[go: up one dir, main page]

JP2010286406A - X-ray transmission inspection apparatus and X-ray transmission inspection method - Google Patents

X-ray transmission inspection apparatus and X-ray transmission inspection method Download PDF

Info

Publication number
JP2010286406A
JP2010286406A JP2009141467A JP2009141467A JP2010286406A JP 2010286406 A JP2010286406 A JP 2010286406A JP 2009141467 A JP2009141467 A JP 2009141467A JP 2009141467 A JP2009141467 A JP 2009141467A JP 2010286406 A JP2010286406 A JP 2010286406A
Authority
JP
Japan
Prior art keywords
ray
characteristic
tube
sample
absorption edge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009141467A
Other languages
Japanese (ja)
Inventor
Yoshitake Matoba
吉毅 的場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Science Corp
Original Assignee
SII NanoTechnology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SII NanoTechnology Inc filed Critical SII NanoTechnology Inc
Priority to JP2009141467A priority Critical patent/JP2010286406A/en
Publication of JP2010286406A publication Critical patent/JP2010286406A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

【課題】 異物起因のコントラストのみを明確に判別して過検出及び誤検出を防ぐこと。
【解決手段】 測定対象元素のX線吸収端より低いエネルギーの第1の特性X線を試料Sに照射する第1のX線管球11と、元素のX線吸収端より高いエネルギーの第2の特性X線を試料に照射する第2のX線管球12と、第1の特性X線及び第2の特性X線が試料を透過した際の第1の透過X線及び第2の透過X線を検出する第1のX線検出器13及び第2のX線検出器14と、第1の透過X線の第1の透過像と第2の透過X線の第2の透過像との差分からコントラスト像を得る演算部15と、を備え、試料と第1のX線管球との間に第1の特性X線よりも高いエネルギーのX線吸収端を有する元素の第1のフィルタF1を配すると共に、試料と第2のX線管球との間に第2の特性X線よりも高いエネルギーのX線吸収端を有する元素の第2のフィルタF2を配する。
【選択図】図1
PROBLEM TO BE SOLVED To prevent over-detection and false detection by clearly discriminating only contrast caused by a foreign object.
A first X-ray tube 11 that irradiates a sample S with a first characteristic X-ray having energy lower than the X-ray absorption edge of the element to be measured, and a second X-ray tube having energy higher than the X-ray absorption edge of the element. A second X-ray tube 12 that irradiates the sample with characteristic X-rays of the first, and the first and second transmission X-rays when the first characteristic X-ray and the second characteristic X-ray pass through the sample. A first X-ray detector 13 and a second X-ray detector 14 for detecting X-rays; a first transmission image of the first transmission X-ray; and a second transmission image of the second transmission X-ray; A calculation unit 15 that obtains a contrast image from the difference between the first X-ray absorption edge of the element having an X-ray absorption edge higher in energy than the first characteristic X-ray between the sample and the first X-ray tube. A second element F2 having an X-ray absorption edge higher in energy than the second characteristic X-ray is disposed between the sample and the second X-ray tube while the filter F1 is disposed. The filter F2 is arranged.
[Selection] Figure 1

Description

本発明は、試料中の特定元素からなる異物を検出可能なX線透過検査装置及びX線透過検査方法に関する。   The present invention relates to an X-ray transmission inspection apparatus and an X-ray transmission inspection method capable of detecting a foreign substance made of a specific element in a sample.

近年、自動車、ハイブリッド車又は電気自動車等のバッテリーとして、ニッケル水素系バッテリーよりもエネルギー密度の高いリチウムイオン二次電池が採用されつつある。このリチウムイオン二次電池は、非水電解質二次電池の一種で、電解質中のリチウムイオンが電気伝導を担い、かつ金属リチウムを電池内に含まない二次電池であり、ノート型パーソナルコンピュータや携帯電話機では既に多く採用されている。   In recent years, lithium ion secondary batteries having higher energy density than nickel metal hydride batteries are being adopted as batteries for automobiles, hybrid cars, electric cars and the like. This lithium ion secondary battery is a kind of non-aqueous electrolyte secondary battery, which is a secondary battery in which the lithium ion in the electrolyte is responsible for electrical conduction and does not contain metallic lithium in the battery. Many telephones have already been adopted.

このリチウムイオン二次電池は、優れた電池特性を有しているが、製造工程中に電極にFe(鉄)等の異物が入ると発熱性や寿命等の電池特性が劣化する等の信頼性に影響が生じるため、今まで車載用への搭載が遅れていた。例えば、リチウムイオン二次電池の電極(正極)は、図7の(a)に示すように、通常厚さ20μmのAl膜1の両面にMn酸リチウム膜やCo酸リチウム膜2が100μm程度形成されて構成されているが、図7の(b)に示すように、この中にFe(鉄)やSUS(ステンレス)の異物Xが混入する場合があり、その異物Xが数十μm以上であると、短絡が発生し、バッテリーの焼失や性能低下を引き起こす可能性がある。このため、リチウムイオン二次電池について、製造時に異物Xが混入したバッテリーを検査で迅速に検出し、予め除去することが求められている。   Although this lithium ion secondary battery has excellent battery characteristics, reliability such as deterioration of battery characteristics such as heat generation and life when foreign matter such as Fe (iron) enters the electrode during the manufacturing process Until now, it has been delayed for in-vehicle use. For example, as shown in FIG. 7A, the lithium ion secondary battery electrode (positive electrode) is usually formed with a lithium Mn oxide film or a lithium cobalt oxide film 2 of about 100 μm on both surfaces of an Al film 1 having a thickness of 20 μm. However, as shown in FIG. 7 (b), foreign matter X such as Fe (iron) or SUS (stainless steel) may be mixed therein, and the foreign matter X is several tens of μm or more. If so, a short circuit can occur, which can cause the battery to burn out or degrade performance. For this reason, about a lithium ion secondary battery, it is calculated | required that a battery in which the foreign material X was mixed at the time of manufacture is detected rapidly by inspection, and removed beforehand.

一般に、試料中の異物等を検出する方法として、透過X線像を用いた方法が知られている。この手法を利用して、従来、例えば特許文献1に記載されているように、リチウムイオン二次電池の負極として用いられる炭素系材料等への異物混入の有無を透過X線像によって検出する炭素質材料の異物検出方法が提案されている。   Generally, a method using a transmission X-ray image is known as a method for detecting a foreign substance or the like in a sample. Using this technique, as described in Patent Document 1, for example, carbon that detects the presence or absence of foreign matter in a carbon-based material or the like used as a negative electrode of a lithium ion secondary battery by a transmission X-ray image. A foreign material detection method for a quality material has been proposed.

特開2004−239776号公報(特許請求の範囲)Japanese Patent Laying-Open No. 2004-239776 (Claims)

上記従来の技術には、以下の課題が残されている。
すなわち、従来の異物検出方法では、単に透過X線像の強度により異物の有無を検出しているだけのため、異物の原子番号が大きく異なれば明確なコントラストが得られるが、原子番号が近いとコントラストが弱く、判別がし難くなる問題がある。例えば、電極(正極板)の構成材に含まれるCoと異物とされるFeとでは、同じようなコントラストとなってしまう。このため、従来の異物検出方法では、図7の(a)に示すように、例えば試料Sである電極(正極板)の透過X線像Tにおいて、局所的に構成材が厚い部分2aのコントラストか、図7の(b)に示すように、異物Xによるコントラストかが判別できず、過検出や誤検出となってしまう不都合があった。
The following problems remain in the conventional technology.
That is, in the conventional foreign matter detection method, since the presence or absence of foreign matter is simply detected based on the intensity of the transmitted X-ray image, a clear contrast can be obtained if the atomic number of the foreign matter is greatly different. There is a problem that contrast is weak and difficult to discriminate. For example, the same contrast is produced between Co contained in the constituent material of the electrode (positive electrode plate) and Fe as foreign matter. Therefore, in the conventional foreign matter detection method, as shown in FIG. 7A, for example, in the transmission X-ray image T of the electrode (positive electrode plate) that is the sample S, the contrast of the locally thick component 2a is increased. Alternatively, as shown in FIG. 7 (b), the contrast due to the foreign matter X cannot be determined, resulting in inconvenience of overdetection or erroneous detection.

本発明は、前述の課題に鑑みてなされたもので、異物起因のコントラストのみを明確に判別して過検出及び誤検出を防ぐことができるX線透過検査装置及びX線透過検査方法を提供することを目的とする。   The present invention has been made in view of the above-described problems, and provides an X-ray transmission inspection apparatus and an X-ray transmission inspection method that can clearly discriminate only the contrast caused by a foreign substance and prevent overdetection and erroneous detection. For the purpose.

本発明は、前記課題を解決するために以下の構成を採用した。すなわち、本発明のX線透過検査装置は、測定対象の元素のX線吸収端より低いエネルギーの第1の特性X線を試料に照射する第1のX線管球と、前記元素のX線吸収端より高いエネルギーの第2の特性X線を前記試料に照射する第2のX線管球と、前記第1の特性X線が前記試料を透過した際の第1の透過X線を受けてその強度を検出する第1のX線検出器と、前記第2の特性X線が前記試料を透過した際の第2の透過X線を受けてその強度を検出する第2のX線検出器と、検出された前記第1の透過X線の強度の分布を示す第1の透過像と検出された前記第2の透過X線の強度の分布を示す第2の透過像とを作成し、前記第1の透過像と前記第2の透過像との差分からコントラスト像を得る演算部と、を備え、前記試料と前記第1のX線管球との間に前記第1の特性X線よりも高いエネルギーのX線吸収端を有する元素で形成された第1のフィルタが配されていると共に、前記試料と前記第2のX線管球との間に前記第2の特性X線よりも高いエネルギーのX線吸収端を有する元素で形成された第2のフィルタが配されていることを特徴とする。   The present invention employs the following configuration in order to solve the above problems. That is, the X-ray transmission inspection apparatus of the present invention includes a first X-ray tube that irradiates a sample with first characteristic X-rays having energy lower than the X-ray absorption edge of the element to be measured, and the X-rays of the element. The second X-ray tube that irradiates the sample with a second characteristic X-ray having energy higher than the absorption edge, and the first transmitted X-ray when the first characteristic X-ray passes through the sample. A first X-ray detector that detects the intensity of the first X-ray detector, and a second X-ray detection that receives the second transmitted X-ray when the second characteristic X-ray passes through the sample and detects the intensity And a first transmission image indicating the detected intensity distribution of the first transmitted X-ray and a second transmission image indicating the detected intensity distribution of the second transmitted X-ray. A calculation unit that obtains a contrast image from a difference between the first transmission image and the second transmission image, and the sample and the first X-ray A first filter formed of an element having an X-ray absorption edge with energy higher than that of the first characteristic X-ray is disposed between the sample and the second X-ray tube. And a second filter formed of an element having an X-ray absorption edge with energy higher than that of the second characteristic X-ray.

また、本発明のX線透過検査方法は、測定対象の元素のX線吸収端より低いエネルギーの第1の特性X線を試料に照射するステップと、前記元素のX線吸収端より高いエネルギーの第2の特性X線を前記試料に照射するステップと、前記第1の特性X線が前記試料を透過した際の第1の透過X線を受けてその強度を検出するステップと、前記第2の特性X線が前記試料を透過した際の第2の透過X線を受けてその強度を検出するステップと、検出された前記第1の透過X線の強度の分布を示す第1の透過像と検出された前記第2の透過X線の強度の分布を示す第2の透過像とを作成し、前記第1の透過像と前記第2の透過像との差分からコントラスト像を得るステップと、を有し、前記試料と前記第1のX線管球との間に前記第1の特性X線よりも高いエネルギーのX線吸収端を有する元素で形成された第1のフィルタを配すると共に、前記試料と前記第2のX線管球との間に前記第2の特性X線よりも高いエネルギーのX線吸収端を有する元素で形成された第2のフィルタを配することを特徴とする。   The X-ray transmission inspection method of the present invention includes a step of irradiating a sample with a first characteristic X-ray having energy lower than that of an X-ray absorption edge of an element to be measured; Irradiating the sample with a second characteristic X-ray; receiving the first transmitted X-ray when the first characteristic X-ray is transmitted through the sample; and detecting the intensity thereof; Receiving the second transmitted X-ray when the characteristic X-ray passes through the sample and detecting the intensity thereof, and a first transmission image showing the distribution of the detected intensity of the first transmitted X-ray And a second transmission image showing the distribution of the detected intensity of the second transmission X-ray, and obtaining a contrast image from the difference between the first transmission image and the second transmission image; And the first characteristic X-ray between the sample and the first X-ray tube A first filter formed of an element having an X-ray absorption edge with a higher energy is disposed, and is higher than the second characteristic X-ray between the sample and the second X-ray tube. A second filter formed of an element having an X-ray absorption edge of energy is provided.

これらのX線透過検査装置及びX線透過検査方法では、測定対象の元素のX線吸収端より低いエネルギーの第1の特性X線を試料に照射して取得した第1の透過像と元素のX線吸収端より高いエネルギーの第2の特性X線を試料に照射して取得した第2の透過像との差分からコントラスト像を得るので、特定の元素について明確なコントラスト像を得ることができる。すなわち、白色X線等の種々のエネルギーが混在したX線ではなく、上記元素のX線吸収端の前後であってX線吸収端によって透過X線検出量に差が生じる異なるエネルギーの特性X線(第1の特性X線及び第2の特性X線)を別々に照射することで、原子番号が近い他の元素があっても測定対象の元素の明確なコントラスト像を得ることが可能になる。   In these X-ray transmission inspection apparatuses and X-ray transmission inspection methods, the first transmission image obtained by irradiating the sample with the first characteristic X-ray having energy lower than the X-ray absorption edge of the element to be measured and the element Since the contrast image is obtained from the difference from the second transmission image obtained by irradiating the sample with the second characteristic X-ray having higher energy than the X-ray absorption edge, a clear contrast image can be obtained for a specific element. . That is, it is not an X-ray in which various energies such as white X-rays are mixed, but a characteristic X-ray with different energy that causes a difference in the detected amount of transmitted X-rays before and after the X-ray absorption edge of the element and depending on the X-ray absorption edge By separately irradiating (the first characteristic X-ray and the second characteristic X-ray), it becomes possible to obtain a clear contrast image of the element to be measured even if there is another element having an atomic number close to it. .

さらに、試料と第1のX線管球との間に第1の特性X線よりも高いエネルギーのX線吸収端を有する元素で形成された第1のフィルタを配すると共に、試料と第2のX線管球との間に第2の特性X線よりも高いエネルギーのX線吸収端を有する元素で形成された第2のフィルタを配するので、第1のX線管球及び第2のX線管球から第1の特性X線又は第2の特性X線だけでなく、これらよりも高いエネルギーの特性X線やバックグランドのX線も出射されている場合、これらを第1のフィルタ及び第2のフィルタでカットすることができる。したがって、所望の第1の特性X線又は第2の特性X線だけが抽出されて試料に対して照射可能になるため、測定対象の元素のコントラストがより鮮明になる。   In addition, a first filter formed of an element having an X-ray absorption edge with higher energy than the first characteristic X-ray is disposed between the sample and the first X-ray tube, and the sample and the second X-ray tube. Since the second filter formed of an element having an X-ray absorption edge with higher energy than the second characteristic X-ray is disposed between the first X-ray tube and the second X-ray tube, In the case where not only the first characteristic X-ray or the second characteristic X-ray but also characteristic X-rays with higher energy or background X-rays are emitted from the X-ray tube, It can cut with a filter and a 2nd filter. Accordingly, since only the desired first characteristic X-ray or second characteristic X-ray is extracted and the sample can be irradiated, the contrast of the element to be measured becomes clearer.

また、本発明のX線透過検査装置は、前記元素がFeであり、前記第1のX線管球が、Coターゲット管球であると共に、前記第2のX線管球が、Niターゲット管球であり、前記第1のフィルタが、Fe箔であると共に、前記第2のフィルタが、Co箔であることを特徴とする。
すなわち、このX線透過検査装置では、Feを測定対象の元素としたとき、FeのX線吸収端の前後にエネルギーが位置するCoの特性X線を出射可能なCoターゲット管球とNiの特性X線を出射可能なNiターゲット管球とを使用することで、安価なX線管球によりFeの異物を明確なコントラスト像で検出することができる。
また、第1のフィルタがFe箔であると共に、第2のフィルタがCo箔であるので、FeのX線吸収端(7.111keV)によりCo−Kα特性X線(6.93keV)だけを抽出すると共に、CoのX線吸収端(7.709keV)によりNi−Kα特性X線(7.477keV)だけを抽出することができる。
In the X-ray transmission inspection apparatus of the present invention, the element is Fe, the first X-ray tube is a Co target tube, and the second X-ray tube is an Ni target tube. It is a sphere, and the first filter is an Fe foil, and the second filter is a Co foil.
That is, in this X-ray transmission inspection apparatus, when Fe is an element to be measured, a Co target tube capable of emitting Co characteristic X-rays having energy located before and after the X-ray absorption edge of Fe and a characteristic of Ni By using the Ni target tube capable of emitting X-rays, Fe foreign matter can be detected with a clear contrast image by an inexpensive X-ray tube.
Since the first filter is an Fe foil and the second filter is a Co foil, only the Co-Kα characteristic X-ray (6.93 keV) is extracted from the X-ray absorption edge (7.111 keV) of Fe. At the same time, only the Ni-Kα characteristic X-ray (7.477 keV) can be extracted by the X-ray absorption edge (7.709 keV) of Co.

また、本発明のX線透過検査装置は、前記元素がCrであり、前記第1のX線管球が、Crターゲット管球であると共に、前記第2のX線管球が、Feターゲット管球であり、前記第1のフィルタが、V(バナジウム)箔であると共に、前記第2のフィルタが、Mn箔であることを特徴とする。
すなわち、このX線透過検査装置では、Crを測定対象の元素としたとき、CrのX線吸収端の前後にエネルギーが位置するCrの特性X線を出射可能なCrターゲット管球とFeの特性X線を出射可能なFeターゲット管球とを使用することで、安価なX線管球によりCrが含まれるSUS等の異物を明確なコントラスト像で検出することができる。
また、第1のフィルタがV箔であると共に、第2のフィルタがMn箔であるので、VのX線吸収端(5.463keV)によりCr−Kα特性X線(5.414keV)だけを抽出すると共に、MnのX線吸収端(6.537keV)によりFe−Kα特性X線(6.403keV)だけを抽出することができる。
In the X-ray transmission inspection apparatus of the present invention, the element is Cr, the first X-ray tube is a Cr target tube, and the second X-ray tube is an Fe target tube. It is a sphere, and the first filter is a V (vanadium) foil, and the second filter is a Mn foil.
That is, in this X-ray transmission inspection apparatus, when Cr is an element to be measured, the characteristics of the Cr target tube capable of emitting characteristic X-rays of Cr with energy located before and after the X-ray absorption edge of Cr and the characteristics of Fe By using an Fe target tube capable of emitting X-rays, foreign materials such as SUS containing Cr can be detected with a clear contrast image by an inexpensive X-ray tube.
Since the first filter is a V foil and the second filter is an Mn foil, only the Cr-Kα characteristic X-ray (5.414 keV) is extracted by the X-ray absorption edge (5.463 keV) of V. In addition, only the Fe-Kα characteristic X-ray (6.403 keV) can be extracted by the X-ray absorption edge (6.537 keV) of Mn.

また、本発明のX線透過検査装置は、前記元素がCrであり、前記第1のX線管球が、Mnターゲット管球であると共に、前記第2のX線管球が、Feターゲット管球であり、前記第1のフィルタが、Cr箔であると共に、前記第2のフィルタが、Mn箔であることを特徴とする。
すなわち、このX線透過検査装置では、Crを測定対象の元素としたとき、CrのX線吸収端の前後にエネルギーが位置するMnの特性X線を出射可能なMnターゲット管球とFeの特性X線を出射可能なFeターゲット管球とを使用することで、安価なX線管球によりCrが含まれるSUS等の異物を明確なコントラスト像で検出することができる。
また、第1のフィルタがCr箔であると共に、第2のフィルタがMn箔であるので、CrのX線吸収端(5.988keV)によりMn−Kα特性X線(5.898keV)だけを抽出すると共に、MnのX線吸収端(6.537keV)によりFe−Kα特性X線(6.403keV)だけを抽出することができる。
In the X-ray transmission inspection apparatus of the present invention, the element is Cr, the first X-ray tube is a Mn target tube, and the second X-ray tube is an Fe target tube. The first filter is a Cr foil, and the second filter is a Mn foil.
That is, in this X-ray transmission inspection apparatus, when Cr is an element to be measured, the characteristics of Mn target tube and Fe that can emit characteristic X-rays of Mn whose energy is located before and after the X-ray absorption edge of Cr. By using an Fe target tube capable of emitting X-rays, foreign materials such as SUS containing Cr can be detected with a clear contrast image by an inexpensive X-ray tube.
Since the first filter is a Cr foil and the second filter is a Mn foil, only the Mn-Kα characteristic X-ray (5.898 keV) is extracted from the X-ray absorption edge (5.988 keV) of Cr. In addition, only the Fe-Kα characteristic X-ray (6.403 keV) can be extracted by the X-ray absorption edge (6.537 keV) of Mn.

また、本発明のX線透過検査装置は、前記演算部が、前記コントラスト像と前記元素の質量吸収係数及び密度とから前記元素の厚みを算出することを特徴とする。
すなわち、このX線透過検査装置では、演算部が、コントラスト像と元素の質量吸収係数及び密度とから元素の厚みを算出するので、測定対象の元素の検出だけでなく、その厚みも算出することで、この元素を含む異物の三次元的なサイズも把握することが可能になる。したがって、この検査で得られた異物のサイズから、二次電池等として問題となる異物か否かの振り分けが可能になる。
In the X-ray transmission inspection apparatus according to the present invention, the calculation unit calculates the thickness of the element from the contrast image and the mass absorption coefficient and density of the element.
That is, in this X-ray transmission inspection apparatus, the calculation unit calculates the thickness of the element from the contrast image and the mass absorption coefficient and density of the element, so that not only the detection of the element to be measured but also its thickness is calculated. Therefore, it is possible to grasp the three-dimensional size of the foreign matter containing this element. Therefore, it is possible to sort out whether or not the foreign matter is a problem as a secondary battery or the like from the size of the foreign matter obtained by this inspection.

本発明によれば、以下の効果を奏する。
すなわち、本発明に係るX線透過検査装置及びX線透過検査方法によれば、測定対象の元素のX線吸収端より低いエネルギーの第1の特性X線を試料に照射して取得した第1の透過像と元素のX線吸収端より高いエネルギーの第2の特性X線を試料に照射して取得した第2の透過像との差分からコントラスト像を得るので、特定の元素について明確なコントラスト像を得ることができる。さらに、試料と第1のX線管球との間に第1の特性X線よりも高いエネルギーのX線吸収端を有する元素で形成された第1のフィルタを配すると共に、試料と第2のX線管球との間に第2の特性X線よりも高いエネルギーのX線吸収端を有する元素で形成された第2のフィルタを配するので、所望の第1の特性X線又は第2の特性X線だけを抽出して照射可能になり、測定対象の元素のコントラストがより鮮明になる。
したがって、このX線透過検査装置及びX線透過検査方法を用いれば、リチウムイオン二次電池等における特定元素の異物検出を高精度にかつ迅速に行うことができる。
The present invention has the following effects.
That is, according to the X-ray transmission inspection apparatus and the X-ray transmission inspection method according to the present invention, the first characteristic X-ray obtained by irradiating the sample with the first characteristic X-ray having energy lower than the X-ray absorption edge of the element to be measured. Since a contrast image is obtained from the difference between the transmission image of the element and the second transmission image acquired by irradiating the sample with the second characteristic X-ray having an energy higher than the X-ray absorption edge of the element, a clear contrast is obtained for a specific element. An image can be obtained. In addition, a first filter formed of an element having an X-ray absorption edge with higher energy than the first characteristic X-ray is disposed between the sample and the first X-ray tube, and the sample and the second X-ray tube. Since the second filter formed of an element having an X-ray absorption edge having higher energy than the second characteristic X-ray is disposed between the X-ray tube and the X-ray tube, the desired first characteristic X-ray or second Only the characteristic X-rays of 2 can be extracted and irradiated, and the contrast of the element to be measured becomes clearer.
Therefore, by using this X-ray transmission inspection apparatus and X-ray transmission inspection method, it is possible to detect a foreign substance of a specific element in a lithium ion secondary battery or the like with high accuracy and speed.

本発明に係るX線透過検査装置及びX線透過検査方法の一実施形態を示す概略的な全体構成図である。1 is a schematic overall configuration diagram showing an embodiment of an X-ray transmission inspection apparatus and an X-ray transmission inspection method according to the present invention. 本実施形態において、Co酸リチウムだけの場合とこれにFe異物が入っている場合とに対するX線透過率を示すグラフである。In this embodiment, it is a graph which shows the X-ray transmittance with respect to the case where only lithium Coate and the case where Fe foreign material is contained in this. 本実施形態において、Niターゲット管球から第2の特性X線を照射した際に、局所的に厚い部分がある場合(a)とFe異物が入っている場合(b)との第2の透過像を示す説明図である。In this embodiment, when the second characteristic X-ray is irradiated from the Ni target tube, the second transmission when there is a locally thick portion (a) and when the Fe foreign matter is contained (b) It is explanatory drawing which shows an image. 本実施形態において、Coターゲット管球から第1の特性X線を照射した際に、局所的に厚い部分がある場合(a)とFe異物が入っている場合(b)との第1の透過像を示す説明図である。In this embodiment, when the first characteristic X-ray is irradiated from the Co target tube, the first transmission when there is a locally thick portion (a) and when the Fe foreign matter is contained (b) It is explanatory drawing which shows an image. 本実施形態において、Ni酸リチウムだけの場合とこれにFe異物が入っている場合とに対するX線透過率を示すグラフである。In this embodiment, it is a graph which shows the X-ray transmittance with respect to the case where only lithium Niate and the case where Fe foreign material is contained in this. 本実施形態において、Al(アルミニウム)及びC(グラファイト)だけの場合とこれにFe異物が入っている場合とに対するX線透過率を示すグラフである。In this embodiment, it is a graph which shows the X-ray transmittance with respect to the case where only Al (aluminum) and C (graphite), and the case where Fe foreign material is contained in this. 本発明に係るX線透過検査装置及びX線透過検査方法の従来例において、X線を照射した際に、局所的に厚い部分がある場合(a)とFe異物が入っている場合(b)との透過像を示す説明図である。In the conventional example of the X-ray transmission inspection apparatus and the X-ray transmission inspection method according to the present invention, when X-rays are irradiated, there is a locally thick portion (a) and a case where Fe foreign matter is contained (b) FIG.

以下、本発明に係るX線透過検査装置及びX線透過検査方法の一実施形態を、図1から図6を参照しながら説明する。   Hereinafter, an embodiment of an X-ray transmission inspection apparatus and an X-ray transmission inspection method according to the present invention will be described with reference to FIGS. 1 to 6.

本実施形態のX線透過検査装置は、図1に示すように、測定対象の元素のX線吸収端より低いエネルギーの第1の特性X線を試料Sに照射する第1のX線管球11と、上記元素のX線吸収端より高いエネルギーの第2の特性X線を試料Sに照射する第2のX線管球12と、第1の特性X線が試料Sを透過した際の第1の透過X線を受けてその強度を検出する第1のX線検出器13と、第2の特性X線が試料Sを透過した際の第2の透過X線を受けてその強度を検出する第2のX線検出器14と、検出された第1の透過X線の強度の分布を示す第1の透過像と検出された第2の透過X線の強度の分布を示す第2の透過像とを作成し、第1の透過像と第2の透過像との差分からコントラスト像を得る演算部15と、を備えている。   As shown in FIG. 1, the X-ray transmission inspection apparatus of the present embodiment is a first X-ray tube that irradiates a sample S with first characteristic X-rays having energy lower than the X-ray absorption edge of the element to be measured. 11, the second X-ray tube 12 that irradiates the sample S with the second characteristic X-ray having energy higher than the X-ray absorption edge of the element, and the first characteristic X-ray transmitted through the sample S The first X-ray detector 13 that receives the first transmitted X-ray and detects its intensity, and receives the second transmitted X-ray when the second characteristic X-ray passes through the sample S, and the intensity thereof The second X-ray detector 14 to detect, the first transmission image showing the distribution of the detected intensity of the first transmitted X-ray, and the second showing the intensity distribution of the detected second transmitted X-ray. And a calculation unit 15 that obtains a contrast image from the difference between the first transmission image and the second transmission image.

また、このX線透過検査装置は、試料Sを載置して水平方向に移動可能な試料ステージであるベルトコンベア16と、上記各構成に接続されてそれぞれを制御する制御部17と、演算部15に接続されて上記コントラスト像などを表示するディスプレイ装置である表示部18と、を備えている。
さらに、X線透過検査装置では、試料Sと第1のX線管球11との間に第1の特性X線よりも高いエネルギーのX線吸収端を有する元素で形成された第1のフィルタF1が配されていると共に、試料Sと第2のX線管球12との間に第2の特性X線よりも高いエネルギーのX線吸収端を有する元素で形成された第2のフィルタF2が配されている。
The X-ray transmission inspection apparatus includes a belt conveyor 16 that is a sample stage on which a sample S is placed and can move in the horizontal direction, a control unit 17 that is connected to each of the above-described components and controls each of the components. 15 and a display unit 18 that is a display device that displays the contrast image and the like.
Furthermore, in the X-ray transmission inspection apparatus, the first filter formed of an element having an X-ray absorption edge with higher energy than the first characteristic X-ray between the sample S and the first X-ray tube 11. F2 is disposed, and the second filter F2 formed of an element having an X-ray absorption edge with higher energy than the second characteristic X-ray between the sample S and the second X-ray tube 12 Is arranged.

また、上記演算部15は、コントラスト像と上記元素の質量吸収係数及び密度とから上記元素の厚みを算出する機能を有している。
上記試料Sは、例えばリチウムイオン二次電池に使用される電極などであり、上記測定対象の元素は、例えば電極に異物として混入が懸念されるFeやSUS中のCrである。
The computing unit 15 has a function of calculating the thickness of the element from the contrast image and the mass absorption coefficient and density of the element.
The sample S is, for example, an electrode used for a lithium ion secondary battery, and the element to be measured is, for example, Fe or Cr in SUS, which may be mixed as a foreign substance in the electrode.

測定対象の元素をFeとしたとき、上記第1のX線管球11は、Coターゲットを有するCoターゲット管球が採用されると共に、第2のX線管球12は、Niターゲットを有するNiターゲット管球が採用される。上記Coターゲット管球の第1のX線管球11からは、例えばFeのK吸収端(7.111keV)よりも低いエネルギーの第1の特性X線として、Co−Kα特性X線(6.93keV)が出射される。また、上記Niターゲット管球の第2のX線管球12からは、例えばFeのK吸収端(7.111keV)よりも高いエネルギーの第2の特性X線として、Ni−Kα特性X線(7.477keV)が出射される。
また、このとき、第1のフィルタF1はFe箔が採用されると共に、第2のフィルタF2はCo箔が採用される。
When the element to be measured is Fe, the first X-ray tube 11 is a Co target tube having a Co target, and the second X-ray tube 12 is a Ni target having a Ni target. A target tube is adopted. From the first X-ray tube 11 of the Co target tube, for example, as a first characteristic X-ray having energy lower than that of the K absorption edge (7.111 keV) of Fe, a Co-Kα characteristic X-ray (6. 93 keV) is emitted. Further, from the second X-ray tube 12 of the Ni target tube, for example, a Ni-Kα characteristic X-ray (as a second characteristic X-ray having higher energy than the K absorption edge (7.111 keV) of Fe). 7.477 keV) is emitted.
At this time, the first filter F1 employs an Fe foil, and the second filter F2 employs a Co foil.

また、測定対象の元素をCrとしたとき、上記第1のX線管球11は、Crターゲットを有するCrターゲット管球又はMnターゲットを有するMnターゲット管球が採用されると共に、上記第2のX線管球12は、Feターゲットを有するFeターゲット管球が採用される。
上記Crターゲット管球の第1のX線管球11からは、例えばCrのK吸収端(5.988keV)よりも低いエネルギーの第1の特性X線として、Cr−Kα特性X線(5.414keV)が出射される。また、上記Mnターゲット管球の第1のX線管球11からは、例えばCrのK吸収端(5.988keV)よりも低いエネルギーの第1の特性X線として、Mn−Kα特性X線(5.898keV)が出射される。さらに、上記Feターゲット管球の第2のX線管球12からは、例えばCrのK吸収端(5.988keV)よりも高いエネルギーの第2の特性X線として、Fe−Kα特性X線(6.403keV)が出射される。
When the element to be measured is Cr, the first X-ray tube 11 is a Cr target tube having a Cr target or a Mn target tube having a Mn target. As the X-ray tube 12, an Fe target tube having an Fe target is employed.
From the first X-ray tube 11 of the Cr target tube, for example, a Cr-Kα characteristic X-ray (5. 5) is used as a first characteristic X-ray having a lower energy than the K absorption edge (5.988 keV) of Cr. 414 keV) is emitted. Further, from the first X-ray tube 11 of the Mn target tube, for example, as a first characteristic X-ray having a lower energy than the K absorption edge (5.988 keV) of Cr, an Mn-Kα characteristic X-ray ( 5.898 keV) is emitted. Further, from the second X-ray tube 12 of the Fe target tube, for example, as a second characteristic X-ray having higher energy than the K absorption edge (5.988 keV) of Cr, an Fe-Kα characteristic X-ray ( 6.403 keV) is emitted.

また、第1のX線管球11がCrターゲット管球であると共に第2のX線管球12がFeターゲット管球であるとき、第1のフィルタF1はV箔が採用されると共に、第2のフィルタF2はMn箔が採用される。
また、第1のX線管球11がMnターゲット管球であると共に第2のX線管球12がFeターゲット管球であるとき、第1のフィルタF1はCr箔が採用されると共に、第2のフィルタF2はMn箔が採用される。
When the first X-ray tube 11 is a Cr target tube and the second X-ray tube 12 is an Fe target tube, a V foil is used for the first filter F1, and For the second filter F2, a Mn foil is employed.
When the first X-ray tube 11 is a Mn target tube and the second X-ray tube 12 is an Fe target tube, the first filter F1 is made of Cr foil, For the second filter F2, a Mn foil is employed.

なお、測定対象の元素をFe又はCrとした場合について、第1の特性X線及び第2の特性X線として採用可能な特性X線のエネルギー例と第1のフィルタF1及び第2のフィルタF2として採用可能な元素のX線吸収端のエネルギー例とを、以下の表1に示す。
When the element to be measured is Fe or Cr, examples of energy of characteristic X-rays that can be adopted as the first characteristic X-ray and the second characteristic X-ray, and the first filter F1 and the second filter F2 Table 1 below shows examples of energy at the X-ray absorption edge of elements that can be used as

これら第1のX線管球11及び第2のX線管球12とされるX線管球は、管球内のフィラメント(陽極)から発生した熱電子がフィラメント(陽極)とターゲット(陰極)との間に印加された電圧により加速されターゲットに衝突して発生したX線を1次X線(第1の特性X線及び第2の特性X線)としてベリリウム箔などの窓から出射するものである。   In the X-ray tube, which is the first X-ray tube 11 and the second X-ray tube 12, the thermoelectrons generated from the filament (anode) in the tube are a filament (anode) and a target (cathode). X-rays generated by colliding with the target accelerated by the voltage applied between and are emitted as primary X-rays (first characteristic X-rays and second characteristic X-rays) from windows such as beryllium foil It is.

上記第1のX線検出器13及び第2のX線検出器14は、対応する第1のX線管球11及び第2のX線管球12にそれぞれ対向してベルトコンベア16下方に配置されたX線ラインセンサである。このX線ラインセンサとしては、蛍光板によりX線を蛍光に変換して一列に並べた受光素子で電流信号に変換するシンチレータ方式や複数の半導体検出素子を一列に並べた半導体方式等が採用される。また、これらのX線センサーは、一列のライン以外に二次元に受光素子が並んだX線エリアセンサーでも構わない。
なお、第1のX線検出器13と第2のX線検出器14を一つのX線検出器で兼用して、このX線検出器を第1のX線管球11と第2のX線管球12とのそれぞれ対向位置に移動可能にし、第1の透過X線及び第2の透過X線をそれぞれ検出するようにしても構わない。
The first X-ray detector 13 and the second X-ray detector 14 are arranged below the belt conveyor 16 so as to face the corresponding first X-ray tube 11 and second X-ray tube 12, respectively. X-ray line sensor. As this X-ray line sensor, a scintillator method in which X-rays are converted into fluorescence by a fluorescent plate and converted into a current signal by a light receiving element arranged in a row, a semiconductor method in which a plurality of semiconductor detection elements are arranged in a row, etc. are adopted. . These X-ray sensors may be X-ray area sensors in which light receiving elements are arranged two-dimensionally in addition to a single line.
The first X-ray detector 13 and the second X-ray detector 14 are also used as one X-ray detector, and this X-ray detector is used as the first X-ray tube 11 and the second X-ray detector. It may be possible to move to positions facing the tube 12 and detect the first transmitted X-ray and the second transmitted X-ray, respectively.

上記制御部17は、CPU等で構成されたコンピュータである。
また、演算部15は、制御部17を介して入力される第1のX線検出器13及び第2のX線検出器14からの信号に基づいて画像処理を行って第1の透過像と第2の透過像とを作成し、これらを差分処理することでコントラスト像を作成し、さらにその画像を表示部18に表示させる演算処理回路等である。なお、上記制御部17内に演算部15の処理回路を設けて両者を一体化しても構わない。また、表示部18は、制御部17からの制御に応じて種々の情報を表示可能である。
The control unit 17 is a computer configured with a CPU or the like.
In addition, the calculation unit 15 performs image processing based on signals from the first X-ray detector 13 and the second X-ray detector 14 input via the control unit 17 to obtain the first transmission image and the first transmission image. An arithmetic processing circuit or the like that creates a second transmission image, creates a contrast image by performing differential processing on these images, and further displays the image on the display unit 18. Note that a processing circuit of the calculation unit 15 may be provided in the control unit 17 so that both are integrated. The display unit 18 can display various information according to control from the control unit 17.

次に、本実施形態のX線透過検査装置を用いたX線透過検査方法について、図1から図6を参照して説明する。このX線透過検査方法では、例えば、Co酸リチウム電極における異物Xとして測定対象の元素をFeとし、第1のX線管球11としてCoターゲット管球を採用すると共に第2のX線管球12としてNiターゲット管球を採用する。   Next, an X-ray transmission inspection method using the X-ray transmission inspection apparatus of this embodiment will be described with reference to FIGS. In this X-ray transmission inspection method, for example, the element to be measured is Fe as the foreign matter X in the lithium Co oxide electrode, the Co target tube is adopted as the first X-ray tube 11, and the second X-ray tube A Ni target tube is adopted as 12.

まず、ベルトコンベア16上に試料Sをセットし、制御部17によりベルトコンベア16で第1のX線管球11に対向する位置まで試料Sを移動させる。
次に、Coターゲット管球の第1のX線管球11から第1の特性X線としてCo−Kα特性X線を試料Sに照射すると共に、第1のX線検出器13で試料Sを透過した第1の透過X線を検出する。この際、ベルトコンベア16で試料Sを移動させることで全体をスキャンし、第1の透過X線について全体の強度分布を取得する。
First, the sample S is set on the belt conveyor 16, and the controller 17 moves the sample S to a position facing the first X-ray tube 11 by the belt conveyor 16.
Next, the sample S is irradiated with Co-Kα characteristic X-rays as the first characteristic X-rays from the first X-ray tube 11 of the Co target tube, and the sample X is irradiated with the first X-ray detector 13. The transmitted first transmitted X-ray is detected. At this time, the entire sample is scanned by moving the sample S on the belt conveyor 16, and the entire intensity distribution of the first transmitted X-ray is acquired.

このとき、Coターゲット管球の第1のX線管球11から出射されているX線のうち、FeのX線吸収端(7.111keV)よりも高いエネルギーの特性X線(Co−Kβ特性X線(7.649keV)等)やバックグランドのX線が、Fe箔の第1のフィルタF1に吸収されてカットされ、第1の特性X線とされるCo−Kα特性X線(6.93keV)だけが試料Sに照射される。   At this time, among the X-rays emitted from the first X-ray tube 11 of the Co target tube, a characteristic X-ray (Co-Kβ characteristic) having energy higher than the X-ray absorption edge (7.111 keV) of Fe. X-rays (7.649 keV, etc.) and background X-rays are absorbed by the first filter F1 of Fe foil and cut to form the first characteristic X-rays. The sample S is irradiated with only 93 keV).

次に、ベルトコンベア16により第2のX線管球12に対向する位置まで試料Sを移動させる。
そして、Niターゲット管球の第2のX線管球12から第2の特性X線としてNi−Kα特性X線を試料Sに照射すると共に、第2のX線検出器14で試料Sを透過した第2の透過X線を検出する。この際、ベルトコンベア16で試料Sを移動させることで全体をスキャンし、第2の透過X線について全体の強度分布を取得する。
Next, the sample S is moved to a position facing the second X-ray tube 12 by the belt conveyor 16.
Then, the second S-ray tube 12 of the Ni target tube irradiates the sample S with a Ni-Kα characteristic X-ray as a second characteristic X-ray, and the second X-ray detector 14 transmits the sample S. The second transmitted X-ray is detected. At this time, the entire sample is scanned by moving the sample S on the belt conveyor 16, and the entire intensity distribution of the second transmitted X-ray is acquired.

このとき、Niターゲット管球の第2のX線管球12から出射されているX線のうち、CoのX線吸収端(7.709keV)よりも高いエネルギーの特性X線(Ni−Kβ特性X線(8.264keV)等)やバックグランドのX線が、Co箔の第2のフィルタF2で吸収されカットされ、第2の特性X線とされるNi−Kα特性X線(7.477keV)だけが試料Sに照射される。   At this time, among the X-rays emitted from the second X-ray tube 12 of the Ni target tube, a characteristic X-ray having a higher energy than the Co X-ray absorption edge (7.709 keV) (Ni-Kβ characteristic) Ni-Kα characteristic X-rays (7.477 keV) in which X-rays (8.264 keV, etc.) and background X-rays are absorbed and cut by the second filter F2 made of Co foil and become the second characteristic X-rays. Only the sample S is irradiated.

このように得た第1の透過X線の強度分布と第2の透過X線の強度分布とを、演算部15が画像処理して第1の透過像と第2の透過像とを作成する。
なお、Co酸リチウム電極に対するX線透過率は、異物がない場合に比べて、例えば20μmのFeの異物が入っている場合、図2に示すように、FeのX線吸収端に相当するエネルギーでX線透過率が低下する。また、第1の特性X線であるCo−Kα特性X線と第2の特性X線であるNi−Kα特性X線とは、それぞれFeのX線吸収端の前後にそれぞれ相当するエネルギーを有している。
The first transmission X-ray intensity distribution and the second transmission X-ray intensity distribution thus obtained are image-processed by the calculation unit 15 to create a first transmission image and a second transmission image. .
The X-ray transmittance with respect to the lithium Co oxide electrode is, as shown in FIG. 2, the energy corresponding to the X-ray absorption edge of Fe when, for example, 20 μm of Fe foreign matter is contained, compared to the case where no foreign matter is present. As a result, the X-ray transmittance decreases. Further, the Co-Kα characteristic X-ray that is the first characteristic X-ray and the Ni-Kα characteristic X-ray that is the second characteristic X-ray each have energy corresponding to before and after the X-ray absorption edge of Fe. is doing.

このため、図3の(a)に示すように、試料Sの構成材(Al膜1の両面にCo酸リチウム膜2が積層された電極材)に局所的に厚い部分2aがある場合、Niターゲット管球の第2のX線管球12による第2の透過像T2には、局所的に厚い部分2aに対応した部分に明確なコントラストが示される。また、図3の(b)に示すように、試料SにFeの異物Xがある場合、Niターゲット管球の第2のX線管球12による第2の透過像T2には、異物Xに対応した部分に明確なコントラストが示される。すなわち、FeのX線吸収端より高いエネルギーのNi−Kα特性X線は、Feの異物Xに対してX線透過率が低くなるため、異物Xの部分を透過する量が他の部分を透過する量より低下して暗部となり、コントラストが生じる。   Therefore, as shown in FIG. 3A, when the constituent material of the sample S (the electrode material in which the lithium cobalt oxide film 2 is laminated on both surfaces of the Al film 1) has a locally thick portion 2a, Ni In the second transmission image T2 of the target tube by the second X-ray tube 12, a clear contrast is shown in a portion corresponding to the locally thick portion 2a. Further, as shown in FIG. 3B, when the foreign matter X of Fe is present in the sample S, the second transmission image T2 by the second X-ray tube 12 of the Ni target tube shows the foreign matter X. Clear contrast is shown in the corresponding part. That is, since the Ni-Kα characteristic X-ray having higher energy than the X-ray absorption edge of Fe has a lower X-ray transmittance with respect to the foreign matter X of Fe, the amount transmitted through the foreign matter X portion is transmitted through the other portions. The amount is lower than the amount to be dark, and a dark portion is produced, resulting in a contrast.

一方、図4の(a)に示すように、試料Sに局所的に厚い部分2aがある場合、Coターゲット管球の第1のX線管球11による第1の透過像T1には、局所的に厚い部分2aに対応した部分に明確なコントラストが示される。しかしながら、図4の(b)に示すように、試料SにFeの異物Xがある場合、Coターゲット管球の第1のX線管球11による第1の透過像T1には、異物Xに対応した部分に明確なコントラストが示されない。すなわち、FeのX線吸収端より低いエネルギーのCo−Kα特性X線は、Feの異物Xに対してX線透過率がCo酸リチウムと変わらず、異物Xの部分を透過する量と他の部分を透過する量とがほぼ同じであるため、明確なコントラストが生じ難い。   On the other hand, as shown in FIG. 4A, when the sample S has a locally thick portion 2a, the first transmission image T1 by the first X-ray tube 11 of the Co target tube has a local region. A clear contrast is shown in the portion corresponding to the thick portion 2a. However, as shown in FIG. 4B, when the sample S has the foreign substance X of Fe, the first transmission image T1 of the Co target tube by the first X-ray tube 11 shows the foreign object X. No clear contrast is shown in the corresponding part. That is, Co-Kα characteristic X-rays with energy lower than the X-ray absorption edge of Fe have the same amount of X-ray transmittance as that of lithium Coate with respect to the foreign matter X of Fe, and the amount of the foreign matter X transmitted through other parts Since the amount of light transmitted through the portion is almost the same, a clear contrast is unlikely to occur.

次に、演算部15は、上記のように得られた第1の透過像T1と第2の透過像T2との差分を取ってコントラスト像を作成し、表示部18に表示する。すなわち、それぞれ単色X線による透過像である第1の透過像T1と第2の透過像T2との差分を取ることによって、局所的に厚い部分2aと区別されてFeの異物Xに対応する部分が強調されたコントラスト像が得られる。   Next, the calculation unit 15 creates a contrast image by taking the difference between the first transmission image T1 and the second transmission image T2 obtained as described above, and displays the contrast image on the display unit 18. That is, the difference between the first transmission image T1 and the second transmission image T2 that are transmission images by monochromatic X-rays, respectively, is distinguished from the locally thick portion 2a and corresponds to the foreign matter X of Fe. A contrast image with enhanced is obtained.

さらに、演算部15は、上記2つの透過像の差分から得られたコントラスト像と測定対象の元素の質量吸収係数及び密度とから元素の厚み、すなわち異物Xの厚みを算出する。すなわち、予め演算部15に測定対象の元素(Fe)に関する質量吸収係数μ及び密度ρが設定されており、コントラスト像のうち異物Xの部分に対応したコントラストの強い部分の透過X線強度(異物部透過X線強度)IFeと異物Xがない部分に対応したコントラストの弱い部分の透過X線強度(非異物部透過X強度)ICoとから、以下の式に基づいて異物Xの平均厚みDを算出する。 Further, the calculation unit 15 calculates the thickness of the element, that is, the thickness of the foreign matter X from the contrast image obtained from the difference between the two transmission images and the mass absorption coefficient and density of the element to be measured. That is, the mass absorption coefficient μ and the density ρ relating to the element (Fe) to be measured are set in advance in the calculation unit 15, and the transmitted X-ray intensity (foreign matter) of a strong contrast portion corresponding to the foreign matter X portion of the contrast image. (Partial transmitted X-ray intensity) I Fe and the transmitted X-ray intensity (non-foreign part transmitted X-intensity) I Co of the low-contrast part corresponding to the part where no foreign substance X exists, the average thickness of the foreign substance X based on the following formula D is calculated.

Fe:Coによる異物部透過X線強度
Co:Coによる非異物部透過X線強度
μ:異物(Fe)の質量吸収係数
ρ:異物(Fe)の密度
D:異物(Fe)の平均厚み
I Fe : X-ray intensity of foreign matter part transmitted by Co I Co : Non-foreign part transmitted X-ray intensity by Co μ: Mass absorption coefficient of foreign substance (Fe) ρ: Density of foreign substance (Fe) D: Average thickness of foreign substance (Fe)

なお、上記では、Co酸リチウム電極における異物Xを検出するX線透過検査方法を例示したが、リチウムイオン二次電池に使用される電極材料として、正極板に使用されるNi酸リチウムにおける異物の検査や、負極板に使用されるAl(アルミニウム)とC(グラファイト)との積層材料における異物の検査にも同様に適用可能である。
上記Ni酸リチウムに対するX線透過率のグラフと、Al(アルミニウム)とC(グラファイト)との積層材料に対するX線透過率のグラフと、を異物(Fe)の有る場合と無い場合について、図5及び図6に示す。
In the above description, the X-ray transmission inspection method for detecting the foreign matter X in the lithium Coate electrode is exemplified. However, as an electrode material used in the lithium ion secondary battery, the foreign matter in the lithium Niate used in the positive plate is used. The present invention can be similarly applied to inspection and inspection of foreign matters in a laminated material of Al (aluminum) and C (graphite) used for the negative electrode plate.
FIG. 5 shows the X-ray transmittance graph for the lithium Niate and the X-ray transmittance graph for the laminated material of Al (aluminum) and C (graphite) with and without foreign matter (Fe). And shown in FIG.

これら材料に対するX線透過率についても、Feの異物Xが有る場合にはFeのX線吸収端でいずれもX線透過率が低下していることがわかる。したがって、これら材料中の異物Xを検出する場合でも、FeのX線吸収端の前後に位置するエネルギーの第1の特性X線(例えば、Coターゲット管球からのCo−Kα特性X線)及び第2の特性X線(例えば、Niターゲット管球からのNi−Kα特性X線)を用いることで、2つのX線透過像の差分から異物Xの部分が強調されたコントラスト像及び異物Xの厚みを得ることができる。   As for the X-ray transmittance of these materials, it can be seen that the X-ray transmittance is decreased at the X-ray absorption edge of Fe when the foreign substance X of Fe is present. Therefore, even when detecting the foreign matter X in these materials, the first characteristic X-rays of energy located before and after the X-ray absorption edge of Fe (for example, Co-Kα characteristic X-rays from a Co target tube) and By using the second characteristic X-ray (for example, the Ni-Kα characteristic X-ray from the Ni target tube), the contrast image in which the part of the foreign matter X is emphasized from the difference between the two X-ray transmission images and the foreign matter X Thickness can be obtained.

このように本実施形態のX線透過検査装置及びX線透過検査方法では、測定対象の元素のX線吸収端より低いエネルギーの第1の特性X線を試料Sに照射して取得した第1の透過像T1と元素のX線吸収端より高いエネルギーの第2の特性X線を試料Sに照射して取得した第2の透過像T2との差分からコントラスト像を得るので、特定の元素について明確なコントラスト像を得ることができる。すなわち、白色X線等の種々のエネルギーが混在したX線ではなく、上記元素のX線吸収端の前後であってX線吸収端によって透過X線検出量に差が生じる異なるエネルギーの特性X線(第1の特性X線及び第2の特性X線)を別々に照射することで、原子番号が近い他の元素があっても測定対象の元素の明確なコントラスト像を得ることが可能になる。   As described above, in the X-ray transmission inspection apparatus and the X-ray transmission inspection method of the present embodiment, the first characteristic X-ray having energy lower than the X-ray absorption edge of the element to be measured is obtained by irradiating the sample S with the first characteristic X-ray. The contrast image is obtained from the difference between the transmission image T1 of the sample and the second transmission image T2 acquired by irradiating the sample S with the second characteristic X-ray having energy higher than the X-ray absorption edge of the element. A clear contrast image can be obtained. That is, it is not an X-ray in which various energies such as white X-rays are mixed, but a characteristic X-ray with different energy that causes a difference in the detected amount of transmitted X-rays before and after the X-ray absorption edge of the element and depending on the X-ray absorption edge By separately irradiating (the first characteristic X-ray and the second characteristic X-ray), it becomes possible to obtain a clear contrast image of the element to be measured even if there is another element having an atomic number close to it. .

さらに、試料Sと第1のX線管球11との間に第1の特性X線よりも高いエネルギーのX線吸収端を有する元素で形成された第1のフィルタF1を配すると共に、試料Sと第2のX線管球12との間に第2の特性X線よりも高いエネルギーのX線吸収端を有する元素で形成された第2のフィルタF2を配するので、第1のX線管球11及び第2のX線管球12から第1の特性X線又は第2の特性X線だけでなく、これらよりも高いエネルギーの特性X線やバックグランドのX線も出射されている場合、これらを第1のフィルタF1及び第2のフィルタF2でカットすることができる。したがって、所望の第1の特性X線又は第2の特性X線だけが抽出されて試料Sに対して照射可能になるため、測定対象の元素のコントラストがより鮮明になる。   In addition, a first filter F1 formed of an element having an X-ray absorption edge with higher energy than the first characteristic X-ray is arranged between the sample S and the first X-ray tube 11, and the sample Since the second filter F2 formed of an element having an X-ray absorption edge with higher energy than the second characteristic X-ray is disposed between S and the second X-ray tube 12, the first X The X-ray tube 11 and the second X-ray tube 12 emit not only the first characteristic X-ray or the second characteristic X-ray, but also characteristic X-rays with higher energy and background X-rays. If they are, they can be cut by the first filter F1 and the second filter F2. Accordingly, since only the desired first characteristic X-ray or second characteristic X-ray is extracted and can be irradiated to the sample S, the contrast of the element to be measured becomes clearer.

また、Feを測定対象の元素としたとき、FeのX線吸収端の前後にエネルギーが位置するCoの特性X線を出射可能なCoターゲット管球の第1のX線管球11とNiの特性X線を出射可能なNiターゲット管球の第2のX線管球12とを使用することで、安価なX線管球によりFeの異物Xを明確なコントラスト像で検出することができる。
また、第1のフィルタがFe箔であると共に、第2のフィルタがCo箔であるので、FeのX線吸収端(7.111keV)によりCo−Kα特性X線(6.93keV)だけを抽出すると共に、CoのX線吸収端(7.709keV)によりNi−Kα特性X線(7.477keV)だけを抽出することができる。すなわち、FeのX線吸収端(7.111keV)によりCo−Kβ特性X線(7.649keV)等がカットされると共に、CoのX線吸収端(7.709keV)によりNi−Kβ特性X線(8.264keV)がカットされる。
In addition, when Fe is an element to be measured, the first X-ray tube 11 of the Co target tube that can emit Co characteristic X-rays with energy located before and after the X-ray absorption edge of Fe and the Ni By using the second X-ray tube 12 of the Ni target tube capable of emitting characteristic X-rays, the foreign matter X of Fe can be detected with a clear contrast image by an inexpensive X-ray tube.
Since the first filter is an Fe foil and the second filter is a Co foil, only the Co-Kα characteristic X-ray (6.93 keV) is extracted from the X-ray absorption edge (7.111 keV) of Fe. At the same time, only the Ni-Kα characteristic X-ray (7.477 keV) can be extracted by the X-ray absorption edge (7.709 keV) of Co. That is, the Co-Kβ characteristic X-ray (7.649 keV) or the like is cut by the X-ray absorption edge (7.111 keV) of Fe, and the Ni-Kβ characteristic X-ray is cut by the X-ray absorption edge (7.709 keV) of Co. (8.264 keV) is cut.

また、Crを測定対象の元素としたとき、CrのX線吸収端の前後にエネルギーが位置するCr又はMnの特性X線を出射可能なCrターゲット管球又はMnターゲット管球の第1のX線管球11とFeの特性X線を出射可能なFeターゲット管球の第2のX線管球12とを使用することで、安価なX線管球によりCrが含まれるSUS等の異物Xを明確なコントラスト像で検出することができる。   Further, when Cr is an element to be measured, the first X of the Cr target tube or the Mn target tube capable of emitting characteristic X-rays of Cr or Mn whose energy is located before and after the X-ray absorption edge of Cr. By using the X-ray tube 11 and the second X-ray tube 12 of the Fe target tube capable of emitting characteristic X-rays of Fe, foreign matter X such as SUS containing Cr by an inexpensive X-ray tube Can be detected with a clear contrast image.

また、第1のX線管球11がCrターゲット管球であると共に、第2のX線管球12がFeターゲット管球であるとき、第1のフィルタF1がV箔であると共に、第2のフィルタF2がMn箔であるので、VのX線吸収端(5.463keV)によりCr−Kα特性X線(5.414keV)だけを抽出すると共に、MnのX線吸収端(6.537keV)によりFe−Kα特性X線(6.403keV)だけを抽出することができる。すなわち、VのX線吸収端(5.463keV)によりCr−Kβ特性X線(5.946keV)等がカットされると共に、MnのX線吸収端(6.537keV)によりFe−Kβ特性X線(7.057keV)がカットされる。   When the first X-ray tube 11 is a Cr target tube and the second X-ray tube 12 is an Fe target tube, the first filter F1 is a V foil and the second Filter F2 is Mn foil, so that only the Cr-Kα characteristic X-ray (5.414 keV) is extracted by the X-ray absorption edge of V (5.463 keV) and the X-ray absorption edge of Mn (6.537 keV). Thus, only the Fe-Kα characteristic X-ray (6.403 keV) can be extracted. That is, the Cr-Kβ characteristic X-ray (5.946 keV) or the like is cut by the X-ray absorption edge (5.463 keV) of V, and the Fe-Kβ characteristic X-ray is cut by the X-ray absorption edge (6.537 keV) of Mn. (7.057 keV) is cut.

また、第1のX線管球11がMnターゲット管球であると共に、第2のX線管球12がFeターゲット管球であるとき、第1のフィルタF1がCr箔であると共に、第2のフィルタF2がMn箔であるので、CrのX線吸収端(5.988keV)によりMn−Kα特性X線(5.898keV)だけを抽出すると共に、MnのX線吸収端(6.537keV)によりFe−Kα特性X線(6.403keV)だけを抽出することができる。すなわち、CrのX線吸収端(5.988keV)によりMn−Kβ特性X線(6.49keV)等がカットされると共に、MnのX線吸収端(6.537keV)によりFe−Kβ特性X線(7.057keV)がカットされる。   When the first X-ray tube 11 is a Mn target tube and the second X-ray tube 12 is an Fe target tube, the first filter F1 is a Cr foil and the second Since the filter F2 of the Mn foil is a Mn foil, only the Mn-Kα characteristic X-ray (5.898 keV) is extracted from the X-ray absorption edge (5.988 keV) of Cr, and the X-ray absorption edge (6.537 keV) of Mn is extracted. Thus, only the Fe-Kα characteristic X-ray (6.403 keV) can be extracted. That is, the Mn-Kβ characteristic X-ray (6.49 keV) or the like is cut by the Cr X-ray absorption edge (5.988 keV), and the Fe-Kβ characteristic X-ray is cut by the Mn X-ray absorption edge (6.537 keV). (7.057 keV) is cut.

さらに、演算部15が、コントラスト像と元素の質量吸収係数及び密度とから元素の厚みを算出するので、測定対象の元素の検出だけでなく、その厚みも算出することで、この元素を含む異物Xの三次元的なサイズも把握することが可能になる。したがって、この検査で得られた異物Xのサイズから、二次電池等として問題となる異物Xか否かの振り分けが可能になる。   Further, since the calculation unit 15 calculates the thickness of the element from the contrast image, the mass absorption coefficient and the density of the element, not only the detection of the element to be measured but also the thickness of the element can be calculated. It is also possible to grasp the three-dimensional size of X. Therefore, it is possible to sort out whether or not the foreign material X is a problem as a secondary battery or the like from the size of the foreign material X obtained by this inspection.

なお、本発明の技術範囲は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。   The technical scope of the present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention.

11…第1のX線管球、12…第2のX線管球、13…第1のX線検出器、14…第2のX線検出器、15…演算部、16…ベルトコンベア、17…制御部、18…表示部、F1…第1のフィルタ、F2…第2のフィルタ、S…試料、T1…第1の透過像、T2…第2の透過像、X…異物   DESCRIPTION OF SYMBOLS 11 ... 1st X-ray tube, 12 ... 2nd X-ray tube, 13 ... 1st X-ray detector, 14 ... 2nd X-ray detector, 15 ... Operation part, 16 ... Belt conveyor, DESCRIPTION OF SYMBOLS 17 ... Control part, 18 ... Display part, F1 ... 1st filter, F2 ... 2nd filter, S ... Sample, T1 ... 1st transmission image, T2 ... 2nd transmission image, X ... Foreign material

Claims (6)

測定対象の元素のX線吸収端より低いエネルギーの第1の特性X線を試料に照射する第1のX線管球と、
前記元素のX線吸収端より高いエネルギーの第2の特性X線を前記試料に照射する第2のX線管球と、
前記第1の特性X線が前記試料を透過した際の第1の透過X線を受けてその強度を検出する第1のX線検出器と、
前記第2の特性X線が前記試料を透過した際の第2の透過X線を受けてその強度を検出する第2のX線検出器と、
検出された前記第1の透過X線の強度の分布を示す第1の透過像と検出された前記第2の透過X線の強度の分布を示す第2の透過像とを作成し、前記第1の透過像と前記第2の透過像との差分からコントラスト像を得る演算部と、を備え、
前記試料と前記第1のX線管球との間に前記第1の特性X線よりも高いエネルギーのX線吸収端を有する元素で形成された第1のフィルタが配されていると共に、前記試料と前記第2のX線管球源との間に前記第2の特性X線よりも高いエネルギーのX線吸収端を有する元素で形成された第2のフィルタが配されていることを特徴とするX線透過検査装置。
A first X-ray tube that irradiates the sample with first characteristic X-rays having energy lower than the X-ray absorption edge of the element to be measured;
A second X-ray tube that irradiates the sample with a second characteristic X-ray having an energy higher than the X-ray absorption edge of the element;
A first X-ray detector that receives the first transmitted X-ray when the first characteristic X-ray passes through the sample and detects its intensity;
A second X-ray detector that receives the second transmitted X-ray when the second characteristic X-ray passes through the sample and detects its intensity;
Creating a first transmission image showing the detected intensity distribution of the first transmitted X-ray and a second transmission image showing the detected intensity distribution of the second transmitted X-ray; A calculation unit that obtains a contrast image from the difference between the first transmission image and the second transmission image,
A first filter formed of an element having an X-ray absorption edge with energy higher than that of the first characteristic X-ray is disposed between the sample and the first X-ray tube, and A second filter formed of an element having an X-ray absorption edge having an energy higher than that of the second characteristic X-ray is disposed between the sample and the second X-ray tube source. X-ray transmission inspection equipment.
請求項1に記載のX線透過検査装置において、
前記元素がFeであり、
前記第1のX線管球が、Coターゲット管球であると共に、前記第2のX線管球が、Niターゲット管球であり、
前記第1のフィルタが、Fe箔であると共に、前記第2のフィルタが、Co箔であることを特徴とするX線透過検査装置。
The X-ray transmission inspection apparatus according to claim 1,
The element is Fe;
The first X-ray tube is a Co target tube and the second X-ray tube is a Ni target tube;
The X-ray transmission inspection apparatus, wherein the first filter is an Fe foil and the second filter is a Co foil.
請求項1に記載のX線透過検査装置において、
前記元素がCrであり、
前記第1のX線管球が、Crターゲット管球であると共に、前記第2のX線管球が、Feターゲット管球であり、
前記第1のフィルタが、V箔であると共に、前記第2のフィルタが、Mn箔であることを特徴とするX線透過検査装置。
The X-ray transmission inspection apparatus according to claim 1,
The element is Cr;
The first X-ray tube is a Cr target tube, and the second X-ray tube is an Fe target tube,
The first filter is a V foil, and the second filter is a Mn foil.
請求項1に記載のX線透過検査装置において、
前記元素がCrであり、
前記第1のX線管球が、Mnターゲット管球であると共に、前記第2のX線管球が、Feターゲット管球であり、
前記第1のフィルタが、Cr箔であると共に、前記第2のフィルタが、Mn箔であることを特徴とするX線透過検査装置。
The X-ray transmission inspection apparatus according to claim 1,
The element is Cr;
The first X-ray tube is a Mn target tube, and the second X-ray tube is an Fe target tube,
The first filter is a Cr foil, and the second filter is a Mn foil.
請求項1から4のいずれか一項に記載のX線透過検査装置において、
前記演算部が、前記コントラスト像と前記元素の質量吸収係数及び密度とから前記元素の厚みを算出することを特徴とするX線透過検査装置。
The X-ray transmission inspection apparatus according to any one of claims 1 to 4,
The X-ray transmission inspection apparatus, wherein the arithmetic unit calculates the thickness of the element from the contrast image and the mass absorption coefficient and density of the element.
測定対象の元素のX線吸収端より低いエネルギーの第1の特性X線を試料に照射するステップと、
前記元素のX線吸収端より高いエネルギーの第2の特性X線を前記試料に照射するステップと、
前記第1の特性X線が前記試料を透過した際の第1の透過X線を受けてその強度を検出するステップと、
前記第2の特性X線が前記試料を透過した際の第2の透過X線を受けてその強度を検出するステップと、
検出された前記第1の透過X線の強度の分布を示す第1の透過像と検出された前記第2の透過X線の強度の分布を示す第2の透過像とを作成し、前記第1の透過像と前記第2の透過像との差分からコントラスト像を得るステップと、を有し、
前記試料と前記第1のX線管球との間に前記第1の特性X線よりも高いエネルギーのX線吸収端を有する元素で形成された第1のフィルタを配すると共に、前記試料と前記第2のX線管球との間に前記第2の特性X線よりも高いエネルギーのX線吸収端を有する元素で形成された第2のフィルタを配することを特徴とするX線透過検査方法。
Irradiating the sample with first characteristic X-rays having energy lower than the X-ray absorption edge of the element to be measured;
Irradiating the sample with a second characteristic X-ray having an energy higher than the X-ray absorption edge of the element;
Receiving the first transmitted X-ray when the first characteristic X-ray is transmitted through the sample, and detecting the intensity;
Receiving the second transmitted X-ray when the second characteristic X-ray is transmitted through the sample and detecting the intensity thereof;
Creating a first transmission image showing the detected intensity distribution of the first transmitted X-ray and a second transmission image showing the detected intensity distribution of the second transmitted X-ray; Obtaining a contrast image from the difference between the first transmission image and the second transmission image,
A first filter formed of an element having an X-ray absorption edge having an energy higher than that of the first characteristic X-ray is disposed between the sample and the first X-ray tube; An X-ray transmission characterized by disposing a second filter formed of an element having an X-ray absorption edge with higher energy than the second characteristic X-ray between the second X-ray tube. Inspection method.
JP2009141467A 2009-06-12 2009-06-12 X-ray transmission inspection apparatus and X-ray transmission inspection method Pending JP2010286406A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009141467A JP2010286406A (en) 2009-06-12 2009-06-12 X-ray transmission inspection apparatus and X-ray transmission inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009141467A JP2010286406A (en) 2009-06-12 2009-06-12 X-ray transmission inspection apparatus and X-ray transmission inspection method

Publications (1)

Publication Number Publication Date
JP2010286406A true JP2010286406A (en) 2010-12-24

Family

ID=43542204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009141467A Pending JP2010286406A (en) 2009-06-12 2009-06-12 X-ray transmission inspection apparatus and X-ray transmission inspection method

Country Status (1)

Country Link
JP (1) JP2010286406A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011017690A (en) * 2009-06-12 2011-01-27 Sii Nanotechnology Inc X-ray inspection device and x-ray inspection method
JP2012194100A (en) * 2011-03-17 2012-10-11 Anritsu Sanki System Co Ltd X-ray foreign substance detection apparatus
JP2012194101A (en) * 2011-03-17 2012-10-11 Anritsu Sanki System Co Ltd X-ray foreign matter detection device
JP2013068518A (en) * 2011-09-22 2013-04-18 Anritsu Sanki System Co Ltd X-ray foreign matter detector
JP2013088144A (en) * 2011-10-13 2013-05-13 Anritsu Sanki System Co Ltd X-ray foreign matter detector
JP2013088143A (en) * 2011-10-13 2013-05-13 Anritsu Sanki System Co Ltd X-ray foreign matter detector
JP2013156172A (en) * 2012-01-31 2013-08-15 X-Ray Precision Inc X-ray inspection apparatus
CN104795587A (en) * 2015-02-12 2015-07-22 深圳市赢合科技股份有限公司 Electrical core processing device
JP2016115406A (en) * 2014-12-11 2016-06-23 株式会社日立パワーソリューションズ Thickness indicator and roll press machine including thickness indicator
KR20230166860A (en) 2022-05-31 2023-12-07 가부시키가이샤 히다치 하이테크 사이언스 X-ray inspection apparatus and x-ray inspection method
KR20230166862A (en) 2022-05-31 2023-12-07 가부시키가이샤 히다치 하이테크 사이언스 X-ray inspection apparatus and x-ray inspection method
JP2024095933A (en) * 2022-12-29 2024-07-11 台湾立凱電能科技股▲ふん▼有限公司 Quality inspection method for lithium-ion battery positive electrode materials

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0363556A (en) * 1989-04-20 1991-03-19 Measurex Corp Apparatus and method for measuring distributed quantity of substance composed of multicomponent
JPH0455743A (en) * 1990-06-26 1992-02-24 Fujitsu Ltd X-ray inspection equipment
JPH0743320A (en) * 1993-03-15 1995-02-14 Hitachi Ltd X-ray inspection method and apparatus, prepreg inspection method, and multilayer wiring board manufacturing method
JPH08219909A (en) * 1995-02-16 1996-08-30 Mitsubishi Heavy Ind Ltd X-ray stress measuring apparatus
JPH08304311A (en) * 1995-05-02 1996-11-22 Toyota Central Res & Dev Lab Inc Method and apparatus for measuring impurity element in polymer material
JPH11287643A (en) * 1998-03-31 1999-10-19 Non Destructive Inspection Co Ltd Method and device for measuring thickness by use of transmitted x-ray and method for measuring percentage of specific component by use of transmitted x-ray
JP2000046759A (en) * 1998-07-27 2000-02-18 Japan Science & Technology Corp X-ray inspection method and X-ray inspection apparatus
JP2000155101A (en) * 1998-11-20 2000-06-06 Yuasa Corp Element quantification method and quantification device
JP2002228603A (en) * 2001-02-02 2002-08-14 Matsushita Electric Ind Co Ltd Sheet-like body analyzing method, sheet-like body manufacturing method using the same, and sheet-like body manufacturing apparatus
JP2004239776A (en) * 2003-02-06 2004-08-26 Mitsubishi Chemicals Corp Foreign matter detection method for carbonaceous materials
JP2006258544A (en) * 2005-03-16 2006-09-28 Ricoh Co Ltd Evaluation method of toner kneaded matter, manufacturing method of toner for electrostatic development using the method, manufacturing apparatus, toner for electrostatic development obtained thereby and developing method using the toner
JP2007127611A (en) * 2005-11-07 2007-05-24 Mitsubishi Heavy Ind Ltd Foreign matter detection apparatus
JP2007199058A (en) * 2005-12-28 2007-08-09 Sapporo Breweries Ltd X-ray inspection apparatus
JP2007218845A (en) * 2006-02-20 2007-08-30 Shimadzu Corp Transmission X-ray measurement method
JP2009028405A (en) * 2007-07-30 2009-02-12 Fujitsu Ltd X-ray imaging apparatus and imaging method

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0363556A (en) * 1989-04-20 1991-03-19 Measurex Corp Apparatus and method for measuring distributed quantity of substance composed of multicomponent
JPH0455743A (en) * 1990-06-26 1992-02-24 Fujitsu Ltd X-ray inspection equipment
JPH0743320A (en) * 1993-03-15 1995-02-14 Hitachi Ltd X-ray inspection method and apparatus, prepreg inspection method, and multilayer wiring board manufacturing method
JPH08219909A (en) * 1995-02-16 1996-08-30 Mitsubishi Heavy Ind Ltd X-ray stress measuring apparatus
JPH08304311A (en) * 1995-05-02 1996-11-22 Toyota Central Res & Dev Lab Inc Method and apparatus for measuring impurity element in polymer material
JPH11287643A (en) * 1998-03-31 1999-10-19 Non Destructive Inspection Co Ltd Method and device for measuring thickness by use of transmitted x-ray and method for measuring percentage of specific component by use of transmitted x-ray
JP2000046759A (en) * 1998-07-27 2000-02-18 Japan Science & Technology Corp X-ray inspection method and X-ray inspection apparatus
JP2000155101A (en) * 1998-11-20 2000-06-06 Yuasa Corp Element quantification method and quantification device
JP2002228603A (en) * 2001-02-02 2002-08-14 Matsushita Electric Ind Co Ltd Sheet-like body analyzing method, sheet-like body manufacturing method using the same, and sheet-like body manufacturing apparatus
JP2004239776A (en) * 2003-02-06 2004-08-26 Mitsubishi Chemicals Corp Foreign matter detection method for carbonaceous materials
JP2006258544A (en) * 2005-03-16 2006-09-28 Ricoh Co Ltd Evaluation method of toner kneaded matter, manufacturing method of toner for electrostatic development using the method, manufacturing apparatus, toner for electrostatic development obtained thereby and developing method using the toner
JP2007127611A (en) * 2005-11-07 2007-05-24 Mitsubishi Heavy Ind Ltd Foreign matter detection apparatus
JP2007199058A (en) * 2005-12-28 2007-08-09 Sapporo Breweries Ltd X-ray inspection apparatus
JP2007218845A (en) * 2006-02-20 2007-08-30 Shimadzu Corp Transmission X-ray measurement method
JP2009028405A (en) * 2007-07-30 2009-02-12 Fujitsu Ltd X-ray imaging apparatus and imaging method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011017690A (en) * 2009-06-12 2011-01-27 Sii Nanotechnology Inc X-ray inspection device and x-ray inspection method
JP2012194100A (en) * 2011-03-17 2012-10-11 Anritsu Sanki System Co Ltd X-ray foreign substance detection apparatus
JP2012194101A (en) * 2011-03-17 2012-10-11 Anritsu Sanki System Co Ltd X-ray foreign matter detection device
JP2013068518A (en) * 2011-09-22 2013-04-18 Anritsu Sanki System Co Ltd X-ray foreign matter detector
JP2013088144A (en) * 2011-10-13 2013-05-13 Anritsu Sanki System Co Ltd X-ray foreign matter detector
JP2013088143A (en) * 2011-10-13 2013-05-13 Anritsu Sanki System Co Ltd X-ray foreign matter detector
JP2013156172A (en) * 2012-01-31 2013-08-15 X-Ray Precision Inc X-ray inspection apparatus
JP2016115406A (en) * 2014-12-11 2016-06-23 株式会社日立パワーソリューションズ Thickness indicator and roll press machine including thickness indicator
CN104795587A (en) * 2015-02-12 2015-07-22 深圳市赢合科技股份有限公司 Electrical core processing device
KR20230166860A (en) 2022-05-31 2023-12-07 가부시키가이샤 히다치 하이테크 사이언스 X-ray inspection apparatus and x-ray inspection method
KR20230166862A (en) 2022-05-31 2023-12-07 가부시키가이샤 히다치 하이테크 사이언스 X-ray inspection apparatus and x-ray inspection method
JP2024095933A (en) * 2022-12-29 2024-07-11 台湾立凱電能科技股▲ふん▼有限公司 Quality inspection method for lithium-ion battery positive electrode materials

Similar Documents

Publication Publication Date Title
JP5564303B2 (en) X-ray transmission inspection equipment
JP2010286406A (en) X-ray transmission inspection apparatus and X-ray transmission inspection method
JP5813923B2 (en) X-ray transmission inspection apparatus and X-ray transmission inspection method
JP7380560B2 (en) Battery inspection device and battery inspection method
US8891729B2 (en) X-ray analyzer and X-ray analysis method
CN106404811B (en) X-ray transmission inspection apparatus and X-ray transmission inspection method
KR102740739B1 (en) X-ray inspection apparatus and x-ray inspection method
JP2010286405A (en) X-ray transmission inspection apparatus and X-ray transmission inspection method
US10379066B2 (en) X-ray transmission inspection apparatus
JP2006179424A5 (en)
JP5553300B2 (en) X-ray fluorescence inspection apparatus and fluorescence x-ray inspection method
KR20230130578A (en) X-ray inspection apparatus and x-ray inspection method
JP2021135125A (en) Membrane electrode assembly inspection method and inspection equipment
JP2005207827A (en) X-ray inspection apparatus, X-ray inspection method, and control program for X-ray inspection apparatus
CN116087239A (en) A method and system for detecting multi-element distribution inside an object
JP2024108687A (en) X-ray inspection device and X-ray inspection method
US20240255445A1 (en) X-ray transmission inspection apparatus and x-ray transmission inspection method
Sato et al. Rapid detection and element identification of fine metal particles for underpinning battery quality
KR20240093080A (en) Measurement methof for aluminium residual rate of forming processed pouch
Benedetti et al. Identifying, quantifying, and mitigating background with the time-resolved x-ray diffraction platform at the National Ignition Facility
KR20230130577A (en) X-ray inspection apparatus and x-ray inspection method
JP2021125342A (en) Method for inspection of membrane-electrode structure
JP2021135126A (en) Membrane electrode assembly inspection method and inspection equipment
JP2019152456A (en) Electrode state measurement method, battery state determination method, and electrode sample preparation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120404

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20121122

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20121130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130731

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130731

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140415