[go: up one dir, main page]

JP2011021296A - Monofilament for screen gauze, excellent in dimensional stability - Google Patents

Monofilament for screen gauze, excellent in dimensional stability Download PDF

Info

Publication number
JP2011021296A
JP2011021296A JP2009167768A JP2009167768A JP2011021296A JP 2011021296 A JP2011021296 A JP 2011021296A JP 2009167768 A JP2009167768 A JP 2009167768A JP 2009167768 A JP2009167768 A JP 2009167768A JP 2011021296 A JP2011021296 A JP 2011021296A
Authority
JP
Japan
Prior art keywords
polyester
monofilament
group
yarn
elongation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009167768A
Other languages
Japanese (ja)
Other versions
JP5217059B2 (en
Inventor
Taku Nakajima
卓 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Frontier Co Ltd
Original Assignee
Teijin Fibers Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Fibers Ltd filed Critical Teijin Fibers Ltd
Priority to JP2009167768A priority Critical patent/JP5217059B2/en
Publication of JP2011021296A publication Critical patent/JP2011021296A/en
Application granted granted Critical
Publication of JP5217059B2 publication Critical patent/JP5217059B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Artificial Filaments (AREA)
  • Woven Fabrics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a monofilament which is excellent in weaving stability on processing and in dimensional stability required for continuous printing performance, and is suitable for obtaining high mesh high modulus screen gauze. <P>SOLUTION: The polyester monofilament for the screen gauze is characterized in that the polyester is polyethylene terephthalate containing a phosphorus compound comprising phenyl phosphonic acid or a derivative thereof, and/or phenyl phosphinic acid or a derivative thereof in an amount of 0.1 to 300 mmole% based on the mole number of a dicarboxylic acid constituting the polyester. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明はスクリーン印刷用のメッシュ織物、特にプリント配線基盤の製造などの高度な精密性を要求されるハイメッシュでハイモジュラスのスクリーン紗を得るのに好適なポリエステルモノフィラメントに関する。   The present invention relates to a polyester monofilament suitable for obtaining a high-mesh, high-modulus screen wrinkle that requires high precision, such as mesh fabric for screen printing, particularly for the production of printed wiring boards.

モノフィラメントは衣料分野ではもちろん、産業資材の分野でも幅広く利用されてきている。特に後者の産業資材の分野での用途の例として、タイヤコード、ロープ、ネット、テグス、ターポリン、テント、スクリーン、パラグライダー、およびセールクロス用などの原糸としてのモノフィラメントがある。そして、このモノフィラメントに要求される物性も厳しくなり、ゴムとの接着性、耐疲労性、染色性、耐磨耗性、結節強力などの改善が迫られている。特に最近の電子回路分野での印刷においては集積度が高まる一方であり、スクリーン紗としての印刷緻密さ及び印刷向上のための要求、すなわち、高強度・高モジュラスでかつ、ハイメッシュといった要求がますます強くなっている。そのため原糸について、高強力、高モジュラスでかつ、より細繊度のものが要求されている。   Monofilaments have been widely used not only in the clothing field but also in the industrial material field. Examples of applications in the latter field of industrial materials in particular include monofilaments as raw yarns for tire cords, ropes, nets, tegus, tarpaulins, tents, screens, paragliders and sailcloths. The physical properties required for this monofilament are becoming strict, and improvements such as adhesion to rubber, fatigue resistance, dyeability, abrasion resistance, and knot strength are being urged. Especially in the recent printing in the electronic circuit field, the degree of integration is increasing, and there is a demand for higher printing density and improved printing as screen screens, that is, high strength, high modulus and high mesh. It is getting stronger. Therefore, the raw yarn is required to have high strength, high modulus, and fineness.

スクリーン紗原糸を設計する上で特開平2−289120号公報では、製織前原糸の破断強度や伸度、10%時のモジュラスを特定値にすることが提案されている。しかし、スクリーン紗製造にあたり、織目調整や熱セットや紗張りの工程を経るため、特に製織後の湿熱処理により糸の強度、伸度が変化するため、単に製織前原糸の物性値を規定するだけでは、スクリーン紗の精密印刷時の寸法安定性に欠けるという問題点があった。   JP-A-2-289120 proposes a specific value for the rupture strength and elongation of a raw yarn before weaving when the screen yarn is designed. However, in the production of screen wrinkles, since the texture adjustment, heat setting, and tensioning processes are performed, the strength and elongation of the yarn changes due to wet heat treatment after weaving. However, there was a problem that the dimensional stability at the time of precision printing of the screen 欠 け was lacking.

又特開平2−277818号公報には強度と12.5%伸長時の強力、乾熱収縮率を特定範囲とすることにより寸法安定性の良いスクリーン紗用モノフィラメントとすることができる旨提示されている。しかしながらスクリーン紗製造工程には精錬や染色工程など湿熱工程があり、湿熱収縮等による原糸物性変化を考慮に入れたものではなく高度な寸法安定性を要求される分野では満足のいくものではなかった。   Japanese Patent Laid-Open No. 2-277818 discloses that a monofilament for a screen with good dimensional stability can be obtained by setting the strength, the strength at 12.5% elongation, and the dry heat shrinkage within a specific range. Yes. However, there are wet heat processes such as refining and dyeing processes in the screen wrinkle manufacturing process, which does not take into account changes in the physical properties of the yarn due to wet heat shrinkage, etc. and is not satisfactory in fields that require high dimensional stability. It was.

又特開2005−47020号公報には原糸物性として、破断強度、伸度、沸水収縮率を特定値とすることが提示されている。この方法は湿熱工程での収縮を考慮に入れたものであり、ある程度寸法安定性は向上するものの、収縮前後の原糸物性を規定したものでないため、スクリーン紗のロット間で寸法安定性がばらつく等安定性にかけるものであった。   Japanese Patent Application Laid-Open No. 2005-47020 proposes to set specific values for breaking strength, elongation, and boiling water shrinkage as raw yarn physical properties. This method takes into account the shrinkage in the wet heat process, and although the dimensional stability is improved to some extent, it does not prescribe the physical properties of the yarn before and after shrinkage, so the dimensional stability varies between lots of screen wrinkles. It was subject to equal stability.

更にスクリーン紗用として、十分な性能を発揮する為には、上述のように製織前の原糸物性を調整し、しかる後製織工程に供し、必要に応じて精錬、染色、等の湿熱処理を経ることにより収縮するが、該湿熱収縮後に所定の強伸度特性を有するとともに、更に、糸長方向に沿って、繊維径が安定していることが必要である。特に、モノフィラメントの表面に生じる節は製織時において糸の切断やスカム発生の原因となり好ましくなく、出来るだけ発生を防止する必要があるが、細繊度のモノフィラメントの場合難しく、最近のスクリーン紗に要求される特性を十分に満足していないのが現状である。   Furthermore, in order to demonstrate sufficient performance for screen wrinkles, the raw yarn physical properties before weaving are adjusted as described above, and then subjected to a weaving process, followed by wet heat treatment such as refining, dyeing, etc. Although it shrinks by passing, it has to have a predetermined strength and elongation characteristic after the wet heat shrinkage, and it is further necessary that the fiber diameter is stable along the yarn length direction. In particular, the knots on the surface of the monofilament are undesirable because they cause yarn breakage and scum at the time of weaving, and it is necessary to prevent them from occurring as much as possible. The present situation is that the characteristics are not fully satisfied.

特開平2−289120号公報JP-A-2-289120 特開平2−277818号公報JP-A-2-277818 特開2005−47020号公報JP-A-2005-47020

本発明は、繊維径が均一で、連続印刷性能、特に寸法安定性に優れるハイメッシュでハイモジュラスなスクリーン紗用ポリエステルモノフィラメントを提供することにある。   An object of the present invention is to provide a high-mesh, high-modulus polyester monofilament for screen wrinkles having a uniform fiber diameter and excellent continuous printing performance, particularly dimensional stability.

本発明は上記の課題解決するために鋭意検討した結果得られたものであり、ポリエステルに特定のリン化合物を含有させることにより、紡糸及び延伸工程で生じるポリエステルの結晶成長をコントロール(均一化)することが可能となり繊維径が均一で節の少なく寸法安定性の良い糸とすることできたものである。   The present invention was obtained as a result of diligent studies to solve the above-mentioned problems, and by controlling the crystal growth of the polyester produced in the spinning and drawing processes by making the polyester contain a specific phosphorus compound (uniformization). This makes it possible to obtain a yarn having a uniform fiber diameter, few nodes, and good dimensional stability.

即ち、本発明によれば、
スクリーン紗用ポリエステルモノフィラメントにおいて、ポリエステルが主たる繰り返し単位がエチレンテレフタレートであって、下記式(1)で表されるフェニルホスホン酸又はその誘導体、及び/又はフェニルホスフィン酸又はその誘導体であるリン化合物を、ポリエステルを構成するジカルボン酸の全モル数に対して0.1〜300ミリモル%含むポリエチレンテレフタレート組成物であり、下記A〜Dの要件を満足することを特徴とするスクリーン紗用ポリエステルモノフィラメント。
A.モノフィラメントの湿熱処理前の原糸強度が5.0〜7.0cN/dtex、5%伸長時の強度が2.5〜3.7cN/dtex、伸度が20〜45%、湿熱収縮率が2.5〜9.0%であること。
B.ポリエステルの固有粘度が0.70〜1.00dL/gであること。
C.単糸繊度が1〜24dtexであること。
D.モノフィラメントの繊維長手方向50万メートルで繊維直径に対し1.1倍以上の節糸が1個以下であること。

Figure 2011021296
[上の式中、Rは炭素数1〜12個の炭化水素基であるアルキル基、アリール基又はベンジル基であり、Rは水素原子又は炭素数の1〜12個の炭化水素基であるアルキル基、アリール基又はベンジル基、Xは、水素原子または−OR基であり、Xが−OR基である場合、Rは水素原子又は炭素数の1〜12個の炭化水素基であるアルキル基、アリール基又はベンジル基、であり、RとRは同一であっても異なっていても良い。]
好ましくは該ポリエステル繊維が1〜100nmの層状構造を有する粒子を含有し、赤道方向の広角X線回折において2θ=5〜6°に回折ピークを有するスクリーン紗用ポリエステルモノフィラメント。
が提供される。 That is, according to the present invention,
In a polyester monofilament for screen wrinkles, a polyester is a main repeating unit of ethylene terephthalate, a phenylphosphonic acid represented by the following formula (1) or a derivative thereof, and / or a phosphorus compound that is a phenylphosphinic acid or a derivative thereof, A polyester monofilament for screen wrinkles, which is a polyethylene terephthalate composition containing 0.1 to 300 mmol% with respect to the total number of moles of dicarboxylic acid constituting the polyester, and satisfies the following requirements A to D.
A. Monofilament yarn strength before wet heat treatment is 5.0 to 7.0 cN / dtex, strength at 5% elongation is 2.5 to 3.7 cN / dtex, elongation is 20 to 45%, wet heat shrinkage is 2 .5 to 9.0%.
B. The intrinsic viscosity of the polyester is 0.70 to 1.00 dL / g.
C. The single yarn fineness is 1 to 24 dtex.
D. The number of knots is 1.1 or more times the fiber diameter in the monofilament longitudinal direction of 500,000 meters.
Figure 2011021296
[In the above formula, R 1 is an alkyl group, aryl group or benzyl group which is a hydrocarbon group having 1 to 12 carbon atoms, and R 2 is a hydrogen atom or a hydrocarbon group having 1 to 12 carbon atoms. A certain alkyl group, aryl group or benzyl group, X is a hydrogen atom or —OR 3 group, and when X is a —OR 3 group, R 3 is a hydrogen atom or a hydrocarbon group having 1 to 12 carbon atoms. An alkyl group, an aryl group or a benzyl group, and R 2 and R 3 may be the same or different. ]
A polyester monofilament for screen wrinkles, wherein the polyester fiber preferably contains particles having a layered structure of 1 to 100 nm and has a diffraction peak at 2θ = 5 to 6 ° in wide-angle X-ray diffraction in the equator direction.
Is provided.

スクリーン紗用ポリエステルモノフィラメントにおいて、ポリエステルに特定のリン化合物を含有させることにより、ポリマーの結晶成長を抑制でき繊維径が均一化した糸とすることができ、製織工程での糸削れが防止できる。また製織前の原糸物性、収縮率、製織後の湿熱処理後の原糸物性を特定値とすることで精密印刷における寸法安定性の良いスクリーン紗が安定して得られる。   In the polyester monofilament for screen wrinkles, by containing a specific phosphorus compound in the polyester, the crystal growth of the polymer can be suppressed and a fiber having a uniform fiber diameter can be obtained, and yarn scraping in the weaving process can be prevented. Further, by setting the properties of the yarn before weaving, the shrinkage rate, and the properties of the yarn after the wet heat treatment after weaving to specific values, a screen wrinkle with good dimensional stability in precision printing can be obtained stably.

精密印刷に適したハイメッシュスクリーン(200〜500メッシュ)用として1〜24dtexの細繊度モノフィラメントが用いられる。本発明のスクリーン紗用モノフィラメントを構成するポリエステルポリマーは、該ポリマーがフェニルホスホン酸又はその誘導体、及び/又はフェニルホスフィン酸又はその誘導体であるリン化合物を、ポリエステルを構成するジカルボン酸のモル数に対して0.1〜300ミリモル%含むポリマー組成物である。   A fine filament monofilament of 1 to 24 dtex is used for a high mesh screen (200 to 500 mesh) suitable for precision printing. The polyester polymer constituting the monofilament for screen wrinkles of the present invention comprises a phosphorus compound in which the polymer is phenylphosphonic acid or a derivative thereof, and / or phenylphosphinic acid or a derivative thereof, relative to the number of moles of dicarboxylic acid constituting the polyester. 0.1 to 300 mmol% of the polymer composition.

本発明のポリエステルポリマーにおいては、フェニルホスホン酸又はその誘導体、及び/又はフェニルホスフィン酸又はその誘導体であるリン化合物を含有することにより、ポリマーの結晶性が向上し、溶融し、紡糸口金から吐出する段階で、微小結晶を多数形成する。そしてこの微小結晶が、紡糸及び延伸工程で生じる結晶成長を微分散化させ、均一化させることによって、繊維径が均一化し、ハイメッシュ紗製織時に繊維が塑性変形することで発生する糸削れ、スカム発生を少なくすることができる。本発明で用いられるポリエステルポリマーは、樹脂チップの極限粘度として、公知の溶融重合や固相重合を行うことにより0.60〜1.20の範囲にすることが好ましい。樹脂チップの極限粘度が低すぎる場合には溶融紡糸後の繊維を高強度化させることが困難となる。また極限粘度が高すぎると固相重合時間が大幅に増加し、生産効率が低下するため工業的観点から好ましくない。極限粘度としては、さらには0.65〜1.0の範囲であることが好ましい。また、微小結晶を多数形成させるためには、下記一般式(1)で表されるリン化合物のRがベンジル基であることが、さらにはフェニル基であることが好ましく、本発明のリン化合物がフェニルホスフィン酸又はフェニルホスホン酸であることが好ましい。特にはフェニルホスホン酸およびその誘導体であることが最適である。 The polyester polymer of the present invention contains phenylphosphonic acid or a derivative thereof and / or a phosphorus compound that is phenylphosphinic acid or a derivative thereof, thereby improving the crystallinity of the polymer, melting, and discharging from a spinneret. In the stage, a large number of microcrystals are formed. These microcrystals finely disperse and homogenize the crystal growth that occurs in the spinning and drawing processes, thereby making the fiber diameter uniform, and the yarn scraping and scum generated by the plastic deformation of the fiber during high mesh knit weaving. Occurrence can be reduced. The polyester polymer used in the present invention preferably has a limiting viscosity of the resin chip in the range of 0.60 to 1.20 by performing known melt polymerization or solid phase polymerization. If the intrinsic viscosity of the resin chip is too low, it is difficult to increase the strength of the fiber after melt spinning. On the other hand, if the intrinsic viscosity is too high, the solid-state polymerization time is greatly increased and the production efficiency is lowered, which is not preferable from an industrial viewpoint. The intrinsic viscosity is preferably in the range of 0.65 to 1.0. In order to form a large number of microcrystals, R 1 of the phosphorus compound represented by the following general formula (1) is preferably a benzyl group, more preferably a phenyl group, and the phosphorus compound of the present invention. Is preferably phenylphosphinic acid or phenylphosphonic acid. In particular, phenylphosphonic acid and its derivatives are optimal.

Figure 2011021296
[上の式中、Rは炭素数1〜12個の炭化水素基であるアルキル基、アリール基又はベンジル基であり、Rは水素原子又は炭素数の1〜12個の炭化水素基であるアルキル基、アリール基又はベンジル基、Xは、水素原子または−OR基であり、Xが−OR基である場合、Rは水素原子又は炭素数の1〜12個の炭化水素基であるアルキル基、アリール基又はベンジル基、であり、RとRは同一であっても異なっていても良い。]
Figure 2011021296
[In the above formula, R 1 is an alkyl group, aryl group or benzyl group which is a hydrocarbon group having 1 to 12 carbon atoms, and R 2 is a hydrogen atom or a hydrocarbon group having 1 to 12 carbon atoms. A certain alkyl group, aryl group or benzyl group, X is a hydrogen atom or —OR 3 group, and when X is a —OR 3 group, R 3 is a hydrogen atom or a hydrocarbon group having 1 to 12 carbon atoms. An alkyl group, an aryl group or a benzyl group, and R 2 and R 3 may be the same or different. ]

ポリエステルポリマー中の上記リン化合物含有量としては、ポリエステルを構成するジカルボン酸成分のモル数に対して0.1〜300ミリモル%であることが好適である。リン化合物の量が0.1ミリモル%未満であると微小結晶の結晶性向上効果が不十分になる傾向にあり、300ミリモル%を超える場合には紡糸時の異物欠点が発生するために製糸性が低下する傾向にある。リン化合物の含有量はポリエステルを構成するジカルボン酸成分のモル数に対して1〜100ミリモル%の範囲がより好ましく、10〜80ミリモル%の範囲がさらに好ましい。   The phosphorus compound content in the polyester polymer is preferably 0.1 to 300 mmol% based on the number of moles of the dicarboxylic acid component constituting the polyester. If the amount of the phosphorus compound is less than 0.1 mmol%, the crystallinity improving effect of the microcrystals tends to be insufficient, and if it exceeds 300 mmol%, foreign matter defects are generated during spinning, so that the spinning property is improved. Tend to decrease. The content of the phosphorus compound is more preferably in the range of 1 to 100 mmol%, more preferably in the range of 10 to 80 mmol%, based on the number of moles of the dicarboxylic acid component constituting the polyester.

また、ポリマー中には、各種の添加剤、たとえば二酸化チタンなどの艶消剤、熱安定剤、消泡剤、整色剤、難燃剤、酸化防止剤、紫外線吸収剤、赤外線吸収剤、蛍光増白剤、可塑剤、耐衝撃剤の添加剤、または補強剤としてモンモリナイト、ベントナイト、ヘクトライト、板状酸化鉄、板状炭酸カルシウム、板状ベーマイト、あるいはカーボンナノチューブなどの添加剤が含まれていてもよいことはいうまでもない。   Also included in the polymer are various additives such as matting agents such as titanium dioxide, heat stabilizers, antifoaming agents, color adjusters, flame retardants, antioxidants, ultraviolet absorbers, infrared absorbers, fluorescent enhancers. Contains additives such as montmorillonite, bentonite, hectorite, plate-like iron oxide, plate-like calcium carbonate, plate-like boehmite, or carbon nanotubes as whitening agents, plasticizers, impact-resistant additives, or reinforcing agents It goes without saying.

本発明のスクリーン紗用ポリエステルモノフィラメントにおいては、これらのリン化合物を含有することにより、ポリエステル中に1〜100nmの大きさのリン化合物の層状ナノ粒子を形成し含有することを特徴とする。このような繊維中の層状ナノ粒子は透過型電子顕微鏡により確認することができる。層状ナノ粒子の大きさが100nmを超える場合は繊維中で異物として作用し断糸や単糸切れが発生しやすく、強度やモジュラス等の機械特性の低下を引き起こしてしまう。一方、1nm未満の場合は本発明で重要なポリエステルポリマーの微小結晶の結晶性向上や製糸性向上、繊維径の均一化などの効果が得られにくい。このような層状ナノ粒子の大きさとしては5〜80nmが好ましく、10〜60nmであることがさらに好ましい。さらに、本発明の産業資材スクリーン紗用モノフィラメントの該ポリエステル繊維が1〜100nmの層状構造を有する粒子を含有し、赤道方向の広角X線回折において2θ=5〜6°に回折ピークを有することが必須である。これは、数nmの層間間隔を有する層状ナノ粒子が繊維軸方向に特異的に配向していることを示すものであり、これによって本発明者らは従来課題であったポリエステル製糸工程での断糸を抑制し、生産性を飛躍的に向上せしめることを見出した。   The polyester monofilament for screen wrinkles of the present invention is characterized in that layered nanoparticles of a phosphorus compound having a size of 1 to 100 nm are formed and contained in the polyester by containing these phosphorus compounds. Such layered nanoparticles in the fiber can be confirmed by a transmission electron microscope. When the size of the layered nanoparticles exceeds 100 nm, it acts as a foreign substance in the fiber, and breakage or single yarn breakage is likely to occur, resulting in a decrease in mechanical properties such as strength and modulus. On the other hand, when the thickness is less than 1 nm, it is difficult to obtain effects such as improvement of crystallinity of the polyester polymer, which is important in the present invention, improvement of yarn production, and uniform fiber diameter. The size of such layered nanoparticles is preferably 5 to 80 nm, and more preferably 10 to 60 nm. Furthermore, the polyester fiber of the monofilament for industrial material screens of the present invention contains particles having a layered structure of 1 to 100 nm and has a diffraction peak at 2θ = 5 to 6 ° in wide-angle X-ray diffraction in the equator direction. It is essential. This indicates that the layered nanoparticles having an interlayer spacing of several nanometers are specifically oriented in the fiber axis direction. It was found that the yarn was suppressed and the productivity was dramatically improved.

本発明のスクリーン紗用モノフィラメントには製織性の低下やスクリーン紗の伸びなどの発生を抑えるだけの特定の強度、伸度等の物性が必要である。一般的には伸度5%時の応力(モジュラス、以下5%LASE)により性能を評価することが行われているが、本発明者は更に高度な寸法安定性を得るためにはスクリーン紗の製造工程での湿熱処理により原糸が受ける影響を考慮することが重要であることを見出した。これらの知見に基づいてなされたもので、本発明によれば、スクリーン紗用モノフィラメントは0.7〜1.0dL/gの高IVポリエステルポリマーを使用して単糸繊度が1〜24dtexの細繊度モノフィラメントとし、該モノフィラメントの湿熱処理前の強度を5.0〜7.0cN/dtex、5%伸長時の強度を2.5〜3.7cN/dtex、伸度を20〜45%、湿熱収縮率を2.5〜9.0%とし、湿熱処理後の強度を5.0〜6.5cN/dtex、15%伸長時の強度を3.0〜5.0cN/dtex、伸度を20〜40%とすることにより、スクリーン紗として織目調整や湿熱セットや紗張りの工程経過後、高度に寸法安定性に優れるスクリーン紗が得られる。   The monofilament for a screen wrinkle of the present invention needs to have specific properties such as specific strength and elongation enough to suppress the occurrence of deterioration in weaving property and screen wrinkle. Generally, the performance is evaluated by a stress at 5% elongation (modulus, hereinafter referred to as 5% ASE). In order to obtain a higher degree of dimensional stability, the present inventor It has been found that it is important to consider the influence of the yarn on the wet heat treatment in the manufacturing process. Based on these findings, according to the present invention, the screen filament monofilament uses a high IV polyester polymer of 0.7 to 1.0 dL / g, and the fineness of the single yarn is 1 to 24 dtex. Monofilament, the strength before wet heat treatment of the monofilament is 5.0 to 7.0 cN / dtex, the strength at 5% elongation is 2.5 to 3.7 cN / dtex, the elongation is 20 to 45%, the wet heat shrinkage rate 2.5-9.0%, strength after wet heat treatment is 5.0-6.5 cN / dtex, strength at 15% elongation is 3.0-5.0 cN / dtex, and elongation is 20-40 By setting the ratio to%, a screen wrinkle that is highly excellent in dimensional stability can be obtained as a screen wrinkle after the process of texture adjustment, wet heat setting and tensioning.

使用するポリエステルの種類としてはポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリエチレンナフタレート(PEN)のような芳香族ポリエステルが挙げられ、いずれでもよい。中でもPETは溶融紡糸を行う際の操業性、コストの面でももっとも好ましい。
ハイメッシュのスクリーン紗とするにはモノフィラメントの繊度は1〜24dtex、好ましくは4〜20dtex、より好ましくは5〜15dtexである。
Examples of the polyester used include aromatic polyesters such as polyethylene terephthalate (PET), polybutylene terephthalate (PBT), and polyethylene naphthalate (PEN), and any of them may be used. Among these, PET is most preferable in terms of operability and cost when performing melt spinning.
In order to obtain a high mesh screen wrinkle, the fineness of the monofilament is 1 to 24 dtex, preferably 4 to 20 dtex, more preferably 5 to 15 dtex.

本発明のモノフィラメントは湿熱処理前の強度が5.0〜7.0cN/dtex、5%伸長時の強度(5%LASEと略称)が2.5〜3.7cN/dtex、伸度が20〜45%、湿熱収縮率が2.5〜9.0%に設計する。
5%LASEが高い方が好ましいが、3.7cN/dtexを超えると製織時に筬による削れが発生し、織物に織込まれ、欠点となってしまうため好ましくない。逆に2.5cN/dtex未満では十分な布帛強度が得られないため好ましくない。
湿熱収縮率は2.5〜9.0%の範囲が好ましく、この範囲外では湿熱処理後の15%伸長応力を特定の範囲内にすることができず好ましくない。
The monofilament of the present invention has a strength before wet heat treatment of 5.0 to 7.0 cN / dtex, a strength at 5% elongation (abbreviated as 5% LASE) of 2.5 to 3.7 cN / dtex, and an elongation of 20 to Design to 45% and wet heat shrinkage of 2.5-9.0%.
A higher 5% LASE is preferable, but if it exceeds 3.7 cN / dtex, it is not preferable because scraping due to wrinkles occurs during weaving and is woven into the woven fabric, resulting in defects. Conversely, if it is less than 2.5 cN / dtex, it is not preferable because sufficient fabric strength cannot be obtained.
The wet heat shrinkage rate is preferably in the range of 2.5 to 9.0%, and outside this range, the 15% elongation stress after the wet heat treatment cannot be within a specific range, which is not preferable.

また本発明では湿熱処理後の原糸強度と15%伸長時の強度を指標におくことで、湿熱処理を経たスクリーン紗の寸法安定性を向上させることが重要で、本発明のモノフィラメントは湿熱処理後の強度が5.0〜6.5cN/dtex、15%伸長時の強度が3.0〜5.0cN/dtex、伸度が20〜40%とすることが必要である。
湿熱処理後の強度が5.0cN/dtex未満ではスクリーン紗強度が不足し紗張り時に破れが発生しやすく、7.0cN/dtexを超える場合は収縮率が取れにくくなったり、製織時に筬による削れが発生しやすくなる。
In the present invention, it is important to improve the dimensional stability of the screen wrinkles after the wet heat treatment by using the strength of the raw yarn after the wet heat treatment and the strength at 15% elongation as an index. It is necessary that the later strength is 5.0 to 6.5 cN / dtex, the strength at 15% elongation is 3.0 to 5.0 cN / dtex, and the elongation is 20 to 40%.
If the strength after wet heat treatment is less than 5.0 cN / dtex, the screen wrinkle strength is insufficient and tearing is likely to occur during tensioning. Is likely to occur.

又伸度が20%未満では製織糸切れが多発するなど糸の取り扱い性が悪くなる。伸度が45%以上では紗伸びが発生し易くなる。
かかる特性のモノフィラメントを得るための具体的な製造法について説明するが、必ずしもこれに限定されるものではない。
On the other hand, if the elongation is less than 20%, the yarn handling property is deteriorated, for example, the weaving yarn breakage frequently occurs. If the elongation is 45% or more, wrinkle elongation is likely to occur.
Although the specific manufacturing method for obtaining the monofilament of this characteristic is demonstrated, it is not necessarily limited to this.

紡糸口金を用いて、溶融紡糸しモノフィラメントとし、続いて延伸を施すことにより上記物性を有する原糸が得られる。紡糸工程で一旦未延伸糸として巻き取り改めて延伸する工程としては、紡糸速度が400〜1000m/分であり、紡糸後に3.0〜10倍延伸することが好ましい。紡糸速度としてはさらには400〜600m/分であることが好ましい。また延伸倍率としては3〜7倍であることが好ましい。このように低速にて紡糸し、高倍率に延伸することによってより高強度の延伸繊維を得ることが可能である。従来は例え低速で紡糸したとしても高倍率延伸時に結晶の欠点に起因する強度の弱い部分が存在するため、高倍率延伸時に断糸が起こることが多かった。しかし本発明ではリン化合物の配合により延伸による結晶化において微細結晶が均一に形成されるため、延伸欠点が発生しにくく、高倍率に延伸でき、繊維を高強度化することが可能となったものである。   By using a spinneret, melt spinning is performed to obtain a monofilament, followed by drawing to obtain a raw yarn having the above physical properties. In the spinning step, as a step of winding and redrawing as an undrawn yarn, the spinning speed is 400 to 1000 m / min, and it is preferable to draw 3.0 to 10 times after spinning. Further, the spinning speed is preferably 400 to 600 m / min. Moreover, it is preferable that it is 3-7 times as a draw ratio. Thus, it is possible to obtain a drawn fiber with higher strength by spinning at a low speed and drawing at a high magnification. Conventionally, even when spinning at a low speed, there is a portion having a weak strength due to a crystal defect at the time of high-strength drawing, and therefore, yarn breakage often occurs at the time of high-strength drawing. However, in the present invention, fine crystals are uniformly formed in the crystallization by stretching by blending the phosphorus compound, so that stretching defects are hardly generated, the fibers can be stretched at a high magnification, and the fibers can be strengthened. It is.

本発明のポリエステルモノフィラメントの製造方法における延伸方法としては、引取りローラーから一旦巻き取って、いわゆる別延伸法で延伸してもよく、あるいは引取りローラーから連続的に延伸工程に未延伸糸を供給する、いわゆる直接延伸法で延伸しても構わない。また延伸条件としては1段ないし多段延伸であり、数対の加熱ロールを用い、一段又は多段で延伸することが好ましく、最終的に強度、伸度、収縮率が所定の範囲に入るように延伸倍率を定める。この延伸にはリラックス延伸等の弛緩処理も含まれる。延伸負荷率としては60〜95%であることが好ましい。延伸負荷率とは繊維が実際に断糸する張力に対する、延伸を行う際の張力の比である。   As a stretching method in the method for producing a polyester monofilament according to the present invention, the polyester monofilament may be temporarily wound from a take-up roller and may be stretched by another so-called stretching method, or undrawn yarn is continuously supplied from the take-up roller to the stretching process. The so-called direct stretching method may be used for stretching. Further, the stretching conditions are one-stage or multi-stage stretching, and it is preferable to use several pairs of heating rolls, and it is preferable to stretch in one or more stages, and finally the stretching is performed so that the strength, elongation, and shrinkage rate are within a predetermined range. Determine the magnification. This stretching includes relaxation treatment such as relaxation stretching. The stretching load factor is preferably 60 to 95%. The drawing load factor is the ratio of the tension at the time of drawing to the tension at which the fiber actually breaks.

このように製織前の原糸物性を調整し、しかる後製織工程に供し、必要に応じて精錬、染色、等の湿熱処理を経ることにより収縮し、糸は湿熱収縮後の所定の強伸度特性を有するものとなり、その結果スクリーン紗は高度の寸法安定性を有するものと成る。   In this way, the properties of the raw yarn before weaving are adjusted, and then subjected to the weaving process, and if necessary, shrinkage is performed by wet heat treatment such as refining, dyeing, etc. The resulting screen has a high degree of dimensional stability.

モノフィラメントの表面に生じる節は製織時において糸の切断やスカム発生の原因となり好ましくなく、出来るだけ発生を防止する必要がある。節の発生要因としてはポリマーに含有する未溶融異物やポリマー自身の劣化が挙げられる。ポリマー内の未溶融異物については、パック入り口から口金吐出口までに濾過層を形成することでその排出を抑制させたり、分散させたりすることができる。この濾過層についてはモノフィラメント直径の約10〜15%の目開き量が好ましく、10%未満にするとパック内に異常な圧力がかかり、パック内部品とパック本体の破損につながる。15%を超える場合は節糸の主因となる未溶融異物が粗大粒子のまま糸に含有し、節の発生リスクが大きくなる。また、ポリマー自身の劣化についてはポリマー送液に関し、配管の曲がりを減らし、パック導入から吐出までの時間を1分以内とし、ポリマーが受ける熱量を出来る限り軽減することによって節の発生リスクを低減させることができる。   Nodes generated on the surface of the monofilament are undesirable because they cause yarn breakage and scum during weaving, and it is necessary to prevent them from occurring as much as possible. As the cause of the knot, there are unmelted foreign matters contained in the polymer and deterioration of the polymer itself. About the unmelted foreign material in a polymer, the discharge | emission can be suppressed or disperse | distributed by forming a filtration layer from a pack entrance to a nozzle | cap | die discharge port. The filtration layer preferably has an opening of about 10 to 15% of the monofilament diameter, and if it is less than 10%, abnormal pressure is applied in the pack, leading to damage to the pack internal parts and the pack body. If it exceeds 15%, unmelted foreign matter that is the main cause of knotting is contained in the yarn as coarse particles, and the risk of knotting increases. In addition, with regard to the deterioration of the polymer itself, with regard to polymer feeding, the bending of the pipe is reduced, the time from introduction of the pack to discharge is within 1 minute, and the amount of heat received by the polymer is reduced as much as possible to reduce the risk of occurrence of nodes. be able to.

以下の実施例を挙げて、本発明をさらに具体的に説明する。
実施例中、固有粘度、強度、伸度、湿熱時収縮率、湿熱処理後の強度、湿熱処理後の伸度、15%伸長時の強度、節数の数の評価、糸削れ評価、ヒステリシスの評価は、以下の定義で行った。
The present invention will be described more specifically with reference to the following examples.
In Examples, intrinsic viscosity, strength, elongation, shrinkage ratio during wet heat treatment, strength after wet heat treatment, elongation after wet heat treatment, strength at 15% elongation, evaluation of number of nodes, evaluation of thread scraping, hysteresis Evaluation was performed according to the following definitions.

固有粘度:
35℃でオルトクロロフェノールにサンプルを溶解した各濃度(C)の希釈溶液を作成し、それら溶液の粘度(ηr)から下記式によってCを0に近づけることで算出した。
η=limit(ln(ηr/C))
Intrinsic viscosity:
Dilution solutions of each concentration (C) in which the sample was dissolved in orthochlorophenol at 35 ° C. were prepared, and C was brought close to 0 from the viscosity (ηr) of these solutions by the following formula.
η = limit (ln (ηr / C))

繊維の広角X線回折:
Bruker社製D8 DISCOVER with GADDS Super Speedを用い、回折角2θ=0°〜50°における繊維の赤道方向の広角X線回折を測定し、2θ=5〜6°の回折ピークの有無を求めた。また、透過型電子顕微鏡観察から繊維中に存在する粒子形態および粒子サイズを求めた。
Wide-angle X-ray diffraction of fibers:
Using a D8 DISCOVER with GADDS Super Speed manufactured by Bruker, wide-angle X-ray diffraction in the equator direction of the fiber at a diffraction angle of 2θ = 0 ° to 50 ° was measured to determine the presence or absence of a diffraction peak at 2θ = 5 to 6 °. Moreover, the particle | grain form and particle | grain size which exist in a fiber were calculated | required from the transmission electron microscope observation.

繊度、強度、伸度:
繊維の繊度、強度および伸度はJIS−L1017に準拠し、オリエンテック社製のテンシロンを用いてサンプル長25cm、伸長速度30cm/minで測定し、サンプル破断した時の強度と伸度である。5%LASEは上記の測定時のサンプルが5%伸長した時の応力を測定した。
Fineness, strength, elongation:
The fineness, strength, and elongation of the fiber are the strength and elongation when the sample is broken, measured according to JIS-L1017, using a Tensilon manufactured by Orientec Co., Ltd., with a sample length of 25 cm and an elongation rate of 30 cm / min. 5% LASE measured the stress when the sample at the time of the above measurement was extended by 5%.

湿熱収縮率:
5000m採取して、かせ状態にし、高圧内130℃の湿熱雰囲気内に繊度×0.1倍(g)をかけつつ、10分間入れ湿熱処理とした。処置終了後の糸は自然乾燥を行い、糸長を再度測定した。処置後の糸長を処置前の糸長5000mで割って百分率表示として湿熱処置後の収縮率とした。
Moist heat shrinkage:
5000 m was sampled and placed in a skein state, and the wet heat treatment was performed for 10 minutes while applying a fineness of 0.1 times (g) in a humid heat atmosphere at 130 ° C. in high pressure. The yarn after the treatment was naturally dried and the yarn length was measured again. The yarn length after the treatment was divided by the yarn length of 5000 m before the treatment, and the percentage of shrinkage after the wet heat treatment was expressed as a percentage.

湿熱処理後の強度、伸度、15%LASE:
湿熱処理後の繊維の強度および伸度は湿熱処置後の糸をオリエンテック社製のテンシロンを用いてサンプル長25cm、伸長速度30cm/minで測定し、サンプル破断した時の強度と伸度である。15%LASEは上記の測定時のサンプルが15%伸長した時の応力を測定した。
Strength after wet heat treatment, elongation, 15% ASE:
The strength and elongation of the fiber after wet heat treatment are the strength and elongation when the yarn after wet heat treatment is measured at a sample length of 25 cm and an elongation rate of 30 cm / min using Tensilon manufactured by Orientec Co., Ltd. . For 15% ASE, the stress was measured when the sample at the time of the above measurement was extended by 15%.

節数の評価:
整経機のクリール出口に設置されているドロッパー前に隙間が糸径×1.1倍で公差±2μmとなる12本通しのスリットガイド設置した。そのスリットガイドに糸を通し、12本×8段=96本をそれぞれ糸速500m/minにて各糸長20万m整経した。その際、スリットガイドにて断糸した回数を節の数と見なし、整経中での断糸回数を測定した。検出した断糸回数を糸長10万m換算して評価を行った。
Evaluation of number of nodes:
In front of the dropper installed at the creel outlet of the warping machine, 12 slit guides having a clearance of thread diameter × 1.1 times and a tolerance of ± 2 μm were installed. Threads were passed through the slit guide, and 12 yarns × 8 stages = 96 yarns were warped at a yarn speed of 500 m / min, and each yarn length was 200,000 m. At that time, the number of yarn breaks with the slit guide was regarded as the number of knots, and the number of yarn breaks during warping was measured. Evaluation was performed by converting the detected number of times of yarn breakage into a yarn length of 100,000 m.

糸削れの評価:
スルーザー型織機により、織機の回転数250rpmとして織幅1インチあたり300本の経糸を用いてメッシュ織物を製織し、織りあがった反物を検反機にて目視検査を行った。この時、通常黒に見えるメッシュ模様が白色化して見える織物欠点の数を数えて評価した。
織幅1.5m×織物長さ30mあたり糸削れによる欠点5個未満を○、5以上10ヶ未満を△、10ヶ以上を×と判定した。
Evaluation of thread cutting:
A mesh fabric was woven using 300 warps per inch of weaving width with a slewer type loom at a rotation speed of 250 rpm, and the woven fabric was visually inspected with the inspection machine. At this time, the number of fabric defects in which the mesh pattern that normally appears black was whitened was counted and evaluated.
Less than 5 defects due to thread scraping per woven width 1.5 m × fabric length 30 m were evaluated as ◯, 5 or more and less than 10 as Δ, and 10 or more as X.

[実施例1]
テレフタル酸ジメチル100部、エチレングリコール60部、酢酸カルシウム1水塩0.06部(テレフタル酸ジメチルに対して0.066モル%)および整色剤として酢酸コバルト4水塩0.013部(テレフタル酸ジメチルに対して0.01モル%)をエステル交換反応缶に仕込み、この反応物を窒素ガス雰囲気下で4時間かけて140℃から220℃まで昇温し、反応缶中に生成するメタノールを系外に留去しながらエステル交換反応させた。引き続いてエステル交換反応が終わる前にフェニルホスホン酸(PPA)を0.03重量部(50ミリモル%)を添加した。その後、反応混合物に安定剤としてリン酸トリメチル0.058部(テレフタル酸ジメチルに対して0.080モル%)、および消泡剤としてジメチルポリシロキサンを0.024部加えた。次に、10分後に、反応混合物に三酸化アンチモン0.041部(テレフタル酸ジメチルに対して0.027モル%)を添加し、同時に過剰のエチレングリコールを留去しながら240℃まで昇温し、その後、反応混合物を重合反応缶に移した。次いで1時間40分かけて760mmHgから1mmHgまで減圧するとともに240℃から280℃まで昇温して重縮合反応せしめた後、常法に従ってチップ化して極限粘度0.65のポリエステル樹脂チップを得た。このチップを65Paの真空度下、120℃で2時間予備乾燥した後、同真空下240℃で10〜13時間固相重合を行い、表1に記載した固有粘度のポリエステル樹脂チップを得た。
[Example 1]
100 parts of dimethyl terephthalate, 60 parts of ethylene glycol, 0.06 part of calcium acetate monohydrate (0.066 mol% with respect to dimethyl terephthalate) and 0.013 part of cobalt acetate tetrahydrate as a color adjuster (terephthalic acid) 0.01 mol% with respect to dimethyl) was charged into a transesterification reactor, and the reaction product was heated from 140 ° C. to 220 ° C. over 4 hours under a nitrogen gas atmosphere. The ester exchange reaction was carried out while distilling out. Subsequently, 0.03 part by weight (50 mmol%) of phenylphosphonic acid (PPA) was added before the end of the transesterification reaction. Thereafter, 0.058 part of trimethyl phosphate (0.080 mol% based on dimethyl terephthalate) as a stabilizer and 0.024 part of dimethylpolysiloxane as an antifoaming agent were added to the reaction mixture. Next, after 10 minutes, 0.041 part of antimony trioxide (0.027 mol% with respect to dimethyl terephthalate) was added to the reaction mixture, and the temperature was raised to 240 ° C. while distilling off excess ethylene glycol. Thereafter, the reaction mixture was transferred to a polymerization reactor. Subsequently, the pressure was reduced from 760 mmHg to 1 mmHg over 1 hour and 40 minutes and the temperature was raised from 240 ° C. to 280 ° C. to cause a polycondensation reaction, and then converted into chips according to a conventional method to obtain a polyester resin chip having an intrinsic viscosity of 0.65. This chip was preliminarily dried at 120 ° C. for 2 hours under a vacuum of 65 Pa, and then subjected to solid state polymerization at 240 ° C. for 10 to 13 hours under the same vacuum to obtain a polyester resin chip having the intrinsic viscosity shown in Table 1.

モノフィラメントの作製:
製糸化は以下の通り行った。上記の乾燥樹脂チップを紡糸設備にて常法で溶融し、ギヤポンプを経て290℃に加熱された紡糸ヘッドに供給した。溶融ポリマーは、ノズル孔径0.25mmの円形紡糸孔を1個有する紡糸口金から、通常のクロスフロー型紡糸筒からの冷却風で冷却・固化し、紡糸油剤を付与しつつ、1200m/分の紡速にて巻き取りつつ、オイリングローラーにて油剤を付着させながら、未延伸糸を得た。その後、加熱されたホットローラーにて予熱後、スリットヒーター200℃で加熱しながら3.8倍で延伸し、0.03倍のリラックス処理を施した後、巻き取り、13dtex−1filの延伸糸を得た。得られた延伸糸は強度5.2cN/dtex、伸度32%、5%LASE 4.0cN/dtex、湿熱収縮率2.8%であった。表1にポリエステル、原糸物性を示す。原糸の節糸発生個数は0個であった。この原糸をスルーザー型織機で製織した際、糸削れ発生による織物欠点は30mあたり0ヶであった。仕上げ加工したスクリーン紗を連続印刷したところ、伸びが少なく寸法安定性に優れるものであった。
Production of monofilament:
The yarn production was performed as follows. The above-mentioned dry resin chip was melted by a conventional method in a spinning facility and supplied to a spinning head heated to 290 ° C. through a gear pump. The molten polymer is cooled and solidified from a spinneret having one circular spinning hole having a nozzle hole diameter of 0.25 mm with cooling air from a normal cross-flow type spinning cylinder, and a spinning oil is applied while spinning at 1200 m / min. While being wound at a high speed, an undrawn yarn was obtained while attaching an oil agent with an oiling roller. Then, after preheating with a heated hot roller, it was stretched at 3.8 times while being heated at 200 ° C., subjected to a relaxation treatment of 0.03 times, wound up, and a 13 dtex-1fil stretched yarn was drawn. Obtained. The obtained drawn yarn had a strength of 5.2 cN / dtex, an elongation of 32%, a 5% ASE of 4.0 cN / dtex, and a wet heat shrinkage of 2.8%. Table 1 shows the properties of polyester and raw yarn. The number of node yarn generation of the raw yarn was zero. When this raw yarn was woven with a slewer type loom, the number of fabric defects due to the occurrence of yarn shaving was 0 per 30 m. When the finished screen koji was continuously printed, it had little elongation and excellent dimensional stability.

[実施例2]
実施例1において、ポリエステル作製の際、固相重合を実施しなかったこと以外は実施例1と同様に実施し、モノフィラメントを得た。表1にポリエステル、原糸物性を示す。
[Example 2]
In Example 1, a monofilament was obtained in the same manner as in Example 1 except that solid phase polymerization was not performed during polyester production. Table 1 shows the properties of polyester and raw yarn.

[実施例3]
実施例1において、ポリエステル作製の際、フェニルホスホン酸(PPA)の代わりに、フェニルホスフィン酸(PPI)100ミリモル%を使用したこと以外は実施例1と同様に実施し、モノフィラメントを得た。表1にポリエステル、原糸物性を示す。
[Example 3]
In Example 1, when producing polyester, it carried out like Example 1 except having used 100 mmol% of phenylphosphinic acid (PPI) instead of phenylphosphonic acid (PPA), and obtained the monofilament. Table 1 shows the properties of polyester and raw yarn.

[実施例4]
実施例1において、ポリエステル作製の際、フェニルホスホン酸(PPA)の代わりに、フェニルホスフィン酸(PPI)80ミリモル%を使用したこと以外は実施例1と同様に実施し、モノフィラメントを得た。表1にポリエステル、原糸物性を示す。
[Example 4]
In Example 1, a monofilament was obtained in the same manner as in Example 1 except that 80 mmol% of phenylphosphinic acid (PPI) was used instead of phenylphosphonic acid (PPA) during polyester production. Table 1 shows the properties of polyester and raw yarn.

[比較例1]
実施例1において、ポリエステル作製の際、リン化合物を含有させないこと以外は実施例1と同様に実施してポリエステル組成物からなるチップを得た。このチップを用い実施例1と同様にして溶融紡糸し、未延伸糸とし、モノフィラメントを得た。表1にポリエステル、原糸物性を示す。
[Comparative Example 1]
In Example 1, when manufacturing polyester, it implemented similarly to Example 1 except not containing a phosphorus compound, and obtained the chip | tip which consists of a polyester composition. Using this tip, melt spinning was carried out in the same manner as in Example 1 to obtain an undrawn yarn to obtain a monofilament. Table 1 shows the properties of polyester and raw yarn.

[比較例2]
実施例1において、ポリエステル作製の際、リン化合物としてフェニルホスフィン酸の代わりに正リン酸を40mmol%添加したこと以外は、実施例1と同様に実施してポリエステル組成物からなるチップを得た。このチップを用い実施例1と同様にして溶融紡糸し、未延伸糸とし、モノフィラメントを得た。表1にポリエステル、原糸物性を示す。
実施例1〜4、比較例1〜2の結果を表1にまとめる。
[Comparative Example 2]
In Example 1, a chip made of a polyester composition was obtained in the same manner as in Example 1 except that 40 mmol% of normal phosphoric acid was added as a phosphorus compound in place of phenylphosphinic acid. Using this tip, melt spinning was carried out in the same manner as in Example 1 to obtain an undrawn yarn to obtain a monofilament. Table 1 shows the properties of polyester and raw yarn.
The results of Examples 1-4 and Comparative Examples 1-2 are summarized in Table 1.

Figure 2011021296
Figure 2011021296

本発明のポリエステルモノフィラメントはスクリーン印刷用のメッシュ織物、プリント配線基盤の製造などの高度な精密性を要求されるハイメッシュでハイモジュラスのスクリーン紗を得るのに好適である。   The polyester monofilament of the present invention is suitable for obtaining a high mesh and high modulus screen wrinkles required for high precision such as mesh fabric for screen printing, production of printed wiring board and the like.

Claims (2)

スクリーン紗用ポリエステルモノフィラメントにおいて、ポリエステルが主たる繰り返し単位がエチレンテレフタレートであって、下記式(1)で表されるフェニルホスホン酸又はその誘導体、及び/又はフェニルホスフィン酸又はその誘導体であるリン化合物を、ポリエステルを構成するジカルボン酸の全モル数に対して0.1〜300ミリモル%含むポリエチレンテレフタレート組成物であり、下記A〜Dの要件を満足することを特徴とするスクリーン紗用ポリエステルモノフィラメント。
A.モノフィラメントの湿熱処理前の原糸強度が5.0〜7.0cN/dtex、5%伸長時の強度が2.5〜3.7cN/dtex、伸度が20〜45%、湿熱収縮率が2.5〜9.0%であること。
B.ポリエステルの固有粘度が0.70〜1.00dL/gであること。
C.単糸繊度が1〜24dtexであること。
D.モノフィラメントの繊維長手方向50万メートルで繊維直径に対し1.1倍以上の節糸が1個以下であること。
Figure 2011021296
[上の式中、Rは炭素数1〜12個の炭化水素基であるアルキル基、アリール基又はベンジル基であり、Rは水素原子又は炭素数の1〜12個の炭化水素基であるアルキル基、アリール基又はベンジル基、Xは、水素原子または−OR基であり、Xが−OR基である場合、Rは水素原子又は炭素数の1〜12個の炭化水素基であるアルキル基、アリール基又はベンジル基、であり、RとRは同一であっても異なっていても良い。]
In a polyester monofilament for screen wrinkles, a polyester is a main repeating unit of ethylene terephthalate, a phenylphosphonic acid represented by the following formula (1) or a derivative thereof, and / or a phosphorus compound that is a phenylphosphinic acid or a derivative thereof, A polyester monofilament for screen wrinkles, which is a polyethylene terephthalate composition containing 0.1 to 300 mmol% with respect to the total number of moles of dicarboxylic acid constituting the polyester, and satisfies the following requirements A to D.
A. Monofilament yarn strength before wet heat treatment is 5.0 to 7.0 cN / dtex, strength at 5% elongation is 2.5 to 3.7 cN / dtex, elongation is 20 to 45%, wet heat shrinkage is 2 .5 to 9.0%.
B. The intrinsic viscosity of the polyester is 0.70 to 1.00 dL / g.
C. The single yarn fineness is 1 to 24 dtex.
D. The number of knots is 1.1 or more times the fiber diameter in the monofilament longitudinal direction of 500,000 meters.
Figure 2011021296
[In the above formula, R 1 is an alkyl group, aryl group or benzyl group which is a hydrocarbon group having 1 to 12 carbon atoms, and R 2 is a hydrogen atom or a hydrocarbon group having 1 to 12 carbon atoms. A certain alkyl group, aryl group or benzyl group, X is a hydrogen atom or —OR 3 group, and when X is a —OR 3 group, R 3 is a hydrogen atom or a hydrocarbon group having 1 to 12 carbon atoms. An alkyl group, an aryl group or a benzyl group, and R 2 and R 3 may be the same or different. ]
該ポリエステル繊維が1〜100nmの層状構造を有する粒子を含有し、赤道方向の広角X線回折において2θ=5〜6°に回折ピークを有する請求項1記載のスクリーン紗用ポリエステルモノフィラメント。   The polyester monofilament for a screen wrinkle according to claim 1, wherein the polyester fiber contains particles having a layered structure of 1 to 100 nm and has a diffraction peak at 2θ = 5 to 6 ° in wide-angle X-ray diffraction in the equator direction.
JP2009167768A 2009-07-16 2009-07-16 Monofilament for screens with excellent dimensional stability Expired - Fee Related JP5217059B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009167768A JP5217059B2 (en) 2009-07-16 2009-07-16 Monofilament for screens with excellent dimensional stability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009167768A JP5217059B2 (en) 2009-07-16 2009-07-16 Monofilament for screens with excellent dimensional stability

Publications (2)

Publication Number Publication Date
JP2011021296A true JP2011021296A (en) 2011-02-03
JP5217059B2 JP5217059B2 (en) 2013-06-19

Family

ID=43631605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009167768A Expired - Fee Related JP5217059B2 (en) 2009-07-16 2009-07-16 Monofilament for screens with excellent dimensional stability

Country Status (1)

Country Link
JP (1) JP5217059B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019044449A1 (en) * 2017-08-30 2019-03-07 東レ株式会社 Single component polyester monofilament for superfine high-mesh filter
WO2022004225A1 (en) * 2020-06-30 2022-01-06 東レ株式会社 Polyester monofilament

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3294389B2 (en) 1993-07-22 2002-06-24 株式会社イトーキクレビオ Desk or table and its top plate
JP3218296B2 (en) 1997-08-08 2001-10-15 アイカ工業株式会社 Decorative plate and manufacturing method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001288616A (en) * 2000-03-31 2001-10-19 Toray Ind Inc Method for producing modified polyester fiber
JP2004300615A (en) * 2003-03-31 2004-10-28 Toray Ind Inc Polyester monofilament for screen mesh
WO2005085349A1 (en) * 2004-03-05 2005-09-15 Teijin Limited Polyester resin composition
JP2006257597A (en) * 2005-03-18 2006-09-28 Teijin Ltd Polyester fiber for industrial material and woven or knit fabric for industrial material
JP2008101288A (en) * 2006-10-18 2008-05-01 Teijin Fibers Ltd Monofilament for screen gauze, excellent in dimensional stability

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001288616A (en) * 2000-03-31 2001-10-19 Toray Ind Inc Method for producing modified polyester fiber
JP2004300615A (en) * 2003-03-31 2004-10-28 Toray Ind Inc Polyester monofilament for screen mesh
WO2005085349A1 (en) * 2004-03-05 2005-09-15 Teijin Limited Polyester resin composition
JP2006257597A (en) * 2005-03-18 2006-09-28 Teijin Ltd Polyester fiber for industrial material and woven or knit fabric for industrial material
JP2008101288A (en) * 2006-10-18 2008-05-01 Teijin Fibers Ltd Monofilament for screen gauze, excellent in dimensional stability

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019044449A1 (en) * 2017-08-30 2019-03-07 東レ株式会社 Single component polyester monofilament for superfine high-mesh filter
CN110770376A (en) * 2017-08-30 2020-02-07 东丽株式会社 Single-component polyester monofilament for high-precision high-mesh filter
JPWO2019044449A1 (en) * 2017-08-30 2020-08-06 東レ株式会社 Single component polyester monofilament for high definition high mesh filters
JP7298155B2 (en) 2017-08-30 2023-06-27 東レ株式会社 Single-component polyester monofilament for high-definition high-mesh filters
EP3677709B1 (en) * 2017-08-30 2024-09-04 Toray Industries, Inc. Single component polyester monofilament for superfine high-mesh filter
WO2022004225A1 (en) * 2020-06-30 2022-01-06 東レ株式会社 Polyester monofilament
CN115605639A (en) * 2020-06-30 2023-01-13 东丽株式会社(Jp) Polyester monofilament
EP4144900A4 (en) * 2020-06-30 2025-04-23 Toray Industries, Inc. POLYESTER MONOFILAMENT

Also Published As

Publication number Publication date
JP5217059B2 (en) 2013-06-19

Similar Documents

Publication Publication Date Title
CN101946032B (en) Polyester fiber, process for producing the polyester fiber, and tire code, tire, fiber material for reinforcing belt and belt each comprising the polyester fiber
CN102308033B (en) Polyster monofilament and process for producing polyster monofilament
TWI602963B (en) Liquid crystal polyester fiber and method for preparing the same
CN101970733B (en) Polyethylene naphthalate fiber and process for producing polyethylene naphthalate fiber
TWI453311B (en) Polyethylene naphthalate fiber and its manufacturing method
JP5217059B2 (en) Monofilament for screens with excellent dimensional stability
JP2008101288A (en) Monofilament for screen gauze, excellent in dimensional stability
JP7298155B2 (en) Single-component polyester monofilament for high-definition high-mesh filters
JP2007211035A (en) Polyester composition for fiber, high strength polyester fiber obtained using the same, and sheet belt obtained using the same
JP3778088B2 (en) Core-sheath type composite polyester monofilament for screen bag and method for producing the same
JP5290891B2 (en) Core sheath-type composite monofilament for screens
JP5336615B2 (en) Screen filament monofilament
JPWO2008146690A1 (en) Screen filament monofilament and method for producing screen cage
JP2011058136A (en) Method for producing polyethylene naphthalate monofilament
JP5217058B2 (en) Polyethylene naphthalate monofilament for industrial use filter filter
WO2020175370A1 (en) Core-sheath composite polyester monofilament for superfine high-mesh filter
JP4634526B1 (en) Polyester fiber and method for producing the same
JP2016089308A (en) Manufacturing method of liquid crystal polyester fiber
JP2011058103A (en) Tire cord and tire employing it
JP2011058135A (en) Polyester monofilament and fiber structure comprising the same
JP2011089233A (en) Method for producing core-sheath conjugate monofilament of polyester for screen gauze
JP5219156B2 (en) Composite spun mixed filament sewing thread
JP4897021B2 (en) Belt-reinforcing fiber material and belt using the same
JP5108937B2 (en) Polyethylene naphthalate fiber and method for producing the same
JP4950935B2 (en) Screen filament monofilament

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110704

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110704

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130122

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130215

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5217059

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees