[go: up one dir, main page]

JP2011015557A - スイッチング電源装置およびスイッチング電源制御用半導体装置 - Google Patents

スイッチング電源装置およびスイッチング電源制御用半導体装置 Download PDF

Info

Publication number
JP2011015557A
JP2011015557A JP2009158293A JP2009158293A JP2011015557A JP 2011015557 A JP2011015557 A JP 2011015557A JP 2009158293 A JP2009158293 A JP 2009158293A JP 2009158293 A JP2009158293 A JP 2009158293A JP 2011015557 A JP2011015557 A JP 2011015557A
Authority
JP
Japan
Prior art keywords
switching element
voltage
current
time
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009158293A
Other languages
English (en)
Inventor
Minoru Fukui
穣 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2009158293A priority Critical patent/JP2011015557A/ja
Priority to US12/823,297 priority patent/US20110002147A1/en
Publication of JP2011015557A publication Critical patent/JP2011015557A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of DC power input into DC power output
    • H02M3/22Conversion of DC power input into DC power output with intermediate conversion into AC
    • H02M3/24Conversion of DC power input into DC power output with intermediate conversion into AC by static converters
    • H02M3/28Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC
    • H02M3/325Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

【課題】入力電圧範囲により装置の回路定数を変更する必要なく、負荷への電流を一定化することができ、装置の低コスト化を図ることができるスイッチング電源装置及びそれに用いる半導体装置を提供する。
【解決手段】オフ時間補正回路17により、スイッチング素子2のオン開始から設定されたスイッチング素子2の過電流検出レベル到達までの時間に応じて、スイッチング素子2の最大オン時間後のオフ時間を変化させることで、スイッチング素子2の発振周波数を変化させることで、スイッチング電源が入力電圧に依存せずに出力エネルギーを供給することが出来る。
【選択図】図1

Description

本発明は、直流電圧に対するスイッチング動作により出力電圧を制御して負荷へ供給するスイッチング電源装置およびスイッチング電源制御用半導体装置に関するものである。
従来から、家電製品等の一般家庭用機器には、その電源装置として、消費電力の低減化による電力効率の向上等の目的から、半導体(トランジスタなどのスイッチング素子)によるスイッチング動作を利用して出力電圧を制御(安定化など)するスイッチング電源制御用半導体装置(以下、単に制御装置と言う)を有するスイッチング電源装置が広く用いられている(例えば特許文献1を参照)。
従来の典型的な制御装置は、図12に示すように、スイッチング素子102のスイッチング周期を制御する発振器、スイッチング素子102のピーク電流値を制御するためにドレイン電流を検出するドレイン電流検出回路114、フォトカプラなどを介して出力電圧の状態を検出しスイッチング素子102のオン時間を制御するフィードバック制御回路118を備える。
ドレイン電流検出回路114により、発振器111において予め設定された周波数でスイッチング動作を行うスイッチング素子102の電流値を検出することで、オン時ブランキングパルス発生回路115からの出力信号とともにドレイン電流検出回路114からの出力信号を基に、AND回路116、NOR回路120およびRSフリップフロップ112を通じて、ゲートドライバ113によりスイッチング素子102のピーク電流制御を行う。また出力電圧の状態検出によりスイッチング素子102のオン時間を変化させるPWM制御を行うことで、負荷への印加電圧を一定にする定電圧制御を行っている。
以上のように、従来の制御装置は、スイッチング素子のドレイン電流値を制御することにより、スイッチング電源装置の出力電圧を一定に保つように構成されている。
特開2007−166810号公報
しかしながら、上記のように従来の制御装置を用いたスイッチング電源装置では、以下の課題がある。
図12に示すような従来の制御装置を用いたスイッチング電源装置では、スイッチング素子102は設定された電流値となることで、スイッチング素子102のドレイン電流検出回路114によりスイッチング素子102のスイッチング動作がオフするが、スイッチング素子102の電流の時間変化の傾きはトランス(図示せず)のL値と入力電圧Vinより、Vin/Lの傾きとなる。すなわち、入力電圧Vinが高いほど傾きが大きくなる。
ドレイン電流検出回路114からスイッチング素子102の動作をオフする動作には、回路内部の素子が遅延時間を持つために、ある一定の遅延時間ができる。そのために、スイッチング素子102の電流ピーク値はドレイン電流検出回路114で設定された電流値からある一定の遅延時間の電流値とVin/Lの積となる。
よって図13に示すように、スイッチング素子102の電流の傾きは入力電圧より変化することから、スイッチング素子102をオフする遅延時間を考慮すると、高い入力電圧と低い入力電圧を比較すると、実際のドレイン電流のピーク値が違い、スイッチング電源装置の最大出力電力が入力電圧により違うことになる。
このことより、入力電圧をワールドワイドで考えると、入力電圧が高い場合、ドレイン電流値が高くなることで、出力端子のリップル電圧が高くなること、スイッチング素子のオン抵抗の損失が大きくなること、などの現象が発生する。
リップル電圧が変動することで、負荷への出力電力が変化し、またオン抵抗損失が増加することで、高入力電圧ではスイッチング電源の効率の低下、スイッチング素子の自己発熱が高くなる。
よって、同じ回路構成のスイッチング電源装置をワールドワイドで使用した場合に起こる特性変動に対して、負荷への電流を一定化することを考慮すると、ワールドワイドな各々の入力電圧に応じたスイッチング電源装置の仕様に合わせて、制御装置の回路定数を変更する必要があり、低コスト化を困難にしている。
本発明は、上記従来の問題点を解決するもので、入力電圧範囲により装置の回路定数を変更する必要なく、負荷への電流を一定化することができ、制御装置の低コスト化を図ることができるスイッチング電源制御用半導体装置、およびそのような半導体装置を用いたスイッチング電源装置を提供する。
上記の課題を解決するために、本発明の半導体装置は、入力直流電圧を調整された出力直流電圧に変換するスイッチング電源装置の制御に用いられる半導体装置であって、前記出力直流電圧の変化を検出し、スイッチング素子のスイッチング動作を制御するためのフィードバック信号を、前記制御回路へ伝達する出力電圧検出回路とを備えたスイッチング電源制御装置であって、前記制御回路は、スイッチング素子の発振周波数を決める発振器と、前記出力電圧検出回路からのフィードバック信号により前記スイッチング素子に流れる電流レベルを決定するフィードバック信号制御回路と、前記スイッチング素子に流れる電流に応じて電圧を出力するドレイン電流検出回路と、前記ドレイン電流検出回路の電圧と前記フィードバック信号制御回路により決定されたレベル値または基準電圧レベル値に達すると、前記スイッチング素子をターンオフさせる信号を生成する比較器と、前記スイッチング素子の制御信号と発振器の出力信号に基づいて前記スイッチング素子のオフ時間を補正するオフ時間補正回路とを有し、前記オフ時間補正回路により、補正したオフ時間に従って前記スイッチング素子がオフした後、前記スイッチング素子に流れる電流が過電流検出レベルまで達する時間に応じて、前記発振器で生成されるオフ信号の時間を変化させることで、前記スイッチング素子のオフ時間を変化させ、周波数を変化させることを特徴とする。
また、前記半導体装置は、スイッチング素子の動作させるゲート信号のオン時間の間、前記オフ時間補正回路のコンデンサに定電流源より充電させ、ゲート信号のオフ時間の間コンデンサ電圧を保持させ、前記電圧より電流源を作成し、前記電流源の電流値により前記発振器から接続されたゲート信号オフ時間を変化させてもよい。
また、前記オフ時間補正回路は、前記ゲート信号のオン時間の長さ、および前記スイッチング素子のターンオン時に前記ドレイン電流検出回路で検出された電流である残留電流の値に応じた電気信号を出力し、前記発振器は、前記電気信号に従って、前記ゲート信号のオン時間が長いほど、および前記残留電流が小さいほど、前記ゲート信号のオフ時間を短くし、かつ前記ゲート信号の出力時間が短いほど、かつ前記残留電流が大きいほど、前記ゲート信号のオフ時間を長くしてもよい。
また、前記半導体装置は、さらに、前記ドレイン電流検出回路で検出された電流が所定の基準値を超える大電流動作を検出する大電流動作検出回路を備え、前記発振器は、前記大電流動作検出回路で大電流動作が検出された場合は、前記電気信号とは無関係に、前記ゲート信号のオフ時間を固定してもよい。
また、本発明は、このような半導体装置として実現できるだけでなく、前記半導体装置と、前記半導体装置に含まれるスイッチング素子と、前記スイッチング素子により入力直流電圧をスイッチングして生成された入力交流電圧を出力交流電圧に変換する変換器と、前記出力交流電圧を前記出力直流電圧に変換する平滑回路とを備えるスイッチング電源装置として実現することもできる。
本発明によれば、スイッチング素子の発振周波数を制御することで、ワールドワイドな入力電圧に対して一定の出力特性の電源を得ることができる。
そのため、入力電圧範囲により装置の回路定数を変更する必要なく、負荷への電流を一定化することができ、装置の低コスト化を図ることができる。
本発明の実施の形態1のスイッチング電源装置及び制御用の半導体装置の一構成例を示す回路図 実施の形態1の半導体装置におけるフィードバック電流に対する過電流検出レベルを示す模式図 実施の形態1の半導体装置におけるオフ時間補正回路と発振器の一構成例を示す回路図 実施の形態1の半導体装置における入力電圧違いによるスイッチング素子の電流を示す図 本発明の実施の形態2のスイッチング電源装置及び制御用の半導体装置の一構成例を示す回路図 実施の形態2の半導体装置におけるオフ時間補正回路と発振器の一構成例を示す回路図 実施の形態2の半導体装置における入力電圧の違いによるスイッチング素子の電流を示す図 実施の形態3の半導体装置におけるオフ時間補正回路と発振器の一構成例を示す回路図 実施の形態3の半導体装置における入力電圧の違いによるスイッチング素子の電流を示す図 本発明の実施の形態2のスイッチング電源装置及び制御用の半導体装置の一構成例を示す回路図 実施の形態2の半導体装置におけるオフ時間補正回路と発振器の一構成例を示す回路図 従来例の半導体装置の一構成例を示す回路図 従来例の半導体装置における入力電圧の違いによるスイッチング素子の電流を示す図
以下、本発明の実施の形態を示すスイッチング電源制御装置及びその制御用の半導体装置について、図面を参照しながら具体的に説明する。
(実施の形態1)
本発明の実施の形態1のスイッチング電源装置100及びスイッチング電源装置100の制御に用いられる半導体装置4を説明する。
図1は、実施の形態1のスイッチング電源装置100の一構成例を示す機能ブロック図である。
スイッチング電源装置100において、直流の入力電圧Vinをスイッチング素子2のスイッチング動作によって波形変換した交流電圧を出力する変換機としてのトランス1は、一次巻線1aおよび二次巻線1bを有し、一次巻線1aと二次巻線1bの極性は逆になっている。二次巻線1bから得られた交流電圧は、ダイオード7aとコンデンサ7bとで構成される平滑回路7にて出力直流電圧に変換され、負荷8へ供給される。スイッチング電源装置100はフライバック型となっている。一次巻線1aにはスイッチング素子2が直列接続されており、スイッチング素子2の制御電極は、制御回路3の出力信号によりオンオフのスイッチング制御がなされる。
半導体装置4には、制御回路3とスイッチング素子2とが含まれており、パワーMOSFETなどによるスイッチング素子2は、制御回路3と同一の半導体基板上に集積化されている。
DRAIN端子はトランス1の一次巻線1aとスイッチング素子2の接続点、つまりスイッチング素子2のドレインに接続される端子である。
GND端子はスイッチング素子2のソース及び制御回路3のGNDをグランド(接地)レベルと接続する端子であり、入力電圧Vinが印加される2端子のうち低電位側の端子に接続されている。
VDD端子はコンデンサ5を接続する端子であり、制御回路3に内蔵されたレギュレータ9からの充電により、制御回路3の電源電圧を制御する端子である。
FB端子は出力電圧検出回路6から出力される、直流の出力電圧Voutを表すフィードバック信号(例えば、フォトトランジスタによる電流など)を制御回路3のフィードバック制御回路18に入力するための端子である。
レギュレータ9はスイッチング素子2のDRAIN端子、VDD端子、起動停止回路10に接続されており、トランス1を介して、入力電圧Vinがスイッチング素子2のDRAIN端子に印加されると、DRAIN端子からVDD端子を介してコンデンサ5に電流を供給し、補助電源電圧VDDを上昇させる。VDD端子電圧が起動電圧まで達するとDRAIN端子からのコンデンサ5への電流供給を停止、また起動電圧以下に低下すると、DRAIN端子からVDD端子へ電流供給がなされ、再びVDD端子電圧は上昇する。
起動停止回路10は、VDD端子電圧をモニターしており、VDD端子電圧の大きさによって、スイッチング素子2によるスイッチング動作の実行(オン)および停止(オフ)を制御している。
フィードバック制御回路18は、出力電圧検出回路6から出力され制御回路3のFB端子に入力されるフィードバック信号に応じて、図2に示すようにフィードバック信号で表される出力電圧Voutを一定に安定させるようスイッチング素子2に流れる電流の上限値を表す過電流検出レベルを決定し、決定した過電流検出レベルを表す出力電圧を、比較器16のマイナス側に出力する。
負荷が軽く出力電圧Voutが上昇すると、スイッチング素子2に流れる電流を低下させ、また、負荷が重く出力電圧Voutが低下すると、スイッチング素子2に流れる電流を上昇させるよう制御される。
ドレイン電流検出回路14は、例えば、スイッチング素子2に流れるドレイン電流とスイッチング素子2のオン抵抗との積で決まるオン電圧を検出することにより、相対的にスイッチング素子2に流れるドレイン電流を検出して、ドレイン電流の大きさに比例した電圧信号を比較器16のプラス側に出力する。
比較器16は、プラス入力のドレイン電流が、第1マイナス入力のフィードバック制御回路18の出力信号と第2マイナス入力の基準電圧19との低いほうの電圧と等しくなった時に、Hレベルの信号を出力する。
オン時ブランキングパルス発生回路15は、ゲートドライバ13によるスイッチング素子2へのGATE信号がHレベル出力後一定のブランキング時間の間、ブランキングパルスを出力し、ドレイン電流検出回路14がスイッチング素子2自身の容量による容量性スパイク電流等を誤検出してしまわないようにしている。
オフ時間補正回路17は、発振器11の発振開始信号とドレイン電流検出回路14からの出力信号を受け、電圧換算されたスイッチングのオン時間幅により、スイッチング素子2のオフ時間を調整するための発振器11のオフ時間を変化させる。このオフ時間補正回路17については、回路構成例を含めて、後述の動作説明で詳細を説明する。
一旦起動状態になると、発振器11のCLOCK信号よりRSフリップフロップ12のセット入力SにはHレベルのパルス信号が入力されるため、出力QはHレベルとなり、ゲートドライバ13のGATE信号はHレベルとなるため、スイッチング素子2はターンオン状態に移行する。
一方、スイッチング素子2のターンオン後、オン時ブランキング時間後に、フィードバック制御回路18により出力電圧検出回路6からのフィードバック信号に応じて決定された過電流検出レベルの電流がスイッチング素子2に流れると、比較器16の出力信号はHレベルとなり、NOR回路20を介してRSフリップフロップ12のリセットRへ入力される。したがって、RSフリップフロップ12の出力Qは、Lレベルへ切り替り、ゲートドライバ13の出力がLレベルとなるため、スイッチング素子2はターンオフ状態となる。
または、発振器11のMAXDUTY信号がLレベルにある最大オン期間の間を通して比較器16の出力がLレベルの時は、最大オン期間の経過後、発振器11のMAXDUTY信号がHレベルに反転する。HレベルのMAXDUTY信号は、NOR回路20を介してRSフリップフロップ12のリセットRへ入力される。したがって、RSフリップフロップ12の出力Qは、Lレベルへ切り替り、ゲートドライバ13の入力がLレベルとなるため、スイッチング素子2はスイッチング素子2の電流量にかかわらず強制的にターンオフ状態となる。
以上のような信号処理により、スイッチング素子2のスイッチング(オンオフ)動作が行なわれる。
なお、トランス1の二次巻線1bには、整流用のダイオード7aとコンデンサ7bで構成される出力電圧生成部7が接続されており、スイッチング素子2がスイッチング動作することにより、トランス1において入力電圧Vinから波形変換して二次巻線1bに誘起した交流電圧を、この出力電圧生成部7により整流平滑することによって直流の出力電圧Voutが生成され、負荷8に印加される。
また、出力電圧検出回路6は、例えばLEDおよびツェナーダイオード等で構成され、出力電圧Voutの電圧レベルを検出し、その出力電圧Voutが所定の電圧に安定するように、制御回路3がスイッチング素子2のスイッチング動作を制御するのに必要なフィードバック信号を出力する。
スイッチング電源装置100では、商用の交流電源が、ダイオードブリッジなどの整流器により整流されて、入力コンデンサにて平滑化されることにより、直流の入力電圧Vinとされて、電力変換用のトランス1の一次巻線1aに与えられている。
以上のように構成された図1に示すスイッチング電源装置100及びスイッチング電源装置100に用いられる半導体装置4の動作を説明する。
商用電源からの交流電源は、図示しないダイオードブリッジなどの整流器と入力コンデンサとにより、整流および平滑化されて、直流の入力電圧Vinに変換される。この入力電圧Vinは、トランス1の一次巻線1aを介して、DRAIN端子に印加され、DRAIN端子から制御回路3内のレギュレータ9を介して、VDD端子に接続されているコンデンサ5に起動用充電電流が流れる。この充電電流により制御回路3のVDD端子電圧が起動停止回路10で設定された起動電圧に達すると、スイッチング素子2によるスイッチング動作の制御が開始される。
スイッチング素子2がターンオンすると、スイッチング素子2に電流が流れ、スイッチング素子2に流れる電流の大きさに応じた電圧がドレイン電流検出回路14の出力から出力され、比較器16のプラス入力に入力される。また出力電圧検出回路6のフィードバック信号に応じたフィードバック制御回路18からの出力電圧が比較器16の第1マイナス入力に入力され、基準電圧19が比較器16の第2マイナス入力に入力される。
ドレイン電流検出回路14の出力電圧が、フィードバック制御回路18の出力電圧と基準電圧19の低い方の電圧以上に上昇すると、比較器16からHレベルの信号が、RSフリップフロップ12のリセットRに入力され、スイッチング素子2はターンオフする。
なお、ドレイン電流検出回路14の出力電圧がフィードバック制御回路18の出力電圧または基準電圧19以上となってから、スイッチング素子2がターンオフするまでには、ある遅延時間が存在する。
スイッチング素子2がターンオフすると、スイッチング素子2のオン時にトランス1の一次巻線1aで蓄えられたエネルギーが二次巻線1bに伝達される。
以上のようなスイッチング動作が繰り返されて、出力電圧Voutが上昇していくが、出力電圧検出回路6で設定された電圧以上になると、出力電圧検出回路6からのフィードバック信号として制御回路3のFB端子からのフィードバック電流の大きさに従って、フィードバック制御回路18の出力電圧が低下し、比較器16のマイナス側が低下するため、スイッチング素子2に流れる電流は減少する。このようにして、スイッチング素子2のオンデューティは適切な状態に変化していく。
すなわち、負荷8への電流供給が小さい軽負荷時には、スイッチング素子2に電流が流れる期間が短くなり、重負荷時には、スイッチング素子2に電流が流れる期間が長くなることになる。
ここで、オフ時間補正回路17および発振器11の詳細について説明する。
図3は、オフ時間補正回路17および発振器11の一構成例を示す回路図である。
図3において、オフ時間補正回路17および発振器11は、定電流源21、22、23、24および54、P型MOSFET25、26、27、28、29、N型MOSFET30、31、32、33、34、35、52および53、コンデンサ36と37、抵抗38、NPNバイポーラトランジスタ39、比較器40、インバータ回路41、基準電圧源42、CLOCK信号発生器43から構成される。P型MOSFET26および27、N型MOSFET31および32、N型MOSFET33および52、N型MOSFET53および34はそれぞれカレントミラー回路となっている。
比較器40の出力がLレベルのとき、P型MOSFET29がオンし、定電流源24から電流がコンデンサ37に充電されていき、コンデンサ37の電圧が比較器40のプラス入力に入力される。基準電圧源42は、比較器40の出力がHレベルおよびLレベルの場合に、それぞれ低い基準電圧および高い基準電圧を出力する。これにより、比較器40の出力にヒステリシスが与えられる。
基準電圧源42の高い基準電圧に達するまでの間、比較器40の出力がLレベルとなり、MAXDUTY信号がスイッチング素子2の最大オン期間を表すLレベルとなる。
比較器40の出力がLレベルになるとき、比較器40の出力の立ち下がりを微分することにより、CLOCK信号発生器43はHレベルの短いCLOCK信号を出力する。
HレベルのCLOCK信号はRSフリップフロップ12のセットSに入力され、RSフリップフロップ12の出力QがHレベルとなることで、ゲートドライバ13の出力であるGATE信号がHレベルになりスイッチング素子2がオンする。
HレベルのCLOCK信号は、N型MOSFET30のゲートにも入力され、N型MOSFET30がオンし、コンデンサ36の電圧をGND電圧まで下げる。
GATE信号がHレベルである間、インバータ回路41を介してP型MOSFET25のゲートにL信号が入力されることで、P型MOSFET25がオンし、定電流源21からコンデンサ36に電流が供給される。
NPNバイポーラトランジスタ39のベース電圧はコンデンサ36の電圧+P型MOSFET28のVthの電圧となり、NPNバイポーラトランジスタ39に流れる電流は、前記ベース電圧からNPNバイポーラトランジスタ39のVBE電圧下がった電圧と抵抗38により決まる。
NPNバイポーラトランジスタ39に流れる電流から、P型MOSFET26と27で構成されるミラー回路とN型MOSFET31と32で構成されるミラー回路により、N型MOSFET32の電流が決まる。定電流源23からの電流をN型MOSFET32に流すことで、N型MOSFET33の電流値が減少し、定電流源54からの電流をN型MOSFET52に流すことで、N型MOSFET53の電流値が、N型MOSFET32の電流値が増加するほど増加するように決まる。
その後、ドレイン電流検出回路14の出力が出力電圧検出回路6からのフィードバック信号または基準電圧19以上となると比較器16の出力がHレベルに切り替わり、Hレベルの信号がRSフリップフロップ12のリセットRに入力され、RSフリップフロップ12の出力QがLレベルとなることで、ゲートドライバ13の出力がLレベルとなる。
これにより、P型MOSFET25がオフし、定電流源21からのコンデンサ36への電流の充電が停止され、コンデンサ36には、GATE信号がHレベルであった期間(つまり、スイッチング素子2のオン時間)に上昇した電圧が保持され、N型MOSFET35がオンしている時のN型MOSFET34の電流値が決定される。
コンデンサ37の電圧が基準電圧源42の高い基準電圧に達することで、比較器40の出力電圧がHレベルに変化し、MAXDUTY信号がオフ期間を表すHレベルとなる。これにより、P型MOSFET29がオフし、N型MOSFET35がオンし、基準電圧源42の値が低い基準電圧に変化する。
コンデンサ37の電圧は、N型MOSFET34の電流値に応じた速さで低下していき、コンデンサ37の電圧が低い基準電圧以下になると比較器40の出力がLレベルに反転し、MAXDUTY信号が再びスイッチング素子2の最大オン期間を表すLレベルに変化する。
このように、スイッチング電源装置100では、発振器11のCLOCK信号によりコンデンサ36の電圧をGND電圧にすることで、スイッチング素子2のオン動作ごとに後続するオフ期間の長さを変化させる動作を行うことにより、スイッチング素子2のスイッチング周期の長さ(すなわち、スイッチング周波数)を各周期で調整している。
以上のように動作することでの、効果を説明する。
スイッチング素子2がオンすることで、コンデンサ36がチャージされていき、スイッチング素子2がオンしている間、コンデンサ36の電圧が上昇していく。その後、スイッチング素子2がオフすることで、コンデンサ36に上昇後の電圧が保持される。比較器40の出力がオフ期間を表すHレベルになり、N型MOSFET35がオンすると、コンデンサ36に保持されている電圧に応じて、N型MOSFET34の電流値が増減し、比較器40の出力がHレベルであるオフ期間の長さが変化することになる。
このことを式にあらわすと以下のようになる。
スイッチング素子2がオンしてからオフするまでの時間に応じて、コンデンサ36の電圧V1は、式1で表される。
1=ton×Iconst1/C1 (式1)
ここで
1:コンデンサ36の容量値
on:スイッチング素子2がオンしてからオフするまでの時間
const1:定電流源21の電流値
また、スイッチング素子2のオフ後CLOCK信号が出力されるまでの間、V1の値は保持される。
P型MOSFET26の電流値I1は、式2で表される。
1=(V1+Vpth−VBE)/R (式2)
ここで
pth:P型MOSFET26のしきい値
BE:NPNバイポーラトランジスタ39B−E端子間の電圧
R:抵抗38の抵抗値
よってN型MOSFET34の電流値I2は、式3で表される。
2=(Iconst3−((Iconst2−I1×n1×n2)×n3))×n4 (式3)
ここで
const2:定電流源23の電流値
const3:定電流源54の電流値
1:P型MOSFET26、27で構成されるカレントミラー回路のミラー比
2:N型MOSFET31、32で構成されるカレントミラー回路のミラー比
3:N型MOSFET33、52で構成されるカレントミラー回路のミラー比
4:N型MOSFET53、34で構成されるカレントミラー回路のミラー比
したがって、スイッチング素子2のオン時間tonが長いほど、コンデンサ36の電圧V1が高くなるために、P型MOSFET26の電流値I1は増加し、N型MOSFET34の電流値I2が増加し、逆に、スイッチング素子2のオン時間tonが短いほどN型MOSFET34の電流値I2が減少することになる。
MAXDUTY信号がLレベルとなる最大オン期間の長さPW1は、式4で表される。
PW1=ΔV×C2/Iconst4 (式4)
ここで
ΔV:基準電圧源42の2つの基準電圧の差
2:コンデンサ37の容量値
const4:定電流源24の電流値
また、MAXDUTY信号がHレベルとなるオフ期間の長さPW2は、式5で表される。
PW2=ΔV×C2/I2 (式5)
ここで
2:N型MOSFET34の電流値
したがって、オフ期間の長さPW2は、スイッチング素子2のオン時間tonが長いほど短くなり、逆に、オン時間tonが短いほど長くなることがわかる。
図4(A)および(B)に示すように、高入力電圧時はスイッチング素子2のオン時間が短くなることで、オフ期間が長くなり、スイッチング周波数が低下する。
負荷へ供給されるエネルギーPは、式6で表される。
P=1/2×η×L×IDp 2×f (式6)
ここで
η:効率
L:トランス1のインダクタンス
Dp:スイッチング素子2のピーク電流値
f:スイッチング素子2のスイッチング周波数
課題の項で説明したように、高入力電圧での動作時には、低入力電圧での動作時と比べて、スイッチング素子2のピーク電流値が大きくなるため、オフ時間を調整しない場合には、負荷へ供給されるエネルギーが大きくなり過ぎる懸念がある。
スイッチング電源装置100では、高入力電圧での動作時には、低入力電圧での動作時と比べて、スイッチング素子2のオン時間tonが短くなることを利用して、最小オフ期間を長くすることによりスイッチング周波数を低下させるので、入力電圧が変動した場合でも、負荷へ供給されるエネルギーPの変動が抑制される。
スイッチング電源装置100は、回路定数を変更することなくこのような動作を行うことができるため、入力電圧に応じた負荷への電流変動が小さく、かつ低コスト化に適したスイッチング電源装置が実現される。
(実施の形態2)
本発明の実施の形態2のスイッチング電源装置200及びスイッチング電源装置200の制御に用いられる半導体装置204を説明する。
図5は、実施の形態2のスイッチング電源装置200の一構成例を示す機能ブロック図である。
図6は、半導体装置204に含まれるオフ時間補正回路217および発振器11の一構成例を示す回路図である。
実施の形態1のスイッチング電源装置100と比較すると、半導体装置204において、ドレイン電流検出回路14の出力電圧とオン時ブランキングパルス発生回路15の出力とがオフ時間補正回路217に接続されており、オフ時間補正回路217内で、定電流源21と並列に、可変電流源47が接続されている点が異なる。
なお、大まかな構成および動作は上述の実施の形態1と同様であるため、ここでは変更点のみを説明する。
図6において、ドレイン電流検出回路14は、抵抗44、45で構成されたシャント回路である。オフ時間補正回路217は、オフ時間補正回路17に対し、スイッチ46および可変電流源47を追加して構成されている。スイッチ46は、一端がドレイン電流検出回路14の出力と接続され、他端が可変電流源47と接続され、オン時ブランキングパルス発生回路15からのブランキングパルスによりオンオフされる。
オン時ブランキングパルス発生回路15は、例えばMAXDUTY信号の立ち下がりを微分するなどして、MAXDUTY信号が最大オン期間を示した直後から所定時間の間、ブランキングパルスを出力する。ブランキングパルスによりスイッチ46がオンされ、ブランキングパルスによりスイッチ46がオンしている間のドレイン電流検出回路14の出力電圧により可変電流源47の電流値が決められる。
ブランキングパルス発生時のドレイン電流検出回路14の出力電圧は、スイッチング素子2のターンオン時にトランス1の一次巻線1aに残っている電流(以下、残留電流と言う)を表す。可変電流源47は、ブランキングパルス発生時のドレイン電流検出回路14の出力電圧に応じて、残留電流が大きいほど小さな電流を出力し、また残留電流が小さいほど大きな電流を出力する。
可変電流源47の電流と定電流源21の電流がコンデンサ36に充電される。これによりコンデンサ36の電圧が、実施の形態1と比べて、可変電流源47の電流値に応じて増加することになる。可変電流源47の電流値に応じた増分を含むコンデンサ36の電圧に従って実施の形態1と同じような動作を行い、N型MOSFET34の電流値が変化する。
上記を式に表すと以下のようになる。
スイッチング素子2のオン時間tonに応じて、コンデンサ36の電圧V1は、式7で表される。
1=ton×(Iconst1+Ivar)/C1 (式7)
ここで
1:コンデンサ36の容量値
on:スイッチング素子2がオンしてからオフするまでの時間
const1:定電流源21の電流値
var:可変電流源47の電流値
また、N型MOSFET34の電流値I2、およびMAXDUTY信号がHレベルとなるオフ期間の長さPW2は、式7で表されるコンデンサ36の電圧V1を用いて、実施の形態1と同様に、式2、式3、式5から決定される。
このように、スイッチング電源装置200では、オフ期間の長さPW2がスイッチング素子2のオン時間tonのほかにブランキングパルス発生時のスイッチング素子2の電流値により変化する。
図7(A)および(B)に示すように、スイッチング素子2のターンオン時にトランス1の一次巻線1aに電流が残っている(つまり残留電流がある)状態でスイッチング素子2がオンすることでスイッチング素子2には残留電流値ISのドレイン電流が発生する。この場合、負荷へ供給されるエネルギーPは、式8で表される。
P=1/2×η×L×(IDp 2−IS 2)×f (式8)
ここで
η:効率
L:トランス1のインダクタンス
Dp:スイッチング素子2のピーク電流値
S:スイッチング素子2オン時の残留電流値
f:スイッチング素子2のスイッチング周波数
式8に示されるように、残留電流値ISが高い場合、負荷へ供給されるエネルギーが減少する。
スイッチング電源装置200では、スイッチング素子2のオン時間tonの他にターンオン時の残留電流値ISも考慮してコンデンサ37に充電する電流値を変化させるので、残留電流値ISが高いことで負荷へ供給されるエネルギーが減少する場合は、スイッチング素子2のオフ期間を長くし残留電流値ISを低減することで、供給エネルギーの減少を補償する。
これにより、入力電圧のみならず、ターンオン時の残留電流値ISも考慮して、負荷への適量のエネルギー供給を維持することができる。
(実施の形態3)
本発明の実施の形態3のスイッチング電源装置300及びスイッチング電源装置300の制御に用いられる半導体装置303を説明する。
図8は、実施の形態3のスイッチング電源装置300の一構成例を示す機能ブロック図である。
図9は、半導体装置304に含まれるオフ時間補正回路17および発振器311の一構成例を示す回路図である。
実施の形態1のスイッチング電源装置100と比較すると、比較器48およびRSフリップフロップ49から構成される大電流動作検出回路51が半導体装置303に追加されており、発振器311内にN型MOSFET50が追加されている点が異なる。
なお、大まかな構成および動作は上述の実施の形態1と同様であるため、ここでは変更点のみを説明する。
ドレイン電流検出回路14の出力が比較器48のプラス側に接続され、基準電圧19が比較器48のマイナス側に接続され、比較器48の出力と発振器311のCLOCK信号とがそれぞれRSフリップフロップ49のセットSおよびリセットRに接続されている。RSフリップフロップ49の出力Qは発振器311内のN型MOSFET50のゲート端子に接続されている。
スイッチング素子2がターンオンしている間に、ドレイン電流検出回路14の出力電圧が基準電圧19より高くなると、比較器48の出力信号はHレベルに変化し、RSフリップフロップ49の出力QはHレベルにセットされる。RSフリップフロップ49のHレベルの出力Qは、次のCLOCK信号によってリセットされるまで、MAXDUTY信号のオフ期間もHレベルを保持し、発振器311内のN型MOSFET50をオンさせる。
またドレイン電流検出回路14の出力電圧が基準電圧19より低い動作、つまりフィードバック動作を行う時は、比較器48の出力はLレベルとなり、RSフリップフロップ49の出力QがLレベルとなることで、発振器311内のN型MOSFET50のオフを継続させる。
これにより、スイッチング素子2が基準電圧19で決められたドレイン電流値でスイッチング動作する時のみ、スイッチング素子2のオフ時間を変化させることができるので、スイッチング素子2のオフ時間を変更する動作を最大電力での動作時のみとすることで、スイッチング素子2のフィードバック制御動作時の周波数変化による電力供給不足を防ぐことができる。
本説明では、スイッチング素子2と制御回路3を同一基板上であるとしているが、制御回路3とスイッチング素子2が、特に同一基板上である必要はない。
(実施の形態4)
本発明の実施の形態4のスイッチング電源装置400及びスイッチング電源装置400の制御に用いられる半導体装置403を説明する。
図10は、実施の形態4のスイッチング電源装置400の一構成例を示す機能ブロック図である。
図11は、半導体装置404に含まれるオフ時間補正回路417および発振器11の一構成例を示す回路図である。
大まかな構成および動作は上述の実施の形態1と同様であるため、ここでは変更点のみを説明する。
オフ時間補正回路417では、実施の形態1のスイッチング電源装置100におけるオフ時間補正回路17(図3を参照)の抵抗38が削除され、半導体装置404の外部に抵抗55を接続する点が異なる。
オフ時間補正回路417のNPNバイポーラトランジスタ39のエミッタ端子が、半導体装置404の外部で、抵抗55に接続されている。
これにより、スイッチング素子2のオフ時間量を抵抗55の抵抗値を変更することで、自由にオフ時間を調整することができる。
本説明では、スイッチング素子2と制御回路3を同一基板上であるとしているが、制御回路3とスイッチング素子2が、特に同一基板上である必要はない。
また、本発明のスイッチング電源装置は、変換機にトランスを用いた絶縁電源回路で説明したが、変換機にコイルを用いた非絶縁電源回路でもよい。
実施の形態は実施例であり、本発明の動作を行うのであれば、この回路構成に限定されるものではない。
本発明のスイッチング電源装置及びそれに用いる半導体装置は、入力電圧範囲により装置の回路定数を変更する必要なく、負荷への電流を一定化することができ、装置の低コスト化を図ることができるもので、AC−DCおよびDC−DCコンバータなどのスイッチング電源装置等に有効に適応させることができる。
1 トランス
1a 一次巻線
1b 二次巻線
2 スイッチング素子
3 制御回路
4 半導体装置
5、7b コンデンサ
6 出力電圧検出回路
7 出力電圧生成部
7a ダイオード
8 負荷
9 レギュレータ
10 起動停止回路
11 発振器
12 RSフリップフロップ
13 ゲートドライバ
14 ドレイン電流検出回路
15 オン時ブランキングパルス発生回路
16 比較器
17 オフ時間補正回路
18 フィードバック制御回路
19 基準電圧
20 NOR回路
21、22、23、24、54 定電流源
25、26、27、28、29 P型MOSFET
30、31、32、33、34、35、50、52、53 N型MOSFET
36、37 コンデンサ
38、44、45、55、153 抵抗
39 NPNバイポーラトランジスタ
40、48 比較器
41 インバータ回路
42 基準電圧源
43 CLOCK信号発生器
46 スイッチ
47 可変電流源
49 RSフリップフロップ
51 大電流動作検出回路
100 スイッチング電源装置
102 スイッチング素子
111 発振器
112 RSフリップフロップ
113 ゲートドライバ
114 ドレイン電流検出回路
115 オン時ブランキングパルス発生回路
116 AND回路
118 フィードバック制御回路
120 NOR回路
200 スイッチング電源装置
204 半導体装置
217 オフ時間補正回路
300 スイッチング電源装置
303 半導体装置
304 半導体装置
311 発振器

Claims (6)

  1. 入力直流電圧を調整された出力直流電圧に変換するスイッチング電源装置の制御に用いられる半導体装置であって、前記出力直流電圧の変化を検出し、前記スイッチング素子のスイッチング動作を制御するためのフィードバック信号を、前記制御回路へ伝達する出力電圧検出回路とを備えたスイッチング電源制御装置であって、前記制御回路はスイッチング素子の発振周波数を決める発振器と、前記出力電圧検出回路からフィードバック信号により前記スイッチング素子に流れる電流レベルを決定するフィードバック信号制御回路と、前記スイッチング素子に流れる電流に応じて電圧を出力するドレイン電流検出回路と、前記ドレイン電流検出回路の電圧と前記フィードバック信号制御回路により決定されたレベル値または基準電圧レベル値に達すると、前記スイッチング素子をターンオフさせる信号を生成する比較器と、前記スイッチング素子の制御信号と発振器の出力信号に基づいて前記スイッチング素子のオフ時間を補正するオフ時間補正回路とを有し、前記オフ時間補正回路により、補正したオフ時間に従って前記スイッチング素子がオフした後、前記スイッチング素子に流れる電流が過電流検出レベルまで達する時間に応じて、前記発振器で生成されるオフ信号の時間を変化させることで、前記スイッチング素子のオフ時間を変化させることで、周波数を変化させることを特徴とする半導体装置。
  2. スイッチング素子の動作させるゲート信号のオン時間の間、前記オフ時間補正回路のコンデンサに定電流源より充電させ、ゲート信号のオフ時間の間コンデンサ電圧を保持させ、前記電圧より電流源を作成し、前記電流源の電流値により前記発振器から接続されたゲート信号オフ時間を変化させる請求項1に記載の半導体装置。
  3. 前記オフ時間補正回路は、前記ゲート信号のオン時間の長さ、および前記スイッチング素子のターンオン時に前記ドレイン電流検出回路で検出された電流である残留電流の値に応じた電気信号を出力し、
    前記発振器は、前記電気信号に従って、前記ゲート信号のオン時間が長いほど、および前記残留電流が小さいほど、前記ゲート信号のオフ時間を短くし、かつ前記ゲート信号の出力時間が短いほど、かつ前記残留電流が大きいほど、前記ゲート信号のオフ時間を長くする
    請求項1または2に記載の半導体装置。
  4. 前記半導体装置は、さらに、
    前記ドレイン電流検出回路で検出された電流が所定の基準値を超える大電流動作を検出する大電流動作検出回路を備え、
    前記発振器は、前記大電流動作検出回路で大電流動作が検出された場合は、前記電気信号とは無関係に、前記ゲート信号のオフ時間を固定する
    請求項1から3のいずれか1項に記載の半導体装置。
  5. 前記オフ時間補正回路の前記電流源作成回路に抵抗を用いて調整する半導体装置であって、前記抵抗を半導体装置の外に配置することで、抵抗を付け替えることでオフ時間を自由に調整できる請求項1から4のいずれか1項に記載の半導体装置。
  6. 請求項1から5のいずれか1項に記載の半導体装置と、
    前記半導体装置に含まれるスイッチング素子と、
    前記スイッチング素子により入力直流電圧をスイッチングして生成された入力交流電圧を出力交流電圧に変換する変換器と、
    前記出力交流電圧を前記出力直流電圧に変換する平滑回路と
    を備えるスイッチング電源装置。
JP2009158293A 2009-07-02 2009-07-02 スイッチング電源装置およびスイッチング電源制御用半導体装置 Pending JP2011015557A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009158293A JP2011015557A (ja) 2009-07-02 2009-07-02 スイッチング電源装置およびスイッチング電源制御用半導体装置
US12/823,297 US20110002147A1 (en) 2009-07-02 2010-06-25 Switching power supply apparatus and semiconductor device for switching power supply regulation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009158293A JP2011015557A (ja) 2009-07-02 2009-07-02 スイッチング電源装置およびスイッチング電源制御用半導体装置

Publications (1)

Publication Number Publication Date
JP2011015557A true JP2011015557A (ja) 2011-01-20

Family

ID=43412566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009158293A Pending JP2011015557A (ja) 2009-07-02 2009-07-02 スイッチング電源装置およびスイッチング電源制御用半導体装置

Country Status (2)

Country Link
US (1) US20110002147A1 (ja)
JP (1) JP2011015557A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012160588A1 (ja) * 2011-05-20 2012-11-29 パナソニック株式会社 スイッチング電源装置及び半導体装置
JP2013135509A (ja) * 2011-12-26 2013-07-08 Minebea Co Ltd スイッチング電源装置および発光ダイオード照明装置
KR20160140104A (ko) 2015-05-29 2016-12-07 삼성전기주식회사 제어 회로 및 이를 이용한 전압 변환 장치

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101958650B (zh) * 2010-08-27 2012-12-26 成都芯源系统有限公司 准谐振控制装置和方法及其开关稳压器和方法
US8756408B2 (en) * 2011-02-15 2014-06-17 Continental Automotive Systems, Inc Hardware reset reason
TWI511425B (zh) * 2013-12-05 2015-12-01 Richtek Technology Corp 電源轉換電路的控制電路
US9531253B2 (en) 2014-01-30 2016-12-27 Silicon Laboratories Inc. Soft-start for isolated power converter
CN106856349B (zh) * 2014-12-31 2019-11-12 展讯通信(上海)有限公司 充电方法、装置、充电器、待充电设备以及充电系统
JP6382885B2 (ja) * 2016-05-23 2018-08-29 双葉電子工業株式会社 電源装置
US9917521B1 (en) * 2016-09-15 2018-03-13 Infineon Technologies Austria Ag Power limiting for flyback converter
CN109742737B (zh) * 2019-03-19 2023-10-03 无锡麟力科技有限公司 基于固定周期开关电源的过流保护电路
CN110032233A (zh) * 2019-04-30 2019-07-19 深圳市明微电子股份有限公司 一种自适应恒流装置
CN113114039B (zh) * 2021-03-16 2024-05-28 深圳市必易微电子股份有限公司 基于管脚复用的开关控制电路、开关电源系统和频率控制方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6781357B2 (en) * 2001-09-27 2004-08-24 Power Integrations, Inc. Method and apparatus for maintaining a constant load current with line voltage in a switch mode power supply
JP3955200B2 (ja) * 2001-11-20 2007-08-08 松下電器産業株式会社 スイッチング電源装置
JP3652351B2 (ja) * 2002-12-20 2005-05-25 松下電器産業株式会社 スイッチング電源装置
CN1868110A (zh) * 2003-10-13 2006-11-22 皇家飞利浦电子股份有限公司 功率变换器
JP4868750B2 (ja) * 2004-03-16 2012-02-01 ローム株式会社 スイッチングレギュレータ
WO2006006289A1 (ja) * 2004-07-07 2006-01-19 Murata Manufacturing Co., Ltd. スイッチング電源装置および電子装置
US7362593B2 (en) * 2004-09-16 2008-04-22 System General Corp. Switching control circuit having off-time modulation to improve efficiency of primary-side controlled power supply
JP4564363B2 (ja) * 2005-01-13 2010-10-20 パナソニック株式会社 Led駆動用半導体装置及びled駆動装置
US7593245B2 (en) * 2005-07-08 2009-09-22 Power Integrations, Inc. Method and apparatus to limit maximum switch current in a switching power supply
JP4752484B2 (ja) * 2005-12-14 2011-08-17 サンケン電気株式会社 Dc−dcコンバータ
JP4753729B2 (ja) * 2006-01-27 2011-08-24 パナソニック株式会社 スイッチング制御回路
JP4468316B2 (ja) * 2006-02-15 2010-05-26 株式会社日立製作所 電源装置の過電流検出回路及び過電流検出方法
JP2007295761A (ja) * 2006-04-27 2007-11-08 Matsushita Electric Ind Co Ltd スイッチング電源装置
JP4985003B2 (ja) * 2007-03-19 2012-07-25 富士電機株式会社 Dc−dcコンバータ
US8031496B2 (en) * 2007-11-07 2011-10-04 Panasonic Corporation Driving circuit for power switching device, driving method thereof, and switching power supply apparatus
JP5513778B2 (ja) * 2008-08-18 2014-06-04 パナソニック株式会社 スイッチング電源回路
JP2010093922A (ja) * 2008-10-07 2010-04-22 Panasonic Corp スイッチング電源装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012160588A1 (ja) * 2011-05-20 2012-11-29 パナソニック株式会社 スイッチング電源装置及び半導体装置
US9024613B2 (en) 2011-05-20 2015-05-05 Panasonic Corporation Switching power supply apparatus and semiconductor device
JP2013135509A (ja) * 2011-12-26 2013-07-08 Minebea Co Ltd スイッチング電源装置および発光ダイオード照明装置
KR20160140104A (ko) 2015-05-29 2016-12-07 삼성전기주식회사 제어 회로 및 이를 이용한 전압 변환 장치

Also Published As

Publication number Publication date
US20110002147A1 (en) 2011-01-06

Similar Documents

Publication Publication Date Title
JP5230181B2 (ja) エネルギー伝達装置およびエネルギー伝達制御用半導体装置
JP2011015557A (ja) スイッチング電源装置およびスイッチング電源制御用半導体装置
JP5341627B2 (ja) 半導体装置およびスイッチング電源装置
CN1996732B (zh) 开关电源装置和用于该开关电源装置的半导体装置
JP5353119B2 (ja) スイッチング電源装置
JP4033850B2 (ja) スイッチング電源制御用半導体装置
JP5513778B2 (ja) スイッチング電源回路
JP4481879B2 (ja) スイッチング電源装置
JP4687958B2 (ja) Dc−dcコンバータ
US10630187B2 (en) Switching power supply device and semiconductor device
JP2010041832A (ja) スイッチング電源制御装置及びそれに用いる半導体装置
US7285991B2 (en) Semiconductor device for controlling switching power supply and switching power supply unit using the same
JP2017060271A (ja) スイッチング電源装置
JP6559343B2 (ja) スイッチング電源回路
JP4173115B2 (ja) スイッチング電源制御用半導体装置
JP4308183B2 (ja) スイッチング電源制御用半導体装置およびスイッチング電源装置
JP5862312B2 (ja) スイッチング電源
US10630186B2 (en) Switching power supply device and semiconductor device
JP4387244B2 (ja) スイッチング電源装置
JP2007068248A (ja) スイッチング電源装置
WO2021084964A1 (ja) スイッチング制御回路及びスイッチング電源装置
JP2010057207A (ja) スイッチング電源装置
JP2013099006A (ja) 半導体集積回路装置
JP2009005509A (ja) スイッチング電源