[go: up one dir, main page]

JP2011002033A - Vacuum heat insulating material, and heat insulating box and refrigerator using the same - Google Patents

Vacuum heat insulating material, and heat insulating box and refrigerator using the same Download PDF

Info

Publication number
JP2011002033A
JP2011002033A JP2009145524A JP2009145524A JP2011002033A JP 2011002033 A JP2011002033 A JP 2011002033A JP 2009145524 A JP2009145524 A JP 2009145524A JP 2009145524 A JP2009145524 A JP 2009145524A JP 2011002033 A JP2011002033 A JP 2011002033A
Authority
JP
Japan
Prior art keywords
heat insulating
insulating material
vacuum heat
core material
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009145524A
Other languages
Japanese (ja)
Inventor
Takashi Izeki
崇 井関
Hisashi Echigoya
恒 越後屋
Kuninari Araki
邦成 荒木
Toshimitsu Tsuruga
俊光 鶴賀
Yushi Arai
祐志 新井
Daigoro Kamoto
大五郎 嘉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2009145524A priority Critical patent/JP2011002033A/en
Publication of JP2011002033A publication Critical patent/JP2011002033A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Thermal Insulation (AREA)
  • Refrigerator Housings (AREA)
  • Laminated Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress reduction of heat insulating performance and the occurrence of poor leakage by improving slidability for an outer coating material of a core material so as to alleviate stress concentration on a bend portion of the outer coating material and minimize shrinkage of the outer coating material and the occurrence of wrinkles in the bend portion when a vacuum heat insulating material is bent.SOLUTION: The vacuum heat insulating material includes a core material of a plurality of laminated bodies containing a fiber of long fiber web, and an outer coating member having gas barrier property. The core material is composed of the plurality of laminated bodies each having a fiber containing at least a resin fiber of a different friction coefficient for each laminated body. By changing a condition of the surface of the resin fiber, a friction coefficient of the core material and the innermost layer of the outer coating material contacted with the core material is provided to be smaller than a friction coefficient of core materials having different friction coefficients. Accordingly, the stress applied on the bend portion is alleviated when the vacuum heat insulating material is bent. The core material different in friction coefficient for each laminated body a plurality of laminated bodies formed by melt spinning of a melt-blown method using resin or a spun-bonding method.

Description

本発明は、保温・保冷機能を向上させることができる真空断熱材およびそれを用いた断熱箱体並びに冷蔵庫等に関する。   The present invention relates to a vacuum heat insulating material capable of improving a heat insulating / cooling function, a heat insulating box using the same, a refrigerator, and the like.

真空断熱材は、従来冷蔵庫で用いられていたウレタン発泡材料よりも熱伝導率が一桁低いため、冷蔵庫、浴槽、魔法瓶などの断熱材として使用量が増加している。しかし、真空断熱材は、真空引きした芯材と外包材から成る複合材料なので、任意の立体形状に曲げ加工することが困難な問題がある。この問題を改善するために、従来、曲げ成形を行う前の真空断熱材の形状として、予め溝形状を加工し、この溝に沿って曲げ成形する事例が、例えば、特許文献1、特許文献2及び特許文献3に提案されている。   Since the heat conductivity of the vacuum heat insulating material is an order of magnitude lower than that of the urethane foam material conventionally used in refrigerators, the amount of use is increasing as heat insulating materials for refrigerators, bathtubs, thermos bottles, and the like. However, since the vacuum heat insulating material is a composite material composed of a vacuumed core material and an outer packaging material, there is a problem that it is difficult to bend into an arbitrary three-dimensional shape. In order to improve this problem, conventionally, as a shape of the vacuum heat insulating material before bending, a groove shape is processed in advance, and bending is performed along this groove, for example, Patent Document 1 and Patent Document 2 And Patent Document 3 proposed.

特開2004−11755号公報JP 2004-11755 A 特開平7−151297号公報JP-A-7-151297

冷蔵庫などの断熱機器の断熱性能を向上するためには、熱伝導率が低い真空断熱材の設置面積を広くする必要がある。しかし、真空断熱材は、芯材と外被材(外包材とも云う)から成る複合材料なので、曲げ成形が困難である。   In order to improve the heat insulating performance of a heat insulating device such as a refrigerator, it is necessary to increase the installation area of the vacuum heat insulating material having a low thermal conductivity. However, since the vacuum heat insulating material is a composite material composed of a core material and an outer covering material (also referred to as an outer packaging material), bending molding is difficult.

上記の特許文献1と2に開示されているように、曲げ成形を行うために、真空断熱材に一方向だけの溝形状を加工した曲げ成形を行うと、一方向だけしか曲げ成形が行えず、溝部分の肉厚が薄くなることにより、この肉厚が薄くなった部分からの熱が漏洩する問題がある。また、曲げ成形を行うことにより、外被材に負荷が掛かり、真空破壊或いは長期的な真空破壊(スローリーク)に繋がる可能性があった。さらに、溝成形における真空断熱材の圧縮加工により、芯材の繊維が切れて断熱性能が低下する問題がある。   As disclosed in Patent Documents 1 and 2 above, when bending is performed by processing a groove shape in only one direction on the vacuum heat insulating material in order to perform bending, bending can be performed only in one direction. There is a problem that heat from the portion where the thickness is reduced leaks due to the thickness of the groove portion being reduced. Further, by performing bending molding, a load is applied to the jacket material, which may lead to vacuum breakage or long-term vacuum breakage (slow leak). Furthermore, there is a problem that the heat insulation performance is deteriorated due to the fibers of the core material being cut by compression processing of the vacuum heat insulating material in the groove forming.

本発明は、真空断熱材を曲げた際の曲げ部において、外被材の曲がり部での応力集中を緩和し、外被材の収縮やしわの発生を低減して、リーク不良の発生や断熱性能の低下を抑制することを課題とする。   The present invention reduces the stress concentration at the bent portion of the jacket material at the bent portion when the vacuum heat insulating material is bent, reduces the shrinkage of the jacket material and the generation of wrinkles, and causes the occurrence of leakage defects and heat insulation. It is an object to suppress a decrease in performance.

前記課題を解決するために、本発明は主として次のような構成を採用する。
長繊維ウェブの繊維を有する複数の積層体からなる芯材と、ガスバリヤ性を有する外被材と、を備えた真空断熱材であって、前記芯材は、各積層体で摩擦係数の異なる少なくとも樹脂繊維を含む繊維を有する複数積層体であり、前記樹脂繊維の表面状態を操作することによって、前記芯材とこれに接触している外被材の最内層との摩擦係数を、前記摩擦係数の異なる芯材同士の摩擦係数より小さく形成し、前記真空断熱材を曲げた際の曲げ部位での応力を緩和する構成とする。
In order to solve the above problems, the present invention mainly adopts the following configuration.
A vacuum heat insulating material comprising a core material composed of a plurality of laminates having fibers of a long fiber web, and an outer jacket material having gas barrier properties, wherein the core material has at least different friction coefficients in each laminate. It is a multi-layered body having fibers including resin fibers, and by manipulating the surface state of the resin fibers, the friction coefficient between the core material and the innermost layer of the jacket material in contact with the core material, the friction coefficient The cores are different from each other in friction coefficient, and the stress at the bending portion when the vacuum heat insulating material is bent is reduced.

また、前記真空断熱材において、各積層体で摩擦係数の異なる芯材は、樹脂によるメルトブロー法またはスパンボンド法の溶融紡糸により形成した複数の積層体である構成とする。また、前記摩擦係数の異なる積層体における摩擦係数の差は、0.1以上で1.0未満である構成とする。   Further, in the vacuum heat insulating material, the core material having a different friction coefficient in each laminated body is a plurality of laminated bodies formed by melt spinning using a resin melt blow method or a spun bond method. Further, the difference in the friction coefficient between the laminates having different friction coefficients is 0.1 or more and less than 1.0.

本発明によれば、真空断熱材を曲げた際に芯材の外被材最内層に対する滑り性を向上させ、外被材の曲がり部での応力集中を緩和することにより、外被材のバリヤ性の低下を避け、外被材の穴あきの防止を図ることができる。したがって、結果として、真空断熱材の任意の立体形状の曲げ成形を実現することができる。   According to the present invention, when the vacuum heat insulating material is bent, the slip of the core material with respect to the innermost layer of the outer cover material is improved, and the stress concentration at the bent portion of the outer cover material is alleviated. Therefore, it is possible to prevent the outer cover material from being perforated. Therefore, as a result, it is possible to realize bending molding of an arbitrary three-dimensional shape of the vacuum heat insulating material.

また、芯材作製時に外被材と接触する芯材繊維の表面状態を通常とは異なった状態となるように加工操作して摩擦係数を小さくし、その場合、繊維化の際の製造方法としてスパンボンド法やメルトブロー法等を用いるので、使用する樹脂はバージン樹脂に拘ることなく、リサイクル樹脂でも構わないので、コスト低減ならびに環境負荷低減を図ることができる。   In addition, the surface condition of the core fiber that comes into contact with the jacket material at the time of preparing the core material is processed to reduce the friction coefficient so that it is different from the normal state. In that case, as a manufacturing method at the time of fiberization Since the spun bond method, the melt blow method, or the like is used, the resin to be used is not limited to the virgin resin, and may be a recycled resin. Therefore, cost reduction and environmental load reduction can be achieved.

本発明の実施形態に係る真空断熱材の断面図である。It is sectional drawing of the vacuum heat insulating material which concerns on embodiment of this invention. 従来技術に関する真空断熱材の断面図である。It is sectional drawing of the vacuum heat insulating material regarding a prior art. 本実施形態に係る真空断熱材を備えた断熱箱体の断面図である。It is sectional drawing of the heat insulation box provided with the vacuum heat insulating material which concerns on this embodiment. 本実施形態に係る真空断熱材を備えた冷蔵庫の縦断面図である。It is a longitudinal cross-sectional view of the refrigerator provided with the vacuum heat insulating material which concerns on this embodiment. 本実施形態に係る真空断熱材の曲げ試験内容を説明する図である。It is a figure explaining the bending test content of the vacuum heat insulating material which concerns on this embodiment. 本実施形態に係る真空断熱材における各種実施例と従来例及び比較例との対比試験内容の結果を示す図である。It is a figure which shows the result of the comparison test content of the various Examples in the vacuum heat insulating material which concerns on this embodiment, a prior art example, and a comparative example.

本発明の実施形態に係る真空断熱材の特徴について、まずその概念的な構成、機能並びに効果を、図面を参照しながら以下説明する。本発明の実施形態に係る真空断熱材は、樹脂繊維、吸着剤、外被材を有し、この外被材が減圧封止されるものであり、また、樹脂繊維が環境に優しい長繊維ウェブを配設したものである。真空断熱材の芯材は、大気圧からその形状を保持するスペーサの機能を持ち、減圧時の圧縮応力を受けても高空隙を有する繊維が好ましい。また、断熱性能の指標である熱伝導率が芯材の種類で大きく異なるため、安価な汎用品で吸湿性が低い高剛性の繊維体を芯材に選定した。     Regarding the characteristics of the vacuum heat insulating material according to the embodiment of the present invention, the conceptual configuration, function, and effect will be described below with reference to the drawings. The vacuum heat insulating material according to the embodiment of the present invention includes a resin fiber, an adsorbent, and a jacket material. The jacket material is sealed under reduced pressure, and the resin fiber is an environmentally friendly long fiber web. Is provided. The core material of the vacuum heat insulating material has a function of a spacer that maintains its shape from atmospheric pressure, and is preferably a fiber having high voids even when subjected to compressive stress during decompression. In addition, since the thermal conductivity, which is an index of heat insulation performance, varies greatly depending on the type of core material, an inexpensive general-purpose product and a highly rigid fiber body having low hygroscopicity were selected as the core material.

本実施形態で使用する樹脂は、分子鎖が剛直で絡み難くて脆く、曲げ弾性率が約3000MPa以上が望ましい。特に汎用品であるポリスチレンが好ましい。ポリスチレンは疎水性の非極性基を有し、吸湿性が低く、分子量は繊維化されれば制限はなく約20万〜40万が好ましい。例えば、ポリスチレン繊維の代りに汎用のポリエチレンやポリプロピレンの繊維を用いると、吸湿性は低いが曲げ弾性率が低くクリープ現象も大きいため、減圧時の圧縮応力で高空隙を得ることが難しく、熱伝導率が5mW/m・K以上とポリスチレンと比較すると断熱性能が劣るが、従来の断熱材であった硬質ポリウレタン樹脂より約5倍の断熱性能を示しており、それによる曲げ加工による被覆率向上を考慮すると、その採用に支障はない。   The resin used in this embodiment is preferably a molecular chain that is rigid, difficult to entangle, is brittle, and has a flexural modulus of about 3000 MPa or more. Polystyrene, which is a general-purpose product, is particularly preferable. Polystyrene has a hydrophobic nonpolar group, has a low hygroscopic property, and the molecular weight is not limited as long as it is fiberized, and is preferably about 200,000 to 400,000. For example, when general-purpose polyethylene or polypropylene fibers are used instead of polystyrene fibers, the hygroscopicity is low, but the flexural modulus is low and the creep phenomenon is large. Thermal insulation performance is inferior compared to polystyrene with a rate of 5 mW / m · K or more, but it shows thermal insulation performance about 5 times that of hard polyurethane resin, which was a conventional thermal insulation material, thereby improving coverage by bending. Considering it, there is no obstacle to its adoption.

繊維の状態としては、短繊維のようにポイント繊維集合体で長さが短いと熱伝導率が高くなるため、連続した長繊維(連続した不定の長さの繊維)で平均繊維径が約20μm以下、特に5〜20μmが熱伝導率の観点から好ましい。例えば、繊維の剛さは繊維直径の4乗とヤング率の積に比例することから、長径を1/2にした際に剛さが1/16まで小さくなり、非常に柔らかくなり約5μm以上が好ましい。逆に、繊維径が大きすぎると繊維の接触が線に近くなり接触熱抵抗の低減で熱伝導率が高くなり、約20μm以下が好ましい。   As the state of the fiber, if the length is short as a short fiber and the heat conductivity is high, the continuous fiber (continuous indefinite length fiber) and the average fiber diameter are about 20 μm. Hereinafter, 5 to 20 μm is particularly preferable from the viewpoint of thermal conductivity. For example, the stiffness of the fiber is proportional to the product of the fourth power of the fiber diameter and the Young's modulus. Therefore, when the major axis is halved, the stiffness is reduced to 1/16 and becomes very soft and about 5 μm or more. preferable. On the contrary, if the fiber diameter is too large, the contact of the fiber becomes close to a line, the thermal conductivity is increased by reducing the contact thermal resistance, and is preferably about 20 μm or less.

なお、平均繊維径は走査式電子顕微鏡を用いて、約10本の繊維を含む視野の繊維直径を測定した。さらに、芯材の密度が150kg/m以下では芯材の強度が低下して、熱伝導率が高くなる傾向にある。また、逆に300kg/m以上では重くなり空隙率等の観点から熱伝導率が高くなる。即ち、芯材の密度は軽すぎても重すぎても、断熱性が低下する傾向にあり平均繊維径では、好ましい密度が150〜300kg/mである。なお、芯材の密度は外被材に収容した真空引き後の密度で、真空断熱材を作製した重量から外被材と吸着剤の重量を差し引き後の芯材重量および真空断熱材の体積から密度を算出した。 In addition, the average fiber diameter measured the fiber diameter of the visual field containing about 10 fibers using the scanning electron microscope. Furthermore, when the density of the core material is 150 kg / m 3 or less, the strength of the core material decreases and the thermal conductivity tends to increase. On the contrary, if it is 300 kg / m 3 or more, it becomes heavier and the thermal conductivity becomes higher from the viewpoint of porosity and the like. That is, if the density of the core material is too light or too heavy, the heat insulating property tends to be lowered, and the preferred density is 150 to 300 kg / m 3 at the average fiber diameter. The density of the core material is the density after evacuation accommodated in the jacket material, and the weight of the jacket material and the adsorbent is subtracted from the weight of the vacuum insulation material, and from the weight of the core material and the volume of the vacuum insulation material. Density was calculated.

有機繊維集合体の形成は、樹脂を溶融紡糸で、ノズルから押し出し延伸で直接形成した長繊維ウェブである。例えばポリスチレン繊維は、押出し温度が約200〜320℃で紡糸され、温度が低いと押し出しトルクが増大し、温度が高いとゲル化しやすく繊維化しにくい。長繊維集合体は、サーマルボンドやニードルパンチ等で接着結合されていない芯材が好ましく、配向したウェブが生ずるように形成捕集される。具体的には、メルトブローンでポリスチレン樹脂をノズル先端から押出し、空気の噴射で繊維を延伸してコレクター上に捕集させてウェブを形成する。スパンボンドでは、複数の紡糸ノズル先端から連続的に押出し、空気の噴射でエジェクターから繊維をコレクター上に捕集させて、同様にウェブを形成する。なお、繊維形状としては円形に限らず、略円形状、略Y形状、略楕円形状、略星形状、略多角形状等であってもよく、ポリスチレンは成形収縮率が小さいため、繊維径のバラツキが比較的少ない繊維集合体が提供できる。当然ながら、リサイクル材のポリスチレン樹脂を用いて、上記と同様な長繊維ウェブを単独もしくは併用させても真空断熱材に使用できる。また、ポリスチレン長繊維の真空断熱材をさらに高温化するには、スキン層部等に少し変形温度の高い長繊維(例えばポリカーボネート、ポリサルホン等)を併用させて複合化して使用することも可能である。   The organic fiber aggregate is formed by a long fiber web formed by melt spinning a resin, directly extruding from a nozzle and drawing. For example, polystyrene fibers are spun at an extrusion temperature of about 200 to 320 ° C., and when the temperature is low, the extrusion torque increases. The long fiber aggregate is preferably a core material that is not adhesively bonded by thermal bonding, needle punching, or the like, and is formed and collected so as to produce an oriented web. Specifically, a polystyrene resin is extruded from the tip of a nozzle by a melt blown, fibers are drawn by air injection, and collected on a collector to form a web. In spunbonding, a web is formed in the same manner by continuously extruding from a plurality of spinning nozzle tips and collecting fibers from an ejector on a collector by jetting air. The fiber shape is not limited to a circle, and may be a substantially circular shape, a substantially Y shape, a substantially elliptical shape, a substantially star shape, a substantially polygonal shape, or the like. Can provide a fiber assembly having a relatively small amount. Of course, even if the same long-fiber web as mentioned above is used alone or in combination using a recycled polystyrene resin, it can be used as a vacuum heat insulating material. Moreover, in order to further increase the temperature of the vacuum heat insulating material of polystyrene long fibers, it is also possible to use a long fiber (for example, polycarbonate, polysulfone, etc.) having a slightly high deformation temperature in combination with the skin layer portion or the like. .

この溶融樹脂を紡糸し、繊維化する工程において、以下の操作により繊維表面の状態を変化させることが可能となる。詳しくは、樹脂の吐出量や、紡糸する際に吹き付ける熱風の風量、紡糸ノズルから繊維回収コンベア間の距離を変化させることで、樹脂の延伸性を変化させることができ、繊維積層体の硬さをコントロールできる。樹脂の吐出量が多い場合は、延伸し紡糸する際に樹脂の持つ温度が高くなるために、近接の繊維と融着する傾向になり、繊維径が太くなり、完成する繊維積層体の表面が硬くなる。また、紡糸する際に吹き付ける熱風の風量を落とすと、樹脂の延伸性が少なくなることで切れやすくなり繊維径が太くなるため、完成する繊維積層体の表面が硬くなる。また、紡糸ノズルから繊維回収コンベア間の距離を短くすることで、紡糸から回収までの時間が短くなるので繊維自体の発熱が解消できずに、近接する繊維との融着が起こり繊維径が太くなり、完成する繊維積層体の表面が硬くなる。それぞれ逆の操作をすれば繊維積層体の表面は柔らかくなり、それぞれの状態を組み合わせることで多様な繊維積層体を作製することができる。   In the process of spinning and fiberizing the molten resin, the state of the fiber surface can be changed by the following operation. Specifically, the stretchability of the resin can be changed by changing the amount of resin discharged, the amount of hot air blown when spinning, the distance between the spinning nozzle and the fiber recovery conveyor, and the hardness of the fiber laminate Can be controlled. When the amount of resin discharged is large, the temperature of the resin increases when it is drawn and spun, so it tends to fuse with adjacent fibers, the fiber diameter increases, and the surface of the finished fiber laminate becomes It becomes hard. Further, if the amount of hot air blown at the time of spinning is reduced, the stretchability of the resin is reduced and the fiber diameter is increased because the resin is easily stretched, so that the surface of the finished fiber laminate is hardened. In addition, by shortening the distance between the spinning nozzle and the fiber collection conveyor, the time from spinning to collection is shortened, so the heat generation of the fiber itself cannot be eliminated, and fusion with adjacent fibers occurs and the fiber diameter increases. And the surface of the finished fiber laminate becomes hard. If the operations are reversed, the surface of the fiber laminate becomes soft, and various fiber laminates can be produced by combining the respective states.

外被材は内部に気密部を設ける芯材を覆う材料構成であり、減圧封止で芯材形状を反映する材質が好ましい。例えば、外被材に剛性の高いものを用いると折り曲げが困難になり、曲げ加工後にピンホールが発生する原因となる。従って、外被材としてはラミネートフィルムを袋状とするものが用いられる。衝撃対応の最外層とガスバリア性確保の中間層と、熱融着によって密閉できる最内層が好ましい。最外層にポリアミドフィルムを用いることで耐突き刺し性を向上させ、中間層にアルミニウム蒸着層を有するエチレンービニルアルコール共重合体フィルムを設け、最内層は高密度ポリエチレン、直鎖状低密度ポリエチレン、高密度ポリプロピレンが挙げられ、シール性やケミカルアタック性から高密度ポリエチレンが好ましい。   The jacket material has a material structure that covers the core material provided with an airtight portion therein, and a material that reflects the shape of the core material by vacuum sealing is preferable. For example, if a material with high rigidity is used as the jacket material, it becomes difficult to bend, and this may cause a pinhole after bending. Therefore, as the jacket material, a laminate film having a bag shape is used. The outermost layer corresponding to impact, the intermediate layer ensuring gas barrier properties, and the innermost layer that can be sealed by heat fusion are preferable. The outermost layer uses a polyamide film to improve puncture resistance, and an intermediate layer is provided with an ethylene-vinyl alcohol copolymer film having an aluminum vapor deposition layer. The innermost layer is a high density polyethylene, a linear low density polyethylene, a high A density polypropylene is mentioned, A high density polyethylene is preferable from a sealing performance and chemical attack property.

例えば、具体的には、最外層にポリエチレンテレフタレート、中間層にアルミニウム箔、最内層に高密度ポリエチレンからなるプラスチックラミネートフィルムや最外層にポリエチレンテレフタレート、中間層にアルミニウム蒸着層を有するエチレンービニルアルコール共重合体、最内層に高密度ポリエチレンからなるプラスチックラミネートフィルム等である。なお、本実施形態では芯材を外被材で被って真空減圧した例で説明するが、芯材を内包材で被った後にさらに外被材(外包材)で被って真空減圧してもよい。そして、芯材を内包材で被う場合には、本実施形態ではこの内包材と芯材との摩擦係数に着目するものである(本実施形態に関する以下の説明では、外被材の最内層とそれに接する芯材の摩擦係数に基本的に着目するものである)。   For example, a plastic laminate film composed of polyethylene terephthalate as the outermost layer, aluminum foil as the intermediate layer, high-density polyethylene as the innermost layer, polyethylene terephthalate as the outermost layer, and ethylene-vinyl alcohol having an aluminum vapor deposition layer as the intermediate layer. Polymer, plastic laminate film made of high-density polyethylene in the innermost layer, and the like. In addition, although this embodiment demonstrates the example which covered the core material with the jacket material and vacuum-depressurized, after covering a core material with the inner packaging material, you may cover with an outer jacket material (outer packaging material), and may carry out vacuum pressure reduction. . And when covering a core material with an inner packaging material, in this embodiment, it pays attention to the friction coefficient of this inner packaging material and a core material (in the following description regarding this embodiment, the innermost layer of an outer jacket material) And the friction coefficient of the core material that touches it).

真空断熱材の信頼性向上に吸着剤を用いる。吸着剤は、二酸化炭素、酸素、窒素等のガス、水蒸気を吸収するものであればよく、ドーソナイト、ハイドロタルサイト、金属水酸化物の吸着剤、あるいはモレキュラーシーブス、シリカゲル、酸化カルシウム、ゼオライト、疎水性ゼオライト、活性炭、水酸化カリウム、水酸化リチウムの吸収剤を使用する。その際、吸着剤の突起による突き刺しで外被材にピンホールが発生し易いため、ポリスチレン長繊維に挟めて用いることで外被材のピンホール発生が抑制でき好ましい。   Adsorbent is used to improve the reliability of vacuum insulation. The adsorbent is not limited as long as it absorbs gas such as carbon dioxide, oxygen, nitrogen, and water vapor, and adsorbent of dosonite, hydrotalcite, metal hydroxide, molecular sieves, silica gel, calcium oxide, zeolite, hydrophobic Use absorbents of water-soluble zeolite, activated carbon, potassium hydroxide and lithium hydroxide. At that time, pinholes are likely to be generated in the jacket material by piercing with the adsorbent protrusions. Therefore, pinhole generation in the jacket material is preferably suppressed by sandwiching it with polystyrene long fibers.

上述した真空断熱材は、断熱箱体を有する冷蔵庫等に使用できる。冷蔵庫等は外箱と内箱とで空間を作製し、その空間内に発泡樹脂フォームを充填されているものであり、発泡樹脂フォームを充填する空間に真空断熱材を挿入できる。真空断熱材と発泡樹脂の挿入方法は、あらかじめ内箱と外箱とで形成した空間に真空断熱材を設置しておき、その後、発泡樹脂フォームを注入して一体成型する方法、あるいは真空断熱材と発泡樹脂フォームをあらかじめ一体成型した真空断熱材を作製しておき、その真空断熱材を内箱あるいは外箱に貼り付けまたは両者で挟持する方法がある。これらの方法は、断熱性能を必要とする物品に応じて適宜使用される。   The vacuum heat insulating material mentioned above can be used for the refrigerator etc. which have a heat insulation box. A refrigerator or the like has a space formed by an outer box and an inner box and is filled with a foamed resin foam, and a vacuum heat insulating material can be inserted into the space filled with the foamed resin foam. The method for inserting the vacuum heat insulating material and the foamed resin is a method in which the vacuum heat insulating material is previously installed in the space formed by the inner box and the outer box, and then the foamed resin foam is injected and integrally molded, or the vacuum heat insulating material There is a method in which a vacuum heat insulating material in which a foamed resin foam is integrally molded in advance is produced and the vacuum heat insulating material is attached to an inner box or an outer box or sandwiched between both. These methods are appropriately used depending on an article that requires heat insulation performance.

上述の真空断熱材は保温・保冷の必要な各製品に適用できる。例示すれば、冷蔵庫、車両、建築物建材、自動車、医療用機器等である。特に、熱交換部を含み断熱が必要な製品全般に有効である。冷蔵庫へ本実施形態の真空断熱材を適用することにより保温・保冷機能を向上させ、熱漏洩量の低減および省エネルギー化が期待できる。冷蔵庫等には、家庭用や業務用の冷蔵・冷凍庫の他に、自動販売機、商品陳列棚、保冷庫、クーラーボックス等が含まれる。また、車両に適用することにより、省スペース化の真空断熱材の設置により車内空間が拡大され、十分な断熱効果を持たせて結露等の課題に対して期待できる。   The above vacuum heat insulating material can be applied to each product that needs to be kept warm. Examples include refrigerators, vehicles, building materials, automobiles, medical equipment, and the like. In particular, it is effective for all products that include a heat exchange section and require heat insulation. By applying the vacuum heat insulating material of the present embodiment to the refrigerator, the heat insulation / cooling function can be improved, and a reduction in heat leakage and energy saving can be expected. Refrigerators and the like include vending machines, product display shelves, refrigerators, cooler boxes and the like in addition to refrigerators and freezers for home use and commercial use. Moreover, by applying it to a vehicle, the space inside the vehicle can be expanded by installing a space-saving vacuum heat insulating material, and a sufficient heat insulating effect can be provided to expect problems such as condensation.

次に、本発明の実施形態に係る真空断熱材およびこの真空断熱材を挿入した冷蔵庫の構造と作製について、図面を参照して説明する。   Next, the structure and production of a vacuum heat insulating material according to an embodiment of the present invention and a refrigerator in which the vacuum heat insulating material is inserted will be described with reference to the drawings.

図面において、1は真空断熱材、2は外被材、3は樹脂繊維の芯材、3aは芯材第1層、3bは芯材第2層、4は吸着剤、5はグラスウール又はポリエステル繊維、6は従来真空断熱材、7は断熱箱体、8は硬質ポリウレタンフォーム、9は箱体、10は冷蔵庫、11は冷蔵庫内箱、12は冷蔵庫外箱、13は治具、14は曲げ工具、15は真空断熱材曲げ部分の最外層、をそれぞれ表す。   In the drawings, 1 is a vacuum heat insulating material, 2 is a jacket material, 3 is a core material of resin fiber, 3a is a first core material layer, 3b is a second core material layer, 4 is an adsorbent, 5 is glass wool or polyester fiber , 6 is a conventional vacuum heat insulating material, 7 is a heat insulating box, 8 is a rigid polyurethane foam, 9 is a box, 10 is a refrigerator, 11 is a refrigerator inner box, 12 is a refrigerator outer box, 13 is a jig, and 14 is a bending tool. , 15 represents the outermost layer of the bent portion of the vacuum heat insulating material.

図1に、本実施形態の真空断熱材1の断面模式図を示す。この真空断熱材1は、ポリスチレン長繊維のコア材3に吸着剤4と共に外被材2で減圧封止される構成のものである。この真空断熱材1によれば、樹脂繊維の芯材3を用いて、断熱性能と環境負荷が両立できる熱伝導率の低い平面形状の真空断熱材が得られる。この芯材3は複数の積層体で構成され、芯材3aと芯材3bはそれぞれ摩擦係数が異なり、0.1以上で1.0未満の差がある樹脂繊維で構成される。その結果、平面形状や曲げ形状の真空断熱材を組み合わせて、箱体並びに冷蔵庫に使用できる優れた真空断熱材を提供することができる。   In FIG. 1, the cross-sectional schematic diagram of the vacuum heat insulating material 1 of this embodiment is shown. The vacuum heat insulating material 1 has a configuration in which a core material 3 of polystyrene long fibers is sealed under reduced pressure with an outer covering material 2 together with an adsorbent 4. According to this vacuum heat insulating material 1, a flat vacuum heat insulating material having a low thermal conductivity that can achieve both heat insulating performance and environmental load can be obtained by using the resin fiber core material 3. The core material 3 is composed of a plurality of laminated bodies, and the core material 3a and the core material 3b are composed of resin fibers having different friction coefficients and having a difference of 0.1 or more and less than 1.0. As a result, it is possible to provide an excellent vacuum heat insulating material that can be used for a box and a refrigerator by combining a vacuum heat insulating material having a planar shape or a bent shape.

これに対して、図2に従来の真空断熱材6の断面模式図を示す。グラスウールの芯材5を吸着剤4と共に外被材2で減圧封止する構成の真空断熱材である。従来の真空断熱材6は、グラスウールでは断熱性が良いものの環境負荷が劣り、断熱性能と環境負荷を両立される芯材が得られず、芯材5の折り曲げ性もグラスウールでは難しく、無理に曲げると繊維の切断や曲げ部で厚み減少や外被材2の外側部分の薄膜化で起こるピンホールが生じ易くなり、真空断熱材への断熱性能を悪化させる。   On the other hand, the cross-sectional schematic diagram of the conventional vacuum heat insulating material 6 is shown in FIG. It is a vacuum heat insulating material configured to seal the glass wool core material 5 together with the adsorbent 4 with the jacket material 2 under reduced pressure. Although the conventional vacuum heat insulating material 6 has good heat insulating properties with glass wool, the environmental load is inferior, and a core material that achieves both heat insulating performance and environmental load cannot be obtained. In addition, pinholes that occur due to thickness reduction or thinning of the outer portion of the jacket material 2 are likely to occur at the cut and bent portions of the fibers, and the heat insulation performance to the vacuum heat insulating material is degraded.

図3に本実施形態に係る真空断熱材1を備えた断熱箱体7の斜視模式図を示す。この断熱箱体7は、鉄板をプレス成型した箱体9の内面側の一部に、樹脂繊維を入れた真空断熱材1を挿入し、さらに、空隙部分に硬質ポリウレタンフォーム8を発泡充填した構成のものである。真空断熱材を作製する際には、変形部の芯材3の一部を折り曲げた曲げ形状の真空断熱材を使用している。   The perspective schematic diagram of the heat insulation box 7 provided with the vacuum heat insulating material 1 which concerns on FIG. 3 at this embodiment is shown. This heat insulation box 7 has a structure in which the vacuum heat insulating material 1 containing resin fibers is inserted into a part of the inner surface side of a box 9 obtained by press-molding an iron plate, and the rigid polyurethane foam 8 is foam-filled in the gap portion. belongs to. When producing the vacuum heat insulating material, a bent heat insulating material obtained by bending a part of the core material 3 of the deformed portion is used.

本実施形態に係る真空断熱材は芯材に用いた樹脂繊維の摩擦係数を変えて作製し、折り曲げ性、熱伝導率の悪化率を確認した。それらの結果を図6に示す。図6に示す従来例、比較例1,2、実施例1〜5は、以下に詳述するように、その芯材の構成と摩擦係数を具体的に例示して、折り曲げた後における、芯材の肉厚減少率、外被材最外層の歪み、及び熱伝導率劣化度等を対比比較したものである。   The vacuum heat insulating material which concerns on this embodiment was produced by changing the friction coefficient of the resin fiber used for the core material, and confirmed the bending rate and the deterioration rate of thermal conductivity. The results are shown in FIG. The conventional example, comparative examples 1 and 2 and examples 1 to 5 shown in FIG. 6 exemplify the configuration of the core material and the coefficient of friction, as described in detail below. This is a comparison of the thickness reduction rate of the material, the distortion of the outermost layer of the jacket material, the degree of deterioration in thermal conductivity, and the like.

折り曲げ性の確認には、図5に示すような曲げ試験を実施し判断した。図5に示すように、真空断熱材1を治具13上に置き、曲げ工具14により曲げ加工を行う。このとき、曲げ部分の最外層15における歪を歪ゲージで測定すると同時に、曲げ加工前後の肉厚の増減を測定した。   To confirm the bendability, a bending test as shown in FIG. As shown in FIG. 5, the vacuum heat insulating material 1 is placed on a jig 13, and bending is performed with a bending tool 14. At this time, the strain in the outermost layer 15 in the bent portion was measured with a strain gauge, and at the same time, the increase or decrease in the thickness before and after the bending was measured.

曲げ試験の条件は、クロスヘッドスピード4.5mm/min、曲げスパン100mm、治具13、曲げ工具14の先端Rは10mmであり、曲げ試験片の形状は150×100×10mmである。曲げ試験の結果を図6に示す。なお、図6において、従来例、比較例及び実施例において、外被材とこれに接する積層体との摩擦係数は一定である。   The bending test conditions were a crosshead speed of 4.5 mm / min, a bending span of 100 mm, the jig 13 and the tip of the bending tool 14 were 10 mm, and the shape of the bending test piece was 150 × 100 × 10 mm. The result of the bending test is shown in FIG. In FIG. 6, in the conventional example, the comparative example, and the example, the friction coefficient between the jacket material and the laminated body in contact with the jacket material is constant.

図6に示す曲げ試験結果によると、真空断熱材の曲げ試験における課題は、最外層における複合樹脂フィルムの歪および肉厚の減少であることが分る。ここで、外被材2に歪が発生すると、真空度がリークするという課題が発生し、肉厚の減少率が大きいと、熱が漏洩し易くなるという課題が発生する。 According to the bending test result shown in FIG. 6, it can be seen that the problem in the bending test of the vacuum heat insulating material is a reduction in the distortion and thickness of the composite resin film in the outermost layer. Here, when distortion occurs in the jacket material 2, a problem that the degree of vacuum leaks occurs, and when the reduction rate of the wall thickness is large, a problem that heat easily leaks occurs.

以上説明した構成を備えた真空断熱材において、本発明の実施形態の主旨は、折り曲げ加工され得る真空断熱材における外被材とこれに接する繊維積層体との摩擦係数μ2を小さくしてこれらの間で滑り性を良くすることに加えて、芯材同士の結着をより強固(摩擦係数が異なる材料を積層する)にして(芯材同士の摩擦係数μ1)外被材と芯材間の摩擦係数より大きくすることにより(μ1>μ2)、相対的に外被材と芯材間の滑りを良くさせることにある。すなわち、μ1>μ2とすることで、芯材同士の摩擦係数を大きくして滑らないようにし、相対的に芯材と外被材間を滑らせることである。   In the vacuum heat insulating material having the above-described configuration, the gist of the embodiment of the present invention is to reduce the friction coefficient μ2 between the jacket material in the vacuum heat insulating material that can be bent and the fiber laminate in contact with the outer cover material. In addition to improving the slidability between the core materials, the core material is more strongly bonded (stacking materials having different friction coefficients) (coefficient of friction between core materials μ1) between the jacket material and the core material. By making it larger than the friction coefficient (μ1> μ2), it is to relatively improve the slip between the jacket material and the core material. That is, by making μ1> μ2, the friction coefficient between the core materials is increased so as not to slip, and the core material and the jacket material are relatively slid.

また、外被材とこれに接する積層体との摩擦係数を小さくする方法として、芯材作製時の表面状態を操作することで行うが、具体的には、樹脂を紡糸して繊維化する工程において、樹脂の吐出量・紡糸する際に吹き付ける熱風の風量・紡糸ノズルから繊維回収コンベア間の距離を変化させることで、樹脂の延伸性を変化させることができ、繊維積層体の硬さをコントロールできる。このようにして、芯材表面の状態を操作できることになる。   In addition, as a method of reducing the coefficient of friction between the jacket material and the laminated body in contact with it, it is performed by manipulating the surface state at the time of producing the core material. Specifically, the step of spinning the resin into fibers The amount of resin discharged, the amount of hot air blown during spinning, and the distance between the spinning nozzle and the fiber recovery conveyor can be changed to change the stretchability of the resin and control the hardness of the fiber laminate. it can. In this way, the state of the core surface can be manipulated.

次に、本実施形態に係る真空断熱材の複数の実施例について、従来例や比較例と対比しながら、以下具体的に説明する。   Next, a plurality of examples of the vacuum heat insulating material according to the present embodiment will be specifically described below in comparison with conventional examples and comparative examples.

「従来例」
まず、従来例から説明する。バインダーを含まないグラスウールを積層した芯材をガスバリア性フィルムからなる外被材の中に重ねて入れ、ガス吸着の吸着剤(モレキュラーシーブス13X)を挟めて、真空包装機にて真空封止した。このときに用いたグラスウール芯材の摩擦係数はそれぞれの層においていずれも同一材料であるため、同一である(摩擦係数差は0である。図2を参照)。得られた真空断熱材を用いて図5に示す曲げ試験を行ったところ、芯材の肉厚の減少率35.9%、外被材の最外層の歪みが17.1%となった。
"Conventional example"
First, the conventional example will be described. A core material laminated with glass wool that does not contain a binder was placed in an outer cover material made of a gas barrier film, sandwiched with an adsorbent for gas adsorption (molecular sieves 13X), and vacuum sealed with a vacuum packaging machine. The friction coefficient of the glass wool core material used at this time is the same because all the layers are made of the same material (the friction coefficient difference is 0, see FIG. 2). When the bending test shown in FIG. 5 was performed using the obtained vacuum heat insulating material, the reduction rate of the thickness of the core material was 35.9%, and the distortion of the outermost layer of the jacket material was 17.1%.

また、真空断熱材の熱伝導率は、英弘精機(株)製のAUTO−Λを用いて10℃で測定した。真空断熱材の曲げ加工前後で測定を行い、曲げ加工後の測定は、真空断熱材を70℃の恒温槽中に30日間放置し加速劣化させた後測定した結果である。以上の曲げ加工前後での熱伝導率の劣化度は68%であった。   Further, the thermal conductivity of the vacuum heat insulating material was measured at 10 ° C. using an AUTO-Λ manufactured by Eihiro Seiki Co., Ltd. The measurement was performed before and after the bending of the vacuum heat insulating material, and the measurement after the bending was the result of measurement after leaving the vacuum heat insulating material in a constant temperature bath at 70 ° C. for 30 days to accelerate deterioration. The degree of deterioration of the thermal conductivity before and after the bending process was 68%.

以上の測定結果により、従来の真空断熱材に曲げ加工を施した場合、真空断熱材の断熱性能(熱伝導率)の経時劣化に支障があることが分かった。   From the above measurement results, it was found that when the conventional vacuum heat insulating material was subjected to bending, there was an obstacle to the deterioration over time of the heat insulating performance (thermal conductivity) of the vacuum heat insulating material.

「実施例1」
本実施例1の平板形状の真空断熱材は、以下のように作製した。汎用のポリスチレン樹脂を用い、スパンボンド紡糸でポリスチレンを複数のノズル先端を通しながら、空気噴射で制御されたエジェクターから繊維をコレクター上に捕集させて、略円形状の長繊維ウェブを形成した。このとき、異なる2条件で紡糸を実施し、表面状態を変えることにより、芯材の第1層と第2層を形成するポリスチレン樹脂繊維の摩擦係数差を0.2とした。このように作製した芯材をガスバリア性フィルムからなる外被材の中に重ねて入れ、ガス吸着の吸着剤(モレキュラーシーブス13X)を挟めて、真空包装機にて真空封止した。得られた真空断熱材を用いて図5に示す曲げ試験を行ったところ、芯材の肉厚の減少率22.9%、外被材の最外層の歪みが15.4%となった。
"Example 1"
The flat plate-shaped vacuum heat insulating material of Example 1 was manufactured as follows. A general-purpose polystyrene resin was used, and while a polystyrene was passed through a plurality of nozzle tips by spunbond spinning, fibers were collected on a collector from an ejector controlled by air injection to form a substantially circular long fiber web. At this time, spinning was carried out under two different conditions, and the surface state was changed, so that the friction coefficient difference between the polystyrene resin fibers forming the first layer and the second layer of the core material was 0.2. The core material produced in this manner was placed in an outer cover material made of a gas barrier film, sandwiched with an adsorbent (molecular sieves 13X) for gas adsorption, and vacuum sealed with a vacuum packaging machine. When the bending test shown in FIG. 5 was performed using the obtained vacuum heat insulating material, the thickness reduction rate of the core material was 22.9%, and the strain of the outermost layer of the outer cover material was 15.4%.

また、真空断熱材の熱伝導率は、英弘精機(株)製のAUTO−Λを用いて10℃で測定した。真空断熱材の曲げ加工前後で測定を行い、曲げ加工後の測定は、真空断熱材を70℃の恒温槽中に30日間放置し加速劣化させた後測定した結果である。以上の曲げ加工前後での熱伝導率の劣化度は51%であった。   Further, the thermal conductivity of the vacuum heat insulating material was measured at 10 ° C. using an AUTO-Λ manufactured by Eihiro Seiki Co., Ltd. The measurement was performed before and after the bending of the vacuum heat insulating material, and the measurement after the bending was the result of measurement after leaving the vacuum heat insulating material in a constant temperature bath at 70 ° C. for 30 days to accelerate deterioration. The degree of deterioration of the thermal conductivity before and after the bending process was 51%.

このことから、芯材を形成するそれぞれの層の摩擦係数を大きくすることにより、真空断熱材を曲げた際に、芯材の外被材への滑り性を良くして、外被材への応力集中を緩和し、外被材最外層の歪みを緩和できた(重なった芯材同士の滑り難さを作り出すことによって、外被材の最内層とこれに接する芯材との間への応力集中を回避でき、この部位での摩擦力を小さくできて滑り易さが発生し外被材の歪みを低減できる)。そのことにより、真空断熱材への曲げ加工後の断熱性能の劣化低減も図ることができる。   From this, by increasing the coefficient of friction of each layer forming the core material, when the vacuum heat insulating material is bent, the sliding property of the core material to the outer cover material is improved, and Stress concentration was reduced and the outermost layer of the jacket material was less strained. (Stress between the innermost layer of the jacket material and the core material in contact with it was created by creating the difficulty of slipping between the overlapping core materials. Concentration can be avoided, the frictional force at this part can be reduced, slipperiness can be generated, and distortion of the jacket material can be reduced). As a result, it is possible to reduce the deterioration of the heat insulating performance after bending the vacuum heat insulating material.

「実施例2」
本実施例2の平板形状の真空断熱材は、以下のように作製した。汎用のポリスチレン樹脂を用い、メルトブロー紡糸でポリスチレンを複数のノズル先端を通しながら、熱風噴射により繊維化した樹脂繊維をコレクター上に捕集させて、繊維積層体を形成した。この時、異なる2条件で紡糸を実施し、表面状態を変えることにより、芯材の第1層と第2層を形成するポリスチレン樹脂繊維の摩擦係数差を0.6とした。このように作製した芯材をガスバリア性フィルムからなる外被材の中に重ねて入れ、ガス吸着の吸着剤(モレキュラーシーブス13X)を挟めて、真空包装機にて真空封止した。得られた真空断熱材を用いて図5に示す曲げ試験を行ったところ、芯材の肉厚の減少率20.7%、外被材の最外層の歪みが13.8%となった。
"Example 2"
The flat plate-shaped vacuum heat insulating material of Example 2 was manufactured as follows. A general-purpose polystyrene resin was used, and resin fibers fibrillated by hot air injection were collected on a collector while polystyrene was passed through a plurality of nozzle tips by melt blow spinning to form a fiber laminate. At this time, spinning was performed under two different conditions, and the surface state was changed, so that the friction coefficient difference between the polystyrene resin fibers forming the first layer and the second layer of the core material was 0.6. The core material produced in this manner was placed in an outer cover material made of a gas barrier film, sandwiched with an adsorbent (molecular sieves 13X) for gas adsorption, and vacuum sealed with a vacuum packaging machine. When the bending test shown in FIG. 5 was performed using the obtained vacuum heat insulating material, the reduction rate of the thickness of the core material was 20.7%, and the distortion of the outermost layer of the jacket material was 13.8%.

また、真空断熱材の熱伝導率は、英弘精機(株)製のAUTO−Λを用いて10℃で測定した。真空断熱材の曲げ加工前後で測定を行い、曲げ加工後の測定は、真空断熱材を70℃の恒温槽中に30日間放置し加速劣化させた後測定した結果である。以上の曲げ加工前後での熱伝導率の劣化度は43%であった。   Further, the thermal conductivity of the vacuum heat insulating material was measured at 10 ° C. using an AUTO-Λ manufactured by Eihiro Seiki Co., Ltd. The measurement was performed before and after the bending of the vacuum heat insulating material, and the measurement after the bending was the result of measurement after leaving the vacuum heat insulating material in a constant temperature bath at 70 ° C. for 30 days to accelerate deterioration. The degree of deterioration of the thermal conductivity before and after the bending process was 43%.

このことから、芯材を形成するそれぞれの層の摩擦係数を大きくすることにより、真空断熱材を曲げた際に、芯材の外被材への滑り性を良くして、外被材への応力集中を緩和し、外被材最外層の歪みを緩和できた(重なった芯材同士の滑り難さを作り出すことによって、外被材の最内層とこれに接する芯材との間への応力集中を回避でき、この部位での摩擦力を小さくできて滑り易さが発生し外被材の歪みを低減できる)。そのことにより、真空断熱材への曲げ加工後の断熱性能の劣化低減も図ることができる。   From this, by increasing the coefficient of friction of each layer forming the core material, when the vacuum heat insulating material is bent, the sliding property of the core material to the outer cover material is improved, and Stress concentration was reduced and the outermost layer of the jacket material was less strained. (Stress between the innermost layer of the jacket material and the core material in contact with it was created by creating the difficulty of slipping between the overlapping core materials. Concentration can be avoided, the frictional force at this part can be reduced, slipperiness can be generated, and distortion of the jacket material can be reduced). As a result, it is possible to reduce the deterioration of the heat insulating performance after bending the vacuum heat insulating material.

「実施例3」
本実施例3の平板形状の真空断熱材は、以下のように作製した。汎用のポリスチレン樹脂とポリプロピレン樹脂を用い、メルトブロー紡糸でポリスチレン及びポリプロピレンを複数のノズル先端を通しながら、熱風噴射により繊維化した樹脂繊維をコレクター上に捕集させて、繊維積層体をそれぞれ形成した。このとき、ポリプロピレンで作製した芯材第1層とポリスチレンで作製した芯材第2層の摩擦係数差は0.4であった。このように作製した芯材をガスバリア性フィルムからなる外被材の中に重ねて入れ、ガス吸着の吸着剤(モレキュラーシーブス13X)を挟めて、真空包装機にて真空封止した。得られた真空断熱材を用いて図5に示す曲げ試験を行ったところ、芯材の肉厚の減少率21.8%、外被材の最外層の歪みが14.7%となった。
"Example 3"
The flat plate-shaped vacuum heat insulating material of this Example 3 was produced as follows. Using general-purpose polystyrene resin and polypropylene resin, resin fibers fibrillated by hot air injection were collected on a collector while passing polystyrene and polypropylene through the tip of a plurality of nozzles by melt blow spinning to form fiber laminates. At this time, the friction coefficient difference between the first core material layer made of polypropylene and the second core material layer made of polystyrene was 0.4. The core material produced in this manner was placed in an outer cover material made of a gas barrier film, sandwiched with an adsorbent (molecular sieves 13X) for gas adsorption, and vacuum sealed with a vacuum packaging machine. When the bending test shown in FIG. 5 was performed using the obtained vacuum heat insulating material, the thickness reduction rate of the core material was 21.8%, and the distortion of the outermost layer of the outer cover material was 14.7%.

また、真空断熱材の熱伝導率は、英弘精機(株)製のAUTO−Λを用いて10℃で測定した。真空断熱材の曲げ加工前後で測定を行い、曲げ加工後の測定は、真空断熱材を70℃の恒温槽中に30日間放置し加速劣化させた後測定した結果である。以上の曲げ加工前後での熱伝導率の劣化度は46%であった。   Further, the thermal conductivity of the vacuum heat insulating material was measured at 10 ° C. using an AUTO-Λ manufactured by Eihiro Seiki Co., Ltd. The measurement was performed before and after the bending of the vacuum heat insulating material, and the measurement after the bending was the result of measurement after leaving the vacuum heat insulating material in a constant temperature bath at 70 ° C. for 30 days to accelerate deterioration. The degree of deterioration of the thermal conductivity before and after the bending process was 46%.

このことから、芯材を形成するそれぞれの層の摩擦係数を大きくすることにより、真空断熱材を曲げた際に、実施例1及び2と同様に、芯材の外被材に対する滑り性を向上させ、外被材への応力集中を緩和し、外被材最外層の歪みを緩和できた。そのことにより、真空断熱材への曲げ加工後の断熱性能の劣化低減も図ることができる。   From this, by increasing the friction coefficient of each layer forming the core material, when the vacuum heat insulating material is bent, the slipping property of the core material with respect to the jacket material is improved in the same manner as in Examples 1 and 2. The stress concentration on the jacket material was alleviated, and the distortion of the outermost layer of the jacket material was alleviated. As a result, it is possible to reduce the deterioration of the heat insulating performance after bending the vacuum heat insulating material.

「実施例4」
本実施例4の平板形状の真空断熱材は、以下のように作製した。汎用のポリスチレン樹脂を用い、メルトブロー紡糸で形成した繊維積層体を芯材第1層とし、芯材第2層をバインダーを含まないグラスウール積層体とした。この時、ポリスチレンで作製した芯材第1層とグラスウールで作製した芯材第2層の摩擦係数差は0.7であった。このように作製した芯材をガスバリア性フィルムからなる外被材の中に重ねて入れ、ガス吸着の吸着剤(モレキュラーシーブス13X)を挟めて、真空包装機にて真空封止した。得られた真空断熱材を用いて図5に示す曲げ試験を行ったところ、芯材の肉厚の減少率23.6%、外被材の最外層の歪みが12.5%となった。
Example 4
The flat plate-shaped vacuum heat insulating material of the present Example 4 was produced as follows. A fiber laminate formed by melt blow spinning using a general-purpose polystyrene resin was used as the first core material layer, and the second core material layer was a glass wool laminate containing no binder. At this time, the friction coefficient difference between the first core material layer made of polystyrene and the second core material layer made of glass wool was 0.7. The core material produced in this manner was placed in an outer cover material made of a gas barrier film, sandwiched with an adsorbent (molecular sieves 13X) for gas adsorption, and vacuum sealed with a vacuum packaging machine. When the bending test shown in FIG. 5 was performed using the obtained vacuum heat insulating material, the thickness reduction rate of the core material was 23.6%, and the distortion of the outermost layer of the jacket material was 12.5%.

また、真空断熱材の熱伝導率は、英弘精機(株)製のAUTO−Λを用いて10℃で測定した。真空断熱材の曲げ加工前後で測定を行い、曲げ加工後の測定は、真空断熱材を70℃の恒温槽中に30日間放置し加速劣化させた後測定した結果である。以上の曲げ加工前後での熱伝導率の劣化度は38%であった。   Further, the thermal conductivity of the vacuum heat insulating material was measured at 10 ° C. using an AUTO-Λ manufactured by Eihiro Seiki Co., Ltd. The measurement was performed before and after the bending of the vacuum heat insulating material, and the measurement after the bending was the result of measurement after leaving the vacuum heat insulating material in a constant temperature bath at 70 ° C. for 30 days to accelerate deterioration. The degree of deterioration of the thermal conductivity before and after the bending process was 38%.

このことから、芯材を形成するそれぞれの層の摩擦係数を大きくすることにより、真空断熱材を曲げた際に、実施例1〜3と同様に、芯材の外被材に対する滑り性を向上させ、外被材への応力集中を緩和し、外被材最外層の歪みを緩和できた。そのことにより、真空断熱材への曲げ加工後の断熱性能の劣化低減も図ることができる。   From this, by increasing the coefficient of friction of each layer forming the core material, when the vacuum heat insulating material is bent, the slipping property of the core material with respect to the jacket material is improved in the same manner as in Examples 1-3. The stress concentration on the jacket material was alleviated, and the distortion of the outermost layer of the jacket material was alleviated. As a result, it is possible to reduce the deterioration of the heat insulating performance after bending the vacuum heat insulating material.

「実施例5」
本実施例5の平板形状の真空断熱材は、以下のように作製した。汎用のポリスチレン樹脂とポリプロピレン樹脂を用い、メルトブロー紡糸でポリスチレン及びポリプロピレンを複数のノズル先端を通しながら、熱風噴射により繊維化した樹脂繊維をコレクター上に捕集させて、繊維積層体をそれぞれ形成した。この時、ポリプロピレンで作製した芯材第1層とポリスチレンで作製した芯材第2層の摩擦係数差は0.4とし、第1層とは異なる紡糸条件で作製したポリプロピレンで作製した芯材第3層と芯材第2層の摩擦係数差は0.6とした。このように作製した芯材をガスバリア性フィルムからなる外被材の中に重ねて入れ、ガス吸着の吸着剤(モレキュラーシーブス13X)を挟めて、真空包装機にて真空封止した。得られた真空断熱材を用いて図5に示す曲げ試験を行ったところ、芯材の肉厚の減少率21.8%、外被材の最外層の歪みが12.9%となった。
"Example 5"
The flat plate-shaped vacuum heat insulating material of Example 5 was produced as follows. Using general-purpose polystyrene resin and polypropylene resin, resin fibers fibrillated by hot air injection were collected on a collector while passing polystyrene and polypropylene through the tip of a plurality of nozzles by melt blow spinning to form fiber laminates. At this time, the friction coefficient difference between the core material first layer made of polypropylene and the core material second layer made of polystyrene is 0.4, and the core material made of polypropylene made under a spinning condition different from that of the first layer is used. The friction coefficient difference between the three layers and the second core material layer was 0.6. The core material produced in this manner was placed in an outer cover material made of a gas barrier film, sandwiched with an adsorbent (molecular sieves 13X) for gas adsorption, and vacuum sealed with a vacuum packaging machine. When the bending test shown in FIG. 5 was performed using the obtained vacuum heat insulating material, the thickness reduction rate of the core material was 21.8%, and the strain of the outermost layer of the jacket material was 12.9%.

また、真空断熱材の熱伝導率は、英弘精機(株)製のAUTO−Λを用いて10℃で測定した。真空断熱材の曲げ加工前後で測定を行い、曲げ加工後の測定は、真空断熱材を70℃の恒温槽中に30日間放置し加速劣化させた後測定した結果である。以上の曲げ加工前後での熱伝導率の劣化度は40%であった。   Further, the thermal conductivity of the vacuum heat insulating material was measured at 10 ° C. using an AUTO-Λ manufactured by Eihiro Seiki Co., Ltd. The measurement was performed before and after the bending of the vacuum heat insulating material, and the measurement after the bending was the result of measurement after leaving the vacuum heat insulating material in a constant temperature bath at 70 ° C. for 30 days to accelerate deterioration. The degree of deterioration of the thermal conductivity before and after the bending process was 40%.

このことから、芯材を形成するそれぞれの層の摩擦係数を大きくすることにより、真空断熱材を曲げた際に、芯材の外被材に対する滑り性を向上させ、外被材への応力集中を緩和し、外被材最外層の歪みを緩和できた。そのことにより、真空断熱材への曲げ加工後の断熱性能の劣化低減も図ることができる。   From this, by increasing the coefficient of friction of each layer that forms the core material, when the vacuum heat insulating material is bent, the sliding property of the core material to the outer cover material is improved, and stress concentration on the outer cover material is improved. And the distortion of the outermost layer of the jacket material was alleviated. As a result, it is possible to reduce the deterioration of the heat insulating performance after bending the vacuum heat insulating material.

「比較例1」
本実施例1〜5と対比すべき比較例1の平板形状の真空断熱材は、以下のように作製した。汎用のポリスチレン樹脂を用い、メルトブロー紡糸でポリスチレンを複数のノズル先端を通しながら、熱風噴射により繊維化した樹脂繊維をコレクター上に捕集させて、繊維積層体を形成した。このとき、異なる2条件で紡糸を実施し、表面状態を変えることにより、芯材第1層と第2層を形成するポリスチレン樹脂繊維の摩擦係数差を0.05とした。このように作製した芯材をガスバリア性フィルムからなる外被材の中に重ねて入れ、ガス吸着の吸着剤(モレキュラーシーブス13X)を挟めて、真空包装機にて真空封止した。得られた真空断熱材を用いて図5に示す曲げ試験を行ったところ、芯材の肉厚の減少率26.7%、外被材の最外層の歪みが17.3%となった。
“Comparative Example 1”
The flat-plate-shaped vacuum heat insulating material of the comparative example 1 which should be contrasted with the present Examples 1-5 was produced as follows. A general-purpose polystyrene resin was used, and resin fibers fibrillated by hot air injection were collected on a collector while polystyrene was passed through a plurality of nozzle tips by melt blow spinning to form a fiber laminate. At this time, spinning was performed under two different conditions, and the surface state was changed, so that the difference in friction coefficient between the polystyrene resin fibers forming the core first layer and the second layer was 0.05. The core material produced in this manner was placed in an outer cover material made of a gas barrier film, sandwiched with an adsorbent (molecular sieves 13X) for gas adsorption, and vacuum sealed with a vacuum packaging machine. When the bending test shown in FIG. 5 was performed using the obtained vacuum heat insulating material, the thickness reduction rate of the core material was 26.7%, and the distortion of the outermost layer of the jacket material was 17.3%.

また、真空断熱材の熱伝導率は、英弘精機(株)製のAUTO−Λを用いて10℃で測定した。真空断熱材の曲げ加工前後で測定を行い、曲げ加工後の測定は、真空断熱材を70℃の恒温槽中に30日間放置し加速劣化させた後測定した結果である。以上の曲げ加工前後での熱伝導率の劣化度は70%であった。   Further, the thermal conductivity of the vacuum heat insulating material was measured at 10 ° C. using an AUTO-Λ manufactured by Eihiro Seiki Co., Ltd. The measurement was performed before and after the bending of the vacuum heat insulating material, and the measurement after the bending was the result of measurement after leaving the vacuum heat insulating material in a constant temperature bath at 70 ° C. for 30 days to accelerate deterioration. The degree of deterioration of the thermal conductivity before and after the bending process was 70%.

以上より、摩擦係数差が少ない条件においては、従来のグラスウールを芯材とした際の曲げ加工と熱伝導率の劣化度は大差無かった。   From the above, under the condition where the difference in friction coefficient is small, the degree of deterioration of the bending process and the thermal conductivity when using the conventional glass wool as the core material was not significantly different.

「比較例2」
比較例2の平板形状の真空断熱材は、以下のように作製した。汎用のポリスチレン樹脂を用い、メルトブロー紡糸でポリスチレンを複数のノズル先端を通しながら、熱風噴射により繊維化した樹脂繊維をコレクター上に捕集させて、繊維積層体を形成した。このとき、異なる2条件で紡糸を実施し、表面状態を変えることにより、芯材第1層と第2層を形成するポリスチレン樹脂繊維の摩擦係数差を1.0とした。このように作製した芯材をガスバリア性フィルムからなる外被材の中に重ねて入れ、ガス吸着の吸着剤(モレキュラーシーブス13X)を挟めて、真空包装機にて真空封止した。得られた真空断熱材を用いて図5に示す曲げ試験を行ったところ、芯材の肉厚の減少率21.5%、外被材の最外層の歪みが16.3%となった。
"Comparative Example 2"
The flat plate-shaped vacuum heat insulating material of the comparative example 2 was produced as follows. A general-purpose polystyrene resin was used, and resin fibers fibrillated by hot air injection were collected on a collector while polystyrene was passed through a plurality of nozzle tips by melt blow spinning to form a fiber laminate. At this time, spinning was performed under two different conditions, and the surface state was changed, whereby the difference in friction coefficient between the polystyrene resin fibers forming the core first layer and the second layer was 1.0. The core material produced in this manner was placed in an outer cover material made of a gas barrier film, sandwiched with an adsorbent (molecular sieves 13X) for gas adsorption, and vacuum sealed with a vacuum packaging machine. When the bending test shown in FIG. 5 was performed using the obtained vacuum heat insulating material, the thickness reduction rate of the core material was 21.5%, and the distortion of the outermost layer of the jacket material was 16.3%.

また、真空断熱材の熱伝導率は、英弘精機(株)製のAUTO−Λを用いて10℃で測定した。真空断熱材の曲げ加工前後で測定を行い、曲げ加工後の測定は、真空断熱材を70℃の恒温槽中に30日間放置し加速劣化させた後測定した結果である。以上の曲げ加工前後での熱伝導率の劣化度は61%であった。   Further, the thermal conductivity of the vacuum heat insulating material was measured at 10 ° C. using an AUTO-Λ manufactured by Eihiro Seiki Co., Ltd. The measurement was performed before and after the bending of the vacuum heat insulating material, and the measurement after the bending was the result of measurement after leaving the vacuum heat insulating material in a constant temperature bath at 70 ° C. for 30 days to accelerate deterioration. The degree of deterioration of the thermal conductivity before and after the bending process was 61%.

以上より、比較例2での摩擦係数差が大きい条件(図6に示す実施例1〜5の摩擦係数差に比べて大きい)においては、逆に芯材同士が強固に密着し適度な自由度が奪われることから、曲げ加工を行った際に、芯材同士の重なりの一部分に応力集中部が発生したと考えられ、芯材と外被材の劣化が大きくなり、従来のグラスウールを芯材とした際の曲げ加工の歪みと熱伝導率の劣化度は大差無かった。   As described above, on the condition that the friction coefficient difference in Comparative Example 2 is large (larger than the friction coefficient difference in Examples 1 to 5 shown in FIG. 6), the core materials are firmly adhered to each other and moderately flexible. Therefore, when bending is performed, it is considered that a stress concentration part occurred in a part of the overlap between the core materials, the deterioration of the core material and the jacket material becomes large, and the conventional glass wool is used as the core material. The bending distortion and the degree of deterioration of thermal conductivity were not much different.

ここで云えることは、芯材を異なる摩擦係数で積層し、その摩擦係数に差を設けた方が曲げ加工には有利であると云えるが(外被材最外層歪み、熱伝導率劣化度等の数値から)、摩擦係数差が大きすぎると(比較例2を参照)、上述した理由で逆に悪化してしまうと云える。   What can be said here is that it is more advantageous for bending work by laminating the core materials with different friction coefficients, and providing a difference in the friction coefficients (outer coating material outermost layer distortion, thermal conductivity degradation). From a numerical value such as degree), if the friction coefficient difference is too large (see Comparative Example 2), it can be said that it deteriorates on the contrary for the reason described above.

「実施例6」
本実施形態の実施例6は、図4に示すように、本実施形態に係る真空断熱材を冷蔵庫に用いた適用例である。冷蔵庫は、真空断熱材およびその他の断熱材により断熱されている。冷蔵庫において、外気温との温度差が特に大きいのは、コンプレッサー周辺部と、冷蔵庫背面の内箱の外面側である。この部位に本実施例の真空断熱材1を使用することが有効である。
"Example 6"
Example 6 of this embodiment is an application example in which the vacuum heat insulating material according to this embodiment is used in a refrigerator, as shown in FIG. The refrigerator is insulated by a vacuum heat insulating material and other heat insulating materials. In the refrigerator, the temperature difference from the outside air temperature is particularly large between the peripheral portion of the compressor and the outside surface of the inner box on the back of the refrigerator. It is effective to use the vacuum heat insulating material 1 of this embodiment for this part.

真空断熱材1にはポリスチレン長繊維の芯材を設け、変形部と平面部を組み合わせて作製したものを用いた。真空断熱材1A,1Bは、断熱壁の曲げ部に沿って配設した真空断熱材である。真空断熱材を曲げ部の内箱側に設置する場合(1A)は、内箱11の形状に沿って内箱11に密着するように設置してある。また、真空断熱材は、曲げ部の外箱側に設置する場合(1B)は、外箱12の形状に沿って設置してある。断熱壁の曲げ部は断熱壁の変形部を構成する部分である。なお、外箱21の背面部および冷蔵庫扉の1つには、やはり真空断熱材1C,1Dを配置してある。   The vacuum heat insulating material 1 was provided with a core material of polystyrene long fiber, and a combination of a deformed portion and a flat portion was used. The vacuum heat insulating materials 1A and 1B are vacuum heat insulating materials disposed along the bent portion of the heat insulating wall. When the vacuum heat insulating material is installed on the inner box side of the bent portion (1A), it is installed so as to be in close contact with the inner box 11 along the shape of the inner box 11. Moreover, when installing a vacuum heat insulating material in the outer box side of a bending part (1B), it has installed along the shape of the outer box 12. FIG. The bent part of the heat insulating wall is a part constituting the deformed part of the heat insulating wall. In addition, the vacuum heat insulating materials 1C and 1D are also arranged on the back surface of the outer box 21 and one of the refrigerator doors.

箱体にポリオールとイソシアネートとを、高圧発泡機を用い注入充填して冷蔵庫の断熱材を作製した。発泡断熱材の硬質ポリウレタンフォームは、ポリオールとして、平均水酸基価が450のm−トリレンジアミンにプロピレンオキサイドを付加したポリエーテルポリオールを40重量部、平均水酸基価が470のオルト‐トリレンジアミンにプロピレンオキサイドを付加したポリエーテルポリオールを30重量部、平均水酸基価が380のo−トリレンジアミンにプロピレンオキサイドを付加したポリエーテルポリオールを30重量部の混合ポリオール成分100重量部に、シクロペンタン15重量部に水1.5部および反応触媒としてテトラメチルヘキサメチレンジアミン1.2重量部とトリメチルアミノエチルピペラジン2部、整泡剤として有機シリコーン化合物X−20−1614を2重量部、イソシアネート成分としてミリオネートMRのジフェニルメタンイソシアネート多核体を125部用いて発泡充填した。   A box and a polyol and isocyanate were injected and filled using a high-pressure foaming machine to prepare a heat insulating material for the refrigerator. Rigid polyurethane foam foam insulation is 40 parts by weight of polyether polyol obtained by adding propylene oxide to m-tolylenediamine having an average hydroxyl value of 450 as propylene, and propylene in ortho-tolylenediamine having an average hydroxyl value of 470. 30 parts by weight of polyether polyol with oxide added, 30 parts by weight of polyether polyol with propylene oxide added to o-tolylenediamine having an average hydroxyl value of 380, and 100 parts by weight of mixed polyol component, 15 parts by weight of cyclopentane 1.5 parts of water, 1.2 parts of tetramethylhexamethylenediamine as a reaction catalyst and 2 parts of trimethylaminoethylpiperazine, 2 parts by weight of organosilicone compound X-20-1614 as a foam stabilizer, Millionate M as an isocyanate component And foam filling with diphenylmethane diisocyanate syncytial 125 parts.

断熱後の冷蔵庫の熱漏洩量および消費電力量を測定した。冷蔵庫の熱漏洩量は、冷蔵庫の動作状態と反対の温度条件を設定し庫内からの熱漏洩量として測定を行った。具体的には、−10℃の恒温室内に冷蔵庫を設置し、庫内温度を所定の測定条件(温度差)になるようにヒータにそれぞれ通電し冷蔵庫の消費電力と冷却性能を比較する温度条件で測定した。冷蔵庫の消費電力量はJIS測定基準で行った。   The heat leakage amount and power consumption of the refrigerator after heat insulation were measured. The amount of heat leakage of the refrigerator was measured as the amount of heat leakage from the interior by setting the temperature condition opposite to the operation state of the refrigerator. Specifically, a temperature condition in which a refrigerator is installed in a thermostatic chamber of −10 ° C. and the heater temperature is set to a predetermined measurement condition (temperature difference) to compare the power consumption and cooling performance of the refrigerator. Measured with The power consumption of the refrigerator was performed according to JIS measurement standards.

その結果、真空断熱材を挿入しなかった冷蔵庫に比べて、熱漏洩量で7.5%、消費電力量で10%低減可能な冷蔵庫を提供できた。なお、前記硬質ポリウレタンフォームは、本実施形態の断熱材1と共に、冷蔵庫および断熱箱体に使用することが可能であり、硬質ポリウレタンフォーム以外にフェノールフォームやスチレンフォーム等が例示されるが、シクロペンタンおよび水を混合発泡剤とする硬質ポリウレタンフォームが好ましい。   As a result, it was possible to provide a refrigerator capable of reducing 7.5% in terms of heat leakage and 10% in terms of power consumption, compared to a refrigerator in which no vacuum heat insulating material was inserted. In addition, the said rigid polyurethane foam can be used for a refrigerator and a heat insulation box with the heat insulating material 1 of this embodiment, A phenol foam, a styrene foam, etc. are illustrated in addition to a rigid polyurethane foam, Cyclopentane Rigid polyurethane foam using water and water as a mixed foaming agent is preferred.

「実施例7」
本実施形態の実施例7は、真空断熱材をダブルスキン構造材の車両の断熱材として使用する適用例である。ダブルスキン構造を有する車両においては、軽量化と耐圧性向上を図るため、その側面および屋根構造体が曲面を有する構造となっており、従来の真空断熱材では貼り付けが困難である。また、貼り付けると外被材に歪みが生じ、内部の真空度が低下して断熱性能が劣る。
"Example 7"
Example 7 of the present embodiment is an application example in which the vacuum heat insulating material is used as a heat insulating material for a vehicle having a double skin structure material. In a vehicle having a double skin structure, the side surface and the roof structure have a curved surface in order to reduce the weight and improve the pressure resistance, and it is difficult to attach the conventional vacuum heat insulating material. Moreover, when it affixes, a distortion | strain will arise in a jacket material, an internal vacuum degree will fall and heat insulation performance will be inferior.

真空断熱材はポリスチレン長繊維ウェブの芯材を有し、平板形状と曲げ形状を組み合わせて作製したものを用いた。本実施形態の真空断熱材を用いた場合は、構造体の曲面に沿って貼り付けることが可能となり、車両の断熱効果を有し、車両内の結露等の課題も発生しなかった。また、断熱特性に優れる真空断熱材であり、断熱材の厚さを低減することにより車両の室内空間が広くなる効果も見られ、本実施形態の真空断熱材は車両用断熱材としても有効である。   The vacuum heat insulating material has a core material of a polystyrene long-fiber web, and was prepared by combining a flat plate shape and a bent shape. When the vacuum heat insulating material of the present embodiment is used, it can be attached along the curved surface of the structure, has a heat insulating effect on the vehicle, and does not cause problems such as condensation in the vehicle. In addition, it is a vacuum heat insulating material with excellent heat insulating properties, and the effect of widening the interior space of the vehicle by reducing the thickness of the heat insulating material is also seen, and the vacuum heat insulating material of this embodiment is also effective as a heat insulating material for vehicles. is there.

「実施例8」
本実施形態の実施例8は、真空断熱材を自動販売機の断熱材として使用する適用例である。自動販売機においても省エネ化と空間容積向上を図るため、その側面の平板形状真空断熱材、下面の曲げ形状真空断熱材を有する構造となっており、従来の真空断熱材では曲げ難く、無理に曲げると外被材に歪みが生じ、内部の真空度が低下して断熱性能が悪化する。
"Example 8"
Example 8 of this embodiment is an application example in which a vacuum heat insulating material is used as a heat insulating material for a vending machine. In vending machines, in order to save energy and improve the space volume, it has a structure with a flat plate vacuum heat insulating material on its side and a bent shape vacuum heat insulating material on the bottom surface. When bent, the jacket material is distorted, the internal vacuum is lowered, and the heat insulation performance is deteriorated.

そこで、本実施例8においては、真空断熱材1はポリスチレンの長繊維ウェブを用いた芯材を有し、平板形状と曲げ形状を組み合わせて作製したものを用いた。真空断熱材1を用いることにより、構造体の曲面に沿っても貼り付けることが可能で、冷蔵庫と同様に硬質ポリウレタンフォームを箱体に充填する。真空断熱材は、平板および曲げ形状共に、内部の真空度が低下せず断熱特性に優れるため、省エネ化と空間容積が向上して本発明の真空断熱材は、自動販売機用断熱材としても有効である。   Therefore, in Example 8, the vacuum heat insulating material 1 has a core material using a polystyrene long fiber web, and is manufactured by combining a flat plate shape and a bent shape. By using the vacuum heat insulating material 1, it can be pasted along the curved surface of the structure, and the box is filled with rigid polyurethane foam in the same manner as the refrigerator. The vacuum insulation material is flat and bent in shape and has excellent heat insulation properties without lowering the degree of vacuum inside. Therefore, the vacuum insulation material of the present invention can be used as a heat insulation material for vending machines. It is valid.

以上説明したように、本発明の実施形態に係る真空断熱材は、真空断熱材の芯材を構成するそれぞれの積層体の表面を異なった状態に繊維化し、芯材同士の摩擦係数が芯材と外被材もしくは芯材と内包材の摩擦係数より大きくすることにより、芯材と外被材もしくは芯材と内包材の滑り性を向上させ、真空断熱材を曲げた際に、外被材や芯材の一点での応力集中を緩和することにより達成できる。また芯材のズレ抑制にも繋がる。その際、積層体の表面を異なった状態とする方法としては、繊維化の際の製造方法により操作できる。例えば、プラスチック材料等の樹脂材料を紡糸して作製した樹脂繊維が挙げられる。樹脂繊維の作成方法としては、スパンボンド法(熱可塑性高分子を溶融させ、連続した長繊維状に吐出しながら形成する方法)やメルトブロー法(高温の空気を当てながら形成し、繊維をより細くすることができる方法)等が挙げられ、使用樹脂としては、ポリスチレンやポリプロピレン等の汎用樹脂から、ポリイミド等のスーパーエンプラ系の樹脂に至るまで広範囲に使用できる。また、バージン樹脂に拘ることなく、リサイクル樹脂でも構わない。   As described above, the vacuum heat insulating material according to the embodiment of the present invention fiberizes the surface of each laminate constituting the core material of the vacuum heat insulating material into different states, and the friction coefficient between the core materials is the core material. When the vacuum heat insulating material is bent, the outer cover material is improved by making the friction coefficient of the core material and the outer cover material or the core material and the inner packaging material larger. This can be achieved by relaxing the stress concentration at one point of the core material. Moreover, it leads also to the shift | offset | difference suppression of a core material. In that case, as a method of making the surface of a laminated body into a different state, it can operate by the manufacturing method in the case of fiberization. For example, a resin fiber produced by spinning a resin material such as a plastic material can be given. The resin fibers can be made by using the spunbond method (a method in which a thermoplastic polymer is melted and ejected into a continuous long fiber) or the melt blow method (formed by applying high-temperature air to make the fibers finer) The resin used can be widely used from a general-purpose resin such as polystyrene and polypropylene to a super engineering plastic resin such as polyimide. Further, a recycled resin may be used regardless of the virgin resin.

このように、本実施形態では、真空断熱材の芯材を形成する積層体同士の摩擦係数を大きくすることにより、真空断熱材を曲げた際に芯材の外被材に対する滑り性を向上させ、曲げ部における外被材や芯材の一点での応力集中を緩和することにより、真空断熱材の立体形状の曲げ成形を実現する。さらに、繊維化の際に使用する樹脂をバージン品だけでなく、リサイクル品についても使用できるので、コスト低減ならびに環境負荷低減を図ることができる。   As described above, in this embodiment, by increasing the coefficient of friction between the laminates forming the core material of the vacuum heat insulating material, when the vacuum heat insulating material is bent, the slipping property of the core material with respect to the jacket material is improved. By relieving the stress concentration at one point of the jacket material and the core material in the bent part, the three-dimensional bending of the vacuum heat insulating material is realized. Furthermore, since the resin used for fiberization can be used not only for virgin products but also for recycled products, cost reduction and environmental load reduction can be achieved.

1 真空断熱材
2 外被材
3 樹脂繊維の芯材
3a 芯材第1層
3b 芯材第2層
4 吸着剤
5 グラスウール又はポリエステル繊維
6 従来真空断熱材
7 断熱箱体
8 硬質ポリウレタンフォーム
9 箱体
10 冷蔵庫
11 冷蔵庫内箱
12 冷蔵庫外箱
13 治具
14 曲げ工具
15 真空断熱材曲げ部分の最外層
DESCRIPTION OF SYMBOLS 1 Vacuum heat insulating material 2 Cover material 3 Resin fiber core material 3a Core material 1st layer 3b Core material 2nd layer 4 Adsorbent 5 Glass wool or polyester fiber 6 Conventional vacuum heat insulating material 7 Heat insulation box 8 Hard polyurethane foam 9 Box DESCRIPTION OF SYMBOLS 10 Refrigerator 11 Refrigerator inner box 12 Refrigerator outer box 13 Jig 14 Bending tool 15 Outermost layer of vacuum insulation material bending part

Claims (6)

長繊維ウェブの繊維を有する複数の積層体からなる芯材と、ガスバリヤ性を有する外被材と、を備えた真空断熱材であって、
前記芯材は、各積層体で摩擦係数の異なる少なくとも樹脂繊維を含む繊維を有する複数積層体であり、
前記樹脂繊維の表面状態を操作することによって、前記芯材とこれに接触している外被材の最内層との摩擦係数を、前記摩擦係数の異なる芯材同士の摩擦係数より小さく形成し、前記真空断熱材を曲げた際の曲げ部位での応力を緩和する
ことを特徴とする真空断熱材。
A vacuum heat insulating material comprising a core material composed of a plurality of laminates having fibers of a long fiber web, and a jacket material having gas barrier properties,
The core material is a multi-layered body having fibers including at least resin fibers having different friction coefficients in each layered body,
By manipulating the surface state of the resin fiber, the friction coefficient between the core material and the innermost layer of the jacket material in contact with the core material is formed smaller than the friction coefficient between the core materials having different friction coefficients, The vacuum heat insulating material characterized by relieving the stress in the bending site | part at the time of bending the said vacuum heat insulating material.
請求項1において、
各積層体で摩擦係数の異なる芯材は、樹脂によるメルトブロー法またはスパンボンド法の溶融紡糸により形成した複数の積層体であることを特徴とする真空断熱材。
In claim 1,
A vacuum heat insulating material characterized in that the core material having a different friction coefficient in each laminated body is a plurality of laminated bodies formed by melt spinning using a melt blow method or a spun bond method using a resin.
請求項1または2において、
前記摩擦係数の異なる積層体における摩擦係数の差は、0.1以上で1.0未満であることを特徴とする真空断熱材。
In claim 1 or 2,
The vacuum heat insulating material characterized in that a difference in friction coefficient between laminates having different friction coefficients is 0.1 or more and less than 1.0.
請求項1ないし3のいずれか1つの請求項に記載された真空断熱材を、充填された発泡断熱材とともに外箱と内箱で形成される空間に設置したことを特徴とする断熱箱体。   A heat insulating box comprising the vacuum heat insulating material according to any one of claims 1 to 3 installed in a space formed by an outer box and an inner box together with a filled foam heat insulating material. 請求項1ないし3のいずれか1つの請求項に記載された真空断熱材を、充填された発泡断熱材とともに外箱と内箱で形成される空間に設置したことを特徴とする冷蔵庫。   A refrigerator characterized in that the vacuum heat insulating material according to any one of claims 1 to 3 is installed in a space formed by an outer box and an inner box together with a filled heat insulating material. 請求項5において、
前記真空断熱材を折り曲げることによって、前記外箱又は前記内箱の角部に設置することを特徴とする冷蔵庫。
In claim 5,
A refrigerator, wherein the refrigerator is installed at a corner of the outer box or the inner box by bending the vacuum heat insulating material.
JP2009145524A 2009-06-18 2009-06-18 Vacuum heat insulating material, and heat insulating box and refrigerator using the same Withdrawn JP2011002033A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009145524A JP2011002033A (en) 2009-06-18 2009-06-18 Vacuum heat insulating material, and heat insulating box and refrigerator using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009145524A JP2011002033A (en) 2009-06-18 2009-06-18 Vacuum heat insulating material, and heat insulating box and refrigerator using the same

Publications (1)

Publication Number Publication Date
JP2011002033A true JP2011002033A (en) 2011-01-06

Family

ID=43560154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009145524A Withdrawn JP2011002033A (en) 2009-06-18 2009-06-18 Vacuum heat insulating material, and heat insulating box and refrigerator using the same

Country Status (1)

Country Link
JP (1) JP2011002033A (en)

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2778580A3 (en) * 2013-03-15 2014-11-12 Whirlpool Corporation Vacuum insulated structure tubular cabinet construction
US9038403B2 (en) 2012-04-02 2015-05-26 Whirlpool Corporation Vacuum insulated door structure and method for the creation thereof
US9182158B2 (en) 2013-03-15 2015-11-10 Whirlpool Corporation Dual cooling systems to minimize off-cycle migration loss in refrigerators with a vacuum insulated structure
US9221210B2 (en) 2012-04-11 2015-12-29 Whirlpool Corporation Method to create vacuum insulated cabinets for refrigerators
JP2017002949A (en) * 2015-06-08 2017-01-05 日立アプライアンス株式会社 Vacuum heat insulation material and equipment using the same
JP6073005B1 (en) * 2016-05-12 2017-02-01 三菱電機株式会社 Vacuum heat insulating material and method for manufacturing vacuum heat insulating material
US9599392B2 (en) 2014-02-24 2017-03-21 Whirlpool Corporation Folding approach to create a 3D vacuum insulated door from 2D flat vacuum insulation panels
JPWO2015186345A1 (en) * 2014-06-03 2017-04-20 パナソニックIpマネジメント株式会社 Vacuum insulator, and heat insulating container and heat insulating wall using the same
US9689604B2 (en) 2014-02-24 2017-06-27 Whirlpool Corporation Multi-section core vacuum insulation panels with hybrid barrier film envelope
US9752818B2 (en) 2015-12-22 2017-09-05 Whirlpool Corporation Umbilical for pass through in vacuum insulated refrigerator structures
US9840042B2 (en) 2015-12-22 2017-12-12 Whirlpool Corporation Adhesively secured vacuum insulated panels for refrigerators
US10018406B2 (en) 2015-12-28 2018-07-10 Whirlpool Corporation Multi-layer gas barrier materials for vacuum insulated structure
US10030905B2 (en) 2015-12-29 2018-07-24 Whirlpool Corporation Method of fabricating a vacuum insulated appliance structure
US10041724B2 (en) 2015-12-08 2018-08-07 Whirlpool Corporation Methods for dispensing and compacting insulation materials into a vacuum sealed structure
US10052819B2 (en) 2014-02-24 2018-08-21 Whirlpool Corporation Vacuum packaged 3D vacuum insulated door structure and method therefor using a tooling fixture
US10161669B2 (en) 2015-03-05 2018-12-25 Whirlpool Corporation Attachment arrangement for vacuum insulated door
US10222116B2 (en) 2015-12-08 2019-03-05 Whirlpool Corporation Method and apparatus for forming a vacuum insulated structure for an appliance having a pressing mechanism incorporated within an insulation delivery system
US10345031B2 (en) 2015-07-01 2019-07-09 Whirlpool Corporation Split hybrid insulation structure for an appliance
US10365030B2 (en) 2015-03-02 2019-07-30 Whirlpool Corporation 3D vacuum panel and a folding approach to create the 3D vacuum panel from a 2D vacuum panel of non-uniform thickness
US10422569B2 (en) 2015-12-21 2019-09-24 Whirlpool Corporation Vacuum insulated door construction
US10422573B2 (en) 2015-12-08 2019-09-24 Whirlpool Corporation Insulation structure for an appliance having a uniformly mixed multi-component insulation material, and a method for even distribution of material combinations therein
US10429125B2 (en) 2015-12-08 2019-10-01 Whirlpool Corporation Insulation structure for an appliance having a uniformly mixed multi-component insulation material, and a method for even distribution of material combinations therein
US10598424B2 (en) 2016-12-02 2020-03-24 Whirlpool Corporation Hinge support assembly
US10610985B2 (en) 2015-12-28 2020-04-07 Whirlpool Corporation Multilayer barrier materials with PVD or plasma coating for vacuum insulated structure
JP2020106215A (en) * 2018-12-27 2020-07-09 アクア株式会社 Refrigerator and manufacturing method of the same
JP2020106213A (en) * 2018-12-27 2020-07-09 アクア株式会社 refrigerator
US10712080B2 (en) 2016-04-15 2020-07-14 Whirlpool Corporation Vacuum insulated refrigerator cabinet
US10731915B2 (en) 2015-03-11 2020-08-04 Whirlpool Corporation Self-contained pantry box system for insertion into an appliance
US10807298B2 (en) 2015-12-29 2020-10-20 Whirlpool Corporation Molded gas barrier parts for vacuum insulated structure
US10907888B2 (en) 2018-06-25 2021-02-02 Whirlpool Corporation Hybrid pigmented hot stitched color liner system
US10907891B2 (en) 2019-02-18 2021-02-02 Whirlpool Corporation Trim breaker for a structural cabinet that incorporates a structural glass contact surface
US11009284B2 (en) 2016-04-15 2021-05-18 Whirlpool Corporation Vacuum insulated refrigerator structure with three dimensional characteristics
US11052579B2 (en) 2015-12-08 2021-07-06 Whirlpool Corporation Method for preparing a densified insulation material for use in appliance insulated structure
US11247369B2 (en) 2015-12-30 2022-02-15 Whirlpool Corporation Method of fabricating 3D vacuum insulated refrigerator structure having core material
US11320193B2 (en) 2016-07-26 2022-05-03 Whirlpool Corporation Vacuum insulated structure trim breaker
US11391506B2 (en) 2016-08-18 2022-07-19 Whirlpool Corporation Machine compartment for a vacuum insulated structure

Cited By (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10746458B2 (en) 2012-04-02 2020-08-18 Whirlpool Corporation Method of making a folded vacuum insulated structure
US9038403B2 (en) 2012-04-02 2015-05-26 Whirlpool Corporation Vacuum insulated door structure and method for the creation thereof
US9071907B2 (en) 2012-04-02 2015-06-30 Whirpool Corporation Vacuum insulated structure tubular cabinet construction
US9140481B2 (en) 2012-04-02 2015-09-22 Whirlpool Corporation Folded vacuum insulated structure
US10663217B2 (en) 2012-04-02 2020-05-26 Whirlpool Corporation Vacuum insulated structure tubular cabinet construction
US10697697B2 (en) 2012-04-02 2020-06-30 Whirlpool Corporation Vacuum insulated door structure and method for the creation thereof
US9885516B2 (en) 2012-04-02 2018-02-06 Whirlpool Corporation Vacuum insulated door structure and method for the creation thereof
US9874394B2 (en) 2012-04-02 2018-01-23 Whirlpool Corporation Method of making a folded vacuum insulated structure
US9835369B2 (en) 2012-04-02 2017-12-05 Whirlpool Corporation Vacuum insulated structure tubular cabinet construction
US9463917B2 (en) 2012-04-11 2016-10-11 Whirlpool Corporation Method to create vacuum insulated cabinets for refrigerators
US9833942B2 (en) 2012-04-11 2017-12-05 Whirlpool Corporation Method to create vacuum insulated cabinets for refrigerators
US9221210B2 (en) 2012-04-11 2015-12-29 Whirlpool Corporation Method to create vacuum insulated cabinets for refrigerators
US10350817B2 (en) 2012-04-11 2019-07-16 Whirlpool Corporation Method to create vacuum insulated cabinets for refrigerators
EP2778580A3 (en) * 2013-03-15 2014-11-12 Whirlpool Corporation Vacuum insulated structure tubular cabinet construction
US9182158B2 (en) 2013-03-15 2015-11-10 Whirlpool Corporation Dual cooling systems to minimize off-cycle migration loss in refrigerators with a vacuum insulated structure
US10052819B2 (en) 2014-02-24 2018-08-21 Whirlpool Corporation Vacuum packaged 3D vacuum insulated door structure and method therefor using a tooling fixture
US9599392B2 (en) 2014-02-24 2017-03-21 Whirlpool Corporation Folding approach to create a 3D vacuum insulated door from 2D flat vacuum insulation panels
US9689604B2 (en) 2014-02-24 2017-06-27 Whirlpool Corporation Multi-section core vacuum insulation panels with hybrid barrier film envelope
US10105931B2 (en) 2014-02-24 2018-10-23 Whirlpool Corporation Multi-section core vacuum insulation panels with hybrid barrier film envelope
JPWO2015186345A1 (en) * 2014-06-03 2017-04-20 パナソニックIpマネジメント株式会社 Vacuum insulator, and heat insulating container and heat insulating wall using the same
US10365030B2 (en) 2015-03-02 2019-07-30 Whirlpool Corporation 3D vacuum panel and a folding approach to create the 3D vacuum panel from a 2D vacuum panel of non-uniform thickness
US11713916B2 (en) 2015-03-05 2023-08-01 Whirlpool Corporation Attachment arrangement for vacuum insulated door
US11243021B2 (en) 2015-03-05 2022-02-08 Whirlpool Corporation Attachment arrangement for vacuum insulated door
US10161669B2 (en) 2015-03-05 2018-12-25 Whirlpool Corporation Attachment arrangement for vacuum insulated door
US10731915B2 (en) 2015-03-11 2020-08-04 Whirlpool Corporation Self-contained pantry box system for insertion into an appliance
JP2017002949A (en) * 2015-06-08 2017-01-05 日立アプライアンス株式会社 Vacuum heat insulation material and equipment using the same
US10345031B2 (en) 2015-07-01 2019-07-09 Whirlpool Corporation Split hybrid insulation structure for an appliance
US10429125B2 (en) 2015-12-08 2019-10-01 Whirlpool Corporation Insulation structure for an appliance having a uniformly mixed multi-component insulation material, and a method for even distribution of material combinations therein
US11691318B2 (en) 2015-12-08 2023-07-04 Whirlpool Corporation Method for preparing a densified insulation material for use in appliance insulated structure
US10422573B2 (en) 2015-12-08 2019-09-24 Whirlpool Corporation Insulation structure for an appliance having a uniformly mixed multi-component insulation material, and a method for even distribution of material combinations therein
US10041724B2 (en) 2015-12-08 2018-08-07 Whirlpool Corporation Methods for dispensing and compacting insulation materials into a vacuum sealed structure
US10222116B2 (en) 2015-12-08 2019-03-05 Whirlpool Corporation Method and apparatus for forming a vacuum insulated structure for an appliance having a pressing mechanism incorporated within an insulation delivery system
US12202175B2 (en) 2015-12-08 2025-01-21 Whirlpool Corporation Method for preparing a densified insulation material for use in appliance insulated structure
US11052579B2 (en) 2015-12-08 2021-07-06 Whirlpool Corporation Method for preparing a densified insulation material for use in appliance insulated structure
US11009288B2 (en) 2015-12-08 2021-05-18 Whirlpool Corporation Insulation structure for an appliance having a uniformly mixed multi-component insulation material, and a method for even distribution of material combinations therein
US10422569B2 (en) 2015-12-21 2019-09-24 Whirlpool Corporation Vacuum insulated door construction
US10914505B2 (en) 2015-12-21 2021-02-09 Whirlpool Corporation Vacuum insulated door construction
US9840042B2 (en) 2015-12-22 2017-12-12 Whirlpool Corporation Adhesively secured vacuum insulated panels for refrigerators
US9752818B2 (en) 2015-12-22 2017-09-05 Whirlpool Corporation Umbilical for pass through in vacuum insulated refrigerator structures
US10514198B2 (en) 2015-12-28 2019-12-24 Whirlpool Corporation Multi-layer gas barrier materials for vacuum insulated structure
US10610985B2 (en) 2015-12-28 2020-04-07 Whirlpool Corporation Multilayer barrier materials with PVD or plasma coating for vacuum insulated structure
US10018406B2 (en) 2015-12-28 2018-07-10 Whirlpool Corporation Multi-layer gas barrier materials for vacuum insulated structure
US10030905B2 (en) 2015-12-29 2018-07-24 Whirlpool Corporation Method of fabricating a vacuum insulated appliance structure
US11577446B2 (en) 2015-12-29 2023-02-14 Whirlpool Corporation Molded gas barrier parts for vacuum insulated structure
US10807298B2 (en) 2015-12-29 2020-10-20 Whirlpool Corporation Molded gas barrier parts for vacuum insulated structure
US11247369B2 (en) 2015-12-30 2022-02-15 Whirlpool Corporation Method of fabricating 3D vacuum insulated refrigerator structure having core material
US11752669B2 (en) 2015-12-30 2023-09-12 Whirlpool Corporation Method of fabricating 3D vacuum insulated refrigerator structure having core material
US11009284B2 (en) 2016-04-15 2021-05-18 Whirlpool Corporation Vacuum insulated refrigerator structure with three dimensional characteristics
US11609037B2 (en) 2016-04-15 2023-03-21 Whirlpool Corporation Vacuum insulated refrigerator structure with three dimensional characteristics
US10712080B2 (en) 2016-04-15 2020-07-14 Whirlpool Corporation Vacuum insulated refrigerator cabinet
JP6073005B1 (en) * 2016-05-12 2017-02-01 三菱電機株式会社 Vacuum heat insulating material and method for manufacturing vacuum heat insulating material
US10883647B2 (en) 2016-05-12 2021-01-05 Mitsubishi Electric Corporation Vacuum heat insulator and method of manufacturing the same
WO2017195329A1 (en) * 2016-05-12 2017-11-16 三菱電機株式会社 Vacuum heat-insulating material and manufacturing method therefor
US11320193B2 (en) 2016-07-26 2022-05-03 Whirlpool Corporation Vacuum insulated structure trim breaker
US11391506B2 (en) 2016-08-18 2022-07-19 Whirlpool Corporation Machine compartment for a vacuum insulated structure
US10598424B2 (en) 2016-12-02 2020-03-24 Whirlpool Corporation Hinge support assembly
US10907888B2 (en) 2018-06-25 2021-02-02 Whirlpool Corporation Hybrid pigmented hot stitched color liner system
JP7287643B2 (en) 2018-12-27 2023-06-06 アクア株式会社 Refrigerator and manufacturing method thereof
JP2020106213A (en) * 2018-12-27 2020-07-09 アクア株式会社 refrigerator
JP2020106215A (en) * 2018-12-27 2020-07-09 アクア株式会社 Refrigerator and manufacturing method of the same
US11543172B2 (en) 2019-02-18 2023-01-03 Whirlpool Corporation Trim breaker for a structural cabinet that incorporates a structural glass contact surface
US10907891B2 (en) 2019-02-18 2021-02-02 Whirlpool Corporation Trim breaker for a structural cabinet that incorporates a structural glass contact surface

Similar Documents

Publication Publication Date Title
JP2011002033A (en) Vacuum heat insulating material, and heat insulating box and refrigerator using the same
JP5162377B2 (en) Vacuum heat insulating material, heat insulating box using the same, and refrigerator
US8956710B2 (en) Vacuum insulation panel
US20130115407A1 (en) Vacuum insulation material and insulation structure for refrigerator cabinet having the same
JP2013088036A (en) Thermal insulation box, refrigerator, and storage type water heater
JP5193713B2 (en) Freezer refrigerator
KR20090017645A (en) Vacuum insulation
JP4580843B2 (en) Vacuum heat insulating material and refrigerator using the same
JP2012047211A (en) Vacuum heat insulating material and refrigerator using the same
JP4580844B2 (en) Vacuum heat insulating material and refrigerator using the same
JP4997198B2 (en) Vacuum heat insulating material, heat insulating box using the same, and refrigerator
JP2006194559A (en) Insulated box using vacuum insulation
CN101545572B (en) Vacuum heat insulating material and heat insulating box using the same
JP2006029456A (en) Vacuum heat insulating material, heat insulation/cold insulation unit comprising the same, and refrigerator
CN100532910C (en) Vacuum insulation materials and cold storage equipment equipped with vacuum insulation materials
JP5414569B2 (en) Vacuum insulation material and equipment using the same
JP2011038574A (en) Vacuum heat insulating material and refrigerator using this
JP5401422B2 (en) Vacuum heat insulating material and refrigerator using the same
JP2017133568A (en) Vacuum heat insulation material and equipment with vacuum heat insulation material
JP2007239905A (en) Vacuum insulation box
JP5216510B2 (en) Vacuum insulation material and equipment using the same
JP2008111493A (en) Vacuum container
JP2006029448A (en) Vacuum heat insulating panel, and refrigerator using the same
JP2012057745A (en) Vacuum heat insulation material
JP4969555B2 (en) Vacuum insulation and insulation box

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120904