coaxially combined, the outer peripheral surface of the inner ring and the inner peripheral surface of the outer ring face each other with a minute gap and are parallel to the axial direction. A hydrodynamic bearing unit in which at least one dynamic pressure groove is formed between the outer peripheral surface of the inner ring and the inner peripheral surface of the outer ring (see Patent Document 2). )It has been known. The inner ring includes a synthetic resin inner ring and a synthetic resin outer ring that supports the inner ring so that the inner ring is rotatable about its axis, and the inner ring rotates with the rotating shaft to be supported. A hole for receiving the shaft, a large-diameter outer peripheral surface disposed in the central portion in the axial direction, and a diameter smaller than the diameter of the large-diameter outer peripheral surface, and sandwiching the large-diameter outer peripheral surface in the axial direction A pair of small-diameter outer peripheral surfaces, and the outer ring is provided integrally with the outer ring main body fitted to the support member so as to be non-rotating around the axis and the inner peripheral surface of the outer ring main body. And a sliding bearing having an annular seal portion that presses each of the pair of small-diameter outer peripheral surfaces of the inner ring and slidably contacts each of the pair of small-diameter outer peripheral surfaces (see Patent Document 3) It has been known.

その他、球面状の内周面を有する外輪の内側に、該内周面に摺接する球面状の外周面を有する内輪を組み付けてなり、外輪と内輪とを円滑に相対回転可能とした自動調心すべり軸受において、外輪は合成樹脂であり、両端面のうち少なくとも一方の端面に該端面の円周方向に沿って形成された溝と、該溝によって分けられた内周部および外周部とを備え、内周部は、内輪を組み付ける際に内周面を内輪の外周面に押されて溝側に歪み、内輪が組み付けられた状態では、歪みが復元して内輪の外周面を保持する自動調心すべり軸受(特許文献4参照)が知られている。   In addition, the self-alignment that the inner ring having the spherical outer peripheral surface that is in sliding contact with the inner peripheral surface is assembled inside the outer ring having the spherical inner peripheral surface so that the outer ring and the inner ring can be relatively rotated relative to each other. In the plain bearing, the outer ring is made of synthetic resin, and includes a groove formed along at least one end surface of both end surfaces along the circumferential direction of the end surface, and an inner peripheral portion and an outer peripheral portion divided by the groove. When the inner ring is assembled, the inner ring is pushed by the outer ring surface of the inner ring and is distorted toward the groove. When the inner ring is assembled, the inner ring is automatically adjusted to restore the distortion and hold the outer ring surface of the inner ring. A center slide bearing (see Patent Document 4) is known.

一方、水中や薬品中あるいは高湿度雰囲気等の腐食雰囲気下において使用される耐食性の樹脂製玉軸受として、内輪及び外輪を曲げ弾性率2000〜6000MPaの範囲にあるポリアリーレンスルフィド(PAS)樹脂によって形成したもの(特許文献5参照)が知られている。この樹脂玉軸受は、特定の樹脂材料の選択により例えば#6000系列の深溝玉軸受において、ラジアル荷重2kgf/cm(1.96×10−1MPa)程度の高負荷化が可能となったものである。 On the other hand, as an anti-corrosion resin ball bearing used in corrosive atmosphere such as in water, chemicals or high humidity atmosphere, the inner ring and outer ring are formed of polyarylene sulfide (PAS) resin having a flexural modulus of 2000 to 6000 MPa. (See Patent Document 5). This resin ball bearing can be increased in a radial load of about 2 kgf / cm 2 (1.96 × 10 −1 MPa), for example, in a # 6000 series deep groove ball bearing by selecting a specific resin material. It is.

特開平9−32856号公報JP-A-9-32856 特開2004−293685号公報Japanese Patent Application Laid-Open No. 2004-293685 特開2007−127225号公報JP 2007-127225 A 特開2007−100905号公報JP 2007-100905 A 特開平10−47355号公報Japanese Patent Laid-Open No. 10-47355

しかしながら、特許文献1に記載の滑り軸受は、外方部材を所定形状に成形した後、その軸受孔に溶融樹脂を充填し、この溶融樹脂を硬化させて内方部材を成形すると共に、内方部材と外方部材との間に、溶融樹脂の硬化に伴う樹脂収縮によって環状の軸受隙間を形成する方法(インサート成形)で製造されるが、成形後の収縮のバラツキにより、内輪と外輪との隙間が変動し、回転トルクが安定しないという問題がある。また、特許文献2および特許文献3に記載の滑り軸受は、部品点数が多く、組立が煩雑であるという問題がある。   However, in the sliding bearing described in Patent Document 1, after molding the outer member into a predetermined shape, the bearing hole is filled with molten resin, and the molten resin is cured to mold the inner member. Manufactured by a method (insert molding) in which an annular bearing gap is formed between the member and the outer member by resin shrinkage accompanying the hardening of the molten resin. Due to the variation in shrinkage after molding, the inner ring and the outer ring There is a problem that the clearance fluctuates and the rotational torque is not stable. Further, the sliding bearings described in Patent Document 2 and Patent Document 3 have a problem that the number of parts is large and assembly is complicated.

また、特許文献4に記載の滑り軸受は、外輪端面に形成された円周方向の溝の存在により高荷重条件で使用できないという問題がある。また、特許文献5に記載の樹脂製玉軸受は、耐荷重性、回転トルク性能は良好であるものの、構造が複雑であり、製造コストも高価であるという問題がある。   Further, the sliding bearing described in Patent Document 4 has a problem that it cannot be used under high load conditions due to the presence of a circumferential groove formed on the end face of the outer ring. Further, the resin ball bearing described in Patent Document 5 has a problem that although it has good load resistance and rotational torque performance, it has a complicated structure and is expensive to manufacture.

本発明はこのような問題に対処するためになされたものであり、部品点数が少なく低価格で、回転トルクが安定し、高荷重、腐食雰囲気下でも使用可能な滑り軸受を提供することを目的とする。   The present invention has been made to cope with such problems, and has an object to provide a slide bearing that has a small number of parts, is low in price, has a stable rotational torque, and can be used even in a high load and corrosive atmosphere. And

本発明の滑り軸受は、凸曲面の外周面を有する合成樹脂製の内輪と、該外周面に対応する凹曲面の内周面を有する合成樹脂製の外輪との組合せからなる滑り軸受であって、上記外輪は、その内周面の対向する2箇所に、内輪組み込み溝が形成されており、上記内輪組み込み溝が上記外輪の少なくとも一方の端面に開口して形成されており、上記内輪は、上記内輪組み込み溝を介して上記外輪に組み込まれたものであることを特徴とする。   The sliding bearing of the present invention is a sliding bearing comprising a combination of a synthetic resin inner ring having a convex curved outer peripheral surface and a synthetic resin outer ring having a concave curved inner peripheral surface corresponding to the outer peripheral surface. The outer ring has inner ring mounting grooves formed at two opposing locations on the inner peripheral surface thereof, and the inner ring mounting groove is formed by opening at least one end surface of the outer ring. It is incorporated in the outer ring through the inner ring incorporating groove.

上記内輪は、該内輪の軸心と上記外輪の軸心とをずらした状態で上記内輪組み込み溝を介して上記外輪に挿入された後、上記内輪および上記外輪を相対回転させて上記内輪の軸心と上記外輪の軸心とを合せることで、上記外輪に組み込まれたものであることを特徴とする。   The inner ring is inserted into the outer ring through the inner ring mounting groove in a state in which the axis of the inner ring is shifted from the axis of the outer ring, and then the inner ring and the outer ring are relatively rotated to rotate the inner ring shaft. It is characterized in that it is incorporated in the outer ring by matching the core and the axial center of the outer ring.

上記内輪組み込み溝の幅は、上記内輪の幅と同じ寸法であることを特徴とする。また、上記対向する内輪組み込み溝の底面間の距離は、上記内輪の外径と同じ寸法であることを特徴とする。   The width of the groove for incorporating the inner ring is the same as the width of the inner ring. Further, the distance between the bottom surfaces of the opposed inner ring incorporating grooves is the same as the outer diameter of the inner ring.

上記凸曲面は、球面であることを特徴とする。また、上記内輪の外周面は、凸曲面の軸方向中央部の全周がフラット形状であることを特徴とする。特に、上記フラット形状は、上記内輪の外周面の軸方向断面において上記凸曲面の頂点位置からフラット面までの距離が0.05〜0.1mmである形状であることを特徴とする。   The convex curved surface is a spherical surface. Further, the outer peripheral surface of the inner ring is characterized in that the entire circumference of the central portion in the axial direction of the convex curved surface is flat. In particular, the flat shape is a shape in which the distance from the apex position of the convex curved surface to the flat surface is 0.05 to 0.1 mm in the axial section of the outer peripheral surface of the inner ring.

上記凹曲面の軸方向断面形状は、円の中心が異なる二つの円弧の傾斜面で形成されたゴシックアーチ形状であることを特徴とする。   An axial cross-sectional shape of the concave curved surface is a Gothic arch shape formed by inclined surfaces of two circular arcs having different circle centers.

上記内輪の外周面または上記外輪の内周面に潤滑溝が形成されていることを特徴とする。   Lubricating grooves are formed on the outer peripheral surface of the inner ring or the inner peripheral surface of the outer ring.

上記内輪は、上記合成樹脂の射出成形体であることを特徴とする。   The inner ring is an injection molded body of the synthetic resin.

上記合成樹脂は、ポリエーテルエーテルケトン(以下、PEEKと記す)樹脂、ポリイミド(以下、PIと記す)樹脂、およびポリフェニレンサルファイド(以下、PPSと記す)樹脂から選ばれた少なくとも一つであることを特徴とする。   The synthetic resin is at least one selected from polyether ether ketone (hereinafter referred to as PEEK) resin, polyimide (hereinafter referred to as PI) resin, and polyphenylene sulfide (hereinafter referred to as PPS) resin. Features.

上記滑り軸受は、水中、薬品中、高湿度雰囲気などの腐食雰囲気下において使用されることを特徴とする。   The slide bearing is used in a corrosive atmosphere such as water, chemicals, or a high humidity atmosphere.

請求項1に記載の滑り軸受は、凸曲面の外周面を有する内輪と、該外周面に対応する凹曲面を内周面に有する外輪との組合せからなり、上記外輪は、その内周面の対向する2箇所に、内輪組み込み溝が形成されており、該内輪組み込み溝が外輪の少なくとも一方の端面に開口しており、上記内輪はこの内輪組み込み溝を介して外輪に組み込まれたものであるので、内輪と外輪とを個別に製造して内輪を外輪に組み込むことが可能であり、部品点数が少なく、樹脂製玉軸受と比べ低価格・短時間で製造できる。また、簡易な構造であり、高荷重条件でも使用可能となる。また、内輪などをインサート成形する必要がなく、内輪と外輪との隙間の管理が可能であり、回転トルクが安定する。   The sliding bearing according to claim 1 is a combination of an inner ring having a convex curved outer peripheral surface and an outer ring having a concave curved surface corresponding to the outer peripheral surface on the inner peripheral surface. Inner ring incorporating grooves are formed at two opposing positions, and the inner ring incorporating groove is open on at least one end surface of the outer ring, and the inner ring is incorporated into the outer ring through the inner ring incorporating groove. Therefore, it is possible to manufacture the inner ring and the outer ring separately and to incorporate the inner ring into the outer ring, and the number of parts is small, and it can be manufactured at a lower cost and in a shorter time than a resin ball bearing. In addition, it has a simple structure and can be used even under high load conditions. In addition, there is no need to insert-mold the inner ring or the like, the gap between the inner ring and the outer ring can be managed, and the rotational torque is stabilized.

請求項2に記載の滑り軸受は、内輪の外輪への組み込みを、内・外輪の軸心をずらした状態で内輪組み込み溝を介して内輪を外輪に挿入した後、内・外輪を相対回転させて軸心を合せることで行なうので、内・外輪の弾性変形などを介さず組み込みできる。特に、請求項3および請求項4に記載のように、内輪組み込み溝の幅を内輪の幅と同じ寸法とし、対向する内輪組み込み溝の底面間の距離を内輪の外径と同じ寸法とすることで、内輪を外輪に組み込む際に、外輪軸心と内輪軸心とが直交する状態で、内輪の幅の両端を、外輪の内輪組み込み溝の両端に合わせて、内輪を外輪に容易に組み込みできる。   In the sliding bearing according to claim 2, after the inner ring is inserted into the outer ring through the inner ring mounting groove with the inner and outer rings being displaced, the inner and outer rings are relatively rotated. Since it is done by aligning the shaft center, it can be incorporated without elastic deformation of the inner and outer rings. Particularly, as described in claim 3 and claim 4, the width of the inner ring built-in groove is the same as the width of the inner ring, and the distance between the bottom surfaces of the opposed inner ring built-in grooves is the same as the outer diameter of the inner ring. Thus, when the inner ring is assembled into the outer ring, the inner ring can be easily assembled into the outer ring by aligning both ends of the inner ring width with both ends of the inner ring assembling groove of the outer ring in a state where the outer ring axis and the inner ring axis are orthogonal to each other. .

請求項5に記載の滑り軸受は、内輪外周面の凸曲面が球面であるので、揺動運動部への使用も可能となる。   Since the convex curved surface of the outer peripheral surface of the inner ring is a spherical surface, the sliding bearing according to the fifth aspect can be used for the swinging motion part.

請求項6および請求項7に記載の滑り軸受は、内輪外周面の凸曲面の軸方向中央部の全周がフラット形状であるので、このフラット形状の部分にパーティングライン(以下、PLと記す)を設定することで内輪を機械加工することなく射出成形のみで仕上げることができる。また、このフラット形状により形成される、外輪内周面と内輪外周面との間の隙間により、水や薬液などが摺動面全体に循環しやすくなり潤滑性を向上させることができる。また、内輪の外輪への組み込み性も向上させることができる。   Since the entire circumference of the axially central portion of the convex curved surface of the inner ring outer peripheral surface is a flat shape, the sliding bearing according to claim 6 and claim 7 has a parting line (hereinafter referred to as PL). ) Can be finished only by injection molding without machining the inner ring. In addition, the gap between the inner peripheral surface of the outer ring and the outer peripheral surface of the inner ring formed by this flat shape facilitates circulation of water, chemicals, and the like over the entire sliding surface, thereby improving lubricity. Also, the incorporation of the inner ring into the outer ring can be improved.

請求項8に記載のすべり軸受は、内輪の外周面または外輪の内周面に潤滑溝を形成するので、水や薬液などが摺動面全体に循環しやすくなり潤滑性を向上させることができる。   In the plain bearing according to the eighth aspect, since the lubricating groove is formed on the outer peripheral surface of the inner ring or the inner peripheral surface of the outer ring, water, chemicals, etc. are easily circulated over the entire sliding surface, and the lubricity can be improved. .

請求項9に記載の滑り軸受は、外輪内周面の凹曲面の軸方向断面形状が、円の中心が異なる二つの円弧の傾斜面で形成されたゴシックアーチ形状であるので、回転トルクを低くすることができる。   In the sliding bearing according to claim 9, since the axial cross-sectional shape of the concave curved surface of the inner peripheral surface of the outer ring is a Gothic arch shape formed by two inclined surfaces of different circular arcs, the rotational torque is reduced. can do.

請求項10記載の滑り軸受は、内輪が上記合成樹脂の射出成形体であるので、軽量であり、容易に成形することができ、組み込み隙間によるマッチングが容易となる。   Since the inner ring is an injection-molded body made of the above synthetic resin, the slide bearing according to claim 10 is lightweight, can be easily molded, and matching by the built-in gap is easy.

請求項11に記載の滑り軸受は、上記合成樹脂がPEEK樹脂、PI樹脂、PPS樹脂から選ばれた少なくとも一つであるので、耐荷重性に優れ、水中、薬品中または高湿度の腐食雰囲気下において使用できる。   In the sliding bearing according to claim 11, since the synthetic resin is at least one selected from PEEK resin, PI resin, and PPS resin, it has excellent load resistance and is in a corrosive atmosphere of water, chemicals, or high humidity. Can be used.

図1(a)は本発明の滑り軸受を示す正面図であり、図1(b)は図1(a)のA−A線で切断した断面図である。Fig.1 (a) is a front view which shows the sliding bearing of this invention, FIG.1 (b) is sectional drawing cut | disconnected by the AA line of Fig.1 (a). 本発明の滑り軸受を軸方向に切断した部分断面図である。It is the fragmentary sectional view which cut | disconnected the sliding bearing of this invention to the axial direction. 本発明の滑り軸受の内輪を軸方向に切断した部分断面図である。It is the fragmentary sectional view which cut | disconnected the inner ring | wheel of the slide bearing of this invention to the axial direction. 本発明の滑り軸受の外輪を軸方向に切断した部分断面図である。It is the fragmentary sectional view which cut | disconnected the outer ring | wheel of the slide bearing of this invention to the axial direction. 図5(a)および図5(b)は、潤滑溝を形成した内輪を軸方向に切断した部分断面図である。FIG. 5A and FIG. 5B are partial cross-sectional views of the inner ring formed with the lubricating grooves cut in the axial direction. 本発明の滑り軸受の組み込み時の態様を示す斜視図である。It is a perspective view which shows the aspect at the time of the assembly of the slide bearing of this invention. 水中ラジアル試験装置の概略図である。It is the schematic of an underwater radial test apparatus.

本発明の滑り軸受の一実施例について図1により説明する。図1(a)は本発明の滑り軸受を示す正面図であり、図1(b)は図1(a)のA−A線で切断した断面図である。図1(a)および図1(b)に示すように、本発明の滑り軸受1は、凸曲面の外周面2aを有する内輪2と、該外周面2aに対応する凹曲面を内周面3bに有する外輪3との組合せからなり、外輪3と内輪2とを相対回転可能としている。内輪2に軸受孔4が形成されている。外輪3は、その内周面3bの対向する2箇所に、内輪組み込み溝3aが形成されており、この内輪組み込み溝3aは外輪3の一方の端面に開口している。ここで、内輪組み込み溝3aは、外輪3の少なくとも一方の端面に開口するように内周面3bにおける該端面側において対向する2箇所に形成すればよく、両端面に開口するように内周面3bにおける両端面側において対向する2箇所にそれぞれ形成してもよい。なお、両端面に内輪組み込み溝3aを形成する場合は、一方の端面における内輪組み込み溝3aに対して、他方の端面における内輪組み込み溝3aを中心軸(上記一方の端面における対向する2箇所の内輪組み込み溝3aの溝幅中心を結んだ軸)から角度をずらして形成すると、内輪2を外輪3に組み込む際に、誤って内輪2が他方の内輪組み込み溝3aから落下することを防ぐことができる。内輪組み込み溝3aのずらす角度は45°〜90°が望ましいが、90°ずらすことが最も望ましい。内輪2は、内輪組み込み溝3aを介して外輪3に組み込まれたものである。内輪2と外輪3とを個別に製造した後に、上記のように組み合せることで嵌合隙間を管理できる。   An embodiment of the slide bearing of the present invention will be described with reference to FIG. Fig.1 (a) is a front view which shows the sliding bearing of this invention, FIG.1 (b) is sectional drawing cut | disconnected by the AA line of Fig.1 (a). As shown in FIGS. 1 (a) and 1 (b), a plain bearing 1 of the present invention includes an inner ring 2 having a convex outer peripheral surface 2a and a concave curved surface corresponding to the outer peripheral surface 2a. The outer ring 3 and the inner ring 2 can be rotated relative to each other. A bearing hole 4 is formed in the inner ring 2. The outer ring 3 is formed with an inner ring incorporating groove 3 a at two opposing positions on the inner peripheral surface 3 b, and the inner ring incorporating groove 3 a is open at one end face of the outer ring 3. Here, the inner ring incorporating groove 3a may be formed at two locations facing each other on the end face side of the inner peripheral face 3b so as to open at least one end face of the outer ring 3, and the inner peripheral face so as to open at both end faces. You may form in 2 places which opposes in the both end surface side in 3b, respectively. In the case where the inner ring incorporating groove 3a is formed on both end faces, the inner ring incorporating groove 3a on the other end face is arranged with the inner ring incorporating groove 3a on the other end face as a central axis (two opposed inner rings on the one end face). If the inner ring 2 is assembled into the outer ring 3, the inner ring 2 can be prevented from accidentally dropping from the other inner ring incorporating groove 3a. . The angle of shifting the inner ring incorporating groove 3a is preferably 45 ° to 90 °, but most preferably 90 °. The inner ring 2 is incorporated into the outer ring 3 via an inner ring incorporating groove 3a. After the inner ring 2 and the outer ring 3 are manufactured separately, the fitting gap can be managed by combining them as described above.

図2は、本発明の滑り軸受を軸方向に切断した部分断面図である。図2に示すように、滑り軸受1は、軸心に対して凸状のR形状(凸曲面)の外周面2aを有する内輪2と、対応する凹状のR形状(凹曲面)の内周面3bを有する外輪3とで構成される。特に、内輪2の外周面2aを球面とすることが好ましく、この場合、外輪3の内周面3bは対応する球面とする。   FIG. 2 is a partial cross-sectional view of the sliding bearing of the present invention cut in the axial direction. As shown in FIG. 2, the plain bearing 1 includes an inner ring 2 having an outer peripheral surface 2 a having a convex R shape (convex curved surface) with respect to an axis, and an inner peripheral surface having a corresponding concave R shape (concave curved surface). It is comprised with the outer ring | wheel 3 which has 3b. In particular, the outer peripheral surface 2a of the inner ring 2 is preferably a spherical surface. In this case, the inner peripheral surface 3b of the outer ring 3 is a corresponding spherical surface.

図3は、本発明の滑り軸受の内輪を軸方向に切断した部分断面図である。図3に示すように、滑り軸受において回転する側の内輪2は、外周面2aの凸曲面の軸方向中央部をフラット形状とすることが好ましい。また、該フラット形状は、外周面2aの周方向全周にわたって設けることが好ましい。内輪2を樹脂の射出成形体とする場合、このフラット形状の部分にPLを設定することで、PL痕の削除工程を省略することができる。また、このフラット形状により形成される、外輪内周面と内輪外周面2aとの間の隙間により、水や薬液などが摺動面全体に循環しやすくなり潤滑性を向上させることができる。   FIG. 3 is a partial cross-sectional view of the inner ring of the slide bearing of the present invention cut in the axial direction. As shown in FIG. 3, it is preferable that the inner ring | wheel 2 of the side rotated in a slide bearing makes the axial direction center part of the convex curve of the outer peripheral surface 2a flat shape. Moreover, it is preferable to provide this flat shape over the perimeter of the circumferential direction of the outer peripheral surface 2a. When the inner ring 2 is a resin injection-molded body, the PL mark deletion process can be omitted by setting the PL in this flat portion. Further, the gap between the outer ring inner peripheral surface and the inner ring outer peripheral surface 2a formed by this flat shape makes it easy to circulate water, chemicals, and the like over the entire sliding surface, thereby improving the lubricity.

上記フラット形状は、内輪2の外周面2aの軸方向断面において凸曲面の頂点位置からフラット面までの距離dが0.05〜0.1mmである形状とすることが好ましい。フラット面までの距離dが0.05mm未満であると、隙間が小さ過ぎて、PL痕が引っかかることによる回転トルクの上昇等が懸念され、また、水や薬液などがこの隙間に循環しにくくなり潤滑性が向上しない。一方、フラット面までの距離dが0.1mmをこえると、フラット面が広くなりすぎて十分な揺動角が確保できなくなるので好ましくない。   The flat shape is preferably a shape in which the distance d from the apex position of the convex curved surface to the flat surface in the axial section of the outer peripheral surface 2a of the inner ring 2 is 0.05 to 0.1 mm. If the distance d to the flat surface is less than 0.05 mm, the gap is too small, and there is concern about an increase in rotational torque due to the PL mark being caught, and water and chemicals are less likely to circulate in this gap. Lubricity is not improved. On the other hand, if the distance d to the flat surface exceeds 0.1 mm, the flat surface becomes too wide and a sufficient swing angle cannot be secured, which is not preferable.

図4は、本発明の滑り軸受の外輪を軸方向に切断した部分断面図である。図4に示すように、滑り軸受において固定する側の外輪3は、内周面3bの凹曲面の軸方向断面形状を、円の中心が異なる二つの円弧の傾斜面で形成されたゴシックアーチ形状とすることができる。ゴシックアーチ形状とすることで、滑り軸受の回転トルクを小さくすることができる。このゴシックアーチ形状を有する外輪3と、上述のフラット形状を有する内輪2とを組み合わせて使用することが特に好ましい。   FIG. 4 is a partial cross-sectional view of the outer ring of the slide bearing of the present invention cut in the axial direction. As shown in FIG. 4, the outer ring 3 on the side to be fixed in the sliding bearing has a Gothic arch shape in which the axial cross-sectional shape of the concave curved surface of the inner peripheral surface 3b is formed by inclined surfaces of two circular arcs having different circle centers. It can be. By using a Gothic arch shape, the rotational torque of the sliding bearing can be reduced. It is particularly preferable to use the outer ring 3 having the Gothic arch shape and the inner ring 2 having the flat shape described above in combination.

本発明の滑り軸受の内輪に形成された潤滑溝の例を図5に示す。図5(a)および図5(b)は、内輪を軸方向に切断した部分断面図である。図5(a)に示す例では、内輪2の外周面2aおよび端面に軸方向の潤滑溝2bが形成されている。なお、軸方向の潤滑溝2bは、少なくとも内輪2の外周面2aに形成されていればよい。この軸方向の潤滑溝2bは、外周面2aに周方向で等間隔に少なくとも10箇所形成されている。軸方向の潤滑溝2bは、幅1〜2mm、深さ0.5mm程度であることが好ましい。潤滑溝2bの幅が2mmをこえると受圧面積が少なくなり好ましくなく、幅が1mm未満では水や薬品が循環しにくくなり好ましくない。   An example of the lubricating groove formed in the inner ring of the slide bearing of the present invention is shown in FIG. FIG. 5A and FIG. 5B are partial cross-sectional views of the inner ring cut in the axial direction. In the example shown in FIG. 5A, axial lubrication grooves 2 b are formed on the outer peripheral surface 2 a and the end surface of the inner ring 2. In addition, the axial direction lubricating groove 2b should just be formed in the outer peripheral surface 2a of the inner ring | wheel 2 at least. The axial direction lubricating grooves 2b are formed in the outer peripheral surface 2a at at least 10 locations at equal intervals in the circumferential direction. The axial lubricating groove 2b preferably has a width of 1 to 2 mm and a depth of about 0.5 mm. If the width of the lubricating groove 2b exceeds 2 mm, the pressure receiving area is reduced, which is not preferable. If the width is less than 1 mm, water and chemicals are not easily circulated.

図5(b)に示す例では、内輪2の外周面2aおよび端面に形成された軸方向の潤滑溝2bに加えて、周方向の潤滑溝2cが、内輪2の外周面2aの軸方向中央部に形成されている。潤滑溝2cは、幅0.5〜2.5mm、深さ0.5mm程度の全周溝であることが好ましい。潤滑溝2cの幅が2.5mmをこえると受圧面積が少なくなり好ましくなく、幅が0.5mm未満では水や薬品が循環しにくくなり好ましくない。   In the example shown in FIG. 5B, in addition to the axial lubrication groove 2 b formed on the outer circumferential surface 2 a and the end surface of the inner ring 2, the circumferential lubrication groove 2 c is the center in the axial direction of the outer circumferential surface 2 a of the inner ring 2. It is formed in the part. The lubricating groove 2c is preferably a circumferential groove having a width of about 0.5 to 2.5 mm and a depth of about 0.5 mm. If the width of the lubricating groove 2c exceeds 2.5 mm, the pressure receiving area is reduced, which is not preferable. If the width is less than 0.5 mm, water and chemicals are not easily circulated.

また、上記した軸方向の潤滑溝および周方向の潤滑溝は、外輪の内周面に設けてもよい。この場合、軸方向の潤滑溝は、外輪の内周面に周方向で等間隔に少なくとも10箇所形成され、周方向の潤滑溝は、外輪の内周面の軸方向中央部に形成される。これらの潤滑溝の幅・深さ等については、上記内輪の外周面に形成する場合と同様である。なお、これらの潤滑溝は、内輪の外周面および外輪の内周面の双方に形成してもよい。   The axial lubrication groove and the circumferential lubrication groove may be provided on the inner circumferential surface of the outer ring. In this case, at least ten lubricating grooves in the axial direction are formed at equal intervals in the circumferential direction on the inner circumferential surface of the outer ring, and the circumferential lubricating grooves are formed in the central portion in the axial direction of the inner circumferential surface of the outer ring. About the width | variety, depth, etc. of these lubrication grooves, it is the same as that of the case where it forms in the outer peripheral surface of the said inner ring | wheel. These lubrication grooves may be formed on both the outer peripheral surface of the inner ring and the inner peripheral surface of the outer ring.

図6は、本発明の滑り軸受の組み込み時の態様を示す斜視図である。まず、内輪2の軸心と、外輪3の軸心とをずらした(直交させた)状態で、内輪2を外輪3の軸方向に進行させ、内輪2を外輪3に挿入する。この際、図1(b)に示すように、外輪3の内周面3bが挿入方向からみて幅方向中点以降は小径となるので、それ以上進行できなくなる。次に、この状態から、内輪2と外輪3とを相対回転(90°回転)させて、内輪2の軸心と外輪3の軸心とを一致させることで、図1に示すような内輪2を外輪3に挿嵌させた滑り軸受1を得ることができる。   FIG. 6 is a perspective view showing an aspect when the slide bearing of the present invention is assembled. First, in a state where the axis of the inner ring 2 and the axis of the outer ring 3 are shifted (orthogonalized), the inner ring 2 is advanced in the axial direction of the outer ring 3, and the inner ring 2 is inserted into the outer ring 3. At this time, as shown in FIG. 1 (b), the inner peripheral surface 3b of the outer ring 3 has a small diameter after the midpoint in the width direction when viewed from the insertion direction, and cannot proceed any further. Next, from this state, the inner ring 2 and the outer ring 3 are rotated relative to each other (by 90 °) so that the axis of the inner ring 2 and the axis of the outer ring 3 are aligned with each other, whereby the inner ring 2 as shown in FIG. The sliding bearing 1 in which is inserted into the outer ring 3 can be obtained.

内輪組み込み溝3aの幅は、内輪2の幅と同じ寸法とすることが好ましい。また、対向する内輪組み込み溝3aの底面間の距離を内輪2の最大外径と同じ寸法とすることが好ましい。内輪組み込み溝3aの寸法を上記寸法とすることで、内輪2を外輪3に組み込む際に、外輪軸心と内輪軸心とが直交する状態で、内輪2の幅の両端を、外輪3の内輪組み込み溝3aの両端に合わせて、内輪2を外輪3に容易に組み込みできる。   The width of the inner ring incorporating groove 3a is preferably the same as the width of the inner ring 2. Moreover, it is preferable that the distance between the bottom surfaces of the opposed inner ring incorporating grooves 3 a is the same as the maximum outer diameter of the inner ring 2. By setting the dimensions of the inner ring mounting groove 3a to the above dimensions, when the inner ring 2 is assembled to the outer ring 3, both ends of the width of the inner ring 2 are connected to the inner ring of the outer ring 3 in a state where the outer ring axis and the inner ring axis are orthogonal to each other. The inner ring 2 can be easily assembled into the outer ring 3 in accordance with both ends of the incorporating groove 3a.

本発明の滑り軸受において、外輪および内輪は合成樹脂で形成されることが好ましい。合成樹脂の種類は特に限定されないが、少なくとも該軸受の使用条件(耐熱性、機械的強度など)に見合う特性を有する合成樹脂である必要がある。また、射出成形可能な合成樹脂であれば製造が容易であり、寸法精度も均一にできるので嵌合隙間を管理する上でも好ましい。   In the sliding bearing of the present invention, the outer ring and the inner ring are preferably formed of a synthetic resin. The type of the synthetic resin is not particularly limited, but it is necessary that the synthetic resin has characteristics that meet at least the usage conditions (heat resistance, mechanical strength, etc.) of the bearing. Moreover, if it is a synthetic resin which can be injection-molded, it can be manufactured easily and the dimensional accuracy can be made uniform, which is preferable in managing the fitting gap.

内輪および外輪は潤滑特性および機械強度に優れた合成樹脂を用いることが好ましい。例えば、ポリアセタール(POM)樹脂、ナイロン樹脂(ナイロン6、ナイロン66、ナイロン610、ナイロン612、ナイロン11、ナイロン12、ナイロン46、分子鎖中に芳香族環を有する半芳香族ナイロンなど)、ポリテトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)樹脂、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP)樹脂、エチレン−テトラフルオロエチレン共重合体(ETFE)樹脂などの射出成形可能なフッ素樹脂、射出成形可能なPI樹脂、PPS樹脂、全芳香族ポリエステル樹脂、PEEK樹脂、ポリアミドイミド樹脂などを挙げることができる。これらの各合成樹脂は単独で使用してもよく、2種類以上混合したポリマーアロイであってもよい。あるいは、上記以外の潤滑特性の低い合成樹脂に上記の合成樹脂を配合したポリマーアロイであってもよい。   For the inner ring and the outer ring, it is preferable to use a synthetic resin excellent in lubrication characteristics and mechanical strength. For example, polyacetal (POM) resin, nylon resin (nylon 6, nylon 66, nylon 610, nylon 612, nylon 11, nylon 12, nylon 46, semi-aromatic nylon having an aromatic ring in the molecular chain, etc.), polytetra Fluoropolymers that can be injection molded such as fluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA) resin, tetrafluoroethylene / hexafluoropropylene copolymer (FEP) resin, ethylene-tetrafluoroethylene copolymer (ETFE) resin , Injection-moldable PI resin, PPS resin, wholly aromatic polyester resin, PEEK resin, polyamideimide resin, and the like. Each of these synthetic resins may be used alone or may be a polymer alloy in which two or more kinds are mixed. Or the polymer alloy which mix | blended said synthetic resin with the synthetic resin with low lubrication characteristics other than the above may be sufficient.

これらの合成樹脂の中で、耐荷重性に優れるとともに、水中、薬品中または高湿度の腐食雰囲気などにおいて耐腐食性に優れることから、PEEK樹脂、PI樹脂、PPS樹脂を用いることが好ましい。これらの樹脂を用いることで、本発明の滑り軸受は、腐食性雰囲気下においても好適に使用できる。   Among these synthetic resins, PEEK resin, PI resin, and PPS resin are preferably used because they have excellent load resistance and excellent corrosion resistance in a corrosive atmosphere in water, chemicals, or high humidity. By using these resins, the sliding bearing of the present invention can be suitably used even in a corrosive atmosphere.

また、これらの合成樹脂にガラス繊維、炭素繊維、各種鉱物性繊維(ウィスカー)を配合して強度を高めてもよい。さらに、固体潤滑剤等と併用してもよい。また、これらの合成樹脂に、固体潤滑剤や潤滑油を添加することで潤滑特性を高めることが可能である。固体潤滑剤として、ポリテトラフルオロエチレン(PTFE)樹脂、黒鉛、二硫化モリブデンなどを挙げることができる。   Moreover, glass fiber, carbon fiber, and various mineral fibers (whiskers) may be blended with these synthetic resins to increase the strength. Furthermore, you may use together with a solid lubricant. Moreover, it is possible to improve a lubrication characteristic by adding a solid lubricant and lubricating oil to these synthetic resins. Examples of the solid lubricant include polytetrafluoroethylene (PTFE) resin, graphite, and molybdenum disulfide.

実施例1
PTFE樹脂を30重量%配合したPEEK樹脂からなる摺動性樹脂材を用いて、内輪を射出成形で製造した。外輪は、特殊充填材入りPEEK材(ベアリーPK5031)を用い、射出成形で素材を成形した後、機械加工にて全面仕上げを行ない製造した。これらの内輪と外輪を組合せて供試軸受(図1参照)を得た。得られた供試軸受を、以下に示す水中ラジアル試験にて一定時間運転後の摩耗量を測定した。結果を表1に併記する。
Example 1
An inner ring was manufactured by injection molding using a slidable resin material made of PEEK resin containing 30% by weight of PTFE resin. The outer ring was manufactured by using PEEK material with special filler (Bearly PK5031), molding the material by injection molding, and then finishing the entire surface by machining. A test bearing (see FIG. 1) was obtained by combining these inner and outer rings. The obtained test bearing was measured for the amount of wear after a certain period of operation in an underwater radial test shown below. The results are also shown in Table 1.

実施例2
実施例1と同じ内輪を製造した後、この内輪外周面の周方向および軸方向に潤滑溝を形成した。周方向の潤滑溝は幅方向の中央部全周に、幅2mm、深さ0.5mmで、軸方向の潤滑溝は、幅1.5mm、深さ0.5mmの潤滑溝を周方向で等間隔に10箇所形成した。外輪は実施例1と同じものを用い、これらの内輪(図5(b)参照)と外輪(図1および図2の外輪3参照)を組合せて供試軸受を得た。得られた供試軸受を、以下に示す水中ラジアル試験にて一定時間運転後の摩耗量を測定した。結果を表1に併記する。
Example 2
After manufacturing the same inner ring as in Example 1, lubricating grooves were formed in the circumferential direction and the axial direction of the inner ring outer peripheral surface. The circumferential lubricating groove has a width of 2 mm and a depth of 0.5 mm in the entire circumference of the central portion in the width direction, and the axial lubricating groove has a width of 1.5 mm and a depth of 0.5 mm of the lubricating groove in the circumferential direction, etc. Ten locations were formed at intervals. The same outer ring as in Example 1 was used, and a test bearing was obtained by combining the inner ring (see FIG. 5B) and the outer ring (see the outer ring 3 in FIGS. 1 and 2). The obtained test bearing was measured for the amount of wear after a certain period of operation in an underwater radial test shown below. The results are also shown in Table 1.

比較例1
比較のため、供試軸受として内輪内径、外輪外径およびこれらの幅が同寸法のNTN精密樹脂社製:樹脂製転がり軸受(ボールベアリング)を用いた。この樹脂製転がり軸受は、内輪、外輪にベアリーPK5031を用い、射出成形で素材を成形した後、機械加工にて全面仕上げを行ない製造したものである。保持器はPPS樹脂の射出成形品であり、ボール(11個)はアルミナセラミックス製である。結果を表1に併記する。
Comparative Example 1
For comparison, NTN Precision Resin Co., Ltd. resin rolling bearings (ball bearings) having the same inner ring inner diameter, outer ring outer diameter, and the same width were used as test bearings. This resin rolling bearing is manufactured by using a BEAREE PK5031 for inner and outer rings, molding a material by injection molding, and then finishing the entire surface by machining. The cage is an injection-molded product of PPS resin, and the balls (11 pieces) are made of alumina ceramics. The results are also shown in Table 1.

<水中ラジアル試験>
試験は、図7に示す水中ラジアル試験機を用い、水5中にて実施した。ハウジング6に組み付けた供試軸受(滑り軸受)1に、エアーシリンダー7で、荷重をかけた。軸8はカップリング9を介しモータ10にて回転させ、初期回転トルクを測定するとともに50時間での隙間増加量を確認した。試験条件は、相手材にSUS304の旋削加工品(表面粗さRa0.8μm)、荷重は200N、ローラ回転数は800rpm、雰囲気は水中、試験時間は50hr(時間)、で試験を行なった。評価方法は、隙間増加量が0.02mm未満であるものは、液中での耐高荷重性に特に優れるとして、「◎」を、0.02〜0.1mmであるものは、液中での耐高荷重性に優れるとして、「○」を、記録する。
<Underwater radial test>
The test was carried out in water 5 using an underwater radial tester shown in FIG. A load was applied to a test bearing (sliding bearing) 1 assembled to the housing 6 with an air cylinder 7. The shaft 8 was rotated by the motor 10 through the coupling 9, and the initial rotational torque was measured, and the amount of increase in the gap in 50 hours was confirmed. The test conditions were a SUS304 turning product (surface roughness Ra 0.8 μm) on the mating material, a load of 200 N, a roller rotation speed of 800 rpm, an atmosphere of water, and a test time of 50 hours (hours). As for the evaluation method, those having an increase in gap of less than 0.02 mm are particularly excellent in high load resistance in liquid, and “◎” is 0.02 to 0.1 mm. “○” is recorded as being excellent in high load resistance.

Figure 2011021743
Figure 2011021743

水中ラジアル試験の結果、実施例1および実施例2の滑り軸受は、比較例1の樹脂製転がり軸受と比べ約20%の初期回転トルクアップであり問題のない水準であった。また、耐久試験結果も実施例1および実施例2の滑り軸受は、比較例1の樹脂製転がり軸受と比べ、50hrで異常摩耗することなく、良好であった。表1の結果からも明らかなように、実施例1および実施例2の滑り軸受は、比較例1の樹脂製転がり軸受と機能的に遜色無く、構成部品や製造工程が少ないことから構造的に遥かに優れており、かつ品質的、コスト的にも有利であることがわかる。   As a result of the underwater radial test, the sliding bearings of Example 1 and Example 2 had an initial rotational torque increase of about 20% as compared with the resin rolling bearing of Comparative Example 1, and were at a level with no problem. Further, the durability test results of the sliding bearings of Example 1 and Example 2 were good as compared with the resin rolling bearing of Comparative Example 1 without abnormal wear at 50 hr. As is clear from the results in Table 1, the sliding bearings of Example 1 and Example 2 are functionally comparable to the resin rolling bearing of Comparative Example 1, and structurally because there are few components and manufacturing processes. It can be seen that it is far superior and advantageous in terms of quality and cost.

本発明の滑り軸受は、内輪と外輪とを個別に製造して内輪を外輪に組み込むことが可能であり、部品点数が少なく、樹脂製転がり軸受(ボールベアリング)と比べ低価格で製造でき、回転トルクが安定し、高荷重、腐食雰囲気下においても使用可能であるので、特殊環境を含めた種々の用途において、樹脂製転がり軸受に替えて好適に利用できる。   The slide bearing according to the present invention can be manufactured separately with an inner ring and an outer ring, and the inner ring can be incorporated into the outer ring. The number of parts is small, and it can be manufactured at a lower price than a plastic rolling bearing (ball bearing). Since the torque is stable and can be used even under high loads and corrosive atmospheres, it can be suitably used in place of resin rolling bearings in various applications including special environments.

1 滑り軸受
2 内輪
2a 内輪の外周面
2b 軸方向の潤滑溝
2c 周方向の潤滑溝
3 外輪
3a 組み込み溝
3b 外輪の内周面
4 軸受孔
5 水
6 ハウジング
7 エアーシリンダー
8 軸
9 カップリング
10 モータ
DESCRIPTION OF SYMBOLS 1 Sliding bearing 2 Inner ring 2a Inner ring outer peripheral surface 2b Axial lubrication groove 2c Circumferential lubrication groove 3 Outer ring 3a Built-in groove 3b Outer ring inner circumferential surface 4 Bearing hole 5 Water 6 Housing 7 Air cylinder 8 Shaft 9 Coupling 10 Motor

Claims (12)

凸曲面の外周面を有する合成樹脂製の内輪と、該外周面に対応する凹曲面の内周面を有する合成樹脂製の外輪との組合せからなる滑り軸受であって、
前記外輪は、その内周面の対向する2箇所に、内輪組み込み溝が形成されており、前記内輪組み込み溝が前記外輪の少なくとも一方の端面に開口して形成されており、
前記内輪は、前記内輪組み込み溝を介して前記外輪に組み込まれたものであることを特徴とする滑り軸受。
A slide bearing comprising a combination of a synthetic resin inner ring having a convex curved outer peripheral surface and a synthetic resin outer ring having a concave curved inner peripheral surface corresponding to the outer peripheral surface,
The outer ring is formed with an inner ring incorporating groove at two opposing positions on the inner peripheral surface thereof, and the inner ring incorporating groove is formed to open at least one end surface of the outer ring,
The sliding bearing, wherein the inner ring is incorporated in the outer ring through the inner ring incorporating groove.
前記内輪は、該内輪の軸心と前記外輪の軸心とをずらした状態で前記内輪組み込み溝を介して前記外輪に挿入された後、前記内輪および前記外輪を相対回転させて前記内輪の軸心と前記外輪の軸心とを合せることで、前記外輪に組み込まれたものであることを特徴とする請求項1記載の滑り軸受。   The inner ring is inserted into the outer ring through the inner ring incorporating groove in a state in which the axis of the inner ring is shifted from the axis of the outer ring, and then the inner ring and the outer ring are rotated relative to each other to rotate the shaft of the inner ring. The plain bearing according to claim 1, wherein the bearing is incorporated in the outer ring by aligning the core with the axis of the outer ring. 前記内輪組み込み溝の幅は、前記内輪の幅と同じ寸法であることを特徴とする請求項1または請求項2記載の滑り軸受。   The sliding bearing according to claim 1 or 2, wherein a width of the inner ring incorporating groove is the same as a width of the inner ring. 前記対向する内輪組み込み溝の底面間の距離は、前記内輪の外径と同じ寸法であることを特徴とする請求項1、請求項2または請求項3記載の滑り軸受。   The slide bearing according to claim 1, 2 or 3, wherein a distance between the bottom surfaces of the opposed inner ring incorporating grooves is the same as an outer diameter of the inner ring. 前記凸曲面は、球面であることを特徴とする請求項1ないし請求項4のいずれか一項記載の滑り軸受。   The sliding bearing according to any one of claims 1 to 4, wherein the convex curved surface is a spherical surface. 前記内輪の外周面は、前記凸曲面の軸方向中央部の全周がフラット形状であることを特徴とする請求項1ないし請求項5のいずれか一項記載の滑り軸受。   The sliding bearing according to any one of claims 1 to 5, wherein the outer peripheral surface of the inner ring has a flat shape in the entire circumference of the central portion in the axial direction of the convex curved surface. 前記フラット形状は、前記内輪の外周面の軸方向断面において前記凸曲面の頂点位置からフラット面までの距離が0.05〜0.1mmである形状であることを特徴とする請求項6記載の滑り軸受。   The flat shape is a shape in which a distance from a vertex position of the convex curved surface to the flat surface is 0.05 to 0.1 mm in an axial cross section of the outer peripheral surface of the inner ring. Plain bearing. 前記内輪の外周面または前記外輪の内周面に潤滑溝が形成されていることを特徴とする請求項1ないし請求項5のいずれか一項記載の滑り軸受。   The sliding bearing according to any one of claims 1 to 5, wherein a lubricating groove is formed on an outer peripheral surface of the inner ring or an inner peripheral surface of the outer ring. 前記凹曲面の軸方向断面形状は、円の中心が異なる二つの円弧の傾斜面で形成されたゴシックアーチ形状であることを特徴とする請求項1ないし請求項8のいずれか一項記載の滑り軸受。   9. The slip according to claim 1, wherein an axial cross-sectional shape of the concave curved surface is a Gothic arch shape formed by inclined surfaces of two circular arcs having different circle centers. bearing. 前記内輪は、前記合成樹脂の射出成形体であることを特徴とする請求項1ないし請求項9のいずれか一項記載の滑り軸受。   The plain bearing according to any one of claims 1 to 9, wherein the inner ring is an injection-molded body of the synthetic resin. 前記合成樹脂は、ポリエーテルエーテルケトン樹脂、ポリイミド樹脂、およびポリフェニレンサルファイド樹脂から選ばれた少なくとも一つであることを特徴とする請求項1ないし請求項10のいずれか一項記載の滑り軸受。   The sliding bearing according to any one of claims 1 to 10, wherein the synthetic resin is at least one selected from a polyether ether ketone resin, a polyimide resin, and a polyphenylene sulfide resin. 前記滑り軸受は、腐食雰囲気下において使用されることを特徴とする請求項11記載の滑り軸受。   The sliding bearing according to claim 11, wherein the sliding bearing is used in a corrosive atmosphere.
JP2009270684A 2009-06-19 2009-11-27 Sliding bearing Pending JP2011021743A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009270684A JP2011021743A (en) 2009-06-19 2009-11-27 Sliding bearing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009145927 2009-06-19
JP2009270684A JP2011021743A (en) 2009-06-19 2009-11-27 Sliding bearing

Publications (1)

Publication Number Publication Date
JP2011021743A true JP2011021743A (en) 2011-02-03

Family

ID=43631989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009270684A Pending JP2011021743A (en) 2009-06-19 2009-11-27 Sliding bearing

Country Status (1)

Country Link
JP (1) JP2011021743A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013079714A (en) * 2011-09-22 2013-05-02 Ntn Corp Sliding bearing and image forming device
CN106846595A (en) * 2017-02-03 2017-06-13 刘宏兰 A kind of method and apparatus for the queuing pickup of Courier Service center
CN106985895A (en) * 2017-04-07 2017-07-28 浙江吉利新能源商用车有限公司 A kind of steering column dust cover assembly

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013079714A (en) * 2011-09-22 2013-05-02 Ntn Corp Sliding bearing and image forming device
US9458885B2 (en) 2011-09-22 2016-10-04 Ntn Corporation Sliding bearing and image forming apparatus
CN106846595A (en) * 2017-02-03 2017-06-13 刘宏兰 A kind of method and apparatus for the queuing pickup of Courier Service center
CN106985895A (en) * 2017-04-07 2017-07-28 浙江吉利新能源商用车有限公司 A kind of steering column dust cover assembly

Similar Documents

Publication Publication Date Title
US9458885B2 (en) Sliding bearing and image forming apparatus
KR101835911B1 (en) Composite slide bearing
WO2011040336A1 (en) Slide bearing
US7670055B2 (en) Sliding bearing
WO2012117938A1 (en) Sliding bearing
KR20160095136A (en) Internally meshing gear pump
GB2265950A (en) Bearings.
JP4863077B2 (en) Ball bearing cage and ball bearing using the same
JP5342978B2 (en) Plain bearing
JP5692720B2 (en) Spherical plain bearing device
KR20110136709A (en) Method for manufacturing slide bearing parts, slide bearings and slide bearing parts
JP2013204463A (en) Cradle guide for variable capacity type axial piston pump, and variable capacity type axial piston pump
JP5466427B2 (en) Spherical plain bearing
JP2011021743A (en) Sliding bearing
JP5623852B2 (en) Plain bearing
JP2011074979A (en) Slide bearing
TWI776014B (en) Ball bearing cage and ball bearing
KR20170071191A (en) Single-row cylindrical roller bearing with housing
JP2004076747A (en) Roller bearing cage and rolling bearing
JP2013036608A (en) Snap cage and rolling bearing
JP5692719B2 (en) Spherical plain bearing and manufacturing method thereof
JP2004076928A (en) Synthetic resin cage and rolling bearing for rolling bearing
WO2018230381A1 (en) Thrust rolling bearing formed from resin
JP5717065B2 (en) Plain bearing
JP2012145187A (en) Sliding bearing