[go: up one dir, main page]

JP2011000133A - Method of acquiring ecological functional core used for manufacturing crown restoration - Google Patents

Method of acquiring ecological functional core used for manufacturing crown restoration Download PDF

Info

Publication number
JP2011000133A
JP2011000133A JP2009142822A JP2009142822A JP2011000133A JP 2011000133 A JP2011000133 A JP 2011000133A JP 2009142822 A JP2009142822 A JP 2009142822A JP 2009142822 A JP2009142822 A JP 2009142822A JP 2011000133 A JP2011000133 A JP 2011000133A
Authority
JP
Japan
Prior art keywords
teeth
movement
shape
occlusal
tooth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009142822A
Other languages
Japanese (ja)
Inventor
Kazuo Okuma
一夫 大熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2009142822A priority Critical patent/JP2011000133A/en
Publication of JP2011000133A publication Critical patent/JP2011000133A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Dental Tools And Instruments Or Auxiliary Dental Instruments (AREA)
  • Dental Prosthetics (AREA)

Abstract

PROBLEM TO BE SOLVED: To acquire an ecological function core to manufacture a crown restoration having an appropriate shape considering the movement of an antagonist.SOLUTION: The method of acquiring the function core used to manufacture the crown restoration for an abutment tooth by using a computer includes; a process in which a plurality of the shapes of the outermost enclosure of the antagonist when a person for whom the crown restoration is to be manufactured makes biting motions are input to the computer; and a process in which the computer accumulates the input plurality of the shapes of the outermost enclosure, obtains the trace of the outermost enclosure of the antagonist, and obtains the function core by using the obtained trace of the outermost enclosure.

Description

本発明は,歯冠修復物を製造する際に用いられる生態的機能コアを取得する方法に関する。より詳しく説明すると,本発明は,反対側の歯の現実の動きをも考慮した機能コアを取得する方法に関する。   The present invention relates to a method for obtaining an ecological functional core used in manufacturing a crown restoration. More specifically, the present invention relates to a method for obtaining a functional core that also considers the actual movement of the opposite tooth.

歯科において,歯冠修復物(ブリッジやクラウンなど)が用いられている。そして,上下の歯列を自然な噛み合わせ位置関係に固定された歯牙模型を作成し,歯列上の一部に形成された支台歯上に上下歯列の位置関係を阻害しないように歯冠修復物を設計する方法が知られている。この方法は,咬合運動をしたときの上下歯列の位置関係を考慮していない。このため,歯冠修復物を製造した後に,形状を調整しなければならなかった。   In dentistry, crown restorations (bridges, crowns, etc.) are used. Then, a tooth model in which the upper and lower dentitions are fixed in a natural meshing positional relationship is created, and the teeth are placed on the abutment tooth formed on a part of the dentition so as not to disturb the positional relationship between the upper and lower dentitions. Methods for designing crown restorations are known. This method does not take into account the positional relationship between the upper and lower dentitions when occlusal. For this reason, the shape had to be adjusted after the crown restoration was manufactured.

このため,チェックバイト又はFGPとよばれる咬合運動を考慮した方法が提案された。この方法は,顎を動かしたときに患者の口腔内で直接ワックスを咬ませて運動を記録し,計測器で測定する。この方法は,このようにして,咬合運動をした際の上下歯列の位置関係を考慮する。しかし,この方法はワックスを咬ませる際にずれが生ずるなどの問題がある。   For this reason, a method considering an occlusal movement called check bite or FGP has been proposed. In this method, when the jaw is moved, the movement is recorded by directly biting the wax in the patient's mouth and measured with a measuring instrument. This method takes into account the positional relationship between the upper and lower dentitions during occlusal movement. However, this method has problems such as a shift when the wax is bitten.

また,特開平9−253100号公報には,患者の上下顎歯列の石膏模型を作成し,その上で咀嚼運動を考慮した歯冠修復物の製造方法が開示されている。この方法では,歯科咬合器を用いて,咀嚼運動を再現し,正確な歯冠修復物を製造することが開示されている。また,模型による咬合運動は,仮想的な基準点を基準とし,基準点間を掃引して求めた直線的なものであり,実際の咬合運動を適切に反映することはできない。このため,患者に本当に適した歯冠修復物を製造することはできない。   Japanese Laid-Open Patent Publication No. 9-253100 discloses a method for producing a restoration of a dental crown in which a plaster model of a patient's upper and lower jaw dentition is created and the masticatory motion is taken into consideration. In this method, it is disclosed that a dental restoration is reproduced using a dental articulator to produce an accurate crown restoration. In addition, the occlusal movement by the model is a linear one obtained by sweeping between reference points with reference to a virtual reference point, and the actual occlusal movement cannot be appropriately reflected. This makes it impossible to produce a crown restoration that is truly suitable for the patient.

一方,特開2006−320369号公報には,超音波を用いて,歯の形状を求め,求めた形状に基づいて,歯冠修復物を製造する方法が開示されている。しかしながら,この文献に開示された歯冠修復物の製造方法は,咬合運動に基づいて,歯が複雑に動くことを考慮して,歯冠修復物を製造するものではない。このため,この公報に記載の方法に従って歯冠修復物を製造した場合,歯冠修復物を装着すると違和感が生ずる。   On the other hand, Japanese Patent Application Laid-Open No. 2006-320369 discloses a method for obtaining a tooth shape using ultrasonic waves and manufacturing a restoration of a crown based on the obtained shape. However, the method for manufacturing a restoration of a crown disclosed in this document does not manufacture a restoration of a crown in consideration of complicated movement of a tooth based on an occlusal movement. For this reason, when the restoration of a crown is manufactured according to the method described in this publication, a sense of incongruity occurs when the restoration is applied.

近年,セラミックスでできた審美性の高い歯冠修復物が知られている。とくにジルコニアやイットリウムを添加した歯冠修復物は,天然歯より3〜5倍程度硬い。このため,最適ではない歯冠修復物を用いた患者は,歯冠修復物が対合歯を削るという問題や,顎関節症を惹起するという問題もある。このため,患者の咬合運動を完璧に捉えた歯冠修復物の製造方法が望まれた。   In recent years, highly aesthetic crown restorations made of ceramics are known. In particular, crown restorations containing zirconia or yttrium are 3 to 5 times harder than natural teeth. For this reason, patients who use non-optimal crown restorations have the problem that the crown restorations scrape the teeth and cause temporomandibular disorders. For this reason, a method for manufacturing a crown restoration that perfectly captures the patient's occlusal movement was desired.

さらに,上記のように支台歯と対合歯との位置関係のみを考慮して歯冠修復物を製造した場合,実際の咬合運動を再現することはできない。この結果,支台歯と対合歯との位置関係のみを考慮して歯冠修復物を製造した場合,歯冠修復物を装着すると違和感が生ずるほか,反対側の歯(反対の側面に存在する歯)とその対合歯に悪影響を及ぼすことがある。   Furthermore, when a crown restoration is manufactured considering only the positional relationship between the abutment tooth and the counter tooth as described above, the actual occlusal movement cannot be reproduced. As a result, when a crown restoration was manufactured considering only the positional relationship between the abutment tooth and the counter tooth, wearing the crown restoration would cause a sense of incongruity, and the opposite tooth (existing on the opposite side) Tooth) and its counter teeth.

特開平9−253100号公報JP-A-9-253100 特開2006−320369号公報JP 2006-320369 A

そこで,本発明は,対合歯の動きを考慮した適切な形状を有する歯冠修復物を製造するための生態的機能コアを取得することを目的とする。また,本発明は求めた生態的機能コアを用いて,歯冠修復物を設計する方法を提供することを目的とする。   Therefore, an object of the present invention is to obtain an ecological functional core for manufacturing a crown restoration having an appropriate shape in consideration of the movement of the paired teeth. Another object of the present invention is to provide a method for designing a crown restoration using the obtained ecological functional core.

本発明は,対合歯の形状情報のみならず,対合歯の実際の動きに関する情報を得ることで,適切な歯冠修復物を得ることができるという知見に基づく。さらに本発明は,超音波を用いて,歯列を連続的に測定することで,咬合運動における対合歯の軌跡を正確に把握することができるという知見に基づく。   The present invention is based on the knowledge that an appropriate restoration of the crown can be obtained by obtaining not only the shape information of the paired teeth but also information on the actual movement of the paired teeth. Furthermore, the present invention is based on the knowledge that the trajectory of the opposing teeth in the occlusal movement can be accurately grasped by continuously measuring the dentition using ultrasonic waves.

さらに本発明は,超音波を用いて対合歯の動きを観測する際に,モアレ現象を利用することで,生態的機能コアの印象を精度よく取得できるという知見に基づく。   Furthermore, the present invention is based on the knowledge that the impression of the ecological functional core can be obtained with high accuracy by using the moire phenomenon when observing the movement of the paired teeth using ultrasonic waves.

本発明の第1の側面は,コンピュータを用いて,支台歯に歯冠修復物を製造するために用いられる生態的機能コアを取得する方法に関する。この方法は,歯冠修復物を製造する対象となる者が咬合運動を行った際の対合歯の最外郭の形状が,複数,コンピュータに入力される。そして,コンピュータが,入力された複数の最外郭の形状を集積し,対合歯の最外郭の軌跡を求め,求めた最外郭の軌跡を用いて,生態的機能コアを得る。このように,対合歯の軌跡を集積させて生態的機能コアを求めるので,この方法は,適切な機能コアを求めることができる。ここで,最外郭の形状は,下顎前方運動,下顎側方運動,及び下顎後方運動をした際の最外郭の形状を含み,好ましくは下顎の最大可動範囲を反映したものである。   The first aspect of the present invention relates to a method for obtaining an ecological functional core used for manufacturing a crown restoration on an abutment tooth using a computer. In this method, a plurality of outermost contour shapes of the opposing teeth when a person who is to produce a restoration of the crown performs an occlusal movement are input to the computer. Then, the computer accumulates a plurality of input outermost contour shapes, obtains the outermost locus of the opposite teeth, and obtains an ecological functional core using the obtained outermost locus. In this way, since the ecological functional core is obtained by accumulating the locus of the paired teeth, this method can obtain an appropriate functional core. Here, the shape of the outermost contour includes the shape of the outermost contour when performing mandibular anterior movement, mandibular lateral movement, and mandibular backward movement, and preferably reflects the maximum movable range of the mandible.

本発明の第1の側面の好ましい態様は,咬合運動が,下顎前方運動,下顎側方運動,及び下顎後方運動を含むものである。このように,あらゆる対合歯動きを考慮することで,この方法は,適切な機能コアを求めることができる。   In a preferred embodiment of the first aspect of the present invention, the occlusal movement includes a mandibular anterior movement, a mandibular lateral movement, and a mandibular posterior movement. Thus, by taking into account any counter tooth movement, this method can determine an appropriate functional core.

本発明の第1の側面の好ましい態様は,対合歯の軌跡が,超音波探触子を含む超音波形状解析装置を用いて測定されたものである。超音波形状解析装置を用いて対合歯の軌跡を求めることで,この方法は,概観だけではなく表面から見えない対合歯の裏側の軌跡や,反対側の軌跡をも適切に把握できることとなる。   In a preferred embodiment of the first aspect of the present invention, the trajectory of the paired teeth is measured using an ultrasonic shape analysis apparatus including an ultrasonic probe. By finding the trajectory of the counter teeth using an ultrasonic shape analyzer, this method can appropriately grasp not only the overview but also the trajectory on the back side of the counter teeth that is not visible from the surface and the trajectory on the opposite side. Become.

本発明の第1の側面の好ましい上記とは別の態様は,対合歯の軌跡は,超音波形状解析装置を用いて測定されたものであり,超音波形状解析装置は,第1の超音波探触子と,第1の超音波探触子と周波数が異なる第2の超音波探触子とを含むものである。1つの超音波探触子を用いて対合歯の形状を求めた場合,その精度は一般に数マイクロメートルオーダー以下である。しかし,最適な歯冠修復物を得るためにはマイクロメートルオーダーの精度が望ましい。このように,2つの超音波探触子を用いることで,この方法は,モアレ現象を利用して,測定精度を向上させることができる。   In another preferred embodiment of the first aspect of the present invention, the trajectory of the counter teeth is measured using an ultrasonic shape analyzer, and the ultrasonic shape analyzer is the first super The acoustic probe includes a second ultrasonic probe having a frequency different from that of the first ultrasonic probe. When the shape of a pair of teeth is obtained using one ultrasonic probe, the accuracy is generally on the order of several micrometers or less. However, in order to obtain an optimal crown restoration, an accuracy on the order of micrometers is desirable. Thus, by using two ultrasonic probes, this method can improve the measurement accuracy by utilizing the moire phenomenon.

本発明の第2の側面は,コンピュータを用いて,ある支台歯に用いられる歯冠修復物を設計する方法に関する。この方法は,コンピュータに,支台歯及び支台歯の形状に関する情報が入力される。また,歯冠修復物を製造する対象となる者が咬合運動を行った際の対合歯の最外郭の形状が,複数,コンピュータに入力される。そして,コンピュータが,入力された複数の最外郭の形状を集積し,対合歯の最外郭の軌跡を求め,求めた最外郭の軌跡を用いて,生態的機能コアを得る。その後,コンピュータが,支台歯及び支台歯の形状と,生態的機能コアとを用いて,支台歯に設けられる歯冠修復物の形状を求める。そして,歯冠修復物の形状は,歯冠修復物が支台歯に取り付けられた際に,機能コアと接触するものである。この第2の側面は,先に説明した第1の側面のあらゆる態様を含むことができる。   The second aspect of the present invention relates to a method of designing a crown restoration used for a certain abutment tooth using a computer. In this method, information about the abutment tooth and the shape of the abutment tooth is input to the computer. In addition, a plurality of outermost contour shapes of the opposing teeth when a person who manufactures the restoration of the crown performs an occlusal movement are input to the computer. Then, the computer accumulates a plurality of input outermost contour shapes, obtains the outermost locus of the opposite teeth, and obtains an ecological functional core using the obtained outermost locus. After that, the computer uses the abutment tooth, the shape of the abutment tooth, and the ecological functional core to determine the shape of the crown restoration provided on the abutment tooth. The shape of the crown restoration is that which comes into contact with the functional core when the restoration is attached to the abutment tooth. This second aspect can include any aspect of the first aspect described above.

本発明によれば,咬合運動の際の対合歯の軌跡を複数考慮し,生態的機能コアを取得するので,対合歯の動きを考慮した適切な形状を有する歯冠修復物を製造するための機能コアを取得できる。また,この生態的機能コアは,支台歯とその対合歯のみならず,反対側の咬合運動をも反映したものである。よって,本発明の生態的機能コアを用いることで,患者に完璧にフィットした歯冠修復物を製造することができる。   According to the present invention, since the ecological functional core is acquired by considering a plurality of the trajectories of the paired teeth at the time of the occlusal movement, the restoration of the crown having an appropriate shape considering the movement of the paired teeth is manufactured. You can get a functional core for. In addition, this ecological functional core reflects not only the abutment tooth and its counter teeth, but also the occlusal movement on the opposite side. Therefore, by using the ecological functional core of the present invention, a crown restoration that perfectly fits the patient can be produced.

図1は,歯冠修復物が設けられる支台歯と,機能コアの例を示す図である。FIG. 1 is a diagram illustrating an example of an abutment tooth on which a crown restoration is provided and a functional core. 図2は,支台歯および対合歯を含む領域を説明するための図である。FIG. 2 is a diagram for explaining a region including an abutment tooth and a counter tooth. 図3Aは,ある咬合運動に伴って,連続的に記憶された歯列の3次元情報を説明するための図である。図3Bは,ある咬合運動に伴う対合歯の最外郭の軌跡を示す。FIG. 3A is a diagram for explaining three-dimensional information of a dentition continuously stored with a certain occlusal movement. FIG. 3B shows a trajectory of the outermost contour of the paired teeth accompanying a certain occlusal movement. 図4Aは,図3Aとは異なる咬合運動に伴って,連続的に記憶された歯列の3次元情報を説明するための図である。図4Bは,この咬合運動に伴う対合歯の最外郭の軌跡を示す。FIG. 4A is a diagram for explaining three-dimensional information of a dentition continuously stored with an occlusal movement different from that in FIG. 3A. FIG. 4B shows a trajectory of the outermost contour of the paired teeth accompanying this occlusal movement. 図5は,得られた対合歯の最外郭の軌跡を重ね合わせた様子を示す図である。FIG. 5 is a diagram illustrating a state where the outermost trajectories of the obtained counter teeth are superimposed. 図6は,歯冠修復物の設計例を示す図である。FIG. 6 is a diagram showing a design example of a crown restoration. 図7は,歯と方向を説明するための概念図である。図7Aは,中心咬合位にあるときの対合歯を示す斜視図であり,図7Bは,中心咬合位にあるときの対合歯を図7Aとは別の角度から見た場合の図である。FIG. 7 is a conceptual diagram for explaining teeth and directions. FIG. 7A is a perspective view showing a pair of teeth when in the central occlusal position, and FIG. 7B is a view when the pair of teeth when in the central occlusal position is viewed from an angle different from FIG. 7A. is there. 図8は,咬合位と咬合運動の動きを示す概念図である。FIG. 8 is a conceptual diagram showing the movement of the occlusal position and the occlusal movement. 図9は,図7に示す歯が咬合運動してできる軌跡と,機能コアを説明するための図である。図9Aは,図7Aの歯が咬合運動した際の歯の動きを示す図である。図9Bは,X軸方向から見た,歯の軌跡と機能コアの様子を示す図である。図9Cは,X軸方向から見た機能コアの様子を示す図である。図9Dは,図7Bの歯が咬合運動した際の歯の動きを示す図である。図9Eは,Y軸方向から見た,歯の軌跡と機能コアの様子を示す図である。図9Fは,Y軸方向から見た機能コアの様子を示す図である。FIG. 9 is a diagram for explaining the locus formed by the occlusal movement of the teeth shown in FIG. 7 and the functional core. FIG. 9A is a diagram illustrating tooth movement when the tooth of FIG. FIG. 9B is a diagram illustrating a tooth locus and a functional core as seen from the X-axis direction. FIG. 9C is a diagram illustrating a state of the functional core viewed from the X-axis direction. FIG. 9D is a diagram illustrating tooth movement when the tooth of FIG. FIG. 9E is a diagram illustrating a tooth locus and a functional core as seen from the Y-axis direction. FIG. 9F is a diagram illustrating the functional core as viewed from the Y-axis direction.

以下,実施例に基づいて,本発明の実施態様を説明する。本発明は以下の実施例に限定されるものではなく,以下説明する実施例から,当業者が自明な範囲で適宜修正することができ,そのようなものも本発明に含まれる。   Hereinafter, embodiments of the present invention will be described based on examples. The present invention is not limited to the following embodiments, and those skilled in the art can appropriately modify the embodiments described below within the obvious range, and such embodiments are also included in the present invention.

本発明の第1の側面は,コンピュータを用いて,支台歯に歯冠修復物を製造するために用いられる生態的機能コアを取得する方法に関する。歯冠修復物を製造する対象となる者が咬合運動を行った際の対合歯の最外郭の形状が,複数,コンピュータに入力される。そして,コンピュータが,入力された複数の最外郭の形状を集積し,対合歯の最外郭の軌跡を求め,求めた最外郭の軌跡を用いて,生態的機能コアを得る。ここで,対合歯とは,歯冠修復物が設けられる支台歯に対向する歯(1又は複数)である。歯冠修復物の例,歯の一部を修復するために歯に詰めるインレー,歯に被せるクラウン,数歯欠損の咬合を回復するための繋がった被せ物であるブリッジ,及び局部床義歯である。   The first aspect of the present invention relates to a method for obtaining an ecological functional core used for manufacturing a crown restoration on an abutment tooth using a computer. A plurality of outermost contour shapes of the opposing teeth when a person who manufactures the restoration of the crown performs an occlusal movement are input to the computer. Then, the computer accumulates a plurality of input outermost contour shapes, obtains the outermost locus of the opposite teeth, and obtains an ecological functional core using the obtained outermost locus. Here, the counter teeth are teeth (one or more) facing the abutment tooth on which the crown restoration is provided. Examples of crown restorations, inlays that are packed into the teeth to restore part of the teeth, crowns that are placed on the teeth, bridges that are connected to restore the occlusion of several missing teeth, and local dentures .

コンピュータは,制御部,記憶部,演算部,及び入出力部を含む。そして,各要素はバスなどを介して情報を授受することができるようにされている。そして,入力部から所定の情報が入力された場合,制御部が,記憶部に記憶されるメインメモリから制御プログラムを読み出す。そして,制御部は,制御プログラムにしたがって,各種動作を行う。たとえば,制御部は,記憶部から所定の情報を読み出して,演算部において演算処理を行う。そして,制御部は,得られた演算処理の結果を,記憶部において記憶するように指示する。   The computer includes a control unit, a storage unit, a calculation unit, and an input / output unit. Each element can exchange information via a bus or the like. When predetermined information is input from the input unit, the control unit reads the control program from the main memory stored in the storage unit. And a control part performs various operation | movement according to a control program. For example, the control unit reads predetermined information from the storage unit and performs calculation processing in the calculation unit. Then, the control unit instructs the storage unit to store the obtained calculation processing result.

図1は,歯冠修復物が設けられる支台歯と,機能コアの例を示す図である。機能コア1とは,さまざまな咬合運動を行った際に,対合歯の外郭部分が移動しうる領域を意味する(たとえば,前歯部ポーセレンジャケットクラウンに機能コアを応用した症例(第28回九州歯科学会総会ならびに学術講演会)181頁及び182頁を参照)。従来の仮想的な機能コアは,顎模型を作成して,咬合運動をさせ,いくつかの位置情報を集約することで求められていた。このため,機能コア自体が適切なものではなかった。本発明では,咬合運動を行った際の対合歯の最外郭の軌跡を複数集積するため,適切な機構コアを得ることができる。すなわち,本発明の機能コアは,従来の模型を用いて得られる仮想的なものではない。本発明の機能コアは,患者の実際の咬合運動を観測し,患者の生態観察に基づいて得られたものである。このため,本明細書においては,従来の仮想的な機能コアと本発明の機能コアとを区別するため,後者を生態的機能コアともよぶ。   FIG. 1 is a diagram illustrating an example of an abutment tooth on which a crown restoration is provided and a functional core. The functional core 1 means a region in which the outer part of the paired teeth can move when various occlusal movements are performed (for example, the case where the functional core is applied to an anterior porcelain jacket crown (28th Kyushu) (See General Meeting of Dental Society and Academic Lectures) (pages 181 and 182). Conventional virtual functional cores have been required by creating jaw models, performing occlusal movements, and collecting some positional information. For this reason, the functional core itself was not appropriate. In the present invention, since a plurality of outermost trajectories of the opposing teeth are accumulated when the occlusal movement is performed, an appropriate mechanism core can be obtained. That is, the functional core of the present invention is not a virtual one obtained using a conventional model. The functional core of the present invention is obtained based on observation of the patient's actual occlusal movement and observation of the patient's ecology. For this reason, in this specification, in order to distinguish the conventional virtual functional core and the functional core of this invention, the latter is also called an ecological functional core.

対合歯の形状や軌跡は,超音波探触子を含む超音波形状解析装置を用いて測定することができる。歯は,エナメル質,象牙質及び歯髄を含む。歯に超音波形状解析装置からの超音波を照射し,歯から反射した超音波を測定する。すると,反射した部分の材質により反射した超音波の強度が異なる。この性質を利用すれば,超音波形状解析装置を用いて歯の外郭を求めることができる。なお,この際に,歯の外郭のみならず,歯の内部の構造(象牙質部分や歯髄部分)をも求めることができる。さらに,超音波形状解析装置を用いて歯を測定した場合,支台歯及び対合歯のみならず,反対の側面に存在する歯やその対合歯をもあわせて測定できる。このように,超音波形状解析装置を用いることで,反対の側面に存在する歯の動きをも適切に把握することができる。   The shape and locus of the pair of teeth can be measured using an ultrasonic shape analyzer including an ultrasonic probe. Teeth include enamel, dentin and pulp. The teeth are irradiated with ultrasonic waves from an ultrasonic shape analyzer and the ultrasonic waves reflected from the teeth are measured. Then, the intensity of the reflected ultrasonic wave differs depending on the material of the reflected part. If this property is used, the outline of a tooth can be obtained using an ultrasonic shape analysis apparatus. At this time, not only the outline of the tooth but also the internal structure of the tooth (dentin part and pulp part) can be obtained. Furthermore, when teeth are measured using an ultrasonic shape analyzer, not only abutment teeth and counter teeth, but also teeth on opposite sides and counter teeth can be measured together. As described above, by using the ultrasonic shape analysis apparatus, it is possible to appropriately grasp the movement of the teeth existing on the opposite side surface.

本発明は,たとえば,下顎前方運動,下顎側方運動,及び下顎後方運動した際の,支台歯および対合歯を含む領域を,超音波形状解析装置を用いて連続的に測定する。   In the present invention, for example, a region including an abutment tooth and a pair of teeth when the mandibular anterior movement, the mandibular lateral movement, and the posterior movement of the mandible are continuously measured using an ultrasonic shape analysis apparatus.

超音波形状解析装置が撮影した,支台歯および対合歯を含む領域についての,超音波の反射波のデータが,コンピュータに入力される。この反射波のデータは,対合歯の最外郭の形状に関するデータである。すると,コンピュータは,受け取った反射波の受信時間と受信強度とを一時的に記憶する。超音波形状解析装置は,測定領域を掃引する。コンピュータは,掃引された領域における反射波の受信時間と受信強度とを一時的に記憶する。この集められた情報を用いることで,コンピュータは,あるタイミングにおける支台歯および対合歯を含む領域の3次元情報を求めることができる。そして,コンピュータは,求めた3次元情報を一時的に記憶する。一方,支台歯の3次元形状に関する情報もコンピュータに記憶される。   The reflected wave data of the ultrasonic wave of the region including the abutment tooth and the paired tooth taken by the ultrasonic shape analyzer is input to the computer. This reflected wave data is data related to the shape of the outermost contour of the pair of teeth. Then, the computer temporarily stores the reception time and reception intensity of the received reflected wave. The ultrasonic shape analyzer sweeps the measurement area. The computer temporarily stores the reception time and reception intensity of the reflected wave in the swept area. By using this collected information, the computer can obtain three-dimensional information of a region including the abutment tooth and the counter tooth at a certain timing. The computer temporarily stores the obtained three-dimensional information. On the other hand, information related to the three-dimensional shape of the abutment tooth is also stored in the computer.

図2は,支台歯および対合歯を含む領域を説明するための図である。図2では,簡単のため,この領域を2次元的に表現している。実際は,コンピュータは,この領域を3次元的に把握する。図2において,符号12a〜12cは,対合歯を示す。符号13a,13bは支台歯に隣接する歯を示す。   FIG. 2 is a diagram for explaining a region including an abutment tooth and a counter tooth. In FIG. 2, this area is represented two-dimensionally for simplicity. Actually, the computer grasps this area three-dimensionally. In FIG. 2, reference numerals 12 a to 12 c indicate counter teeth. Reference numerals 13a and 13b denote teeth adjacent to the abutment teeth.

超音波形状解析装置とコンピュータは,上記の測定と解析を連続的に行う。すると,コンピュータは,ある咬合運動に伴う支台歯および対合歯を含む歯列の3次元情報を連続的に求めることとなる。そして,コンピュータには,この連続的な3次元情報が記憶されることとなる。   The ultrasonic shape analyzer and the computer continuously perform the above measurement and analysis. Then, the computer continuously obtains the three-dimensional information of the dentition including the abutment teeth and the paired teeth accompanying a certain occlusal movement. The computer stores this continuous three-dimensional information.

そして,コンピュータは,支台歯の3次元形状に関する情報を読み出す。その上で,コンピュータは,支台歯の3次元形状を用いて,支台歯および対合歯を含む歯列の3次元情報から,支台歯部分を抽出する。その上で,コンピュータは,抽出した支台歯部分を基準とした,対合歯の3次元情報を求める。コンピュータは,このようにして対合歯の3次元情報を連続的に求め,記憶する。コンピュータは,記憶した対合歯の3次元情報を用いて,対合歯の最外郭を求める。コンピュータは,支台歯部分を基準とした対合歯の最外郭の形状を連続的に積算する。具体的に説明すると,コンピュータは,あるときまでに集積された対合歯の最外郭を記憶している。そして,次の対合歯の最外郭の形状が入力された場合,あるときまでに集積された対合歯の最外郭を読み出す。そして,その新たに入力された最外郭の形状の各部分につき,集積された対合歯の最外郭に含まれるか否か判断する。そして,新たに入力された最外郭の形状のある部分が,これまで集積された対合歯の最外郭に含まれない場合,その部分を集積された対合歯の最外郭に含め,新たな集積された対合歯の最外郭として記憶する。このようにして,コンピュータにより,ある咬合運動に伴う対合歯の最外郭の軌跡を求めることができる。   And a computer reads the information regarding the three-dimensional shape of an abutment tooth. Then, the computer uses the 3D shape of the abutment tooth to extract the abutment tooth portion from the 3D information of the dentition including the abutment tooth and the counter tooth. Then, the computer obtains the three-dimensional information of the counter teeth based on the extracted abutment tooth portion. In this way, the computer continuously obtains and stores the three-dimensional information of the counter teeth. The computer uses the stored three-dimensional information of the paired teeth to obtain the outermost contour of the paired teeth. The computer continuously integrates the shape of the outermost contour of the counter teeth based on the abutment tooth portion. More specifically, the computer stores the outermost contours of the opposing teeth accumulated up to a certain time. When the shape of the outermost contour of the next pair of teeth is input, the outermost contour of the pair of teeth accumulated until a certain time is read out. Then, it is determined whether or not each part of the newly input outermost shape is included in the outermost contour of the accumulated counter teeth. If the part with the newly entered outermost contour shape is not included in the outermost contour of the paired teeth, the new portion is included in the outermost contour of the accumulated paired teeth. It memorize | stores as the outermost outline of the accumulated counter teeth. In this way, the trajectory of the outermost contour of the opposing teeth accompanying a certain occlusal movement can be obtained by the computer.

図3Aは,ある咬合運動に伴って,連続的に記憶された歯列の3次元情報を説明するための図である。図中符号14は,変位した対合歯を示す。図3Bは,ある咬合運動に伴う対合歯の最外郭の軌跡を示す。図中符号15は,ある咬合運動に伴う対合歯の最外郭の軌跡を示す。   FIG. 3A is a diagram for explaining three-dimensional information of a dentition continuously stored with a certain occlusal movement. Reference numeral 14 in the figure indicates a displaced counter tooth. FIG. 3B shows a trajectory of the outermost contour of the paired teeth accompanying a certain occlusal movement. Reference numeral 15 in the figure indicates the locus of the outermost contour of the paired teeth accompanying a certain occlusal movement.

本発明の第1の側面の好ましい態様は,咬合運動が,下顎前方運動,下顎側方運動,及び下顎後方運動を含むものである。このように,あらゆる対合歯の動きを考慮することで,適切な生態的機能コアを求めることができる。すなわち,下顎前方運動の際に,超音波形状解析装置を用いて,支台歯および対合歯を含む領域を連続的に測定する。すると,上記したプロセスに基づいて,下顎前方運動の際の対合歯の最外郭の軌跡を求めることができる。同様にして,下顎側方運動,及び下顎後方運動の際の対合歯の最外郭の軌跡を求めることができる。これら複数の軌跡を集積することで,さまざまな咬合運動の際に,対合歯が動きうる軌跡を適切に求めることができる。コンピュータは,求めた対合歯の最外郭の軌跡を用いて,生態的機能コアを求める。生態的機能コアの求め方は,上記の対合歯の最外郭の軌跡を求める方法と同様である。   In a preferred embodiment of the first aspect of the present invention, the occlusal movement includes a mandibular anterior movement, a mandibular lateral movement, and a mandibular posterior movement. In this way, an appropriate ecological functional core can be obtained by taking into account any movement of the teeth. In other words, during anterior mandibular movement, an ultrasonic shape analyzer is used to continuously measure the region including the abutment tooth and the counter tooth. Then, based on the process described above, the trajectory of the outermost contour of the opposing teeth during mandibular anterior movement can be obtained. In the same manner, the trajectory of the outermost contour of the opposing teeth during the lateral movement of the lower jaw and the backward movement of the lower jaw can be obtained. By accumulating these trajectories, it is possible to appropriately obtain trajectories in which the counter teeth can move during various occlusal movements. The computer obtains the ecological functional core using the outermost locus of the paired teeth. The method for obtaining the ecological functional core is the same as the method for obtaining the locus of the outermost contour of the above-mentioned counter teeth.

図4Aは,図3Aとは異なる咬合運動に伴って,連続的に記憶された歯列の3次元情報を説明するための図である。図中符号16は,変位した対合歯を示す。図4Bは,この咬合運動に伴う対合歯の最外郭の軌跡を示す。図中符号17は,この咬合運動に伴う対合歯の最外郭の軌跡を示す。   FIG. 4A is a diagram for explaining three-dimensional information of a dentition continuously stored with an occlusal movement different from that in FIG. 3A. Reference numeral 16 in the figure indicates a displaced counter tooth. FIG. 4B shows a trajectory of the outermost contour of the paired teeth accompanying this occlusal movement. Reference numeral 17 in the figure indicates the locus of the outermost contour of the opposing teeth accompanying this occlusal movement.

図5は,得られた対合歯の最外郭の軌跡を重ね合わせた様子を示す図である。これらの最外郭部分の軌跡15,17を集積することで,図1に示す機構コア1を得ることができる。   FIG. 5 is a diagram illustrating a state where the outermost trajectories of the obtained counter teeth are superimposed. The mechanism core 1 shown in FIG. 1 can be obtained by accumulating the trajectories 15 and 17 of these outermost portions.

本発明の好ましい態様では,コンピュータが,歯冠修復物の形状パターンを記憶している。そして,上記のとおり求めた機構コア1と,支台歯11との間に存在する空間を求める。その上で,求めた空間の情報を用いて,歯冠修復物の形状パターンを読み出す。このようにして,このコンピュータは,支台歯に取り付けられた際に,生態的機能コアと接触する歯冠修復物の形状を求めることができる。   In a preferred embodiment of the present invention, the computer stores the shape pattern of the crown restoration. And the space which exists between the mechanism core 1 calculated | required as mentioned above and the anchor tooth 11 is calculated | required. Then, the shape pattern of the restoration of the crown is read out using the obtained space information. In this way, the computer can determine the shape of the crown restoration that contacts the ecological functional core when attached to the abutment tooth.

従来の歯冠修復物は,歯冠修復物を支台歯に取り付けられた際に,完全にフィットしないため違和感が生じた。しかしながら,本発明においては,現実の咬合運動を反映した生態的機能コアを求めて,その求めた生態的機能コアを用いて歯冠修復物の形状を求める。このため,完璧にフィットし,装着したときに違和感のない歯冠修復物を設計することができる。   Conventional crown restorations have a sense of incongruity because they do not fit perfectly when the crown restoration is attached to the abutment. However, in the present invention, an ecological function core that reflects the actual occlusal movement is obtained, and the shape of the dental restoration is obtained using the obtained ecological function core. This makes it possible to design a crown restoration that fits perfectly and does not feel uncomfortable when worn.

図6は,歯冠修復物の設計例を示す図である。図6に示されるように,支台歯11上に歯冠修復物20が設計される。この歯冠修復物20は,機構コア1と支台歯11との間にフィットするように設けられる。このため,この歯冠修復物20は,台歯に取り付けられた際に,生態的機能コアと接触する。すなわち,歯冠修復物20の形状データに基づいて実際に歯冠修復物を製造した場合,得られる歯冠修復物は,対合歯と接触する適切な形状を有することとなる。   FIG. 6 is a diagram showing a design example of a crown restoration. As shown in FIG. 6, a crown restoration 20 is designed on the abutment tooth 11. The crown restoration 20 is provided so as to fit between the mechanism core 1 and the abutment tooth 11. For this reason, the crown restoration 20 comes into contact with the ecological functional core when it is attached to the base tooth. That is, when the crown restoration is actually manufactured based on the shape data of the crown restoration 20, the obtained crown restoration has an appropriate shape in contact with the counter tooth.

本発明の第1の側面の好ましい上記とは別の態様は,対合歯の軌跡は,超音波形状解析装置を用いて測定されたものであり,超音波形状解析装置は,第1の超音波探触子と,第1の超音波探触子と周波数が異なる第2の超音波探触子とを含むものである。1つの超音波探触子を用いて対合歯の形状を求めた場合,その精度は一般に数マイクロメートルオーダー以下である。しかし,最適な歯冠修復物を得るためにはマイクロメートルオーダーの精度が望ましい。このように,2つの超音波探触子を用いることで,モアレ現象を利用して,測定精度を向上させることができる。   In another preferred embodiment of the first aspect of the present invention, the trajectory of the counter teeth is measured using an ultrasonic shape analyzer, and the ultrasonic shape analyzer is the first super The acoustic probe includes a second ultrasonic probe having a frequency different from that of the first ultrasonic probe. When the shape of a pair of teeth is obtained using one ultrasonic probe, the accuracy is generally on the order of several micrometers or less. However, in order to obtain an optimal crown restoration, an accuracy on the order of micrometers is desirable. Thus, by using two ultrasonic probes, the measurement accuracy can be improved by utilizing the moire phenomenon.

超音波によるモアレ現象を用いた形状解析方法は,例えば特開2006−029991号公報に開示されている。この態様では,2種類以上の超音波探触子を用いて,干渉を引き起こすことでより精度よく,モアレ現象を観測できる。   A shape analysis method using a moire phenomenon by ultrasonic waves is disclosed in, for example, Japanese Patent Laid-Open No. 2006-029991. In this aspect, the moire phenomenon can be observed with higher accuracy by causing interference using two or more types of ultrasonic probes.

本発明において,超音波形状解析装置は,複数の探触子を有するものが好ましい。たとえば,探触子を上顎の歯列と下顎の歯列に3以上装着することが好ましい。探触子を3つ装着する場合,各顎に装着する3つの探触子の装着範囲は,前歯と左右の臼歯((1)右側の犬歯から左側の犬歯までの間,(2)右側の第1小臼歯から第3大臼歯までの間,(3)左側の第1小臼歯から第3大臼歯までの間)があげられる。探触子は,歯列の頬面,歯列表面頬側の歯肉に装着すればよく,さらに義歯の人工歯や人工歯肉部に装着してもよい。さらに,上記位置範囲になるように,口腔外に探触子を装着してもよい。探触子を複数使用する場合,それぞれの探触子から発信される超音波の周波数は,異なっていることが好ましい。なお,本発明において,探触子は複数の振動子を有するアレイ探触子又はマトリックスアレイ探触子であることが好ましい。探触子が有する複数の振動子は,振動子ごとに波長を変更することができる。そして,複数の振動子を有する探触子は,超音波を発信する角度及びタイミングを振動子ごとに調整することができる。よって,本発明において,アレイ振動子又はマトリックスアレイ探触子は,探触子を移動させることなく,歯又は歯列の形状等のデータを取得することができるので好ましい。アレイ振動子又はマトリックスアレイ振動子は公知であるので,当業者であれば,適宜選択して用いることができる。   In the present invention, the ultrasonic shape analyzer preferably has a plurality of probes. For example, it is preferable to mount three or more probes on the upper dentition and the lower dentition. When three probes are attached, the attachment range of the three probes attached to each jaw is the front teeth and left and right molars ((1) from the right canine to the left canine, (2) the right (From the first premolar to the third molar, (3) from the left first premolar to the third molar). The probe may be attached to the buccal surface of the dentition, the gingiva on the buccal surface of the dentition, or may be attached to the artificial tooth or artificial gingiva part of the denture. Furthermore, a probe may be mounted outside the oral cavity so as to be in the position range. When a plurality of probes are used, it is preferable that the frequency of the ultrasonic wave transmitted from each probe is different. In the present invention, the probe is preferably an array probe having a plurality of transducers or a matrix array probe. The plurality of transducers included in the probe can change the wavelength for each transducer. And the probe which has a some vibrator | oscillator can adjust the angle and timing which transmit an ultrasonic wave for every vibrator | oscillator. Therefore, in the present invention, the array transducer or the matrix array probe is preferable because it can acquire data such as the shape of the teeth or dentition without moving the probe. Since array transducers or matrix array transducers are known, those skilled in the art can appropriately select and use them.

探触子を上顎と下顎に3つずつ装着した場合,咬合運動時中,当該探触子から情報を取得する歯に向かって超音波を発信し,その後反射してきた反射波をそれぞれの探触子で受信する。対合歯からの反射波は,探触子から対合歯までの距離によっても変化する。本発明では,反射波の強度や,反射波が受信されるまでに要した時間のデータを用いることで,対合歯の位置情報を得ることができる。咬合運動時中,対合歯と,対合歯と反対の顎にある探触子の距離は変化する。対合歯と探触子の距離が大きくなると,反射波を受信するまでに要する時間は長くなる。よって,例えば,中心咬合位にある時,支台歯からの反射波を受信するまでの時間を基準にして,咬合運動時の歯の位置情報を取得することができる。   When three probes are attached to the upper jaw and the lower jaw, during the occlusal movement, an ultrasonic wave is transmitted toward the tooth from which information is obtained from the probe, and the reflected waves reflected thereafter are detected. Receive at the child. The reflected wave from the paired teeth also changes depending on the distance from the probe to the paired teeth. In the present invention, the position information of the counter teeth can be obtained by using the data of the intensity of the reflected wave and the time required until the reflected wave is received. During the occlusal movement, the distance between the paired teeth and the probe on the opposite jaw is changed. As the distance between the pair of teeth and the probe increases, the time required to receive the reflected wave increases. Therefore, for example, when in the central occlusal position, the position information of the tooth during the occlusal movement can be acquired based on the time until the reflected wave from the abutment tooth is received.

図7は,歯と方向を説明するための概念図である。図7Aは,中心咬合位にあるときの対合歯を示す斜視図であり,図7Bは,中心咬合位にあるときの対合歯を図7Aとは別の角度から見た場合の図である。図7では,歯の側方運動方向をX軸,前方運動及び後方運動方向をY軸,開閉運動方向をZ軸とする。なお,図7は,右側の歯を想定している。そして,X軸の正の方向は,舌側方向を示し,X軸の負の方向は頬側を示す。Z軸の正の方向は,上顎側を示し,Z軸の負の方向は下顎側を示す。上顎歯列と下顎歯列とが中心咬合位にあるときの対合歯上の任意の点(咬合面の裂溝など)をZ=0とする。これにより,咬合運動時中,歯の位置情報を三次元データ(X値,Y値,Z値)で表すことができる。   FIG. 7 is a conceptual diagram for explaining teeth and directions. FIG. 7A is a perspective view showing a pair of teeth when in the central occlusal position, and FIG. 7B is a view when the pair of teeth when in the central occlusal position is viewed from an angle different from FIG. 7A. is there. In FIG. 7, the lateral movement direction of the teeth is the X axis, the forward and backward movement directions are the Y axis, and the opening and closing movement direction is the Z axis. FIG. 7 assumes the right tooth. The positive direction of the X axis indicates the lingual direction, and the negative direction of the X axis indicates the cheek side. The positive direction of the Z axis indicates the upper jaw side, and the negative direction of the Z axis indicates the lower jaw side. An arbitrary point (such as a fissure on the occlusal surface) on the opposing teeth when the upper dentition and the lower dentition are in the central occlusal position is set to Z = 0. Thereby, during occlusal movement, tooth position information can be represented by three-dimensional data (X value, Y value, Z value).

図8は,咬合位と咬合運動の動きを示す概念図である。図8中,点iは中心咬合位を示し,点iiは最前方咬合位を示し,点iiiは最後方咬合位を示し,点ivは右最側方咬合位を示し,点vは左最側方咬合位を示す。図8に基づいて,歯の咬合運動の際の歯の動きを説明する。側方咬合運動における歯の運動路は,左最側方咬合位(v)から中心咬合位(i),中心咬合位(i)から右最側方咬合位(iv)までの経路である。前方咬合運動における歯の運動路は,中心咬合位(i)から最前方咬合位(ii)までの経路である。後方咬合運動における歯の運動路は,中心咬合位(i)から最後方咬合位(iii)までの経路である。上記に加えて,実際の咬合運動では,最前方咬合位(ii)から右最側方咬合位(iv)まで,最前方咬合位(ii)から左最側方咬合位(v)まで,最後方咬合位(iii)から右最側方咬合位(iv)まで,最後方咬合位(iii)から左最側方咬合位(v)までの経路などさまざまな経路が存在する。咬合運動時中,歯は,上記経路を線で結んだ範囲で滑走しながら移動する。この動きは先に説明したとおり,直線的ではない。よって,模型を用いても歯の正確な運動を再現することはできない。   FIG. 8 is a conceptual diagram showing the movement of the occlusal position and the occlusal movement. In FIG. 8, point i indicates the central occlusal position, point ii indicates the foremost occlusal position, point iii indicates the last occlusal position, point iv indicates the rightmost lateral occlusal position, and point v indicates the leftmost occlusal position. Indicates lateral occlusal position. Based on FIG. 8, the movement of the teeth during the occlusal movement of the teeth will be described. The tooth movement path in the lateral occlusal movement is a path from the left most lateral occlusal position (v) to the central occlusal position (i) and from the central occlusal position (i) to the right most lateral occlusal position (iv). The tooth movement path in the forward occlusal movement is a path from the central occlusal position (i) to the foremost occlusal position (ii). The tooth movement path in the backward occlusal movement is a path from the central occlusal position (i) to the last occlusal position (iii). In addition to the above, in the actual occlusal movement, from the foremost occlusal position (ii) to the rightmost occlusal position (iv), from the foremost occlusal position (ii) to the leftmost lateral occlusal position (v), the last There are various routes such as a route from the right occlusal position (iii) to the right most lateral occlusal position (iv) and a route from the last occlusal position (iii) to the left most lateral occlusal position (v). During the occlusal movement, the teeth move while sliding within the range connecting the above paths with lines. This movement is not linear, as explained earlier. Therefore, accurate tooth movement cannot be reproduced using a model.

図9は,図7に示す歯が咬合運動してできる軌跡と,機能コアを説明するための図である。図9Aは,図7Aの歯が咬合運動した際の歯の動きを示す図である。図9Bは,X軸方向から見た,歯の軌跡と機能コアの様子を示す図である。図9Cは,X軸方向から見た機能コアの様子を示す図である。図9Dは,図7Bの歯が咬合運動した際の歯の動きを示す図である。図9Eは,Y軸方向から見た,歯の軌跡と機能コアの様子を示す図である。図9Fは,Y軸方向から見た機能コアの様子を示す図である。図9に示されるように,様々な咬合運動時の対合歯の外郭をつないでいくことで対合歯の軌跡を把握でき,これにより機能コアを取得することができる。なお,対合歯上の任意の点は,図8に示すような運動路にそった複雑な動きをするので,位置情報に基づく対合歯軌跡情報を集積することで,対合歯の運動路を考慮した実態的機能コアを取得することができる。   FIG. 9 is a diagram for explaining the locus formed by the occlusal movement of the teeth shown in FIG. 7 and the functional core. FIG. 9A is a diagram illustrating tooth movement when the tooth of FIG. FIG. 9B is a diagram illustrating a tooth locus and a functional core as seen from the X-axis direction. FIG. 9C is a diagram illustrating a state of the functional core viewed from the X-axis direction. FIG. 9D is a diagram illustrating tooth movement when the tooth of FIG. FIG. 9E is a diagram illustrating a tooth locus and a functional core as seen from the Y-axis direction. FIG. 9F is a diagram illustrating the functional core as viewed from the Y-axis direction. As shown in FIG. 9, by connecting the contours of the opposing teeth during various occlusal movements, the trajectory of the opposing teeth can be grasped, and thereby the functional core can be acquired. Since any point on the paired teeth moves in a complicated manner along the movement path as shown in FIG. 8, the movement of the paired teeth is obtained by accumulating the paired tooth locus information based on the position information. It is possible to acquire a practical functional core considering the road.

なお,本発明のコンピュータが切削装置と接続され,得られた歯冠修復物に関するデータを用いて,歯冠修復物を製造できるようにされることが好ましい。歯冠修復物は,例えば,金,銀,ステンレス鋼,コバルトクロム,ニッケルクロムやチタン等の金属材料のほかに,レジン,陶材,セラミックス,又はセラミックスにジルコニアやイットリウムを添加したもの用いて製造できる。本発明の生態的機能コアは,対合歯の機能的運動路を考慮して設計されている。よって,本発明の生態的機能コアに基づいて製造された歯冠修復物は,対象部位に適合し,正しいチューイングサイクルを損なわない。よって,本発明によれば,歯冠修復物を対象部位に装着する前に歯冠修復物を調整する必要がなく,きわめて利便性が高まる。   In addition, it is preferable that the computer of this invention is connected with a cutting device, and it can manufacture a crown restoration using the data regarding the obtained crown restoration. Prosthetic restorations are manufactured using, for example, resin, porcelain, ceramics, or ceramics with zirconia or yttrium added to metal materials such as gold, silver, stainless steel, cobalt chrome, nickel chrome, and titanium. it can. The ecological functional core of the present invention is designed in consideration of the functional movement path of the paired teeth. Thus, crown restorations manufactured based on the ecological functional core of the present invention are compatible with the target site and do not impair the correct chewing cycle. Therefore, according to the present invention, it is not necessary to adjust the crown restoration before attaching the crown restoration to the target site, and the convenience is greatly enhanced.

本発明は,歯科用機器産業の分野で利用されうる。   The present invention can be used in the field of the dental equipment industry.

1 生態的機能コア
11 支台歯
1 Ecological functional core 11 Abutment tooth

Claims (5)

コンピュータを用いて,支台歯に歯冠修復物を製造するために用いられる機能コアを取得する方法であって,
前記歯冠修復物を製造する対象となる者が咬合運動を行った際の前記対合歯の最外郭の形状が,複数,前記コンピュータに入力される工程と,
前記コンピュータが,前記入力された複数の最外郭の形状を集積し,前記対合歯の最外郭の軌跡を求め,求めた最外郭の軌跡を用いて,機能コアを得る工程と,を含む,
方法。
A method for obtaining a functional core used for manufacturing a crown restoration on an abutment tooth using a computer,
A plurality of shapes of the outermost contours of the opposing teeth when a person who manufactures the crown restoration performs an occlusal movement, a step of being input to the computer;
The computer accumulates the plurality of input outermost contour shapes, obtains the outermost trajectory of the opposing teeth, and obtains a functional core using the obtained outermost trajectory.
Method.
前記咬合運動は,下顎前方運動,下顎側方運動,及び下顎後方運動を含む,
請求項1に記載の方法。
The occlusal movement includes anterior jaw movement, lateral jaw movement, and posterior jaw movement,
The method of claim 1.
前記対合歯の軌跡は,
超音波探触子を含む超音波形状解析装置を用いて測定されたものである,
請求項1に記載の方法。
The locus of the counter teeth is
It was measured using an ultrasonic shape analyzer including an ultrasonic probe.
The method of claim 1.
前記対合歯の軌跡は,超音波形状解析装置を用いて測定されたものであり,
前記超音波形状解析装置は,第1の超音波探触子と,前記第1の超音波探触子と周波数が異なる第2の超音波探触子とを含む,
請求項1に記載の方法。
The locus of the counter teeth is measured using an ultrasonic shape analyzer,
The ultrasonic shape analysis apparatus includes a first ultrasonic probe and a second ultrasonic probe having a frequency different from that of the first ultrasonic probe.
The method of claim 1.
コンピュータを用いて,ある支台歯に用いられる歯冠修復物を設計する方法であって,
前記方法は,
コンピュータに,前記支台歯及び前記支台歯の形状が入力される工程と,
前記歯冠修復物を製造する対象となる者が咬合運動を行った際の前記対合歯の最外郭の形状が,複数,前記コンピュータに入力される工程と,
前記コンピュータが,前記入力された複数の最外郭の形状を集積し,前記対合歯の最外郭の軌跡を求め,求めた最外郭の軌跡を用いて,機能コアを得る工程と
前記支台歯及び前記支台歯の形状と,前記機能コアとを用いて,前記支台歯に設けられる歯冠修復物の形状を求める工程と,
を含み,
前記歯冠修復物の形状は,前記歯冠修復物が前記支台歯に取り付けられた際に,前記機能コアと接触する,
方法。
A method of designing a crown restoration to be used for an abutment tooth using a computer,
Said method is:
Inputting to the computer the abutment tooth and the shape of the abutment tooth;
A plurality of shapes of outermost contours of the opposing teeth when a person who manufactures the crown restoration performs an occlusal movement, and a step of inputting the shape to the computer;
A step of accumulating the inputted outermost contours to obtain a trajectory of the outermost contour of the mating teeth, obtaining a functional core using the obtained trajectory of the outermost contour; and the abutment tooth Using the shape of the abutment tooth and the functional core to determine the shape of the restoration of the crown provided on the abutment tooth;
Including
The shape of the crown restoration is in contact with the functional core when the crown restoration is attached to the abutment tooth.
Method.
JP2009142822A 2009-06-16 2009-06-16 Method of acquiring ecological functional core used for manufacturing crown restoration Pending JP2011000133A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009142822A JP2011000133A (en) 2009-06-16 2009-06-16 Method of acquiring ecological functional core used for manufacturing crown restoration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009142822A JP2011000133A (en) 2009-06-16 2009-06-16 Method of acquiring ecological functional core used for manufacturing crown restoration

Publications (1)

Publication Number Publication Date
JP2011000133A true JP2011000133A (en) 2011-01-06

Family

ID=43558618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009142822A Pending JP2011000133A (en) 2009-06-16 2009-06-16 Method of acquiring ecological functional core used for manufacturing crown restoration

Country Status (1)

Country Link
JP (1) JP2011000133A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104869940A (en) * 2012-10-18 2015-08-26 3形状股份有限公司 Multiple bite configurations
JP2019030677A (en) * 2012-10-18 2019-02-28 3シェイプ アー/エス Multiple meshing

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104869940A (en) * 2012-10-18 2015-08-26 3形状股份有限公司 Multiple bite configurations
JP2015536163A (en) * 2012-10-18 2015-12-21 3シェイプ アー/エス Multiple meshing
JP2019030677A (en) * 2012-10-18 2019-02-28 3シェイプ アー/エス Multiple meshing
US11000348B2 (en) 2012-10-18 2021-05-11 3Shape A/S Multiple bite configurations

Similar Documents

Publication Publication Date Title
Hayama et al. Trueness and precision of digital impressions obtained using an intraoral scanner with different head size in the partially edentulous mandible
JP5875972B2 (en) Dental CAD / CAM equipment
Lukas et al. Periotest-a dynamic procedure for the diagnosis of the human periodontium
CN102933171B (en) dynamic virtual articulator
WICKWIRE et al. Chewing patterns in normal children
Kwon et al. A digital approach to dynamic jaw tracking using a target tracking system and a structured-light three-dimensional scanner
CN104039266B (en) For gathering data for preparing the method and system of 3D model from individuality
JP2008136865A (en) Teeth movement automatic measurement method using three-dimensional reverse engineering technique and program thereof
US20130204600A1 (en) Virtual articulator
Röhrle et al. Using a motion‐capture system to record dynamic articulation for application in CAD/CAM software
JP2011177451A (en) Dental diagnosis system and dental care system
JP5975731B2 (en) Crown design method, crown design program, crown design device, crown creation method, and crown creation device
Muric et al. Comparing the precision of reproducibility of computer-aided occlusal design to conventional methods
JP6635920B2 (en) Measurement of condylar joint position for making virtual articulator
Schmalzl et al. Evaluating the influence of palate scanning on the accuracy of complete-arch digital impressions–An in vitro study
JP2011000133A (en) Method of acquiring ecological functional core used for manufacturing crown restoration
CN114271981A (en) A method for detecting the occlusal accuracy of an oral prosthesis and its occlusal booster
Dawoud et al. Evaluation of retention and assessment of biting force distribution of a complete denture fabricated using 3D printed custom trays with Arcus Digma versus conventional method (a cross over study)
WO2014002513A1 (en) Method for taking occlusion, method for creating 3d dental figure, and program for creating 3d dental figure
US20230225839A1 (en) Methods and systems for obtaining hinge axis position and condyle guide inclination from a patient
JPH09253100A (en) Apparatus for designing dental prosthetic appliance and method therefor
Pandita et al. Virtual articulators: a digital excellence in prosthetic and restorative dentistry
Elcharkawi et al. Biting force of patients rehabilitated with Precision Attachments Unilateral Removable Partial Denture
CN112137749B (en) Method for measuring vertical position relation between tooth and jaw
Sneha Virtual articulators-a literature review