[go: up one dir, main page]

JP2011016139A - Casting apparatus - Google Patents

Casting apparatus Download PDF

Info

Publication number
JP2011016139A
JP2011016139A JP2009161361A JP2009161361A JP2011016139A JP 2011016139 A JP2011016139 A JP 2011016139A JP 2009161361 A JP2009161361 A JP 2009161361A JP 2009161361 A JP2009161361 A JP 2009161361A JP 2011016139 A JP2011016139 A JP 2011016139A
Authority
JP
Japan
Prior art keywords
mold
molten metal
casting
cavity
die
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009161361A
Other languages
Japanese (ja)
Inventor
Kuniaki Miura
邦明 三浦
Makoto Asaha
信 浅葉
Tatsuo Machida
辰雄 町田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sukegawa Electric Co Ltd
Original Assignee
Sukegawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sukegawa Electric Co Ltd filed Critical Sukegawa Electric Co Ltd
Priority to JP2009161361A priority Critical patent/JP2011016139A/en
Publication of JP2011016139A publication Critical patent/JP2011016139A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To cast a casting wherein the temperature of a die is rapidly raised/dropped, the casting preparation and the casting cycle can be shortened, any so-called shrinkage cavity or shrinkage looseness easy to be formed during the solidification of the molten metal is not formed, and the surface of the castings is excellent.SOLUTION: A casting apparatus is constituted so that a molten metal is filled in a die 4 from a molten metal tank via a stoke 8, and then the molten metal is solidified in the die 4 to form the casting, wherein the die 4 is formed of isotropic graphite. Hard plating or the like such as Cr plating and chemical Ni plating is applied to at least an inner surface of a cavity 10 of the die 4. Further a cooling block 17 to be water-cooled is pressed against an upper die 6, and a heater 18 for independently heating the upper die 6 and the lower die 5, is provided individually on an upper die and a lower die respectively. The temperature gradient is formed thereby, in which the temperature is higher in the order of a sprue 9, the lower die 5 and the upper die 6, and the molten metal in the cavity is subjected to the directional solidification.

Description

本発明は金属が溶融状態で収納された溶融金属槽から溶融金属を金型に充填した後、この金型内で溶融金属を凝固させて鋳物を成型する鋳造装置に関し、特に金型に充填された溶融金属の冷却、硬化時に溶融金属の部分的な凝縮により生じるいわゆる引け巣や引け緩みが生じにくくした鋳造装置に関する。   The present invention relates to a casting apparatus that fills a mold with molten metal from a molten metal tank in which the metal is stored in a molten state, and then solidifies the molten metal in the mold to form a casting, and in particular, the mold is filled. The present invention relates to a casting apparatus in which so-called shrinkage cavities and loosening caused by partial condensation of molten metal during cooling and hardening of the molten metal are difficult to occur.

溶湯と鋳物形状のキャビティとの間の圧力差を利用して、キャビティ内に溶湯を充填して鋳造する方法に、低圧鋳造法、差圧鋳造法及び減圧鋳造法等がある。このうち低圧鋳造法は、溶解金属を収納した密閉炉に不活性ガスや二酸化炭素等のガスによる比較的低い圧力を付加し、この圧力で密閉炉内の溶融金属をストークを介して上方に押し上げ、密閉炉の上位に配置された鋳型に溶融金属を充填し、鋳物を製造する方法である。この低圧鋳造法は、車輌の部材等に使用されるアルミニウム合金等の鋳物製品を製造するのに広く利用されている。   There are a low pressure casting method, a differential pressure casting method, a reduced pressure casting method, and the like as a method of casting by filling a molten metal into a cavity using a pressure difference between a molten metal and a casting-shaped cavity. Among these, the low-pressure casting method applies a relatively low pressure by a gas such as an inert gas or carbon dioxide to a closed furnace containing molten metal, and this pressure pushes the molten metal in the closed furnace upward through stalk. This is a method of manufacturing a casting by filling molten metal into a mold placed above a closed furnace. This low-pressure casting method is widely used for producing cast products such as aluminum alloys used for vehicle members and the like.

図5は従来の低圧鋳造装置を示す断面図である。気密に密閉された密閉炉1の上部に設けたガス注入口20に不活性ガスや二酸化炭素等のガスの図示してない供給源が接続され、密閉炉1の中にガスが圧送される。密閉炉1の内部に上面が開口した耐熱黒鉛容器であるルツボ2が収納され、このルツボ2の外壁に沿ってヒータ3が配設されている。このルツボ2の中央部に密閉炉1の蓋に取付けられたストーク8の下端が浸漬されている。密閉炉1の上に下金型5と上金型6とからなる金型4が配置されている。下金型5と上金型6との合わせ面にそれぞれ凹部が形成されており、この下金型5と上金型6とを重ね合わせたときに、前記凹部により鋳物形状のキャビティ10が形成される。またこのキャビティ10内には必要に応じて中子7が収納される。前記ストーク8の上端は金型4の底部に設けられたキャビティ10に通じる湯口9に接続されている。   FIG. 5 is a cross-sectional view showing a conventional low-pressure casting apparatus. A supply source (not shown) of a gas such as an inert gas or carbon dioxide is connected to a gas inlet 20 provided at the top of the hermetically sealed hermetic furnace 1, and the gas is pumped into the hermetic furnace 1. A crucible 2, which is a heat-resistant graphite container having an upper surface opened, is accommodated in the closed furnace 1, and a heater 3 is disposed along the outer wall of the crucible 2. The lower end of the stalk 8 attached to the lid of the closed furnace 1 is immersed in the center of the crucible 2. A mold 4 including a lower mold 5 and an upper mold 6 is disposed on the closed furnace 1. Concave portions are respectively formed on the mating surfaces of the lower die 5 and the upper die 6, and when the lower die 5 and the upper die 6 are overlapped, a casting-shaped cavity 10 is formed by the concave portions. Is done. A core 7 is accommodated in the cavity 10 as necessary. The upper end of the stalk 8 is connected to a gate 9 that leads to a cavity 10 provided at the bottom of the mold 4.

このような鋳造装置においては、不活性ガスをガス注入口20から密閉炉1内に注入する。このガス圧力により、ルツボ2内の溶融金属の湯面が加圧されて、溶融金属溶湯が押し上げられ、ストーク8を介して金型のキャビティ10内に充填される。キャビティ10に充填した溶融金属が冷却されて凝固した後、図示していない油圧機構により上金型6を上昇させてキャビティ10を開き、下金型5から鋳物を取り出す。   In such a casting apparatus, an inert gas is injected into the closed furnace 1 from the gas injection port 20. With this gas pressure, the molten metal surface in the crucible 2 is pressurized and the molten metal is pushed up and filled into the mold cavity 10 via the stalk 8. After the molten metal filled in the cavity 10 is cooled and solidified, the upper mold 6 is raised by a hydraulic mechanism (not shown) to open the cavity 10 and take out the casting from the lower mold 5.

図6は密閉炉1’に収納した溶融金属をストーク8’を通して湯溜め12に送り、この湯溜め12から金型4のキャビティ10内に充填する例である。密閉炉1’の中の溶融金属は浸漬ヒータ13で加熱され、溶融状態が維持される。密閉炉1’の中へは溶湯供給口11から溶融金属が供給される。ストーク8’から湯溜めに至る部分は溶融金属の温度低下による凝固を防ぐためヒータ3で加熱される。その他の構成は基本的に図5の従来例と同じであり、同じ部分は同じ符合で示している。   FIG. 6 shows an example in which the molten metal stored in the closed furnace 1 ′ is sent to the sump 12 through the stalk 8 ′ and filled into the cavity 10 of the mold 4 from the sump 12. The molten metal in the closed furnace 1 ′ is heated by the immersion heater 13 to maintain the molten state. Molten metal is supplied from the molten metal supply port 11 into the closed furnace 1 ′. The portion from the stalk 8 'to the hot water reservoir is heated by the heater 3 to prevent the molten metal from solidifying due to a decrease in temperature. Other configurations are basically the same as those of the conventional example of FIG. 5, and the same portions are denoted by the same reference numerals.

図7は図5により前述した従来の鋳造装置において、金型4への溶融金属の汲み上げをガスの圧力によらず、溶融金属電磁ポンプにより行うものである。すなわちストーク(ダクト)8の中間部の外側に溶融金属電磁ポンプの誘導子14を設け、これに対応してストーク8の中に誘導子14で発生した磁界の磁路を形成するためのコア15を配置している。誘導子14に三相電流を通電し、これにより誘導子14とコア15との間で移動磁界を発生させて、ストーク8の中の溶融金属に上方の推力を与え、これにより金型4のキャビティ10内に充填する。その他の構成は基本的に図5の従来例と同じであり、同じ部分は同じ符合で示している。   FIG. 7 shows the conventional casting apparatus described above with reference to FIG. 5, in which the molten metal is pumped into the mold 4 by a molten metal electromagnetic pump regardless of the gas pressure. That is, an inductor 14 of a molten metal electromagnetic pump is provided outside the intermediate portion of the stalk (duct) 8, and a core 15 for forming a magnetic path of a magnetic field generated by the inductor 14 in the stalk 8 correspondingly. Is arranged. A three-phase current is passed through the inductor 14, thereby generating a moving magnetic field between the inductor 14 and the core 15, and applying an upward thrust to the molten metal in the stalk 8, thereby The cavity 10 is filled. Other configurations are basically the same as those of the conventional example of FIG. 5, and the same portions are denoted by the same reference numerals.

図8は図6により前述した従来の鋳造装置において、金型4への溶融金属の汲み上げをガスの圧力によらず、溶融金属電磁ポンプにより行うものである。すなわちストーク(ダクト)8‘の中間部の外側に溶融金属電磁ポンプの誘導子14を設け、これに対応してストーク8’の中に誘導子14で発生した磁界の磁路を形成するためのコア15を配置している。誘導子14に三相電流を通電し、これにより誘導子14とコア15との間で移動磁界を発生させて、ストーク8‘の中の溶融金属に上方の推力を与え、これにより金型4のキャビティ10内に充填する。その他の構成は基本的に図6の従来例と同じであり、同じ部分は同じ符合で示している。   FIG. 8 shows the conventional casting apparatus described above with reference to FIG. 6, in which the molten metal is pumped into the mold 4 by a molten metal electromagnetic pump regardless of the gas pressure. That is, an inductor 14 of a molten metal electromagnetic pump is provided outside the middle portion of the stalk (duct) 8 ', and a magnetic path for a magnetic field generated by the inductor 14 is formed in the stalk 8' correspondingly. A core 15 is arranged. The inductor 14 is energized with a three-phase current, thereby generating a moving magnetic field between the inductor 14 and the core 15, and applying an upward thrust to the molten metal in the stalk 8 ′, whereby the mold 4 The cavity 10 is filled. Other configurations are basically the same as those of the conventional example of FIG. 6, and the same portions are indicated by the same reference numerals.

このような低圧鋳造装置において、金型4のキャビティ10内で溶融金属が凝固したとき、凝固収縮した容積分の溶融金属が金型4の湯口9を通して常に供給されなければならない。そのために図5や図7で示すように、湯口9に接続されたストーク8が、それぞれルツボ2側から熱輻射で加熱されたり、ヒータ3‘で直接加熱されるようにしている。また図6や図8で示すように密閉炉1から離して金型4を配置しているものでは金型4の下に湯溜め12を設け、この湯溜め12をヒータ3で加熱している。このような構造とすることにより、金型4は温度が高い順に湯口9、下金型5、上金型6の順で温度勾配が形成され、キャビティ10内の溶融金属は上から下へと凝固していき、最後に湯口9の溶融金属が凝固するという指向性凝固がなされる。この間に凝固収縮した容積分の溶融金属は湯口9側からキャビティ10内に供給される。これによりいわゆる引け巣や引け緩みの無い鋳物を鋳造することが出来る。   In such a low-pressure casting apparatus, when the molten metal is solidified in the cavity 10 of the mold 4, the molten metal corresponding to the solidified and contracted volume must always be supplied through the gate 9 of the mold 4. For this purpose, as shown in FIGS. 5 and 7, the stalks 8 connected to the gate 9 are heated by heat radiation from the crucible 2 side or directly by the heater 3 '. As shown in FIG. 6 and FIG. 8, in the case where the mold 4 is arranged apart from the sealed furnace 1, a hot water reservoir 12 is provided under the mold 4, and the hot water reservoir 12 is heated by the heater 3. . By adopting such a structure, the mold 4 is formed with a temperature gradient in the order of the gate 9, the lower mold 5, and the upper mold 6 in descending order of temperature, and the molten metal in the cavity 10 flows from top to bottom. Directional solidification is performed in which the molten metal at the gate 9 is solidified. During this time, a volume of molten metal solidified and contracted is supplied into the cavity 10 from the gate 9 side. Thereby, it is possible to cast a casting having no so-called shrinkage nest or shrinkage.

低圧鋳造法は、ガスを巻き込まずにルツボ2や密閉炉1’内の酸化物の少ない溶融金属を静かに金型4のキャビティ10内に下から上へと充填することにより、気泡や酸化物を含まない鋳物を容易に鋳造出来る利点がある。さらに前記のような温度勾配により、キャビティ10内で上から下へと溶融金属の凝固が起こり、最後に湯口9の部分の溶融金属が凝固することにより、キャビティ10内で溶融金属が凝固して収縮した容積分だけ湯口9から溶融金属を追加して充填される。これによりキャビティ10内で溶融金属が凝固中に引け巣や引け緩みが起こらない。これらの理由から低圧鋳造法では重力鋳造法やダイカスト法等の他の鋳造法に比べて良質の鋳物を鋳造することが出来る。   In the low-pressure casting method, bubbles and oxides are formed by gently filling the crucible 2 and the molten metal with a small amount of oxide in the closed furnace 1 ′ from the bottom into the cavity 10 of the mold 4 without entraining gas. There is an advantage that a casting containing no can be easily cast. Furthermore, due to the temperature gradient as described above, solidification of the molten metal occurs from the top to the bottom in the cavity 10, and finally the molten metal in the portion of the gate 9 solidifies, so that the molten metal solidifies in the cavity 10. The molten metal is additionally filled from the gate 9 by the contracted volume. Thus, no shrinkage or shrinkage occurs during the solidification of the molten metal in the cavity 10. For these reasons, the low-pressure casting method can cast a high quality casting as compared with other casting methods such as the gravity casting method and the die casting method.

しかし低圧鋳造法では金型4の熱容量が大きいうえに、ストーク8や湯溜め12にある溶融金属からの熱伝導により金型4に絶えず熱供給される。また溶融金属が凝固するときに放出される凝固潜熱により鋳造サイクル毎に金型4が温度上昇する。これらが原因でキャビティ10内に充填した溶融金属が凝固しにくい。キャビティ10内で溶融金属が凝固し、それが或る程度の強度になる温度、例えばアルミニウムの場合では400℃以下にならないと鋳物を変形させずに金型から取り出すことが出来ないので、1サイクルの鋳造時間が長くなってしまう。   However, in the low pressure casting method, the heat capacity of the mold 4 is large, and heat is constantly supplied to the mold 4 by heat conduction from the molten metal in the stalk 8 and the sump 12. Further, the temperature of the mold 4 rises every casting cycle due to solidification latent heat released when the molten metal solidifies. For these reasons, the molten metal filled in the cavity 10 is difficult to solidify. Since the molten metal is solidified in the cavity 10 and becomes a certain strength, for example, in the case of aluminum, it must be 400 ° C. or lower, and the casting cannot be taken out from the mold without being deformed. The casting time will be longer.

鋳造サイクルが短く、量産性が高いダイカストの例では、金型のキャビティ内に溶融金属を射出、充填し、凝固させた後、金型を開いて鋳物を取り出し、キャビティの内面に離型剤を塗布し、金型を閉めるまでの1鋳造サイクルは小さい鋳物で数十秒程度であり、大きい鋳物でも数分以内である。これに対し、一般的に低圧鋳造では1鋳造サイクルが7分〜10数分かかる。   In the case of die casting with a short casting cycle and high mass productivity, molten metal is injected into the mold cavity, filled, solidified, then the mold is opened, the casting is taken out, and a mold release agent is applied to the inner surface of the cavity. One casting cycle between application and closing of the mold is about several tens of seconds for a small casting, and within several minutes for a large casting. On the other hand, generally, in low pressure casting, one casting cycle takes 7 to 10 minutes.

低圧鋳造において重要なのは前述した金型の温度勾配である。すなわち鋳物に引け巣や引け緩みを生じさせないようにするためにはキャビティ10の中に充填された溶融金属がまず湯口9から最も遠い位置から凝固を始め、最後に湯口9の部分で凝固することが必要となる。そのためには温度の高い順に湯口9、下金型5、上金型6の順で温度勾配を形成することが特に重要である。例えばストーク8を交換した後、その予熱が十分で無い場合には湯口9の温度が下がり、溶融金属が凝固してキャビティ10を塞いでしまうこともある。これを防ぐためには湯口9やストーク8の上端部の温度測定を行う必要がある。しかし温度測定に一般に使用される熱電対は溶融アルミニウム等の溶融金属に弱く、保護管で覆って測定をしなければならないため、湯口9やストーク8の上端部の温度を直接且つリアルタイムで測定することが出来ず、温度測定値に誤差やタイムラグが入ってしまう。   What is important in low-pressure casting is the above-described temperature gradient of the mold. That is, in order not to cause shrinkage or shrinkage in the casting, the molten metal filled in the cavity 10 starts to solidify first from a position farthest from the gate 9 and finally solidifies at the portion of the gate 9. Is required. For that purpose, it is particularly important to form a temperature gradient in the order of the gate 9, the lower mold 5, and the upper mold 6 in descending order of temperature. For example, after the stalk 8 is replaced, if the preheating is not sufficient, the temperature of the gate 9 is lowered, and the molten metal may solidify and block the cavity 10. In order to prevent this, it is necessary to measure the temperature at the upper end of the gate 9 and the stalk 8. However, since thermocouples generally used for temperature measurement are weak against molten metal such as molten aluminum and must be covered with a protective tube, the temperature at the upper end of the gate 9 and stalk 8 is measured directly and in real time. Cannot be performed, and the temperature measurement value has an error or a time lag.

低圧鋳造においてさらに他の問題は金型4のキャビティ10内の溶融金属の凝固が終了した後、図5と図6に示した密閉炉1、1’の圧力を下げ、図7と図8に示した電磁ポンプ14の出力を下げてストーク8や湯溜め12の溶融金属の液面を下げたとき、金型4とそれらストーク8や湯溜め12の間の接合部分からパッキンの間を通して空気が入り込み、ストーク8や湯溜め12の中の溶融金属に酸化膜が生じてしまうことである。さらに脱型のため上金型5を開いて鋳物を取り出すと、湯口9からストーク8や湯溜め12の中に空気が浸入し、その中の溶融金属に酸化膜が生じてしまうこともある。   Still another problem in the low pressure casting is that after the solidification of the molten metal in the cavity 10 of the mold 4 is completed, the pressure in the closed furnace 1, 1 ′ shown in FIGS. When the output of the electromagnetic pump 14 shown in the figure is lowered and the liquid level of the molten metal in the stalk 8 and the sump 12 is lowered, air passes through the gap between the mold 4 and the stalk 8 and the sump 12 between the packings. Intrusion occurs, and an oxide film is formed on the molten metal in the stalk 8 and the water reservoir 12. Further, when the upper mold 5 is opened for mold removal and the casting is taken out, air may enter the stalk 8 or the hot water reservoir 12 from the gate 9 and an oxide film may be formed on the molten metal therein.

金型は一般に鋼材で作られており、熱容量が大きく、昇降温に時間がかかる。例えば鋳造準備の昇温では1〜2時間のガスバーナー加熱で200℃程度の温度に予熱してから鋳造を開始する。鋳造サイクルを繰り返していくと金型の温度が徐々に上昇していくが、所定の定常温度(アルミニウムの鋳造の場合は約350℃)以上に金型の温度が高くならないように、金型やその周辺部材は自然放熱がなされ、飽和温度となるように設計されている。しかしこれでは金型の湯口にある溶融金属からの熱供給によって鋳物を変形させずに脱型出来る温度(アルミニウムの鋳造の場合は350℃ )以下に降温するのに時間がかかってしまう。   The mold is generally made of steel, has a large heat capacity, and takes time to rise and fall. For example, in the temperature rise in preparation for casting, casting is started after preheating to a temperature of about 200 ° C. by gas burner heating for 1 to 2 hours. As the casting cycle is repeated, the temperature of the mold gradually rises. However, in order to prevent the mold temperature from becoming higher than a predetermined steady temperature (about 350 ° C in the case of aluminum casting), The peripheral member is designed to be naturally radiated and to have a saturation temperature. However, in this case, it takes time to lower the temperature to a temperature (350 ° C. in the case of aluminum casting) at which the casting can be removed without being deformed by heat supply from the molten metal at the gate of the mold.

特開2006−334671号公報JP 2006-334671 A 特開2006−272448号公報JP 2006-272448 A 特開平11−216555号公報JP-A-11-216555 特開平10−193035号公報Japanese Patent Laid-Open No. 10-193035

本発明は前記従来の鋳造装置における課題に鑑み、金型の昇降温が速く、鋳造準備や鋳造サイクルを短くすることが可能であると共に、溶融金属の凝固時に生じやすいいわゆる引け巣や引け緩みが無く、表面の地肌も良好な鋳物を鋳造することが出来る鋳造装置を提供することを目的とする。   In view of the problems in the conventional casting apparatus, the present invention has a high temperature rise and fall of the mold, can shorten the casting preparation and casting cycle, and is free from so-called shrinkage nests and loosening that tend to occur during solidification of molten metal. The object of the present invention is to provide a casting apparatus capable of casting a casting having a good surface texture.

本発明では金型の昇降温を速くし、鋳造準備や鋳造サイクルの時間の短縮を図るために、熱容量を小さくし、しかも温度分布を形成しても熱応力が小さく、変形しにくいように熱膨張係数が小さく且つ金型に一般に使用されている鋼材と同様あるいはそれ以上の熱伝導率を有する材料で金型を作る。   In the present invention, in order to increase the temperature of the mold and shorten the time for casting preparation and the casting cycle, the heat capacity is reduced, and even if the temperature distribution is formed, the thermal stress is small so that it is not easily deformed. A mold is made of a material having a small expansion coefficient and a thermal conductivity similar to or higher than that of a steel material generally used for the mold.

このような要請に適う金型材料として選択し得るのは等方性黒鉛である。等方性黒鉛の単位容積当たりの熱容量は427kcal/m3℃であり、これは鋼材の858kcal/m3℃の1/2以下である。従って同じ容積の金型に同じ熱量を加えた場合を比較すると、鋼材製の金型に比べて等方性黒鉛製の金型の昇降温時間は1/2以下となる。しかも等方性黒鉛の熱伝導率は89kcal/mh℃であり、これは鋼材の39kcal/mh℃の2倍以上、線膨張係数は4.7×10−6/℃であり、これは鋼材の10.5×10−6/℃の1/2以下である。   It is isotropic graphite that can be selected as a mold material that meets such requirements. The heat capacity per unit volume of isotropic graphite is 427 kcal / m3 ° C., which is ½ or less of 858 kcal / m3 ° C. of steel. Therefore, when comparing the case where the same amount of heat is applied to a mold having the same volume, the temperature raising / lowering time of the mold made of isotropic graphite is ½ or less compared to the mold made of steel. Moreover, the thermal conductivity of isotropic graphite is 89 kcal / mh ° C., which is more than twice that of 39 kcal / mh ° C., and the linear expansion coefficient is 4.7 × 10 −6 / ° C. It is 1/2 or less of 10.5 × 10 −6 / ° C.

他方、等方性黒鉛の欠点は強度が弱いことであるが、低圧鋳造のように0.01〜0.02MPa(0.1〜0.2kg/cm2)程度の低い圧力しかかからない場合は金型が破損することはない。すなわち十分な強度を確保することが出来る。   On the other hand, the disadvantage of isotropic graphite is that the strength is weak. However, when low pressure of about 0.01 to 0.02 MPa (0.1 to 0.2 kg / cm 2) is applied as in low pressure casting, the mold is used. Will not be damaged. That is, sufficient strength can be ensured.

等方性黒鉛の他の問題としては表面が軟らかく、傷が付きやすいことである。これを解消するためにCrメッキ、Niメッキ、リンやホウ素を含んだ化学Niメッキ等を施し、表面コーティングをする。金型の表面にこれらのメッキを施すことにより、表面の傷防止だけでなく、加熱した時の表面の酸化に伴う炭酸ガスが発生して表面が減耗するのを防止することも出来る。従って、メッキは特に金型4のキャビティ10の内面に形成することが必要であり、金型のその他部分は必要に応じてメッキを施す。   Another problem with isotropic graphite is that the surface is soft and easily scratched. In order to solve this problem, Cr plating, Ni plating, chemical Ni plating containing phosphorus or boron, or the like is applied, and surface coating is performed. By applying such plating to the surface of the mold, not only can the surface be prevented from being scratched, but also the surface can be prevented from being depleted due to generation of carbon dioxide gas accompanying oxidation of the surface when heated. Therefore, it is necessary to form the plating on the inner surface of the cavity 10 of the mold 4 and the other parts of the mold are plated as necessary.

前述したように等方性黒鉛は熱伝導率が鋼材の2倍以上あるので、均熱化しやすく、温度勾配を形成しにくい。そのため湯口、下金型、上金型の順で温度が高い温度勾配を形成し、キャビティ内の溶融金属を指向性凝固させるために、必要に応じて上金型を冷却する必要がある。例えば溶融金属を凝固させる時に水冷される冷却ブロックを上金型に押し当て、温度勾配を形成する。さらに上金型と下金型にそれぞれ個別にそれぞれ独立して加熱するヒータを設ける。例えば棒状のカートリッジヒータを上金型と下金型に埋め込む。   As described above, isotropic graphite has a thermal conductivity twice or more that of steel, so it is easy to equalize temperature and hardly form a temperature gradient. For this reason, it is necessary to cool the upper mold as necessary in order to form a temperature gradient in which the temperature increases in the order of the gate, the lower mold, and the upper mold and to solidify the molten metal in the cavity in a directional manner. For example, a cooling block that is water-cooled when the molten metal is solidified is pressed against the upper mold to form a temperature gradient. Furthermore, a heater for heating each of the upper mold and the lower mold individually is provided. For example, a rod-shaped cartridge heater is embedded in the upper mold and the lower mold.

以上説明した通り、本発明による鋳造装置では熱容量の小さな等方性黒鉛の鋳型を使用することにより、予熱や鋳造サイクル時の金型の昇降温を速やかに行うことが出来、能率よく短時間に鋳物の鋳造を行うことが出来る。また、等方性黒鉛の欠点である表面の柔らかさも硬質のメッキを施すことにより改善することが可能である。さらに、熱伝導率が大きく、温度勾配を形成しにくいという等方性黒鉛製の金型の欠点も、冷却手段や加熱手段を用いることにより容易に解消することが出来、キャビティ内での溶融金属の指向性凝固が可能となる。   As described above, in the casting apparatus according to the present invention, by using an isotropic graphite mold having a small heat capacity, it is possible to quickly raise and lower the temperature of the mold during preheating and the casting cycle, efficiently and in a short time. Casting of castings can be performed. Further, the surface softness, which is a defect of isotropic graphite, can be improved by applying hard plating. Furthermore, the defects of isotropic graphite molds, which have high thermal conductivity and are difficult to form a temperature gradient, can be easily eliminated by using cooling means and heating means, and molten metal in the cavity. Directed coagulation is possible.

本発明による鋳造装置の一実施例を示す断面図である。It is sectional drawing which shows one Example of the casting apparatus by this invention. 本発明による鋳造装置の他の実施例を示す断面図である。It is sectional drawing which shows the other Example of the casting apparatus by this invention. 本発明による鋳造装置の他の実施例を示す断面図である。It is sectional drawing which shows the other Example of the casting apparatus by this invention. 本発明による鋳造装置の他の実施例を示す断面図である。It is sectional drawing which shows the other Example of the casting apparatus by this invention. 鋳造装置の従来例を示す断面図である。It is sectional drawing which shows the prior art example of a casting apparatus. 鋳造装置の他の従来例を示す断面図である。It is sectional drawing which shows the other conventional example of a casting apparatus. 鋳造装置の他の従来例を示す断面図である。It is sectional drawing which shows the other conventional example of a casting apparatus. 鋳造装置の他の従来例を示す断面図である。It is sectional drawing which shows the other conventional example of a casting apparatus.

本発明ではその目的を達成するため、金型に等方性黒鉛製のものを使用し、その表面に硬質メッキを施し、さらに温度勾配を形成するため冷却手段と加熱手段を個別に用い或いは併用した。
以下、本発明を実施するための最良の形態について、実施例をあげて詳細に説明する。
In the present invention, in order to achieve the object, the mold is made of isotropic graphite, the surface is hard-plated, and the cooling means and the heating means are used individually or in combination to form a temperature gradient. did.
Hereinafter, the best mode for carrying out the present invention will be described in detail with reference to examples.

図1は本発明による低圧鋳造装置の一実施例を示す断面図である。この低圧鋳造装置の構成は基本的に図5により前述した従来例と同じであり、同じ部分は同じ符合で示している。
気密に密閉された密閉炉1の上部に設けたガス注入口20に不活性ガスや二酸化炭素等のガスの供給源が接続され、密閉炉1の中にガスが圧送される。密閉炉1の内部に上面が開口した耐熱黒鉛容器であるルツボ2が収納され、このルツボの外壁に沿ってヒータ3が配設されている。このルツボ2の中央部に密閉炉1の蓋に取付けられたストーク8の下端が浸漬されている。密閉炉1の上に下金型5と上金型6とからなる金型4が配置されている。下金型5と上金型6との合わせ面にそれぞれ凹部が形成されており、この下金型5と上金型6とを重ね合わせたときに、前記凹部により鋳物形状のキャビティ10が形成される。またこのキャビティ10内には必要に応じて中子7が収納される。前記ストーク8の上端は金型4の底部に設けられたキャビティ10に通じる湯口9に接続されている。
FIG. 1 is a sectional view showing an embodiment of a low-pressure casting apparatus according to the present invention. The configuration of this low-pressure casting apparatus is basically the same as that of the conventional example described above with reference to FIG.
A gas supply source 20 such as an inert gas or carbon dioxide is connected to a gas inlet 20 provided in an upper portion of the hermetically sealed hermetic furnace 1, and the gas is pumped into the hermetic furnace 1. A crucible 2, which is a heat-resistant graphite container having an open top surface, is accommodated inside the closed furnace 1, and a heater 3 is disposed along the outer wall of the crucible. The lower end of the stalk 8 attached to the lid of the closed furnace 1 is immersed in the center of the crucible 2. A mold 4 including a lower mold 5 and an upper mold 6 is disposed on the closed furnace 1. Concave portions are respectively formed on the mating surfaces of the lower die 5 and the upper die 6, and when the lower die 5 and the upper die 6 are overlapped, a casting-shaped cavity 10 is formed by the concave portions. Is done. A core 7 is accommodated in the cavity 10 as necessary. The upper end of the stalk 8 is connected to a gate 9 leading to a cavity 10 provided at the bottom of the mold 4.

このような鋳造装置において、本発明では等方性黒鉛で金型4、すなわち下金型5と上金型6さらには必要に応じて中子7を作る。等方性黒鉛の物性を鋼材の物性と共に表1に示す。   In such a casting apparatus, in the present invention, a mold 4, that is, a lower mold 5 and an upper mold 6, and a core 7 as necessary, are made of isotropic graphite. Table 1 shows the physical properties of the isotropic graphite together with the physical properties of the steel.

Figure 2011016139
Figure 2011016139

等方性黒鉛の単位容積当たりの熱容量は鋼材の1/2以下である。従って同じ容積の金型に同じ熱量を加えた場合を比較すると、鋼材製の金型に比べて等方性黒鉛製の金型の昇降温時間は1/2以下となる。他方、等方性黒鉛の熱伝導率は鋼材の2倍以上、線膨張係数は鋼材の1/2以下である。   The heat capacity per unit volume of isotropic graphite is ½ or less that of steel. Therefore, when comparing the case where the same amount of heat is applied to a mold having the same volume, the temperature raising / lowering time of the mold made of isotropic graphite is ½ or less compared to the mold made of steel. On the other hand, the thermal conductivity of isotropic graphite is twice or more that of steel, and the linear expansion coefficient is ½ or less that of steel.

ただし等方性黒鉛は表面が軟らかく、傷が付きやすい。そこでCrメッキ、Niメッキ、リンやホウ素を含んだ化学Niメッキ等を施し、表面を硬質コーティングする。金型の表面にこれらのメッキを施すことにより、表面の傷防止だけでなく、加熱した時の表面の酸化に伴う炭酸ガス発生による表面が減耗するのを防止することも出来る。   However, isotropic graphite has a soft surface and is easily scratched. Therefore, Cr plating, Ni plating, chemical Ni plating containing phosphorus and boron, etc. are applied, and the surface is hard-coated. By applying these platings to the surface of the mold, it is possible not only to prevent scratches on the surface, but also to prevent the surface from being worn out due to the generation of carbon dioxide gas accompanying the oxidation of the surface when heated.

前述したように等方性黒鉛は熱伝導率が鋼材の2倍以上あるので、均熱化しやすく、温度勾配を形成しにくい。そのため湯口、下金型、上金型の順で温度が高い温度勾配を形成し、キャビティ内の溶融金属を指向性凝固させるために、図1に示すように上金型を冷却する冷却手段を設ける。図1に示すように、冷却水路19を設けた冷却ブロック17を上金型6の上面に押し当て、温度勾配を形成する。冷却水路19の中には図1に矢印で示すように冷却水が循環する。冷却ブロック17を上金型6の上面に弾力的に押し当てるため、押しバネ21を備えている。   As described above, isotropic graphite has a thermal conductivity twice or more that of steel, so it is easy to equalize temperature and hardly form a temperature gradient. Therefore, a cooling means for cooling the upper mold as shown in FIG. 1 is provided in order to form a temperature gradient in which the temperature is higher in the order of the gate, the lower mold, and the upper mold and to solidify the molten metal in the cavity in a directional manner. Provide. As shown in FIG. 1, the cooling block 17 provided with the cooling water channel 19 is pressed against the upper surface of the upper mold 6 to form a temperature gradient. Cooling water circulates in the cooling water channel 19 as indicated by arrows in FIG. A pressing spring 21 is provided to elastically press the cooling block 17 against the upper surface of the upper mold 6.

さらに上金型6と下金型5に個別にそれぞれ独立して加熱するヒータ18、18を設ける。例えば図1に示すように棒状のカートリッジヒータ18、18を上金型6と下金型5に埋め込む。
これら冷却手段と加熱手段とを併用することにより、金型4は湯口9、下金型5、上金型6の順で温度が高い温度勾配が形成され、キャビティ10内の溶融金属は上から下へと凝固していき、最後に湯口9の溶融金属が凝固するという指向性凝固が行われる。これにより、キャビティ10内の溶融金属が凝固するとき、凝固収縮した容積分の溶融金属を湯口9側からキャビティ10内に追加供給することが出来る。これによりいわゆる引け巣や引け緩みの無い鋳物を鋳造することが出来る。
Further, heaters 18 and 18 for individually heating the upper mold 6 and the lower mold 5 are provided. For example, as shown in FIG. 1, rod-shaped cartridge heaters 18 and 18 are embedded in the upper mold 6 and the lower mold 5.
By using these cooling means and heating means in combination, the mold 4 has a temperature gradient in which the temperature is high in the order of the gate 9, the lower mold 5, and the upper mold 6, and the molten metal in the cavity 10 flows from above. Directional solidification is performed in which the molten metal solidifies downward and finally the molten metal in the gate 9 solidifies. Thereby, when the molten metal in the cavity 10 is solidified, the molten metal corresponding to the solidified and contracted volume can be additionally supplied into the cavity 10 from the gate 9 side. Thereby, it is possible to cast a casting having no so-called shrinkage nest or shrinkage.

この鋳造装置で鋳物を鋳造する場合は不活性ガスをガス注入口20から密閉炉1内に注入する。このガス圧力により、ルツボ2内の溶融金属の湯面が加圧されて、溶融金属溶湯が押し上げられ、ストーク8を介して金型のキャビティ10内に充填される。キャビティ10に充填した溶融金属が冷却されて凝固した後、図示していない油圧機構により上金型6を上昇させてキャビティ10を開き、下金型5から鋳物を取り出す。   When casting a casting with this casting apparatus, an inert gas is injected into the closed furnace 1 from the gas inlet 20. With this gas pressure, the molten metal surface in the crucible 2 is pressurized and the molten metal is pushed up and filled into the mold cavity 10 via the stalk 8. After the molten metal filled in the cavity 10 is cooled and solidified, the upper mold 6 is raised by a hydraulic mechanism (not shown) to open the cavity 10 and take out the casting from the lower mold 5.

図2は密閉炉1’に収納した溶融金属をストーク8’を通して湯溜め12に送り、この湯溜め12から金型4のキャビティ10内に充填する例である。密閉炉1’の中の溶融金属は浸漬ヒータ13で加熱され、溶融状態が維持される。密閉炉1’の中へは溶湯供給口11から溶融金属が供給される。ストーク8’から湯溜めに至る部分は溶融金属の温度低下による凝固を防ぐためヒータ3で加熱される。その他の構成は基本的に図1の実施例と同じであり、同じ部分は同じ符合で示している。   FIG. 2 shows an example in which the molten metal stored in the closed furnace 1 ′ is sent to the sump 12 through the stalk 8 ′ and filled into the cavity 10 of the mold 4 from the sump 12. The molten metal in the closed furnace 1 ′ is heated by the immersion heater 13 to maintain the molten state. Molten metal is supplied from the molten metal supply port 11 into the closed furnace 1 ′. The portion from the stalk 8 'to the hot water reservoir is heated by the heater 3 to prevent the molten metal from solidifying due to a decrease in temperature. Other configurations are basically the same as those of the embodiment of FIG. 1, and the same portions are denoted by the same reference numerals.

図3は図1により前述した従来の鋳造装置において、金型4への溶融金属の汲み上げをガスの圧力によらず、溶融金属電磁ポンプにより行うものである。すなわちストーク(ダクト)8の中間部の外側に溶融金属の誘導子14を設け、これに対応してストーク8の中に誘導子14で発生した磁界の磁路を形成するためのコア15を配置している。誘導子14に三相電流を通電し、これにより誘導子14とコア15との間で移動磁界を発生させて、ストーク8の中の溶融金属に上方の推力を与え、これを金型4のキャビティ10内に充填する。その他の構成は基本的に図1の実施例と同じであり、同じ部分は同じ符合で示している。   FIG. 3 shows a conventional casting apparatus described above with reference to FIG. 1, in which the molten metal is pumped into the mold 4 by a molten metal electromagnetic pump regardless of the gas pressure. That is, a molten metal inductor 14 is provided outside the middle portion of the stalk (duct) 8 and a core 15 for forming a magnetic path of the magnetic field generated in the inductor 14 is disposed in the stalk 8 correspondingly. is doing. A three-phase current is applied to the inductor 14, thereby generating a moving magnetic field between the inductor 14 and the core 15, and applying an upward thrust to the molten metal in the stalk 8. The cavity 10 is filled. Other configurations are basically the same as those of the embodiment of FIG. 1, and the same portions are denoted by the same reference numerals.

図4は図2により前述した従来の鋳造装置において、金型4への溶融金属の汲み上げをガスの圧力によらず、ストーク8の途中に設けた溶融金属電磁ポンプにより行うものである。すなわちストーク(ダクト)8の中間部の外側に溶融金属の誘導子14を設け、これに対応してストーク8の中に誘導子14で発生した磁界の磁路を形成するためのコア15を配置している。誘導子14に三相電流を通電し、これにより誘導子14とコア15との間で移動磁界を発生させて、ストーク8の中の溶融金属に上方の推力を与え、これを金型4のキャビティ10内に充填する。その他の構成は基本的に図2の実施例と同じであり、同じ部分は同じ符合で示している。   FIG. 4 shows the conventional casting apparatus described above with reference to FIG. 2, in which the molten metal is pumped into the mold 4 by a molten metal electromagnetic pump provided in the middle of the stalk 8 regardless of the gas pressure. That is, a molten metal inductor 14 is provided outside the middle portion of the stalk (duct) 8 and a core 15 for forming a magnetic path of the magnetic field generated in the inductor 14 is disposed in the stalk 8 correspondingly. is doing. A three-phase current is applied to the inductor 14, thereby generating a moving magnetic field between the inductor 14 and the core 15, and applying an upward thrust to the molten metal in the stalk 8. The cavity 10 is filled. Other configurations are basically the same as those in the embodiment of FIG. 2, and the same portions are denoted by the same reference numerals.

本発明は、鋳造準備及び鋳造サイクルの時間を短くして鋳物の鋳造を行うことが出来るので、車輌の部材等に使用されるアルミニウム合金等の鋳物製品を能率よく製造するのに利用することが可能である。   Since the present invention can perform casting by shortening the time of casting preparation and casting cycle, it can be used for efficiently producing casting products such as aluminum alloys used for vehicle members and the like. Is possible.

4 金型
5 金型の下金型
6 金型の上金型
9 金型の湯口
10 金型のキャビティ
17 冷却ブロック
4 Mold 5 Mold lower mold 6 Mold upper mold 9 Mold gate 10 Mold cavity 17 Cooling block

Claims (4)

金属が溶融状態で収納された溶融金属槽から溶融金属をストーク8を介して金型4に充填した後、この金型4内で溶融金属を凝固させて鋳物を成型する鋳造装置において、金型4を等方性黒鉛により形成したことを特徴とする鋳造装置。 In a casting apparatus in which molten metal is filled in a mold 4 through a stalk 8 from a molten metal tank in which a metal is stored in a molten state, and then the molten metal is solidified in the mold 4 to mold a casting. A casting apparatus characterized in that 4 is made of isotropic graphite. 少なくとも金型4のキャビティ10の内面にメッキを施したことを特徴とする請求項1に記載の鋳造装置。 The casting apparatus according to claim 1, wherein at least the inner surface of the cavity 10 of the mold 4 is plated. 金型4内で湯口9からその反対側へと温度勾配を形成するため、金型4を加熱する加熱手段を設けたことを特徴とする請求項1または2に記載の鋳造装置。 The casting apparatus according to claim 1, wherein a heating means for heating the mold 4 is provided in order to form a temperature gradient from the gate 9 to the opposite side in the mold 4. 金型4内で湯口9からその反対側へと温度勾配を形成するため、金型4の一部を冷却する冷却手段を設けたことを特徴とする請求項1〜3の何れかに記載の鋳造装置。 The cooling means for cooling a part of the mold 4 is provided in order to form a temperature gradient from the gate 9 to the opposite side in the mold 4. Casting equipment.
JP2009161361A 2009-07-08 2009-07-08 Casting apparatus Pending JP2011016139A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009161361A JP2011016139A (en) 2009-07-08 2009-07-08 Casting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009161361A JP2011016139A (en) 2009-07-08 2009-07-08 Casting apparatus

Publications (1)

Publication Number Publication Date
JP2011016139A true JP2011016139A (en) 2011-01-27

Family

ID=43594343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009161361A Pending JP2011016139A (en) 2009-07-08 2009-07-08 Casting apparatus

Country Status (1)

Country Link
JP (1) JP2011016139A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110202117A (en) * 2019-06-05 2019-09-06 安徽省恒泰动力科技有限公司 The anti-steel disc Casting Equipment that rises for aluminum piston
CN114585462A (en) * 2019-12-23 2022-06-03 本田金属技术株式会社 Casting method and casting device
CN114833313A (en) * 2022-03-16 2022-08-02 王娜 Self-cooling mould subassembly that motorcycle brake disc was pour
CN114918403A (en) * 2022-04-26 2022-08-19 上海交通大学 Thermal control device and method for pressure regulating precision casting and casting device
CN116000266A (en) * 2023-01-10 2023-04-25 苏州思萃热控材料科技有限公司 A kind of aluminum silicon carbide differential pressure casting directional solidification equipment

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01237065A (en) * 1988-03-18 1989-09-21 Honda Motor Co Ltd Low pressure casting method and casting die
JPH01237067A (en) * 1988-03-17 1989-09-21 Honda Motor Co Ltd Low pressure casting method
JPH04138863A (en) * 1990-09-28 1992-05-13 Kobe Steel Ltd Low pressure casting device
JPH04270055A (en) * 1991-02-25 1992-09-25 Toyo Mach & Metal Co Ltd Method and device for low pressure casting
JPH0539737U (en) * 1991-10-21 1993-05-28 日本軽金属株式会社 Graphite mold for vacuum casting
JPH05146843A (en) * 1991-11-28 1993-06-15 Ibiden Co Ltd Graphite mold
JPH0560654U (en) * 1992-01-08 1993-08-10 トヨタ自動車株式会社 Hot water supply sleeve for casting
JP2004195533A (en) * 2002-12-20 2004-07-15 Fuji Heavy Ind Ltd Mold cooling control method for low pressure casting machine and mold for low pressure casting machine
JP2010194585A (en) * 2009-02-25 2010-09-09 Denso Corp Low pressure casting method and die for low pressure casting

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01237067A (en) * 1988-03-17 1989-09-21 Honda Motor Co Ltd Low pressure casting method
JPH01237065A (en) * 1988-03-18 1989-09-21 Honda Motor Co Ltd Low pressure casting method and casting die
JPH04138863A (en) * 1990-09-28 1992-05-13 Kobe Steel Ltd Low pressure casting device
JPH04270055A (en) * 1991-02-25 1992-09-25 Toyo Mach & Metal Co Ltd Method and device for low pressure casting
JPH0539737U (en) * 1991-10-21 1993-05-28 日本軽金属株式会社 Graphite mold for vacuum casting
JPH05146843A (en) * 1991-11-28 1993-06-15 Ibiden Co Ltd Graphite mold
JPH0560654U (en) * 1992-01-08 1993-08-10 トヨタ自動車株式会社 Hot water supply sleeve for casting
JP2004195533A (en) * 2002-12-20 2004-07-15 Fuji Heavy Ind Ltd Mold cooling control method for low pressure casting machine and mold for low pressure casting machine
JP2010194585A (en) * 2009-02-25 2010-09-09 Denso Corp Low pressure casting method and die for low pressure casting

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110202117A (en) * 2019-06-05 2019-09-06 安徽省恒泰动力科技有限公司 The anti-steel disc Casting Equipment that rises for aluminum piston
CN114585462A (en) * 2019-12-23 2022-06-03 本田金属技术株式会社 Casting method and casting device
CN114585462B (en) * 2019-12-23 2024-03-12 本田金属技术株式会社 Casting method and casting device
CN114833313A (en) * 2022-03-16 2022-08-02 王娜 Self-cooling mould subassembly that motorcycle brake disc was pour
CN114918403A (en) * 2022-04-26 2022-08-19 上海交通大学 Thermal control device and method for pressure regulating precision casting and casting device
CN116000266A (en) * 2023-01-10 2023-04-25 苏州思萃热控材料科技有限公司 A kind of aluminum silicon carbide differential pressure casting directional solidification equipment

Similar Documents

Publication Publication Date Title
CN1876278B (en) Diecast machine and diecast mathod
CN1876277B (en) Diecast machine
JP2011016139A (en) Casting apparatus
JP2014205192A5 (en)
JP5339764B2 (en) Casting method
JPS62161452A (en) Die casting machine
JP2011131265A (en) Vacuum die casting apparatus and vacuum die casting method
KR20120019943A (en) Production equipment for thin plate and parts, with liquid and semi-solid materials by using vacuum system
EP3470150B1 (en) Low-pressure casting mold
JP4966354B2 (en) Casting equipment
JP4350135B2 (en) Casting equipment
JP2011016166A (en) Casting apparatus
JP2012106277A (en) Low-pressure casting apparatus and low-pressure casting method
US11123791B2 (en) Method for casting a mold
JP2011016163A (en) Casting apparatus
US10632530B2 (en) Injection molding machine
CN103394674B (en) The method of casting thin foundry goods vaccum sensitive stove and casting thin-wall titanium alloy foundry goods
JP7403753B2 (en) Die-casting equipment and method for manufacturing die-cast products
JP4955739B2 (en) Casting equipment
CN113714490B (en) Directional solidification device and method
JP6820185B2 (en) Dissolution supply device for metal materials and decompression casting device using it
CN108687329A (en) Has the casting device of temperature control core
KR20100104604A (en) Vacuum casting furnace having filter heating system
JP4139868B2 (en) High pressure casting method and die casting apparatus for refractory metal
JP5617085B1 (en) High pressure casting method and high pressure casting apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130315

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130712