[go: up one dir, main page]

JP2011020884A - Halogenated layered polysilane, method for producing the same, and lithium ion secondary battery using the same - Google Patents

Halogenated layered polysilane, method for producing the same, and lithium ion secondary battery using the same Download PDF

Info

Publication number
JP2011020884A
JP2011020884A JP2009166639A JP2009166639A JP2011020884A JP 2011020884 A JP2011020884 A JP 2011020884A JP 2009166639 A JP2009166639 A JP 2009166639A JP 2009166639 A JP2009166639 A JP 2009166639A JP 2011020884 A JP2011020884 A JP 2011020884A
Authority
JP
Japan
Prior art keywords
layered polysilane
halogenated
layered
polysilane
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009166639A
Other languages
Japanese (ja)
Inventor
Hideyuki Nakano
秀之 中野
Yusuke Sugiyama
佑介 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2009166639A priority Critical patent/JP2011020884A/en
Publication of JP2011020884A publication Critical patent/JP2011020884A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Silicon Compounds (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

【課題】新規なハロゲン化層状ポリシランを提供する。
【解決手段】アルゴン雰囲気に置換したナス型フラスコへCaSi2を入れ、そこへ無水アセトンを加え、更に攪拌しながら臭素を混合した。この混合物を室温で7日間攪拌した。7日後には、混合物中に黄色の結晶が沈殿した。黄色の結晶の回収は、反応溶液の上澄みを除去し、そこへ新たにヘキサンを加え、静置するという操作を3回繰り返すことにより行った。洗浄後、減圧下で溶媒及び臭素を完全に除去することにより、臭素化層状ポリシランを得た。得られた臭素化層状ポリシランは、ダイヤモンド構造のシリコン結晶の(111)面と同じ副格子を有するシリコンへ臭素が結合した構造であり、六方晶系に属するものであった。この臭素化層状ポリシランは、リチウムイオン電池の負極材料として使用可能であり、アミノ化層状ポリシランの合成中間体としても使用可能であった。
【選択図】なし
A novel halogenated layered polysilane is provided.
SOLUTION: CaSi 2 was put into an eggplant type flask replaced with an argon atmosphere, anhydrous acetone was added thereto, and bromine was mixed with stirring. The mixture was stirred at room temperature for 7 days. After 7 days, yellow crystals precipitated in the mixture. The yellow crystals were collected by repeating the operation of removing the supernatant of the reaction solution, newly adding hexane thereto, and allowing to stand still three times. After washing, the solvent and bromine were completely removed under reduced pressure to obtain a brominated layered polysilane. The resulting brominated layered polysilane had a structure in which bromine was bonded to silicon having the same sublattice as the (111) plane of the diamond-structured silicon crystal, and belonged to the hexagonal system. This brominated layered polysilane can be used as a negative electrode material for a lithium ion battery, and can also be used as a synthetic intermediate for an aminated layered polysilane.
[Selection figure] None

Description

本発明は、ハロゲン化層状ポリシラン、その製法及びそれを利用したリチウムイオン二次電池に関する。   The present invention relates to a halogenated layered polysilane, a method for producing the same, and a lithium ion secondary battery using the same.

従来より、層状ポリシラン(SiH)及びその類縁化合物に関する研究が行われている。例えば、非特許文献1には、層状結晶CaSi2を0℃に冷却した塩酸水溶液中で脱カルシウム反応を行い、その後、フッ酸で不純物のシリカを除去して層状ポリシランを合成する例が報告されている。また、特許文献1には、この層状ポリシランと不飽和結合を有する炭化水素化合物とのヒドロシリル化反応により、層状ポリシランの水素を炭化水素鎖に置換した有機化層状ポリシランを合成する例が報告されている。 Conventionally, research on layered polysilane (SiH) and its related compounds has been conducted. For example, Non-Patent Document 1 reports an example in which a layered crystal CaSi 2 is decalcified in an aqueous hydrochloric acid solution cooled to 0 ° C., and then impurity silica is removed with hydrofluoric acid to synthesize layered polysilane. ing. In addition, Patent Document 1 reports an example of synthesizing an organic layered polysilane in which hydrogen of the layered polysilane is replaced with a hydrocarbon chain by a hydrosilylation reaction between the layered polysilane and a hydrocarbon compound having an unsaturated bond. Yes.

一方、非特許文献2には、単結晶シリコンの表面を臭素化したり塩素化したりする方法が開示されている。例えば、水素末端を持つSi(111)面をフッ化アンモニウムでエッチングしたあと、DMF中、ラジカル開始剤として過酸化ベンゾイルを用いてN−ブロモスクシミド(NBS)と共に20分間60℃で処理することにより、Si(111)面を臭素化する例が開示されている。また、水素末端を持つSi(111)面をフッ酸で処理したあと、クロロベンゼン中、ラジカル開始剤としてベンゾイルパーオキシドを用いてPCl5と共に80−100℃で20−60分処理することにより、Si(111)面を塩素化する例が開示されている。 On the other hand, Non-Patent Document 2 discloses a method of brominating or chlorinating the surface of single crystal silicon. For example, after etching a hydrogen-terminated Si (111) surface with ammonium fluoride, treatment with N-bromosuccinimide (NBS) for 20 minutes at 60 ° C. using benzoyl peroxide as a radical initiator in DMF, An example of brominating the Si (111) surface is disclosed. Further, after treating the Si (111) surface having a hydrogen terminal with hydrofluoric acid, treatment with PCl 5 at 80-100 ° C. for 20-60 minutes in chlorobenzene using benzoyl peroxide as a radical initiator is performed. An example of chlorinating the (111) plane is disclosed.

特開2008−69801号公報JP 2008-69801 A

フィジカル・レビュー・ビー(Physical Review B)、1993年、48巻、17872−17877頁Physical Review B, 1993, 48, 17872-17877 ケミカル・レビューズ(Chemical Reviews)、2002年、102巻、1272−1308頁Chemical Reviews, 2002, 102, 1272-1308

しかしながら、非特許文献1の方法で合成した層状ポリシランは、水溶液中から合成するためSiに対して原子比で10%程度の酸素を含有しており、その酸素はSi−OHとして存在しているため、層間で脱水縮合してSi−O−Siとなり、層内の反応性を著しく低下させている。その結果、特許文献1の層状ポリシランのヒドロシリル化反応の収率は10%以下という低い値となっている。また、ヒドロシリル化反応には白金等の触媒が必要であるため、こうした触媒が最終生成物に残存するおそれもある。したがって、層状ポリシランを原料として有機化層状ポリシランを高収率且つ高純度で合成するのは困難であった。   However, the layered polysilane synthesized by the method of Non-Patent Document 1 contains oxygen at an atomic ratio of about 10% with respect to Si because it is synthesized from an aqueous solution, and the oxygen exists as Si—OH. Therefore, dehydration condensation is performed between the layers to form Si—O—Si, and the reactivity within the layer is significantly reduced. As a result, the yield of the hydrosilylation reaction of the layered polysilane of Patent Document 1 is as low as 10% or less. Further, since a catalyst such as platinum is required for the hydrosilylation reaction, there is a possibility that such a catalyst may remain in the final product. Therefore, it has been difficult to synthesize the organically modified layered polysilane with high yield and high purity using the layered polysilane as a raw material.

また、非特許文献2のようにシリコン単結晶の表面をハロゲン化する例は報告されているものの、表面のみならず内部のシリコンもハロゲン化された化合物すなわちSiBrのバルク体やSiClのバルク体はこれまで知られていない。   Further, although an example in which the surface of a silicon single crystal is halogenated as in Non-Patent Document 2, a compound in which not only the surface but also silicon inside is halogenated, that is, a bulk body of SiBr or a bulk body of SiCl is used. Not known so far.

本発明はこのような課題を解決するためになされたものであり、新規なハロゲン化層状ポリシランを提供することを主目的とする。   The present invention has been made to solve such problems, and has as its main object to provide a novel halogenated layered polysilane.

上述した目的を達成するために、本発明者らは、不活性雰囲気下、無水アセトン中でケイ化カルシウム(CaSi2)と臭素とを反応させることにより黄色結晶である臭素化層状ポリシラン(SiBr)を得、この臭素化層状ポリシランがリチウムイオン二次電池の負極材料として有用なことや有機化層状ポリシランの合成中間体として有用なことを見いだし、本発明を完成するに至った。 In order to achieve the above-mentioned object, the present inventors made brominated layered polysilane (SiBr) which is a yellow crystal by reacting calcium silicide (CaSi 2 ) and bromine in anhydrous acetone in an inert atmosphere. As a result, it was found that this brominated layered polysilane was useful as a negative electrode material for lithium ion secondary batteries and as a synthetic intermediate for organic layered polysilane, and the present invention was completed.

即ち、本発明のハロゲン化層状ポリシランは、組成式SiX(Xは臭素又は塩素)で表される層状結晶である。   That is, the halogenated layered polysilane of the present invention is a layered crystal represented by the composition formula SiX (X is bromine or chlorine).

また、本発明のハロゲン化層状ポリシランの製法は、不活性雰囲気下、無水のケトン系溶媒中又は無水のニトリル系溶媒中で層状結晶CaSi2とハロゲン(X2、但しXはBr又はCl)とを反応させることによりハロゲン化層状ポリシランの結晶を得るものである。 In addition, the method for producing the halogenated layered polysilane of the present invention comprises a layered crystal CaSi 2 and halogen (X 2 , where X is Br or Cl) in an anhydrous ketone solvent or an anhydrous nitrile solvent in an inert atmosphere. To obtain crystals of halogenated layered polysilane.

更に、本発明のリチウムイオン二次電池は、上述したハロゲン化層状ポリシランを負極活物質とするものである。   Furthermore, the lithium ion secondary battery of the present invention uses the above-described halogenated layered polysilane as a negative electrode active material.

本発明のハロゲン化層状ポリシランは、例えばアルキルリチウムと反応させることによりシリコンに炭化水素基が結合した有機化層状ポリシランを合成したり、アルキルアミンと反応させることによりアミノ基が結合したアミノ化層状ポリシランを合成したりするための有用な中間体となる。こうした反応は、触媒を用いることなくマイルドな条件(例えば常温)で進行することが多いため、反応生成物中に触媒由来の不純物が混入するおそれが解消される。このハロゲン化層状ポリシランは、リチウムイオン二次電池の負極活物質として利用することもできる。   The halogenated layered polysilane of the present invention can be synthesized by, for example, synthesizing an organically layered polysilane in which a hydrocarbon group is bonded to silicon by reacting with alkyllithium, or an amino group bonded by reacting with an alkylamine. It becomes a useful intermediate for synthesizing. Since such a reaction often proceeds under mild conditions (for example, room temperature) without using a catalyst, the possibility that impurities derived from the catalyst are mixed into the reaction product is eliminated. This halogenated layered polysilane can also be used as a negative electrode active material of a lithium ion secondary battery.

また、本発明のハロゲン化層状ポリシランの製法によれば、組成式SiX(Xは臭素又は塩素)の層状結晶であるハロゲン化層状ポリシランを比較的簡単に得ることができる。   Moreover, according to the method for producing a halogenated layered polysilane of the present invention, a halogenated layered polysilane that is a layered crystal of the composition formula SiX (X is bromine or chlorine) can be obtained relatively easily.

更に、本発明のリチウムイオン二次電池は、シリコンを基本骨格とする本発明のハロゲン化層状ポリシランを負極活物質としているため、高容量化が可能となる。   Furthermore, since the lithium ion secondary battery of the present invention uses the halogenated layered polysilane of the present invention having silicon as the basic skeleton as the negative electrode active material, it is possible to increase the capacity.

実施例1の臭素化層状ポリシランのXRDパターンを示すグラフである。2 is a graph showing an XRD pattern of a brominated layered polysilane of Example 1. FIG. 実施例1の臭素化層状ポリシランの構造モデル図である。1 is a structural model diagram of a brominated layered polysilane of Example 1. FIG. 実施例1の臭素化層状ポリシランのIRスペクトルを示すグラフである。2 is a graph showing an IR spectrum of a brominated layered polysilane of Example 1. FIG. 実施例1の臭素化層状ポリシランを作用極、Li金属を対極とする電池の充放電曲線である。It is a charging / discharging curve of the battery which uses brominated layered polysilane of Example 1 as a working electrode, and uses Li metal as a counter electrode. 実施例2の臭素化層状ポリシランのXRDパターンを示すグラフである。3 is a graph showing an XRD pattern of a brominated layered polysilane of Example 2. 実施例2の臭素化層状ポリシランのIRスペクトルを示すグラフである。2 is a graph showing an IR spectrum of a brominated layered polysilane of Example 2. FIG. 比較例1の臭素化層状ポリシランのXRDパターンを示すグラフである。3 is a graph showing an XRD pattern of a brominated layered polysilane of Comparative Example 1.

本発明のハロゲン化層状ポリシランは、組成式SiX(Xは臭素又は塩素)の層状結晶である。こうしたハロゲン化層状ポリシランとしては、ダイヤモンド構造のシリコンのうち(111)面と同じ副格子を有するシリコンに臭素又は塩素が結合しているものや、ダイヤモンド構造のシリコンのうち(110)面と同じ副格子を有するシリコンに臭素又は塩素が結合しているものなどが挙げられる。前者としては、例えば結晶構造が六方晶系に属するものが挙げられ、後者としては、例えば結晶構造が斜方晶系に属するものが挙げられる。   The halogenated layered polysilane of the present invention is a layered crystal of the composition formula SiX (X is bromine or chlorine). Such halogenated layered polysilanes include those in which bromine or chlorine is bonded to silicon having the same sublattice as the (111) plane in diamond structure silicon, or the same sublayer as in the (110) plane in diamond structure silicon. Examples include those in which bromine or chlorine is bonded to silicon having a lattice. Examples of the former include those in which the crystal structure belongs to the hexagonal system, and examples of the latter include those in which the crystal structure belongs to the orthorhombic system.

本発明のハロゲン化層状ポリシランの製法は、不活性雰囲気下、無水のケトン系溶媒中又は無水のニトリル系溶媒中で層状結晶CaSi2とハロゲン(X2、但しXはBr又はCl)とを反応させることにより、組成式SiX(Xは臭素又は塩素)の層状結晶であるハロゲン化層状ポリシランを得るものである。ここで、不活性雰囲気とは、例えばアルゴン雰囲気や窒素雰囲気などが挙げられる。また、ケトン系溶媒としては、特に限定するものではないが、例えばアセトン、メチルエチルケトン、ジエチルケトン、メチルプロピルケトン、メチルブチルケトン、メチルイソブチルケトンなどの脂肪族ケトン系溶媒が挙げられ、実用的にはアセトン、メチルエチルケトン、メチルイソブチルケトンが好ましい。ケトン系溶媒を用いた場合には、ダイヤモンド構造のシリコンのうち(111)面と同じ副格子を有するシリコンに臭素又は塩素が結合したものが得られやすく、特に結晶構造が六方晶系に属するものが得られやすい。一方、ニトリル系溶媒としては、特に限定するものではないが、例えばアセトニトリル、プロピオニトリル、ブチロニトリル、イソブチロニトリルなどの脂肪族ニトリル系溶媒が挙げられ、実用的にはアセトニトリル、プロピオニトリルが好ましい。ニトリル系溶媒を用いた場合には、ダイヤモンド構造のシリコンのうち(110)面と同じ副格子を有するシリコンに臭素又は塩素が結合したものが得られやすく、特に結晶構造が斜方晶系のものが得られやすい。 The method for producing a halogenated layered polysilane of the present invention comprises reacting layered crystal CaSi 2 with halogen (X 2 , where X is Br or Cl) in an anhydrous ketone solvent or an anhydrous nitrile solvent in an inert atmosphere. Thus, a halogenated layered polysilane which is a layered crystal of the composition formula SiX (X is bromine or chlorine) is obtained. Here, examples of the inert atmosphere include an argon atmosphere and a nitrogen atmosphere. The ketone solvent is not particularly limited, and examples thereof include aliphatic ketone solvents such as acetone, methyl ethyl ketone, diethyl ketone, methyl propyl ketone, methyl butyl ketone, and methyl isobutyl ketone. Acetone, methyl ethyl ketone, and methyl isobutyl ketone are preferred. In the case of using a ketone solvent, it is easy to obtain a silicon having a sub-lattice identical to the (111) plane among diamond-structured silicon, and in particular, a crystal structure belonging to a hexagonal system. Is easy to obtain. On the other hand, the nitrile solvent is not particularly limited, but examples thereof include aliphatic nitrile solvents such as acetonitrile, propionitrile, butyronitrile, isobutyronitrile, and practically acetonitrile and propionitrile are used. preferable. When a nitrile solvent is used, it is easy to obtain diamond-structured silicon having bromine or chlorine bonded to silicon having the same sublattice as the (110) plane, and in particular, having an orthorhombic crystal structure Is easy to obtain.

この製法では、反応温度及び反応時間は特に限定するものではないが、反応温度は0〜50℃が好ましく、常温(15〜35℃)がより好ましい。また、反応時間は数時間〜数十日間が好ましく、5〜10日がより好ましい。ハロゲン化層状ポリシランは溶媒中に結晶として沈下することが多いが、その場合には上澄みを除去したあとヘキサンなどの炭化水素系溶媒を加える操作を繰り返し行い、その後その溶媒及びハロゲン(X2)を減圧下で除去するのが好ましい。 In this production method, the reaction temperature and reaction time are not particularly limited, but the reaction temperature is preferably 0 to 50 ° C, more preferably room temperature (15 to 35 ° C). The reaction time is preferably several hours to several tens of days, and more preferably 5 to 10 days. Halogenated layered polysilane often settles as crystals in a solvent. In that case, after removing the supernatant, an operation of adding a hydrocarbon solvent such as hexane is repeated, and then the solvent and halogen (X 2 ) are added. It is preferably removed under reduced pressure.

本発明のリチウムイオン二次電池は、組成式SiX(Xは臭素又は塩素)の層状結晶であるハロゲン化層状ポリシランを負極活物質とするものである。こうしたリチウムイオン二次電池は、負極及び正極を非水電解液中に備えている。ここで、負極は、負極活物質を含有しているが、そのほかに、適宜、バインダや導電材などを含有していてもよい。正極は、正極活物質を含有しているが、その正極活物質としては、V25、V613、MnO2、MnO3等の金属酸化物、LiCoO2、LiNiO2、LiMn24、LiFeO2及びLiFePO4等のリチウム含有複合酸化物、TiS2、MoS2等の金属硫化物、ポリアニリン等の導電性ポリマー等が挙げられる。この正極も、適宜、バインダ(例えばポリエチレン、ポリプロピレン、ポリテトラフルオロエチレン)や導電材(例えばカーボンブラック類やグラファイト類)、結着材などを含有していてもよい。また、非水電解液は、非水溶媒に支持塩を溶解させたものであるが、非水溶媒としては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、γ−ブチロラクトン(γ−BL)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)などの従来の二次電池やキャパシタに使われる公知の有機溶媒が挙げられ、支持塩としては、LiPF6,LiClO4,LiBF4などの公知の支持塩が挙げられる。支持塩の濃度としては、0.1〜2.0Mであることが好ましい。また、負極と正極との間にセパレータを備えていてもよく、その場合、セパレータとしては、ポリプロピレン製不織布やポリフェニレンスルフィド製不織布などの高分子不織布、ポリエチレンやポリプロピレンなどのオレフィン系樹脂の微多孔フィルムなどが挙げられる。このようなリチウムイオン二次電池の形状は、特に限定されないが、例えばコイン型、ボタン型、シート型、積層型、円筒型、偏平型、角型などが挙げられる。 The lithium ion secondary battery of the present invention uses a halogenated layered polysilane that is a layered crystal of the composition formula SiX (X is bromine or chlorine) as a negative electrode active material. Such a lithium ion secondary battery includes a negative electrode and a positive electrode in a non-aqueous electrolyte. Here, the negative electrode contains a negative electrode active material, but may contain a binder, a conductive material, or the like as appropriate. The positive electrode contains a positive electrode active material. Examples of the positive electrode active material include metal oxides such as V 2 O 5 , V 6 O 13 , MnO 2 , and MnO 3 , LiCoO 2 , LiNiO 2 , and LiMn 2 O. 4 , lithium-containing composite oxides such as LiFeO 2 and LiFePO 4 , metal sulfides such as TiS 2 and MoS 2 , and conductive polymers such as polyaniline. This positive electrode may also contain a binder (for example, polyethylene, polypropylene, polytetrafluoroethylene), a conductive material (for example, carbon blacks and graphites), a binder, and the like as appropriate. The non-aqueous electrolyte is a solution in which a supporting salt is dissolved in a non-aqueous solvent. Examples of the non-aqueous solvent include ethylene carbonate (EC), propylene carbonate (PC), γ-butyrolactone (γ-BL), Known organic solvents used for conventional secondary batteries and capacitors such as diethyl carbonate (DEC) and dimethyl carbonate (DMC) can be mentioned, and the supporting salts include known supporting salts such as LiPF 6 , LiClO 4 , LiBF 4. Is mentioned. The concentration of the supporting salt is preferably 0.1 to 2.0M. Further, a separator may be provided between the negative electrode and the positive electrode. In that case, as the separator, a polymer nonwoven fabric such as a polypropylene nonwoven fabric or a polyphenylene sulfide nonwoven fabric, or a microporous film of an olefin resin such as polyethylene or polypropylene Etc. The shape of such a lithium ion secondary battery is not particularly limited, and examples thereof include a coin type, a button type, a sheet type, a laminated type, a cylindrical type, a flat type, and a square type.

[実施例1]
アルゴン雰囲気に置換したナス型フラスコへ0.15gの層状結晶CaSi2を入れ、そこへ無水アセトン50mLを加え、更に攪拌しながら臭素5gを混合した。この混合物を室温で7日間攪拌した。7日後には、混合物中に黄色の結晶が沈殿した。黄色の結晶の回収は、反応溶液の上澄みを除去し、そこへ新たにヘキサンを加え、静置するという操作を3回繰り返すことにより行った。洗浄後、減圧下で溶媒及び臭素を完全に除去することにより、臭素化層状ポリシランを得た。得られた臭素化層状ポリシランのXRDの測定をアルゴン雰囲気で行った。その結果を図1に示す。XRDの測定結果より、得られた臭素化層状ポリシランは六方晶系でa=3.8Å、c=12.6Åの格子定数で指数付けができた。この臭素化層状ポリシランは、従来の層状ポリシラン(SiH;a=3.8Å、c=6.5Å)と比較してc軸が増加していることから水素が臭素に置換していることが確認され、ダイヤモンド構造のシリコン結晶の(111)面と同じ副格子を有するシリコンへ臭素が結合した構造であることがわかった。この臭素化層状ポリシランの構造モデルを図2に示す。一方、この臭素化層状ポリシランのIRスペクトルのグラフを図3に示す。図3から明らかなように、Si−Br伸縮ピークは確認されたが、Si−Hに由来するピーク(2100cm-1)は確認されなかった。また、Si−OHやSi−O−Siに由来するピークは確認されたが、これらは測定中にサンプルに混入した水分によりSi−Brが加水分解されたことによると推察された。なお、本反応は式(1)に従って進行すると考えられる。
CaSi2+2Br2→2SiBr+CaBr2 …(1)
[Example 1]
0.15 g of layered crystal CaSi 2 was placed in an eggplant-shaped flask replaced with an argon atmosphere, 50 mL of anhydrous acetone was added thereto, and 5 g of bromine was mixed with stirring. The mixture was stirred at room temperature for 7 days. After 7 days, yellow crystals precipitated in the mixture. The yellow crystals were collected by repeating the operation of removing the supernatant of the reaction solution, newly adding hexane thereto, and allowing to stand still three times. After washing, the solvent and bromine were completely removed under reduced pressure to obtain a brominated layered polysilane. XRD measurement of the resulting brominated layered polysilane was performed in an argon atmosphere. The result is shown in FIG. From the measurement results of XRD, the obtained brominated layered polysilane was hexagonal and indexed with a lattice constant of a = 3.8Å and c = 12.6Å. This brominated layered polysilane confirms that hydrogen is replaced by bromine because the c-axis is increased compared to conventional layered polysilane (SiH; a = 3.83, c = 6.5Å). As a result, it was found that bromine was bonded to silicon having the same sublattice as the (111) plane of the silicon crystal having a diamond structure. A structural model of this brominated layered polysilane is shown in FIG. On the other hand, a graph of the IR spectrum of this brominated layered polysilane is shown in FIG. As is clear from FIG. 3, the Si—Br stretching peak was confirmed, but the peak derived from Si—H (2100 cm −1 ) was not confirmed. Moreover, although the peak derived from Si-OH and Si-O-Si was confirmed, it was guessed that these were because Si-Br was hydrolyzed with the water | moisture content mixed in the sample during a measurement. This reaction is considered to proceed according to the formula (1).
CaSi 2 + 2Br 2 → 2SiBr + CaBr 2 (1)

XRD解析方法の具体的手順を示す。ここでは、Accelrys製のソフトウェアMaterial Studiosがインストールされたコンピュータを用いて下記の操作により格子定数を求めた。
(1)ソフトウェアMaterial Studiosを起動し、XRDデータファイルを[Grid]へcopy&pasteした。
(2)グラフアイコンをクリックしてグラフを作成した。
(3)[Modules]-[Reflex]-[Pattern Processing]-[Background]の順に開き、バックグラウンド補正を行った。この際、Number of intentionは30、Averaging window sizeは0.30とし、[calculate]-[substruct]を実行した。
(4)[Pattern Processing]-[Smoothing]-[Smooth]の順に開き、ピークプロファイルのスムージングを実行した。
(5)[Modules]-[Reflex]-[Powder Indexing]を開いた。
(6)[Setup]-[Indexing Program]-[Program]をX-Cellプログラムに設定した。
(7)グラフ画面でポインタをピークトップに合わせてクリックしてピークピッキングを行った。
(8)[Modules]-[Reflex]-[Powder Indexing]ウインドウで[Crystal systems to test]ですべての結晶系を選択した。
(9)[Index]で計算を実行した。
(10)計算終了後、[Best]シート内の格子定数、および空間群を採用し、合成材料の格子定数を決定した。
The specific procedure of the XRD analysis method is shown. Here, the lattice constant was calculated | required by the following operation using the computer in which Accelrys software Material Studios was installed.
(1) The software Material Studios was started and the XRD data file was copied and pasted to [Grid].
(2) A graph was created by clicking the graph icon.
(3) Opened in the order of [Modules]-[Reflex]-[Pattern Processing]-[Background] to perform background correction. At this time, Number of intention was 30 and Averaging window size was 0.30, and [calculate]-[substruct] was executed.
(4) Opening in order of [Pattern Processing]-[Smoothing]-[Smooth], and smoothing the peak profile.
(5) Open [Modules]-[Reflex]-[Powder Indexing].
(6) [Setup]-[Indexing Program]-[Program] was set to the X-Cell program.
(7) Peak picking was performed by clicking with the pointer placed on the peak top on the graph screen.
(8) All crystal systems were selected by [Crystal systems to test] in the [Modules]-[Reflex]-[Powder Indexing] window.
(9) Calculation was performed with [Index].
(10) After completion of the calculation, the lattice constant in the [Best] sheet and the space group were adopted to determine the lattice constant of the synthetic material.

この臭素化層状ポリシランをリチウムイオン電池の負極材料として使用し、その特性を調べた。具体的には、臭素化層状ポリシラン、アセチレンブラック及びポリテトラフルオロエチレンを重量比で70:25:5で混合したものを10mg秤量し、φ15mmのSUSメッシュへ圧着して作用極とした。対極にはリチウム金属、セパレータにはポリエチレン微多孔質膜、電解液には1M LiPF6(溶媒としてエチレンカーボネート(EC)とジエチルカーボネート(DEC)とを体積比で3:7に混合した溶液を使用)を用いて電池を試作した。電池性能の評価は、下限終止電位を0.02V、上限電位を3Vとし、0.7mAの定電流測定を室温で10回繰り返した。その結果を図4に示す。炭素の充放電容量が360mAh/gであるのに対し、初回充電容量は200mAh/gと極めて大きな値を示した。このことから、リチウムイオン電池の負極としての利用も可能であることがわかった。なお、初回放電容量は950mAh/gとかなり大きい値を示したが、これは電解液の分解などによるもので真の値とはいえないと判断した。 This brominated layered polysilane was used as a negative electrode material for a lithium ion battery, and its characteristics were examined. Specifically, 10 mg of a mixture of brominated layered polysilane, acetylene black and polytetrafluoroethylene in a weight ratio of 70: 25: 5 was weighed and pressure-bonded to a SUS mesh of φ15 mm to obtain a working electrode. Lithium metal is used for the counter electrode, polyethylene microporous membrane is used for the separator, and 1M LiPF 6 is used for the electrolyte (a solution in which ethylene carbonate (EC) and diethyl carbonate (DEC) are mixed at a volume ratio of 3: 7 as a solvent). ) Was used to make a prototype battery. The battery performance was evaluated by repeating a constant current measurement of 0.7 mA 10 times at room temperature with a lower limit end potential of 0.02 V and an upper limit potential of 3 V. The result is shown in FIG. The charge / discharge capacity of carbon was 360 mAh / g, whereas the initial charge capacity was as extremely large as 200 mAh / g. From this, it was found that it can be used as a negative electrode of a lithium ion battery. The initial discharge capacity was 950 mAh / g, which was a fairly large value, but this was due to the decomposition of the electrolyte and was judged not to be a true value.

また、この臭素化層状ポリシランを用いてアミノ化層状ポリシランを合成した。具体的には、臭素化層状ポリシラン0.1gをアルゴン雰囲気のグローブボックス内で100mLの栓付きフラスコへ秤量し、アルゴン気流下で1.5倍モル等量のn−ヘキシルアミン0.14gとクロロホルム20mLを添加した。この混合溶液をアルゴン雰囲気下、室温で7日攪拌したのち、反応を止めた。反応系をアルゴン雰囲気のグローブボックス内でろ過してアミノ化層状ポリシランを合成した(収率30%)。構造確認は、IRより同定した。具体的には、以下の通り。2853,2926cm-1(これらはCH2のC−H伸縮)、2872,2962cm-1(これらはCH3のC−H伸縮)、510cm-1(これはSi−Si伸縮)。 Also, an aminated layered polysilane was synthesized using this brominated layered polysilane. Specifically, 0.1 g of brominated layered polysilane was weighed into a 100 mL stoppered flask in a glove box under an argon atmosphere, and 0.14 g of 1.5-fold molar equivalent of n-hexylamine and chloroform under an argon stream. 20 mL was added. The mixed solution was stirred at room temperature for 7 days under an argon atmosphere, and then the reaction was stopped. The reaction system was filtered in a glove box in an argon atmosphere to synthesize aminated layered polysilane (yield 30%). The structure confirmation was identified from IR. Specifically: 2853, 2926 cm -1 (these are CH 2 CH stretching), 2872, 2962 cm -1 (these are CH 3 CH stretching), 510 cm -1 (this is Si-Si stretching).

[実施例2]
無水アセトンの代わりに無水アセトニトリルを用いた以外は、実施例1と同様にして黄色の臭素化層状ポリシランを得た。得られた臭素化層状ポリシランのXRDの測定をアルゴン雰囲気で行った。その結果を図5に示す。XRDの測定結果より、得られた臭素化層状ポリシランは斜方晶系でa=14.23Å、b=8.535Å、c=4.2037Åの格子定数で指数付けができた。構造解析の結果、この臭素化層状ポリシランは、ダイヤモンド構造のシリコン結晶の(110)面と同じ副格子を有するシリコンへ臭素が結合した構造であることがわかった。また、この臭素化層状ポリシランのIRスペクトルのグラフを図6に示す。ここでも、Si−Br伸縮ピークは確認されたが、Si−Hに由来するピークは確認されなかった。
[Example 2]
A yellow brominated layered polysilane was obtained in the same manner as in Example 1 except that anhydrous acetonitrile was used instead of anhydrous acetone. XRD measurement of the resulting brominated layered polysilane was performed in an argon atmosphere. The result is shown in FIG. From the measurement results of XRD, the obtained brominated layered polysilane was orthorhombic and indexed with lattice constants of a = 14.23Å, b = 8.535Å, and c = 4.2037Å. As a result of structural analysis, this brominated layered polysilane was found to have a structure in which bromine was bonded to silicon having the same sublattice as the (110) plane of the diamond-structured silicon crystal. Moreover, the graph of IR spectrum of this brominated layered polysilane is shown in FIG. Here, the Si—Br stretching peak was confirmed, but the peak derived from Si—H was not confirmed.

[比較例1]
無水アセトンの代わりに無水ヘキサンを用いた以外は、実施例1と同様にして黄色の臭素化層状ポリシランを得た。得られた臭素化層状ポリシランのXRDの測定をアルゴン雰囲気で行った。その結果を図7に示す。XRDの測定結果より、得られた臭素化層状ポリシランは非晶質材料であることがわかった。
[Comparative Example 1]
A yellow brominated layered polysilane was obtained in the same manner as in Example 1 except that anhydrous hexane was used instead of anhydrous acetone. XRD measurement of the resulting brominated layered polysilane was performed in an argon atmosphere. The result is shown in FIG. From the measurement results of XRD, it was found that the obtained brominated layered polysilane was an amorphous material.

本発明のハロゲン化層状ポリシランは、例えば有機化層状ポリシランやアミノ化層状ポリシランなどの合成中間体として利用したり、リチウムイオン二次電池の負極材料として利用したりすることができる。   The halogenated layered polysilane of the present invention can be used, for example, as a synthetic intermediate such as an organic layered polysilane or an aminated layered polysilane, or as a negative electrode material for a lithium ion secondary battery.

Claims (10)

組成式SiX(Xは臭素又は塩素)で表される層状結晶である、ハロゲン化層状ポリシラン。   Halogenated layered polysilane, which is a layered crystal represented by the composition formula SiX (X is bromine or chlorine). ダイヤモンド構造のシリコンのうち(111)面と同じ副格子を有するシリコンに臭素又は塩素が結合している、請求項1に記載のハロゲン化層状ポリシラン。   2. The halogenated layered polysilane according to claim 1, wherein bromine or chlorine is bonded to silicon having the same sublattice as the (111) plane in silicon having a diamond structure. 結晶構造が六方晶系に属する、請求項2に記載のハロゲン化層状ポリシラン。   The halogenated layered polysilane according to claim 2, wherein the crystal structure belongs to a hexagonal system. ダイヤモンド構造のシリコンのうち(110)面と同じ副格子を有するシリコンに臭素又は塩素が結合している、請求項1に記載のハロゲン化層状ポリシラン。   2. The halogenated layered polysilane according to claim 1, wherein bromine or chlorine is bonded to silicon having the same sublattice as the (110) plane in silicon having a diamond structure. 結晶構造が斜方晶系に属する、請求項4に記載のハロゲン化層状ポリシラン。   The halogenated layered polysilane according to claim 4, wherein the crystal structure belongs to orthorhombic system. 不活性雰囲気下、無水のケトン系溶媒中で層状結晶CaSi2とハロゲン(X2、但しXはBr又はCl)とを反応させることによりハロゲン化層状ポリシランの結晶を得る、ハロゲン化層状ポリシランの製法。 Process for producing a halogenated layered polysilane by reacting a layered crystal CaSi 2 with halogen (X 2 , where X is Br or Cl) in an anhydrous ketone solvent under an inert atmosphere. . 請求項1〜3のいずれか1項に記載のハロゲン化層状ポリシランの結晶を得る、請求項6に記載のハロゲン化層状ポリシランの製法。   The manufacturing method of the halogenated layered polysilane of Claim 6 which obtains the crystal | crystallization of the halogenated layered polysilane of any one of Claims 1-3. 不活性雰囲気下、無水のニトリル系溶媒中で層状結晶CaSi2とハロゲン(X2、但しXはBr又はCl)とを反応させることによりハロゲン化層状ポリシランの結晶を得る、ハロゲン化層状ポリシランの製法。 Process for producing halogenated layered polysilane by reacting layered crystal CaSi 2 and halogen (X 2 , where X is Br or Cl) in an anhydrous nitrile solvent under an inert atmosphere, to obtain a crystal of halogenated layered polysilane . 請求項1、4及び5のいずれか1項に記載のハロゲン化層状ポリシランの結晶を得る、請求項8に記載のハロゲン化層状ポリシランの製法。   The method for producing a halogenated layered polysilane according to claim 8, wherein the halogenated layered polysilane crystal according to any one of claims 1, 4, and 5 is obtained. 請求項1〜5のいずれか1項に記載のハロゲン化層状ポリシランを負極活物質とするリチウムイオン二次電池。   The lithium ion secondary battery which uses the halogenated layered polysilane of any one of Claims 1-5 as a negative electrode active material.
JP2009166639A 2009-07-15 2009-07-15 Halogenated layered polysilane, method for producing the same, and lithium ion secondary battery using the same Pending JP2011020884A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009166639A JP2011020884A (en) 2009-07-15 2009-07-15 Halogenated layered polysilane, method for producing the same, and lithium ion secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009166639A JP2011020884A (en) 2009-07-15 2009-07-15 Halogenated layered polysilane, method for producing the same, and lithium ion secondary battery using the same

Publications (1)

Publication Number Publication Date
JP2011020884A true JP2011020884A (en) 2011-02-03

Family

ID=43631287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009166639A Pending JP2011020884A (en) 2009-07-15 2009-07-15 Halogenated layered polysilane, method for producing the same, and lithium ion secondary battery using the same

Country Status (1)

Country Link
JP (1) JP2011020884A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015182116A1 (en) * 2014-05-29 2015-12-03 株式会社豊田自動織機 Nano-silicon material, method for producing same and negative electrode of secondary battery
US10074814B2 (en) 2013-04-22 2018-09-11 Ohio State Innovation Foundation Germanane analogs and optoelectronic devices using the same
CN114084890A (en) * 2021-11-16 2022-02-25 中山大学 A kind of crystalline silicon material and its preparation method and application

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10074814B2 (en) 2013-04-22 2018-09-11 Ohio State Innovation Foundation Germanane analogs and optoelectronic devices using the same
WO2015182116A1 (en) * 2014-05-29 2015-12-03 株式会社豊田自動織機 Nano-silicon material, method for producing same and negative electrode of secondary battery
CN106414326A (en) * 2014-05-29 2017-02-15 株式会社丰田自动织机 Nano-silicon material, method for producing same and negative electrode of secondary battery
JPWO2015182116A1 (en) * 2014-05-29 2017-05-25 株式会社豊田自動織機 Nanosilicon material, method for producing the same, and negative electrode of secondary battery
US10347910B2 (en) 2014-05-29 2019-07-09 Kabushiki Kaisha Toyota Jidoshokki Nano silicon material, method for producing same, and negative electrode of secondary battery
CN106414326B (en) * 2014-05-29 2019-08-09 株式会社丰田自动织机 The cathode of nano silicon material and its manufacturing method and secondary cell
CN114084890A (en) * 2021-11-16 2022-02-25 中山大学 A kind of crystalline silicon material and its preparation method and application
CN114084890B (en) * 2021-11-16 2023-12-12 中山大学 Crystalline silicon material and preparation method and application thereof

Similar Documents

Publication Publication Date Title
CN110627742B (en) Preparation method and purification method of compound containing at least one cyclic ligand structure
WO2010089931A1 (en) Method for producing lithium silicate compound
CN106414326B (en) The cathode of nano silicon material and its manufacturing method and secondary cell
JP6651049B1 (en) Method for producing alkali metal hexafluorophosphate, method for producing alkaline metal hexafluorophosphate-containing electrolytic concentrated solution, and method for producing secondary battery
CN111433962A (en) Electrolyte for non-aqueous electrolyte battery and non-aqueous electrolyte battery using the same
WO2010104137A1 (en) Process for producing lithium borate compound
JP6176510B2 (en) Silicon material and negative electrode of secondary battery
JP2011037947A (en) Organized layered polysilane, electrode for electricity storage device using the same, and method for producing organized layered polysilane
KR100971065B1 (en) Manufacturing method of electrolyte for lithium ion battery and lithium ion battery using same
KR100755191B1 (en) Lithium transition metal sulfide synthesis method
JP2011170991A (en) Method of manufacturing electrode material for nonaqueous electrolyte secondary battery, electrode material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the electrode material
JP2015164110A (en) Method for producing carbonaceous material for non-aqueous electrolyte secondary battery
WO2014156995A1 (en) Method for manufacturing phosphorus pentafluoride, method for manufacturing lithium hexafluorophosphate, lithium hexafluorophosphate, nonaqueous electrolyte for cells, and lithium secondary cell
JP2006302590A (en) Manufacturing method of electrolyte for lithium ion battery and battery using it
KR20180043276A (en) POSITIVE ACTIVE ACTIVE MATERIAL FOR NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY, PROCESS FOR PRODUCING THE SAME, AND NON-
JP2011020884A (en) Halogenated layered polysilane, method for producing the same, and lithium ion secondary battery using the same
EP4332062A1 (en) Negative electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery using same, and method for producing negative electrode active material for non-aqueous electrolyte secondary battery
KR102559869B1 (en) Electrolyte additive for secondary battery, manufacturing method thereof, electrolyte, and secondary battery including the same
JP5609283B2 (en) Method for producing electrolytic solution for lithium ion battery and lithium ion battery using the same
JP7285026B2 (en) Phosphorus-containing low-crystalline vanadium sulfide
JP5151121B2 (en) Method for producing electrolytic solution for lithium ion battery and lithium ion battery using the same
US10141563B2 (en) Negative-electrode active material, production process for the same and electric storage apparatus
JP5725000B2 (en) Battery active material and battery
KR101631386B1 (en) Negative Electrode Material For Lithuim Secondary Battery Using Lithuim-Titanium Oxide And Preparation Method Thereof
CN114735750B (en) Niobium salt material, preparation method and application thereof