[go: up one dir, main page]

JP2010286337A - Correlation processing device, correlation processing method, pulse compression device and target detector - Google Patents

Correlation processing device, correlation processing method, pulse compression device and target detector Download PDF

Info

Publication number
JP2010286337A
JP2010286337A JP2009139969A JP2009139969A JP2010286337A JP 2010286337 A JP2010286337 A JP 2010286337A JP 2009139969 A JP2009139969 A JP 2009139969A JP 2009139969 A JP2009139969 A JP 2009139969A JP 2010286337 A JP2010286337 A JP 2010286337A
Authority
JP
Japan
Prior art keywords
signal
processing
pulse
correlation
correlation processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009139969A
Other languages
Japanese (ja)
Inventor
Hitoshi Maeno
仁 前野
Yasunobu Asada
泰暢 淺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furuno Electric Co Ltd
Original Assignee
Furuno Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furuno Electric Co Ltd filed Critical Furuno Electric Co Ltd
Priority to JP2009139969A priority Critical patent/JP2010286337A/en
Publication of JP2010286337A publication Critical patent/JP2010286337A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pulse compression device which does not need rearrangement, even when multiple additions of result obtained by a correlation processing in a frequency domain is performed. <P>SOLUTION: A Fourier transformation section 51 calculates a received echo signal y[n] by discretization of a received echo signal y[t] and generates a received echo signal ym[k], in a frequency domain by the Fourier transformation by each section. A correlation processing section 52 performs pulse compression by a correlation processing of each section of a replica signal Re[k] stored in a memory 521 and outputs a pulse compressed signal Zm[k]. At this time, q replica signal Re[k] is obtained, for example, by subjecting the waveform of a transmitted pulse signal x[n] to time reversal, delaying the transmitted pulse signal x[n] by the pulse length and performing complex conjugate processing. Each of the calculated sections of the calculated pulse compressed signal Zm[k] is converted into a pulse compressed signal zm[n] in a time domain, and multiple addition is simply performed thereon along the time series. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

この発明は、被相関処理信号を、該被相関処理信号に基づくレプリカ信号で自己相関処理する相関処理器、当該相関処理器を利用し、送信信号のレプリカ信号で受信信号をパルス圧縮するパルス圧縮装置および物標探知装置に関する。   The present invention relates to a correlation processor that performs autocorrelation processing on a correlated signal with a replica signal based on the correlated signal, and pulse compression that uses the correlation processor to pulse-compress the received signal with the replica signal of the transmission signal. The present invention relates to a device and a target detection device.

従来、パルス信号を探知対象領域へ送信して反射信号から物標の探知を行う物標探知装置が各種実用化されている。このような物標探知装置の中には、特許文献1に示すように、FMチャープ方式の送信パルス信号を用い、受信エコー信号をパルス圧縮処理することで、距離分解能を向上させるものがある。そして、このようなパルス圧縮処理の1つとして、周波数領域で実行されるマッチドフィルタがある。このマッチドフィルタは、送信パルス信号の複素共役信号からなるレプリカ信号に基づいて周波数領域でのフィルタ係数を設定し、周波数領域に変換された受信エコー信号に当該フィルタ係数を乗算することでパルス圧縮処理を実行する。すなわち周波数領域でレプリカ信号と受信エコー信号とを相関処理することで、パルス圧縮処理を実行する。   Conventionally, various target detection apparatuses that transmit a pulse signal to a detection target area and detect a target from a reflected signal have been put into practical use. Among such target detection apparatuses, as shown in Patent Document 1, there is an apparatus that improves the distance resolution by performing pulse compression processing on a received echo signal using an FM chirp transmission pulse signal. One such pulse compression process is a matched filter executed in the frequency domain. This matched filter sets a filter coefficient in the frequency domain based on a replica signal composed of a complex conjugate signal of a transmission pulse signal, and multiplies the received echo signal converted to the frequency domain by the filter coefficient to perform pulse compression processing. Execute. That is, pulse compression processing is executed by performing correlation processing between the replica signal and the received echo signal in the frequency domain.

ここで、上述の物標探知を行う場合には、探知距離に応じた時間長の受信期間を設け、受信期間内の受信エコー信号全体に対してパルス圧縮処理を行うのであるが、受信期間の長さによっては、受信期間全体を一つの区間としてパルス圧縮処理を行うと演算負荷が増大する等の不都合が生じる場合がある。このため、受信期間を複数の部分区間に分割し、部分区間毎のパルス圧縮処理を行って、部分区間毎に得られたパルス圧縮結果を重複加算することで、受信期間全体に対してパルス圧縮を行う方法が考案されている。   Here, when performing the target detection described above, a reception period having a length corresponding to the detection distance is provided, and pulse compression processing is performed on the entire received echo signal within the reception period. Depending on the length, if the pulse compression process is performed with the entire reception period as one section, there may be a problem such as an increase in calculation load. For this reason, the reception period is divided into a plurality of partial sections, pulse compression processing is performed for each partial section, and the pulse compression results obtained for each partial section are overlapped to perform pulse compression for the entire reception period. A method has been devised.

特公平6−90277号公報Japanese Patent Publication No. 6-90277

しかしながら、従来の重複加算によるパルス圧縮処理では、次に示す課題が存在する。   However, the conventional pulse compression processing by overlap addition has the following problems.

図5は、従来の周波数領域でパルス圧縮処理を行う場合の受信エコー信号に含まれる送信パルス信号x[n]、送信パルス信号の時間反転信号x[−n]、送信パルス信号の複素共役信号からなるレプリカ信号x[n]、およびパルス圧縮信号z[t]の時間領域における関係を示す図である。 FIG. 5 shows a transmission pulse signal x [n] included in a received echo signal when performing pulse compression processing in the conventional frequency domain, a time-inverted signal x [−n] of the transmission pulse signal, and a complex conjugate signal of the transmission pulse signal. It is a figure which shows the relationship in the time domain of replica signal x * [n] which consists of, and pulse compression signal z [t].

また、図6は、従来の重複加算によるパルス圧縮処理を行った場合の各部分区間のパルス圧縮信号zm[n]の時間軸上での状態およびこの際に生じるパルス圧縮信号毎の並び替え処理を説明する為の図である。   Further, FIG. 6 shows a state on the time axis of the pulse compression signal zm [n] of each partial section when the conventional pulse compression processing by overlap addition is performed, and rearrangement processing for each pulse compression signal generated at this time. It is a figure for demonstrating.

まず、周波数領域でのパルス圧縮処理は、受信エコー信号に含まれる送信パルス信号x[n]の周波数領域信号であるX[k]と、レプリカ信号であるこの周波数領域の送信パルス信号X[k]の複素共役信号であるレプリカ信号X[k]との相関処理を意味する。したがって、周波数領域では、パルス圧縮信号Z[k]は、次式で与えられる。 First, the pulse compression processing in the frequency domain includes X [k] that is the frequency domain signal of the transmission pulse signal x [n] included in the received echo signal and the transmission pulse signal X [k] in this frequency domain that is a replica signal. ] Is a correlation process with a replica signal X * [k] which is a complex conjugate signal. Accordingly, in the frequency domain, the pulse compression signal Z [k] is given by the following equation.

Z[k]=X[k]・X[k] −(1)
なお、NはDFTのデータ点数を意味する 。
Z [k] = X [k] · X * [k] − (1)
N means the number of DFT data points.

ここで、送信パルス信号X[k]の時間領域での送信信号x[n]が、図5(A)に示すように、時間軸上で「0」のタイミングに立ち上がる波形であるとすると、レプリカ信号X[k]の時間軸での信号は、時間領域の送信信号x[n]を時間反転してx[−n]とし、当該x[−n]の複素共役を取った信号x[−n]となる。 Here, if the transmission signal x [n] in the time domain of the transmission pulse signal X [k] is a waveform that rises at a timing of “0” on the time axis as shown in FIG. The signal on the time axis of the replica signal X * [k] is a signal x obtained by taking the time conjugate of the transmission signal x [n] in the time domain to x [−n] and taking the complex conjugate of the x [−n]. * [-N].

しかしながら、時間反転した際に、図5(B)の破線に示すように時間軸上の負の領域に波形が現れることはなく、現実的には、図5(B)の実線に示すように、DFT期間の最後のタイミングを立ち下がりタイミングとする波形となって現れる。   However, when time reversal occurs, no waveform appears in the negative region on the time axis as shown by the broken line in FIG. 5B, and in reality, as shown by the solid line in FIG. 5B. As a result, a waveform having the last timing of the DFT period as the falling timing appears.

このため、時間軸上でのレプリカ信号x[−n]は、図5(C)に示すように、DFT期間の最後のタイミングを立ち下がりタイミングとする波形となって現れる。 For this reason, the replica signal x * [− n] on the time axis appears as a waveform whose falling timing is the last timing of the DFT period, as shown in FIG.

すなわち、上述の式(1)で与えられる周波数領域での離散化された信号によるパルス圧縮処理を、時間軸上の処理で表すと、z[n]を時間軸上での離散化されたパルス圧縮信号として、次式となる。   That is, when the pulse compression processing by the discretized signal in the frequency domain given by the above equation (1) is represented by the processing on the time axis, z [n] is the discretized pulse on the time axis. As a compressed signal, the following equation is obtained.

Figure 2010286337
Figure 2010286337

このような畳み込み演算となることで、時間領域でのパルス圧縮信号z[t]は、図5(D)に示すように、距離0以前の波形がDFT期間の最後のタイミングN−1を終点とする波形としてシフトした形状となり、距離0のタイミングを起点とする部分波形と、DFT期間の最後のタイミングN−1を終点とする部分波形とに分かれた波形となってしまう。さらに、各部分波形の時間領域での前後関係が逆転してしまう。   By performing such a convolution operation, the pulse compression signal z [t] in the time domain is the end point of the waveform N before the distance 0 ends at the last timing N-1 of the DFT period, as shown in FIG. The waveform is shifted to a partial waveform starting from the timing of distance 0 and a partial waveform starting from the last timing N-1 of the DFT period. Furthermore, the context of each partial waveform in the time domain is reversed.

このため、送信パルス信号x[n]と同じ波形成分を有する受信エコー信号y[n]を、部分的な受信エコー信号ym[n](mは正の整数)毎に時間領域で分割してパルス圧縮処理を行うと、各受信エコー信号ym[n]に対応する各パルス圧縮信号zm[n]は、図6に示すように、それぞれに部分波形の時間領域での前後関係が逆転し、且つ分離された波形となる。例えば、パルス圧縮信号z1[n]を、時系列で部分的なパルス圧縮信号z11[n],z12[n],z13[n]とする。部分的なパルス圧縮信号z11[n]は、レプリカ信号Re[n]が部分的な受信エコー信号y1[n]の期間に重なり始めてから完全に重なるまでの期間に相当する。部分的なパルス圧縮信号z12[n]は、レプリカ信号Re[n]全体が受信エコー信号y1[n]期間に完全に重なる期間に相当する。部分的なパルス圧縮信号z13[n]は、レプリカ信号Re[n]が受信エコー信号y1[n]の期間から外れ始めてから完全に外れるまでの期間に相当する。   Therefore, the reception echo signal y [n] having the same waveform component as the transmission pulse signal x [n] is divided in the time domain for each partial reception echo signal ym [n] (m is a positive integer). When the pulse compression processing is performed, each pulse compression signal zm [n] corresponding to each reception echo signal ym [n] has its partial relationship in the time domain reversed as shown in FIG. And it becomes a separated waveform. For example, the pulse compression signal z1 [n] is assumed to be a partial pulse compression signal z11 [n], z12 [n], z13 [n] in time series. The partial pulse compression signal z11 [n] corresponds to a period from when the replica signal Re [n] starts to overlap in the period of the partial reception echo signal y1 [n] until it completely overlaps. The partial pulse compression signal z12 [n] corresponds to a period in which the entire replica signal Re [n] completely overlaps the reception echo signal y1 [n] period. The partial pulse compression signal z13 [n] corresponds to a period from when the replica signal Re [n] starts to deviate from the period of the received echo signal y1 [n] until it completely deviates.

そして、この場合には、時間領域で、パルス圧縮信号z12[n],z13[n]が連続的に出力され、その後、時間的に離間されてパルス圧縮信号z11[n]が出力される。   In this case, the pulse compression signals z12 [n] and z13 [n] are continuously output in the time domain, and thereafter, the pulse compression signals z11 [n] are output separated in time.

したがって、上述の重複加算処理を行う場合、図6に示すように、各パルス圧縮信号zm[n]の部分的なパルス圧縮信号zm1[n],zm2[n],zm3[n]を、時間領域での正常な前後関係に並び替えなければならない。例えば、パルス圧縮信号z1[n]であれば、時間軸で後側となるパルス圧縮信号z11[n]を、パルス圧縮信号z12[n],z13[n]の前(過去側)に、連続的な波形となるように置き換えなければならない。このため、重複加算処理に対する演算負荷が増大してしまう。   Therefore, when performing the above-described overlap addition processing, as shown in FIG. 6, partial pulse compression signals zm1 [n], zm2 [n], and zm3 [n] of each pulse compression signal zm [n] It must be sorted into the normal context in the area. For example, in the case of the pulse compression signal z1 [n], the pulse compression signal z11 [n] on the rear side in the time axis is continuously placed before (the past side) the pulse compression signals z12 [n] and z13 [n]. It must be replaced so as to obtain a typical waveform. For this reason, the calculation load for the overlap addition process increases.

このような課題を鑑み、本発明の目的は、周波数領域での相関処理を行った結果を重複加算する場合でも、並び替えを行う必要が無い相関処理器、当該相関処理器を用いたパルス圧縮装置、および物標探知装置を実現することにある。   In view of such problems, an object of the present invention is to provide a correlation processor that does not need to be rearranged even when the results of correlation processing in the frequency domain are overlap-added, and pulse compression using the correlation processor. It is in realizing an apparatus and a target detection apparatus.

この発明は、パルス状の被相関処理信号をレプリカ信号で相関処理する相関処理器に関するものである。この相関処理器は、変換部、相関処理部、および逆変換部を備える。変換部は、被相関処理信号を時間領域から周波数領域へ変換する。相関処理部は、該被相関処理信号の元となるパルス状の信号を時間領域で反転処理し、パルス長分だけ遅延処理し、複素共役処理した波形と同じ波形を周波数領域に変換してなるレプリカ信号を、周波数領域の被相関処理信号に対して乗算することで相関処理を行う。逆変換部は、相関処理後の信号を周波数領域から時間領域へ逆変換する。   The present invention relates to a correlation processor that correlates a pulsed correlated signal with a replica signal. The correlation processor includes a conversion unit, a correlation processing unit, and an inverse conversion unit. The conversion unit converts the correlated signal from the time domain to the frequency domain. The correlation processing unit inverts the pulse-like signal that is the source of the correlated signal in the time domain, delays it by the pulse length, and converts the same waveform as the complex conjugate processed waveform into the frequency domain Correlation processing is performed by multiplying the frequency domain correlated processing signal by the replica signal. The inverse transform unit inversely transforms the signal after the correlation processing from the frequency domain to the time domain.

このようにレプリカ信号を設定することで、パルス圧縮波形をパルス長分遅延させ、パルス圧縮後の信号が時間領域で分離した上述の図6に示した従来技術のような波形にはならず、図3に示すような時間軸に沿った連続した波形で出力される。   By setting the replica signal in this way, the pulse compression waveform is delayed by the pulse length, and the signal after the pulse compression is not a waveform like the conventional technique shown in FIG. It is output in a continuous waveform along the time axis as shown in FIG.

また、この発明の相関処理器の変換部は、被相関処理信号を時間領域で連続する複数の区間に分割して、周波数領域への変換を行う。相関処理部は、区間分割された被相関処理信号毎に相関処理を行う。逆変換部は、個別に相関処理された信号それぞれに逆変換を行う。さらに、この相関処理器は、逆変換が行われた信号を時間領域で連続するように加算する重複加算処理部を備える。   In addition, the conversion unit of the correlation processor of the present invention divides the correlated signal into a plurality of continuous sections in the time domain and performs conversion to the frequency domain. The correlation processing unit performs correlation processing for each correlated process signal divided into sections. The inverse transform unit performs inverse transform on each of the individually correlated signals. Further, the correlation processor includes an overlapping addition processing unit that adds the signals subjected to the inverse transformation so as to be continuous in the time domain.

この構成では、各区間の相関処理後の信号が時間軸に沿った連続波形を有するので、これらを時間領域で加算する重複加算を行う場合に、区間分割された個々の相関処理後の信号を時間軸に沿って並び替える必要がない。   In this configuration, since the signal after correlation processing in each section has a continuous waveform along the time axis, when performing overlapping addition in which these are added in the time domain, the signals after correlation processing divided into sections are displayed. There is no need to rearrange them along the time axis.

また、この発明では、パルス状の被相関処理信号は、時間領域において対称な波形の信号であり、相関処理器では、レプリカ信号を、被相関処理信号の元となるパルス状の信号を複素共役処理することで得る。   In the present invention, the pulse-like correlated signal is a signal having a symmetrical waveform in the time domain. In the correlation processor, the replica signal is complex-conjugated to the pulse-like signal that is the source of the correlated signal. It is obtained by processing.

この構成では、パルス状の被相関処理信号が時間領域において対称な波形の信号の場合、時間反転しても波形は変化しないので、時間反転処理を行う必要が無い。これにより、遅延処理の必要も無いので、単に複素共役処理のみでレプリカ信号を生成することができる。   In this configuration, when the pulse-like correlated signal is a signal having a symmetrical waveform in the time domain, the waveform does not change even if time reversal is performed, so that it is not necessary to perform time reversal processing. Thereby, since there is no need for delay processing, a replica signal can be generated only by complex conjugate processing.

また、この発明の相関処理器の変換部は、被相関処理信号を離散化処理して、パルス長以上のデータを2単位で変換する。 Also, the conversion unit of the correlation processor of the present invention discretizes the correlated signal to convert data having a pulse length or longer in 2n units.

この構成では、パルス長以上のデータを2単位で周波数変換を行うことで、FFT(高速フーリエ変換)処理を行うことができる。これにより、より高速な変換処理が可能になる。 In this configuration, FFT (Fast Fourier Transform) processing can be performed by performing frequency conversion on data longer than the pulse length in units of 2n . As a result, faster conversion processing is possible.

また、この発明はパルス圧縮装置に関するものであり、当該パルス圧縮装置は、上述の相関処理器を備える。この相関処理器の相関処理部は、元となる信号としてFMチャープ方式の送信パルス信号を用い、該送信パルス信号を時間反転処理、遅延処理、および複素共役処理して得られる信号をレプリカ信号として相関処理を行う。   The present invention also relates to a pulse compression device, and the pulse compression device includes the correlation processor described above. The correlation processing unit of this correlation processor uses an FM chirp transmission pulse signal as a base signal, and uses a signal obtained by performing time inversion processing, delay processing, and complex conjugate processing on the transmission pulse signal as a replica signal. Perform correlation processing.

この構成では、上述の相関処理器を用いた具体的な装置として、FMチャープ方式の送信パルス信号を利用したパルス圧縮装置を示している。そして、上述の相関処理を用いたパルス圧縮処理を行うことで、従来の並び替え処理を行うことなく、パルス圧縮処理時の演算負荷を低減することができる。   In this configuration, a pulse compression device using an FM chirp transmission pulse signal is shown as a specific device using the above-described correlation processor. Then, by performing the pulse compression process using the correlation process described above, it is possible to reduce the calculation load during the pulse compression process without performing the conventional rearrangement process.

また、この発明は物標探知装置に関するものであり、当該物標探知装置は、上述のパルス圧縮装置を備えるとともに、相関処理により得られたパルス圧縮後の信号を用いて表示画面上に表示する画像を生成する画像生成部を備える。   The present invention also relates to a target detection device, which includes the above-described pulse compression device and displays the signal on a display screen using a signal after pulse compression obtained by correlation processing. An image generation unit for generating an image is provided.

この構成では、上述のパルス圧縮装置を用いた具体的な装置として、前記送信パルス信号を探知領域内に送信して得られる受信エコー信号から物標エコーを画像表示する物標探知装置を示している。そして、上述のパルス圧縮処理を用いることで、物標探知装置としても、演算負荷を低減することができる。   In this configuration, as a specific device using the above-described pulse compression device, a target detection device that displays a target echo image from a reception echo signal obtained by transmitting the transmission pulse signal in a detection region is shown. Yes. And the calculation load can be reduced also as a target detection apparatus by using the above-mentioned pulse compression process.

この発明によれば、受信信号等の被相関処理信号を周波数領域で相関処理した結果を重複加算処理する場合であっても、各相関処理結果内におけるデータの並び替え処理を行わなくてもよく、演算負荷を低減することができる。これにより、重複加算型のパルス圧縮処理の演算負荷も低減することができる。   According to the present invention, even if the result of correlation processing of a correlated signal such as a received signal in the frequency domain is subjected to overlap addition processing, the data rearrangement processing within each correlation processing result need not be performed. The calculation load can be reduced. Thereby, the calculation load of the overlap addition type pulse compression processing can also be reduced.

レーダ装置11の主要回路構成を示すブロック図、およびパルス圧縮部15の主要回路構成を示すブロック図である。2 is a block diagram showing a main circuit configuration of a radar apparatus 11 and a block diagram showing a main circuit configuration of a pulse compression unit 15. FIG. 本願の周波数領域でのレプリカ信号Re[k]となる離散的な時間領域での信号x[Np−1−n]の生成概念、および、当該信号x[Np−1−n]で相関処理した場合の時間領域でのパルス圧縮信号の波形を示す図である。The concept of generating the signal x * [Np-1-n] in the discrete time domain that becomes the replica signal Re [k] in the frequency domain of the present application and the correlation with the signal x * [Np-1-n] It is a figure which shows the waveform of the pulse compression signal in the time domain at the time of processing. 本実施形態の相関処理(パルス圧縮)と重複加算とを行った場合の各部分区間のパルス圧縮信号の時間軸上での状態を示す図である。It is a figure which shows the state on the time-axis of the pulse compression signal of each partial area at the time of performing the correlation process (pulse compression) and overlap addition of this embodiment. 時間領域で対称な波形の送信パルス信号x[n]を用いた場合の送信パルス信号と、レプリカ信号である複素共役信号x[n]の波形の関係を示した図である。It is the figure which showed the relationship between the waveform of the transmission pulse signal at the time of using the transmission pulse signal x [n] of a symmetrical waveform in a time domain, and the complex conjugate signal x * [n] which is a replica signal. 従来の周波数領域でパルス圧縮処理を行う場合の受信エコー信号に含まれる送信パルス信号x[n]、送信パルス信号の時間反転信号x[−n]、送信パルス信号の複素共役信号からなるレプリカ信号x[n]、およびパルス圧縮信号z[t]の時間領域における関係を示す図である。A replica signal composed of a transmission pulse signal x [n] included in a received echo signal when performing pulse compression processing in the conventional frequency domain, a time-inverted signal x [−n] of the transmission pulse signal, and a complex conjugate signal of the transmission pulse signal It is a figure which shows the relationship in the time domain of x * [n] and the pulse compression signal z [t]. 従来の重複加算によるパルス圧縮処理を行った場合の各部分区間のパルス圧縮信号の時間軸上での状態およびこの際に生じるパルス圧縮信号毎の並び替え処理を説明する為の図である。It is a figure for demonstrating the state on the time-axis of the pulse compression signal of each partial area at the time of performing the pulse compression process by the conventional overlap addition, and the rearrangement process for every pulse compression signal produced at this time.

本発明の実施形態に係る相関処理器、パルス圧縮装置、および物標探知装置について、図を参照して説明する。なお、本実施形態では、FMチャープ方式からなる振幅一定の送信パルス信号を用いたレーダ装置11を、物標探知装置の一例として説明する。   A correlation processor, a pulse compression device, and a target detection device according to an embodiment of the present invention will be described with reference to the drawings. In the present embodiment, the radar apparatus 11 using a transmission pulse signal having a constant amplitude that is an FM chirp method will be described as an example of a target detection apparatus.

図1(A)はレーダ装置11の主要回路構成を示すブロック図であり、図1(B)はパルス圧縮部15の主要回路構成を示すブロック図である。   FIG. 1A is a block diagram showing a main circuit configuration of the radar apparatus 11, and FIG. 1B is a block diagram showing a main circuit configuration of the pulse compression unit 15.

レーダ装置11は、送信部12、DPX(デュプレクサ)13、アンテナ14、パルス圧縮部15、および画像生成部16を備える。パルス圧縮部15は、本発明の「パルス圧縮装置」に相当するとともに、「相関処理器」にも相当する。   The radar apparatus 11 includes a transmission unit 12, a DPX (duplexer) 13, an antenna 14, a pulse compression unit 15, and an image generation unit 16. The pulse compression unit 15 corresponds to a “pulse compression device” of the present invention and also corresponds to a “correlation processor”.

送信部12は、半導体やマグネトロンなどの発振素子を有し、送信期間に対応する所定の送信タイミングで、FMチャープ方式からなるパルス状の波形を有する送信パルス信号x[t]を送信する。送信部12から出力された送信パルス信号x[t]は、DPX13へ出力される。   The transmission unit 12 includes an oscillating element such as a semiconductor or a magnetron, and transmits a transmission pulse signal x [t] having a pulsed waveform of the FM chirp method at a predetermined transmission timing corresponding to the transmission period. The transmission pulse signal x [t] output from the transmission unit 12 is output to the DPX 13.

DPX13は、送信部12からの送信パルス信号x[t]をアンテナ14へ伝送する。アンテナ14は、所定の回転速度で定速度回転し続けながら、供給された送信パルス信号x[t]を外部へ放射するとともに、送信パルス信号x[t]が供給されていない期間(受信期間)は、外部の物標からの反射信号を受信して、受信エコー信号y[t]をDPX13へ出力する。DPX13は、アンテナ14からの受信エコー信号y[t]をパルス圧縮部15へ出力する。この受信エコー信号y[t]が、本発明の「被相関処理信号」に相当する。   The DPX 13 transmits the transmission pulse signal x [t] from the transmission unit 12 to the antenna 14. The antenna 14 radiates the supplied transmission pulse signal x [t] to the outside while continuing to rotate at a constant speed at a predetermined rotation speed, and a period in which the transmission pulse signal x [t] is not supplied (reception period) Receives a reflection signal from an external target and outputs a reception echo signal y [t] to the DPX 13. The DPX 13 outputs the received echo signal y [t] from the antenna 14 to the pulse compression unit 15. This received echo signal y [t] corresponds to the “correlated signal” of the present invention.

パルス圧縮部15は、所謂マッチドフィルタと称されるものであり、詳細は後述するが、受信期間中の離散化された受信エコー信号y[n]を複数区間に分割して周波数領域でパルス圧縮処理を行った後に、重複加算することで、パルス圧縮信号z[n]を算出する。   The pulse compression unit 15 is a so-called matched filter, and will be described in detail later. As will be described in detail later, the received echo signal y [n] that has been discretized during the reception period is divided into a plurality of sections and subjected to pulse compression in the frequency domain. After the processing is performed, the pulse compression signal z [n] is calculated by performing overlap addition.

画像生成部16は、パルス圧縮部15からのパルス圧縮信号z[n]を用いて表示画面上に表示される画像を生成する。   The image generation unit 16 generates an image to be displayed on the display screen using the pulse compression signal z [n] from the pulse compression unit 15.

次に、パルス圧縮部15について、より詳細に説明する。パルス圧縮部15は、図1(B)に示すように、本発明の「変換部」に相当するフーリエ変換部51、相関処理部52、本発明の「逆変換部」に相当する逆フーリエ変換部53、および重複加算部54を備える。   Next, the pulse compression unit 15 will be described in more detail. As shown in FIG. 1B, the pulse compression unit 15 includes a Fourier transform unit 51 corresponding to the “transformer” of the present invention, a correlation processing unit 52, and an inverse Fourier transform corresponding to the “inverse transform unit” of the present invention. A unit 53 and an overlap addition unit 54 are provided.

フーリエ変換部51は、DPX13を介してアンテナ14から入力された時間軸上の受信エコー信号y[t]を所定サンプリングタイミングにて離散化することで受信エコー信号y[n]を取得して記憶する。ここで、nはサンプリング番号である。フーリエ変換部51は、受信エコー信号y[n]を所定サンプリングデータ数毎に区間分割する。   The Fourier transform unit 51 acquires and stores the received echo signal y [n] by discretizing the received echo signal y [t] on the time axis input from the antenna 14 via the DPX 13 at a predetermined sampling timing. To do. Here, n is a sampling number. The Fourier transform unit 51 divides the received echo signal y [n] into sections for each predetermined number of sampling data.

フーリエ変換部51は、各部分区間の受信エコー信号ym[n]を順次フーリエ変換し、周波数領域の受信エコー信号Ym[k]を生成する。ここで、mは部分区間番号であり、kは離散周波数である。フーリエ変換部51は、周波数領域の受信エコー信号Ym[k]を、部分区間毎に相関処理部52へ与える。   The Fourier transform unit 51 sequentially performs a Fourier transform on the reception echo signal ym [n] in each partial section to generate a reception echo signal Ym [k] in the frequency domain. Here, m is a partial section number, and k is a discrete frequency. The Fourier transform unit 51 provides the reception echo signal Ym [k] in the frequency domain to the correlation processing unit 52 for each partial section.

この際、フーリエ変換部51は、各部分区間の受信エコー信号ym[n]の遅延側に後述の相関処理で必要となる「0」からなるダミーサンプリングデータ群を、送信パルス信号のパルス長に相当する個数加えた上で、各部分区間のサンプリングデータ数が2個となるように、区間分割を設定して、フーリエ変換を実行する。これにより、フーリエ変換部51は、各部分区間の受信エコー信号ym[n]を高速フーリエ変換(FFT)処理することができる。この結果、各部分区間の受信エコー信号ym[n]を周波数領域の受信エコー信号Ym[k]へ高速に変換することができる。 At this time, the Fourier transform unit 51 sets, on the delay side of the received echo signal ym [n] in each partial section, a dummy sampling data group consisting of “0” necessary for correlation processing described later as the pulse length of the transmission pulse signal. After adding the corresponding number, section division is set so that the number of sampling data in each partial section is 2n , and Fourier transform is executed. Thereby, the Fourier transform unit 51 can perform a fast Fourier transform (FFT) process on the received echo signal ym [n] of each partial section. As a result, the received echo signal ym [n] in each partial section can be converted to the received echo signal Ym [k] in the frequency domain at high speed.

相関処理部52は、メモリ521および乗算器522を備える。
相関処理部52は、メモリ521に記憶された離散周波数毎のレプリカ信号Re[k]を、乗算器522で受信エコー信号Ym[k]に乗算することで相関処理を行い、相関処理後の信号Zm[k]=N・Re[k]・Ym[k]を出力する。なお、NはDFTのデータ点数を意味する。
The correlation processing unit 52 includes a memory 521 and a multiplier 522.
The correlation processing unit 52 multiplies the received echo signal Ym [k] by the multiplier 522 by the replica signal Re [k] for each discrete frequency stored in the memory 521, and performs correlation processing. Zm [k] = N · Re [k] · Ym [k] is output. N means the number of DFT data points.

この相関処理後の信号Zm[k]が周波数領域でのパルス圧縮信号となる。なお、以下では、「パルス圧縮信号」と称して説明を行う。また、ここでは、機能的に相関処理を示しているが、これらの処理は、フィルタバンクであるメモリ521にフィルタ係数としてレプリカ信号Re[k]の各離散周波数成分を記憶し、当該フィルタ係数によって乗算器522で受信エコー信号Ym[k]をフィルタ処理するマッチドフィルタとして実現することができる。   The signal Zm [k] after this correlation processing becomes a pulse compression signal in the frequency domain. In the following description, it will be referred to as a “pulse compression signal”. In addition, here, correlation processing is functionally shown, but these processing stores each discrete frequency component of the replica signal Re [k] as a filter coefficient in the memory 521 that is a filter bank, and the filter coefficient The multiplier 522 can be realized as a matched filter that filters the received echo signal Ym [k].

メモリ521に記憶されたレプリカ信号Re[k]は具体的に次に示す手法により設定されている。図2は、本願の周波数領域でのレプリカ信号Re[k]となる離散的な時間領域で信号x[Np−1−n]の生成概念、および、当該信号x[Np−1−n]で相関処理した場合の時間領域でのパルス圧縮信号の波形を示す図である。 The replica signal Re [k] stored in the memory 521 is specifically set by the following method. FIG. 2 shows the concept of generating the signal x * [Np-1-n] in the discrete time domain that becomes the replica signal Re [k] in the frequency domain of the present application, and the signal x * [Np-1-n ] Is a figure which shows the waveform of the pulse compression signal in the time domain at the time of performing a correlation process.

(1)図2(A)に示す離散化した送信パルス信号x[n]の波形を時間反転させた図2(B)の破線に示す信号x[−n]を算出する。ここで、信号x[−n]は現実的には、上述のようにDFT期間の最後のタイミングを立ち下がりタイミングとする波形(図2(B)の実線の波形)となるが、算出演算上は破線の波形と見なすことができる。
(2)時間反転された信号x[−n]を、送信パルス信号x[n]のパルス長Np分だけ遅延させた図2(C)に示す信号x[Np−1−n]を算出する。
(3)時間反転と遅延処理とが行われた信号x[Np−1−n]を複素共役処理してなる図2(D)に示す複素共役信号x[Np−1−n]をレプリカ信号Re[n]として算出する。
(4)レプリカ信号Re[n]である複素共役信号x[Np−1−n]を周波数領域の関数Re[k]=FFT[x[Np−1−n]]に変換し、離散周波数でのレプリカ信号に設定する。
(1) A signal x [−n] indicated by a broken line in FIG. 2B obtained by time-reversing the waveform of the discretized transmission pulse signal x [n] shown in FIG. Here, the signal x [−n] is actually a waveform having the last timing of the DFT period as the falling timing (the solid line waveform in FIG. 2B) as described above. Can be regarded as a dashed waveform.
(2) A signal x [Np-1-n] shown in FIG. 2C is calculated by delaying the time-inverted signal x [-n] by the pulse length Np of the transmission pulse signal x [n]. .
(3) Replicate the complex conjugate signal x * [Np-1-n] shown in FIG. 2D, which is obtained by performing complex conjugate processing on the signal x [Np-1-n] subjected to time inversion and delay processing. Calculated as signal Re [n].
(4) The complex conjugate signal x * [Np−1−n], which is the replica signal Re [n], is converted into a frequency domain function Re [k] = FFT [x * [Np−1−n]] and discrete Set to replica signal at frequency.

このようなレプリカ信号Re[k]を用いて相関処理を実行すると、時間領域でのパルス圧縮信号z[t]は、送信パルス信号x[n]のパルス長Np分だけ遅延されることで、上述の従来技術の図5に示したような不連続な波形ではなく、図2(E)に示すような連続的な波形となる。   When correlation processing is performed using such a replica signal Re [k], the pulse compression signal z [t] in the time domain is delayed by the pulse length Np of the transmission pulse signal x [n]. It is not a discontinuous waveform as shown in FIG. 5 of the above-mentioned prior art but a continuous waveform as shown in FIG.

これにより、受信エコー信号ym[n]を周波数領域で順次相関処理し、これを時間領域に逆フーリエ変換して時間領域のパルス圧縮信号zm[n]を取得することにより、当該パルス圧縮信号zm[n]は、図3に示すように、時間領域で連続した波形となる。   Accordingly, the received echo signal ym [n] is sequentially correlated in the frequency domain, and inverse Fourier transformed to the time domain to obtain the time domain pulse compressed signal zm [n], thereby obtaining the pulse compressed signal zm. [N] has a continuous waveform in the time domain, as shown in FIG.

図3は、本実施形態の相関処理(パルス圧縮)と重複加算とを行った場合の各部分区間のパルス圧縮信号の時間軸上での状態を示す図である。   FIG. 3 is a diagram illustrating a state on the time axis of the pulse compression signal of each partial section when the correlation processing (pulse compression) and overlap addition of the present embodiment are performed.

例えば、部分区間の受信エコー信号y1[n]に対するパルス圧縮信号z1[n]を、上述のように、部分的なパルス圧縮信号z11[n],z12[n],z13[n]とした場合、時間領域において、これら部分的なパルス圧縮信号z11[n],z12[n],z13[n]が時系列で連続的に出力される波形からなるパルス圧縮信号z1[n]を得ることができる。   For example, when the pulse compression signal z1 [n] for the reception echo signal y1 [n] in the partial section is the partial pulse compression signal z11 [n], z12 [n], z13 [n] as described above. In the time domain, it is possible to obtain a pulse compression signal z1 [n] having a waveform in which these partial pulse compression signals z11 [n], z12 [n], and z13 [n] are continuously output in time series. it can.

逆フーリエ変換部53は、相関処理部52から出力される各部分区間のパルス圧縮信号Zm[k]を逆フーリエ変換することで、時間領域でのパルス圧縮信号zm[n]を取得する。   The inverse Fourier transform unit 53 obtains a pulse compression signal zm [n] in the time domain by performing inverse Fourier transform on the pulse compression signal Zm [k] of each partial section output from the correlation processing unit 52.

重複加算部54は、各部分区間のパルス圧縮信号zm[n]を取得し、時間領域において各パルス圧縮信号zm[n]が時系列通りに連続するように重複加算処理を行う。より具体的には、図3(B)に示すように、重複加算部54は、パルス圧縮信号z1[n]の後端側の部分的なパルス圧縮信号z13[n]と、パルス圧縮信号z1[n]に連続するパルス圧縮信号z2[n]の先端側の部分的なパルス圧縮信号z21[n]とが、時間領域で重なり合うように加算する。さらに、重複加算部54は、パルス圧縮信号z2[n]の後端側の部分的なパルス圧縮信号z23[n]と、パルス圧縮信号z2[n]に連続するパルス圧縮信号z3[n]の先端側の部分的なパルス圧縮信号z31[n]とが、時間領域で重なり合うように加算する。そして、重複加算部54は、このような重複加算処理を受信期間分に亘って実行する。   The overlap addition unit 54 acquires the pulse compression signal zm [n] of each partial section, and performs overlap addition processing so that each pulse compression signal zm [n] continues in time series in the time domain. More specifically, as shown in FIG. 3B, the overlap adder 54 includes a partial pulse compression signal z13 [n] on the rear end side of the pulse compression signal z1 [n] and the pulse compression signal z1. The partial pulse compression signal z21 [n] on the front end side of the pulse compression signal z2 [n] continuous to [n] is added so as to overlap in the time domain. Further, the overlap addition unit 54 includes a partial pulse compression signal z23 [n] on the rear end side of the pulse compression signal z2 [n] and a pulse compression signal z3 [n] continuous to the pulse compression signal z2 [n]. The partial pulse compression signal z31 [n] on the front end side is added so as to overlap in the time domain. And the duplication addition part 54 performs such duplication addition processing over a reception period.

このような処理を行うことで、従来技術に示したような各部分区間のパルス圧縮信号内でのデータの並び替えを行う必要がない。これにより、周波数領域による相関処理と重複加算法とを用いたパルス圧縮処理を、従来よりも軽い演算負荷で、高速に実行することができる。そして、このようにパルス圧縮処理に対する演算負荷を低減して、高速化することで、物標探知処理全体としても、演算負荷の軽減化、および高速化を実現することができる。   By performing such processing, it is not necessary to rearrange the data within the pulse compression signal of each partial section as shown in the prior art. As a result, the pulse compression processing using the correlation processing in the frequency domain and the overlap addition method can be executed at high speed with a lighter calculation load than in the past. By reducing the calculation load on the pulse compression processing and increasing the speed in this way, it is possible to reduce the calculation load and increase the speed of the entire target detection process.

なお、上述の説明では、単にFMチャープ方式の送信パルス信号と説明したが、時間領域において対称な波形の送信パルス信号を用いる場合には、単に送信パルス信号の複素共役からなるレプリカ信号を用いても良い。   In the above description, the transmission pulse signal of the FM chirp method is simply described. However, when a transmission pulse signal having a symmetrical waveform in the time domain is used, a replica signal that is simply a complex conjugate of the transmission pulse signal is used. Also good.

図4は、時間領域で対称な波形の送信パルス信号x[n]を用いた場合の送信パルス信号と、レプリカ信号である複素共役信号x[n]の波形の関係を示した図である。 FIG. 4 is a diagram showing a relationship between waveforms of a transmission pulse signal and a complex conjugate signal x * [n] that is a replica signal when a transmission pulse signal x [n] having a symmetrical waveform in the time domain is used. .

送信パルス信号x[n]の波形が、時間領域で対称な場合、時間反転した波形も当然に同じになる。したがって、レプリカ信号として使用する時間反転複素共役信号は、単に複素共役信号と同じになる。このため、時間反転処理を必要とせず、時間反転処理を必要としない以上、遅延処理も必要としない。   When the waveform of the transmission pulse signal x [n] is symmetric in the time domain, the time-reversed waveform is naturally the same. Therefore, the time-reversed complex conjugate signal used as the replica signal is simply the same as the complex conjugate signal. For this reason, no time reversal processing is required, and no delay processing is required as long as time reversal processing is not required.

これにより、送信パルス信号x[n]の波形が時間領域で対称な場合、複素共役処理のみから算出されたレプリカ信号が、上述の時間反転処理、遅延処理、複素共役処理を実行したレプリカ信号と同じの信号となる。この結果、パルス圧縮信号を連続的にさせるレプリカ信号を簡素な処理で設定することができる。   Thus, when the waveform of the transmission pulse signal x [n] is symmetric in the time domain, the replica signal calculated only from the complex conjugate process is the same as the replica signal that has been subjected to the time inversion process, the delay process, and the complex conjugate process. It becomes the same signal. As a result, a replica signal for making the pulse compression signal continuous can be set by simple processing.

また、上述の説明では、送信パルス信号を時間反転処理、遅延処理、複素共役処理することで、レプリカ信号を設定する例を示したが、結果的に送信パルス信号を時間反転処理、遅延処理、複素共役処理した波形と同等の波形が得られるものであれば、他の方法でレプリカ信号を設定しても良い。   In the above description, the example in which the replica signal is set by performing time inversion processing, delay processing, and complex conjugate processing on the transmission pulse signal has been shown, but as a result, the transmission pulse signal is subjected to time inversion processing, delay processing, As long as a waveform equivalent to the complex conjugate processed waveform can be obtained, the replica signal may be set by another method.

また、上述の説明では、相関処理部52が1つである場合を示しているが、複数の相関処理部52を備え、それぞれの相関処理部52毎に、部分区間毎の受信エコー信号Ym[k]の相関処理を行ってもよい。   Moreover, although the case where the number of correlation processing units 52 is one is shown in the above description, a plurality of correlation processing units 52 are provided, and for each correlation processing unit 52, the received echo signal Ym [ k] correlation processing may be performed.

また、上述の説明では重複加算処理を行う例を示したが、部分区間毎とパルス圧縮データの並び替えを行う必要がないという効果は、重複加算処理を行わない場合であっても適用することができる。したがって、重複加算処理を行わないパルス圧縮装置であっても上述の効果を得ることができる。   Further, in the above description, an example in which the overlap addition process is performed is shown. However, the effect of not having to rearrange the pulse compression data for each partial section is applicable even when the overlap addition process is not performed. Can do. Therefore, the above-described effect can be obtained even with a pulse compression device that does not perform overlap addition processing.

また、上述の説明では、送信パルス信号に基づくレプリカ信号で受信信号をパルス圧縮するパルス圧縮装置を例に示したが、周波数領域で被相関処理信号を自己相関処理する装置であれば、上述の構成を適用することができる。   In the above description, the pulse compression device that performs pulse compression of the reception signal with the replica signal based on the transmission pulse signal has been described as an example. However, if the device performs autocorrelation processing on the correlated signal in the frequency domain, Configuration can be applied.

また、上述の説明では、物標探知装置としてレーダ装置を例に示したが、周波数領域で被相関処理信号を自己相関処理した結果を用いるソナー等の装置であれば、上述の構成を適用することができる。   In the above description, the radar device is shown as an example of the target detection device. However, the above configuration is applied to any device such as a sonar device that uses the result of autocorrelation processing of the correlated signal in the frequency domain. be able to.

また、上述の説明では、パルス圧縮部15を、フーリエ変換部51、相関処理部52、逆フーリエ変換部53、重複加算部54という個別の機能部で表して説明したが、必ずしも、これら機能部を個別に形成する必要はない。すなわち、パルス圧縮部15を1つのICで構成し、上述のような相関処理方法を用いたパルス圧縮処理を、プログラムとして記憶しておき、ICで実行するようにしてもよい。   In the above description, the pulse compression unit 15 has been described as individual functional units such as the Fourier transform unit 51, the correlation processing unit 52, the inverse Fourier transform unit 53, and the overlap addition unit 54. Need not be formed individually. That is, the pulse compression unit 15 may be configured by one IC, and the pulse compression process using the correlation processing method as described above may be stored as a program and executed by the IC.

11−レーダ装置、12−送信部、13−DPX、14−アンテナ、15−パルス圧縮部、16−物標探知部、51−フーリエ変換部、52−相関処理器、53−逆フーリエ変換部、54−重複加算部、521−メモリ、522−乗算器 11-radar apparatus, 12-transmission unit, 13-DPX, 14-antenna, 15-pulse compression unit, 16-target detection unit, 51-Fourier transform unit, 52-correlation processor, 53-inverse Fourier transform unit, 54-overlapping adder, 521-memory, 522-multiplier

Claims (9)

パルス状の被相関処理信号をレプリカ信号で相関処理する相関処理器であって、
前記被相関処理信号を時間領域から周波数領域へ変換する変換部と、
該被相関処理信号の元となるパルス状の信号を時間領域で反転処理し、パルス長分だけ遅延処理し、複素共役処理した波形と同じ波形を周波数領域に変換してなるレプリカ信号を、前記周波数領域の被相関処理信号に対して乗算することで相関処理を行う相関処理部と、
相関処理後の信号を周波数領域から時間領域へ逆変換する逆変換部と、
を備えた相関処理器。
A correlation processor for correlating a pulsed correlated signal with a replica signal,
A conversion unit for converting the correlated signal from the time domain to the frequency domain;
A replica signal obtained by inverting the pulse-shaped signal that is the source of the correlated signal in the time domain, delaying by the pulse length, and converting the same waveform as the complex conjugate processed waveform into the frequency domain, A correlation processing unit that performs correlation processing by multiplying the correlated signal in the frequency domain;
An inverse transform unit that inversely transforms the signal after the correlation processing from the frequency domain to the time domain;
A correlation processor.
前記変換部は、前記被相関処理信号を時間領域で連続する複数の区間に分割して、前記周波数領域への変換を行い、
前記相関処理部は、区間分割された被相関処理信号毎に前記相関処理を行い、
前記逆変換部は、個別に相関処理された信号それぞれに前記逆変換を行うとともに、
前記逆変換が行われた信号を時間領域で連続するように加算する重複加算処理部を備える、請求項1に記載の相関処理器。
The transform unit divides the correlated signal into a plurality of continuous sections in the time domain, performs transform to the frequency domain,
The correlation processing unit performs the correlation processing for each correlated processing signal divided into sections,
The inverse transform unit performs the inverse transform on each of the individually correlated signals,
The correlation processor according to claim 1, further comprising an overlapping addition processing unit that adds the signals subjected to the inverse transformation so as to be continuous in the time domain.
前記パルス状の被相関処理信号は、時間領域において対称な波形の信号であり、
前記レプリカ信号を、前記被相関処理信号の元となるパルス状の信号を複素共役処理することで得る、請求項1または請求項2に記載の相関処理器。
The pulsed correlated signal is a signal having a symmetrical waveform in the time domain,
The correlation processor according to claim 1, wherein the replica signal is obtained by performing complex conjugate processing on a pulsed signal that is a source of the correlated signal.
前記変換部は、前記被相関処理信号を離散化処理してパルス長以上のデータを2単位で変換する、請求項1〜請求項3のいずれかに記載の相関処理器。 The correlation processor according to any one of claims 1 to 3, wherein the conversion unit discretizes the correlated signal to convert data having a pulse length or longer in 2n units. 請求項1〜請求項4のいずれかに記載の相関処理器を備えるとともに、
前記相関処理部は、前記元となる信号としてFMチャープ方式の送信パルス信号を用い、該送信パルス信号を時間反転処理、遅延処理、および複素共役処理して得られる信号を前記レプリカ信号として、前記相関処理を行う、パルス圧縮装置。
While comprising the correlation processor according to any one of claims 1 to 4,
The correlation processing unit uses an FM chirp transmission pulse signal as the original signal, and a signal obtained by performing time inversion processing, delay processing, and complex conjugate processing on the transmission pulse signal as the replica signal, A pulse compression device that performs correlation processing.
請求項5に記載のパルス圧縮装置を備えるとともに、
前記相関処理により得られたパルス圧縮後の信号を用いて、表示画面上に表示する画像を生成する画像生成部を備えた、物標探知装置。
While comprising the pulse compression device according to claim 5,
A target detection apparatus comprising an image generation unit that generates an image to be displayed on a display screen using a signal after pulse compression obtained by the correlation processing.
パルス状の被相関処理信号をレプリカ信号で相関処理する相関処理方法であって、
前記被相関処理信号を時間領域から周波数領域へ変換する工程と、
該被相関処理信号の元となるパルス状の信号を時間領域で反転処理し、パルス長分だけ遅延処理し、複素共役処理した波形と同じ波形を周波数領域に変換してなるレプリカ信号を、前記周波数領域の被相関処理信号に対して乗算することで相関処理を行う工程と、
相関処理後の信号を周波数領域から時間領域へ逆変換する工程と、
を有する相関処理方法。
A correlation processing method for correlating a pulsed correlated signal with a replica signal,
Transforming the correlated signal from the time domain to the frequency domain;
A replica signal obtained by inverting the pulse-shaped signal that is the source of the correlated signal in the time domain, delaying by the pulse length, and converting the same waveform as the complex conjugate processed waveform into the frequency domain, Performing correlation processing by multiplying the correlated signal in the frequency domain;
A step of inversely transforming the signal after the correlation processing from the frequency domain to the time domain;
A correlation processing method.
前記周波数領域へ変換する工程は、前記被相関処理信号を時間領域で連続する複数の区間に分割して、前記周波数領域への変換を行い、
前記相関処理を行う工程は、区間分割された被相関処理信号毎に前記相関処理を行い、
前記逆変換する工程は、個別に相関処理された信号それぞれに前記逆変換を行い、
さらに、前記逆変換が行われた信号を時間領域で連続するように加算する重複加算処理工程を加えた、請求項7に記載の相関処理方法。
The step of converting to the frequency domain divides the correlated signal into a plurality of continuous sections in the time domain, and performs conversion to the frequency domain.
The step of performing the correlation processing performs the correlation processing for each correlated processing signal divided into sections,
The inverse transforming step performs the inverse transform on each individually correlated signal,
Furthermore, the correlation processing method of Claim 7 which added the overlap addition process step which adds the signal by which the said inverse transformation was performed so that it may continue in a time domain.
前記パルス状の被相関処理信号は、時間領域において対称な波形の信号であり、
前記相関処理を行う工程は、前記レプリカ信号を、前記被相関処理信号の元となるパルス状の信号を複素共役処理することで得る、請求項7または請求項8に記載の相関処理方法。
The pulsed correlated signal is a signal having a symmetrical waveform in the time domain,
The correlation processing method according to claim 7, wherein the step of performing the correlation processing obtains the replica signal by performing complex conjugate processing on a pulse-shaped signal that is a source of the correlated processing signal.
JP2009139969A 2009-06-11 2009-06-11 Correlation processing device, correlation processing method, pulse compression device and target detector Pending JP2010286337A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009139969A JP2010286337A (en) 2009-06-11 2009-06-11 Correlation processing device, correlation processing method, pulse compression device and target detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009139969A JP2010286337A (en) 2009-06-11 2009-06-11 Correlation processing device, correlation processing method, pulse compression device and target detector

Publications (1)

Publication Number Publication Date
JP2010286337A true JP2010286337A (en) 2010-12-24

Family

ID=43542144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009139969A Pending JP2010286337A (en) 2009-06-11 2009-06-11 Correlation processing device, correlation processing method, pulse compression device and target detector

Country Status (1)

Country Link
JP (1) JP2010286337A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105699960A (en) * 2016-01-22 2016-06-22 中国科学院电子学研究所 Device for achieving UWB (ultra wide band) pseudorandom coding real-time pulse compression
CN110109091A (en) * 2019-05-23 2019-08-09 中国人民解放军战略支援部队信息工程大学 A kind of passive radar method for parameter estimation and device for high-speed target

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105699960A (en) * 2016-01-22 2016-06-22 中国科学院电子学研究所 Device for achieving UWB (ultra wide band) pseudorandom coding real-time pulse compression
CN110109091A (en) * 2019-05-23 2019-08-09 中国人民解放军战略支援部队信息工程大学 A kind of passive radar method for parameter estimation and device for high-speed target
CN110109091B (en) * 2019-05-23 2021-11-09 中国人民解放军战略支援部队信息工程大学 Passive radar parameter estimation method and device for high-speed target

Similar Documents

Publication Publication Date Title
EP2271951B1 (en) Multi-range object location estimation
JP5411417B2 (en) Pulse signal transmission / reception device and transmission / reception method
US10746863B2 (en) Target extraction system, target extraction method, information processing apparatus, and control method and control program of information processing apparatus
EA031140B1 (en) Ultrasonic detection of a change in a surface of a wall
JP6179940B2 (en) Doppler imaging signal transmitter, Doppler imaging signal receiver, Doppler imaging system and method
JP4976439B2 (en) Radar equipment
EP3335058B1 (en) Processing received radiation reflected from a target
JP2015017942A5 (en)
JP5249115B2 (en) Pulse compression device and target detection device
JP6164918B2 (en) Radar equipment
JP2010127771A (en) Synthetic aperture sonar, and method and program for correcting phase error of synthetic aperture sonar
US9535041B2 (en) Propagation rate measurement device, propagation rate measurement program, and propagation rate measurement method
JP5222080B2 (en) Ultrasonic flaw detection method, ultrasonic flaw detection program used in the method, and recording medium on which the program is recorded
JP2010286337A (en) Correlation processing device, correlation processing method, pulse compression device and target detector
JP2011247615A (en) Pulse compressor, radar device, pulse compression method, and pulse compression program
JP6976189B2 (en) Object detector
JP6029287B2 (en) Distance measuring method and radar device
JP2015129695A (en) Pulse compression radar device and radar signal processing method therefor
JP6147617B2 (en) Radar apparatus and signal processing method thereof
RU2504798C1 (en) Method for spectral processing of auxiliary signals
JPH08313624A (en) Radar
JP7383204B2 (en) radar equipment
JPH09133761A (en) Pulse compression device and ultrasonic diagnostic device
JPH08292175A (en) Ultrasonic inspection method and apparatus
JP2011191133A (en) Pulse compression device of radar reception signal