[go: up one dir, main page]

JP2010276520A - Surface pressure distribution detector for laminated battery - Google Patents

Surface pressure distribution detector for laminated battery Download PDF

Info

Publication number
JP2010276520A
JP2010276520A JP2009130537A JP2009130537A JP2010276520A JP 2010276520 A JP2010276520 A JP 2010276520A JP 2009130537 A JP2009130537 A JP 2009130537A JP 2009130537 A JP2009130537 A JP 2009130537A JP 2010276520 A JP2010276520 A JP 2010276520A
Authority
JP
Japan
Prior art keywords
surface pressure
electrode
pressure distribution
electrodes
insulating portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009130537A
Other languages
Japanese (ja)
Inventor
Masanobu Sakai
政信 酒井
Shuji Torii
修司 鳥居
Kazuhiko Shinohara
和彦 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2009130537A priority Critical patent/JP2010276520A/en
Publication of JP2010276520A publication Critical patent/JP2010276520A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface pressure distribution detector for laminated batteries, capable of detecting a surface pressure distribution without deteriorating power generation performance. <P>SOLUTION: The surface pressure distribution detector includes an inner insulated section 61 elastically deformable in a laminating direction of a unit cell 10; a plurality of first electrodes 63 disposed on one of side surfaces of the inner insulated section 61; a plurality of second electrodes 62 disposed on the other side surface of the inner insulated section 61 and facing the first electrodes 63; a pair of outer insulated sections 64 disposed between the first electrodes 63 and the unit cell 10 on the first electrode side, and disposed between the second electrodes 62 and the unit cell 10 on the second electrode side; and a plurality of conductive sections 65 configured elastically deformable in the laminating direction, electrically insulated from the first electrodes 63 and the second electrodes 62, and electrically connecting the unit cell 10 on the first electrode side and the unit cell 10 on the second electrode side. A surface pressure distribution measuring section 90 calculates a laminated surface pressure based on a capacitance changing according to a distance between the first electrodes 63 and the second electrodes 62 to obtain a laminated surface pressure distribution. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、単位セルを複数積層した積層型電池の面圧分布検出装置に関する。   The present invention relates to a surface pressure distribution detection device for a stacked battery in which a plurality of unit cells are stacked.

燃料電池やリチウムイオン電池等の積層型電池では、積層面圧が低いと単位セル間や単位セル内の接触抵抗が増加し、内部損失が増大して、発電性能が悪化する。また、電解質膜の面内方向に反応ガスのガス流路を備える燃料電池スタックにおいては、積層面圧が高くなり過ぎるとガス流路が押し潰され、反応ガスの供給量が低下して、発電性能が悪化する。このように積層型電池では、適切な積層面圧を保つことが重要である。   In a stacked battery such as a fuel cell or a lithium ion battery, when the stacking surface pressure is low, contact resistance between unit cells or in a unit cell increases, internal loss increases, and power generation performance deteriorates. In addition, in a fuel cell stack having a reaction gas flow path in the in-plane direction of the electrolyte membrane, if the stacking surface pressure becomes too high, the gas flow path is crushed, reducing the supply amount of the reaction gas and generating power. Performance deteriorates. As described above, it is important to maintain an appropriate stacking surface pressure in the stacked battery.

しかしながら、周囲温度や単位セルの膨潤収縮等により積層面圧の分布は変化してしまうので、積層型電池において積層面圧の分布を一様にすることは困難である。   However, since the distribution of the lamination surface pressure changes due to the ambient temperature, the swelling and shrinkage of the unit cells, etc., it is difficult to make the distribution of the lamination surface pressure uniform in the laminated battery.

特許文献1には、燃料電池スタックの一方のエンドプレートに複数のアクチュエータを設け、面圧分布検出装置で検出した面圧分布情報に基づいてアクチュエータを作動させることで、積層面圧の均一化を図る技術が開示されている。   In Patent Document 1, a plurality of actuators are provided on one end plate of a fuel cell stack, and the actuators are operated based on the surface pressure distribution information detected by the surface pressure distribution detection device, so that the stacking surface pressure is made uniform. Techniques to be disclosed are disclosed.

特開2007−213882号公報JP 2007-213882 A

特許文献1に記載の面圧分布検出装置は、積層面圧を検出するとともに単位セルで発電された電流を通電するように、面圧分布を検出するシート状のタクタイルセンサをタクタイルセンサよりも面積の大きい2枚の導電性シートで挟み込み、それら導電性シートの縁部を電気的に接合して構成される。このような面圧分布検出装置では、単位セルで発電された電流が導電性シートの縁部に集中して流れるので、発電電流の電流密度が偏って、燃料電池スタックの発電性能が悪化する可能性がある。   The surface pressure distribution detection device described in Patent Literature 1 has a sheet-like tactile sensor that detects a surface pressure distribution and detects a surface pressure distribution so that a current generated by a unit cell is supplied while detecting a stacked surface pressure. Sandwiched between two large conductive sheets, and the edges of the conductive sheets are electrically joined. In such a surface pressure distribution detection device, the current generated in the unit cell flows in a concentrated manner at the edge of the conductive sheet, so the current density of the generated current is biased and the power generation performance of the fuel cell stack can be degraded. There is sex.

そこで、本発明は、このような問題点に着目してなされたものであり、発電性能を悪化させることなく、面圧分布を検出することができる積層型電池の面圧分布検出装置を提供することを目的とする。   Therefore, the present invention has been made paying attention to such problems, and provides a surface pressure distribution detection device for a stacked battery that can detect a surface pressure distribution without deteriorating power generation performance. For the purpose.

本発明は、以下のような解決手段によって前記課題を解決する。   The present invention solves the above problems by the following means.

本発明は、発電単位セルが複数積層される積層型電池の積層面圧分布を検出する面圧分布検出装置である。面圧分布検出装置は、単位セルの積層方向に弾性変形可能な内側絶縁部と、内側絶縁部の一方の積層方向側面に複数設けられる第1電極と、内側絶縁部の他方の積層方向側面に複数設けられ、第1電極と対向する第2電極と、第1電極と第1電極側単位セルとの間に設けられるとともに、第2電極と第2電極側単位セルとの間に設けられる一対の外側絶縁部と、を備える。さらに、面圧分布検出装置は、積層方向に弾性変形可能に構成され、第1電極及び第2電極に対して電気絶縁した状態で、第1電極側単位セルと第2電極側単位セルとを電気的に接続する複数の導電部を備える。そして、面圧分布測定部は、第1電極と第2電極との対向距離に応じて変化する静電容量に基づいて積層面圧を算出し、積層面圧に基づいて積層面圧分布を求める。   The present invention is a surface pressure distribution detection device that detects a stack surface pressure distribution of a stacked battery in which a plurality of power generation unit cells are stacked. The surface pressure distribution detector includes an inner insulating portion that can be elastically deformed in the stacking direction of the unit cells, a plurality of first electrodes provided on one side in the stacking direction of the inner insulating portion, and a side in the other stacking direction of the inner insulating portion. A plurality of second electrodes that are opposed to the first electrode, provided between the first electrode and the first electrode side unit cell, and a pair provided between the second electrode and the second electrode side unit cell. And an outer insulating portion. Furthermore, the surface pressure distribution detection device is configured to be elastically deformable in the stacking direction, and in a state of being electrically insulated from the first electrode and the second electrode, the first electrode side unit cell and the second electrode side unit cell are connected to each other. A plurality of conductive parts to be electrically connected are provided. Then, the surface pressure distribution measuring unit calculates the lamination surface pressure based on the capacitance that changes according to the facing distance between the first electrode and the second electrode, and obtains the lamination surface pressure distribution based on the lamination surface pressure. .

本発明の面圧分布検出装置は、積層方向に弾性変形可能に構成されて第1電極側単位セルと第2電極側単位セルとを電気的に接続する複数の導電部を備えるので、第1電極側単位セルと第2電極側単位セルとを通過する電流の電流密度の偏りを抑制することができ、電流密度に起因する発電性能の悪化を抑制しつつ、単位セルにおける面圧分布を検出することが可能となる。   Since the surface pressure distribution detection device of the present invention includes a plurality of conductive portions that are configured to be elastically deformable in the stacking direction and electrically connect the first electrode side unit cell and the second electrode side unit cell. The bias of current density of the current passing through the electrode side unit cell and the second electrode side unit cell can be suppressed, and the surface pressure distribution in the unit cell is detected while suppressing the deterioration of power generation performance due to the current density. It becomes possible to do.

車両に搭載される燃料電池スタックの概略構成図である。It is a schematic block diagram of the fuel cell stack mounted in a vehicle. 燃焼電池システムの概略構成図である。It is a schematic block diagram of a combustion battery system. 燃料電池スタックに備えられる面圧検出部について説明する図である。It is a figure explaining the surface pressure detection part with which a fuel cell stack is equipped. 面圧検出部の導電部について説明する図である。It is a figure explaining the electroconductive part of a surface pressure detection part. 面圧信号検出回路について説明する図である。It is a figure explaining a surface pressure signal detection circuit. 第2実施形態における面圧検出部の概略構成図である。It is a schematic block diagram of the surface pressure detection part in 2nd Embodiment. 第3実施形態における面圧検出部の概略構成図である。It is a schematic block diagram of the surface pressure detection part in 3rd Embodiment. 第4実施形態における面圧検出部の概略構成図である。It is a schematic block diagram of the surface pressure detection part in 4th Embodiment. 第5実施形態における面圧検出部の概略構成図である。It is a schematic block diagram of the surface pressure detection part in 5th Embodiment. 第6実施形態における面圧信号検出回路の概略構成図である。It is a schematic block diagram of the surface pressure signal detection circuit in 6th Embodiment.

以下、図面等を参照して本発明の実施形態について説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(第1実施形態)
図1は、車両に搭載される燃料電池スタック100の概略構成図である。
(First embodiment)
FIG. 1 is a schematic configuration diagram of a fuel cell stack 100 mounted on a vehicle.

図1に示すように、燃料電池スタック100は、起電力を生じる固体高分子型燃料電池である単位セル10を複数積層して構成される。   As shown in FIG. 1, the fuel cell stack 100 is configured by stacking a plurality of unit cells 10 that are solid polymer fuel cells that generate an electromotive force.

単位セル10の積層体の両端には、集電板20と絶縁板30が順次設けられる。   A current collecting plate 20 and an insulating plate 30 are sequentially provided on both ends of the stacked body of the unit cells 10.

集電板20は、ガス不透過性の導電性部材であって、例えば緻密質カーボンによって形成される。集電板20には、燃料電池スタック100で生じた起電力を取り出すための出力端子21が設けられる。   The current collecting plate 20 is a gas impermeable conductive member, and is formed of dense carbon, for example. The current collector plate 20 is provided with an output terminal 21 for taking out an electromotive force generated in the fuel cell stack 100.

絶縁板30は、集電板20の外側に配置される。絶縁板30は、絶縁性のゴム等によって形成される。   The insulating plate 30 is disposed outside the current collecting plate 20. The insulating plate 30 is made of insulating rubber or the like.

一方の絶縁板30の外側にはエンドプレート40が設けられ、他方の絶縁板30の外側には可動板50を介してエンドプレート40が設けられる。エンドプレート40と可動板50との間には、単位セル10の積層面圧を調整する面圧調整装置が配置される。   An end plate 40 is provided outside one insulating plate 30, and an end plate 40 is provided outside the other insulating plate 30 via a movable plate 50. Between the end plate 40 and the movable plate 50, a surface pressure adjusting device that adjusts the stacked surface pressure of the unit cells 10 is disposed.

エンドプレート40及び可動板50は、剛性を備える金属材料や樹脂材料で形成される。エンドプレート40のうち一方のエンドプレート40には、各単位セル10に水素ガス等の燃料ガスを供給する燃料ガス入口41Aと、燃料ガスを排出する燃料ガス出口41Bと、各単位セル10に酸素等の酸化剤ガスを供給する酸化剤ガス入口42Aと、酸化剤ガスを排出する酸化剤ガス出口42Bと、各単位セル10に冷却水を供給する冷却水入口43Aと、冷却水を排出する冷却水出口43Bとが形成される。   The end plate 40 and the movable plate 50 are formed of a metal material or resin material having rigidity. One end plate 40 of the end plates 40 has a fuel gas inlet 41A for supplying a fuel gas such as hydrogen gas to each unit cell 10, a fuel gas outlet 41B for discharging the fuel gas, and an oxygen for each unit cell 10. An oxidant gas inlet 42A that supplies an oxidant gas such as, an oxidant gas outlet 42B that discharges oxidant gas, a cooling water inlet 43A that supplies cooling water to each unit cell 10, and cooling that discharges cooling water A water outlet 43B is formed.

燃料電池スタック100は、積層方向の任意の位置において、2つの単位セル10の間に面圧検出部60を備える。面圧検出部60は、単位セル10の積層方向に直交する面(積層面)における圧力を検出する。   The fuel cell stack 100 includes a surface pressure detection unit 60 between two unit cells 10 at an arbitrary position in the stacking direction. The surface pressure detection unit 60 detects pressure on a surface (stacked surface) orthogonal to the stacking direction of the unit cells 10.

本実施形態では1つの面圧検出部60を設けるようにしたが、積層方向に亘って複数の面圧検出部60を設けるようにしてもよい。また、単位セル10の間に面圧検出部60を設けるようにしたが、単位セル10と集電板20との間に面圧検出部60を設けるようにしてもよい。   In the present embodiment, one surface pressure detection unit 60 is provided, but a plurality of surface pressure detection units 60 may be provided in the stacking direction. Further, the surface pressure detection unit 60 is provided between the unit cells 10, but the surface pressure detection unit 60 may be provided between the unit cells 10 and the current collector plate 20.

積層した単位セル10、集電板20、絶縁板30、エンドプレート40、可動板50及び面圧検出部60は、積層面内の四隅の貫通孔にタイロッド70を挿通し、タイロッド70の端部にナットを螺合することによって固定される。タイロッド70は、鋼等の金属材料によって形成される。タイロッド70は、電気短絡を防止するため、表面に絶縁処理が施される。   The unit cell 10, the current collector plate 20, the insulating plate 30, the end plate 40, the movable plate 50, and the surface pressure detecting unit 60 that are stacked are inserted into the through holes at the four corners in the stacked surface, and the end portions of the tie rods 70 are inserted. It is fixed by screwing the nut into the screw. The tie rod 70 is formed of a metal material such as steel. In order to prevent an electrical short circuit, the surface of the tie rod 70 is insulated.

図2は、燃焼電池システムの概略構成図である。   FIG. 2 is a schematic configuration diagram of the combustion battery system.

燃料電池スタック100は、エンドプレート40と可動板50との間に、複数の面圧調整装置80を備える。面圧調整装置80は圧電アクチュエータや油圧シリンダであって積層方向に伸縮する。これら面圧調整装置80は、コントローラ90によって制御される。   The fuel cell stack 100 includes a plurality of surface pressure adjusting devices 80 between the end plate 40 and the movable plate 50. The surface pressure adjusting device 80 is a piezoelectric actuator or a hydraulic cylinder and expands and contracts in the stacking direction. These surface pressure adjusting devices 80 are controlled by a controller 90.

コントローラ90は、中央演算装置(CPU)、読み出し専用メモリ(ROM)、ランダムアクセスメモリ(RAM)、及び入出力インタフェース(I/Oインタフェース)を備えたマイクロコンピュータで構成される。コントローラ90は、面圧検出部60と信号線で接続し面圧信号を検出する面圧信号検出回路91と、検出された面圧信号に基づいて積層面圧を演算する面圧演算回路92とを有する。コントローラは、各面圧検出位置における積層面圧に基づいて面圧分布を算出し、算出された面圧分布に基づいて面圧調整装置80を駆動して積層面圧を調整する。   The controller 90 includes a microcomputer that includes a central processing unit (CPU), a read-only memory (ROM), a random access memory (RAM), and an input / output interface (I / O interface). The controller 90 is connected to the surface pressure detection unit 60 through a signal line and detects a surface pressure signal 91, and a surface pressure calculation circuit 92 calculates a stacked surface pressure based on the detected surface pressure signal. Have The controller calculates a surface pressure distribution based on the stack surface pressure at each surface pressure detection position, and drives the surface pressure adjusting device 80 based on the calculated surface pressure distribution to adjust the stack surface pressure.

図3(A)及び図3(B)を参照して、燃料電池スタック100の面圧検出部60の構成について説明する。図3(A)は面圧検出部60の一部縦断面図であり、図3(B)は面圧検出部60の分解斜視図である。   With reference to FIG. 3 (A) and FIG. 3 (B), the structure of the surface pressure detection part 60 of the fuel cell stack 100 is demonstrated. FIG. 3A is a partial longitudinal sectional view of the surface pressure detection unit 60, and FIG. 3B is an exploded perspective view of the surface pressure detection unit 60.

図3(A)及び図3(B)に示す面圧検出部60は、膜電極接合体(MEA)11とセパレータ12とから構成される単位セル10の間に挟まれるシート状部材であって、電極間の静電容量に基づいて圧力を検出する圧力センサである。   A surface pressure detection unit 60 shown in FIGS. 3A and 3B is a sheet-like member sandwiched between unit cells 10 composed of a membrane electrode assembly (MEA) 11 and a separator 12. The pressure sensor detects the pressure based on the capacitance between the electrodes.

面圧検出部60は、内側絶縁部61と、行電極62と、列電極63と、外側絶縁部64と、導電部65と、スペーサ66とを備える。   The surface pressure detection unit 60 includes an inner insulating part 61, a row electrode 62, a column electrode 63, an outer insulating part 64, a conductive part 65, and a spacer 66.

内側絶縁部61は、積層方向に弾性変形可能な電気絶縁材によって、単位セル10の積層面とほぼ同面積のシート状に形成される。内側絶縁部61は、エンジニアリングプラスチックシートやフッ素系ゴムシート等から形成される。内側絶縁部61は、一方の側面に行電極62を備え、他方の側面に列電極63を備える。なお、図3(B)では図を見やすくするために内側絶縁部61の図示を省略している。   The inner insulating portion 61 is formed in a sheet shape having substantially the same area as the stacked surface of the unit cells 10 by an electrical insulating material that can be elastically deformed in the stacking direction. The inner insulating portion 61 is formed from an engineering plastic sheet, a fluorine rubber sheet, or the like. The inner insulating portion 61 includes a row electrode 62 on one side surface and a column electrode 63 on the other side surface. In FIG. 3B, the illustration of the inner insulating portion 61 is omitted in order to make the drawing easier to see.

行電極62は、短冊状に形成された電極であって、内側絶縁部61の側面に複数設けられる。これら行電極62は、長手側が水平となるように配置され、鉛直方向に所定間隔をあけて平行に配置される。本実施形態では行電極62は4つ設けられるが、行電極62の設置数はこれに限定されるものではない。   The row electrode 62 is an electrode formed in a strip shape, and a plurality of row electrodes 62 are provided on the side surface of the inner insulating portion 61. These row electrodes 62 are arranged so that the longitudinal side is horizontal, and are arranged in parallel at a predetermined interval in the vertical direction. In this embodiment, four row electrodes 62 are provided, but the number of row electrodes 62 is not limited to this.

列電極63は、短冊状に形成された電極であって、行電極62が設けられた内側絶縁部61の側面とは反対側の側面に複数設けられる。これら列電極63は、長手側が鉛直となるように配置され、水平方向に所定間隔をあけて平行に配置される。本実施形態では列電極63は4つ設けられるが、列電極63の設置数はこれに限定されるものではない。   The column electrode 63 is an electrode formed in a strip shape, and a plurality of column electrodes 63 are provided on the side surface opposite to the side surface of the inner insulating portion 61 provided with the row electrode 62. These column electrodes 63 are arranged so that the longitudinal side is vertical, and are arranged in parallel at a predetermined interval in the horizontal direction. In the present embodiment, four column electrodes 63 are provided, but the number of column electrodes 63 is not limited to this.

行電極62及び列電極63の外側には、外側絶縁部64が設けられる。外側絶縁部64は、電気絶縁材であって、単位セル10の積層面とほぼ同面積のシート状に形成される。外側絶縁部64は、行電極62及び列電極63と単位セル10とを電気的に絶縁する。   An outer insulating portion 64 is provided outside the row electrode 62 and the column electrode 63. The outer insulating portion 64 is an electrical insulating material and is formed in a sheet shape having substantially the same area as the stacked surface of the unit cells 10. The outer insulating portion 64 electrically insulates the row electrode 62 and the column electrode 63 from the unit cell 10.

スペーサ66は、内側絶縁部61と外側絶縁部64の縁部の間に設けられ、内側絶縁部61と外側絶縁部64との間隔を調整する。スペーサ66の厚さは、行電極62及び列電極63と等しく設定される。   The spacer 66 is provided between the edges of the inner insulating portion 61 and the outer insulating portion 64 and adjusts the distance between the inner insulating portion 61 and the outer insulating portion 64. The thickness of the spacer 66 is set equal to the row electrode 62 and the column electrode 63.

導電部65は、面圧検出部60に隣接する単位セル10同士を電気的に接続する。導電部65は、格子状に配置される行電極62及び列電極63の隙間を通過するように複数設けられ、外側絶縁部64及び内側絶縁部61を積層方向に貫通する。導電部65は行電極62及び列電極63の隙間を縫って配置されるので、導電部65と行電極62及び列電極63とは電気的に絶縁される。単位セル10で発電された電流は積層面内に複数設けられた導電部65を通って積層方向に流れるので、積層面内方向の電流分布の偏りが抑制される。   The conductive part 65 electrically connects the unit cells 10 adjacent to the surface pressure detection part 60. A plurality of conductive portions 65 are provided so as to pass through the gaps between the row electrodes 62 and the column electrodes 63 arranged in a grid pattern, and penetrate the outer insulating portion 64 and the inner insulating portion 61 in the stacking direction. Since the conductive portion 65 is arranged by sewing the gap between the row electrode 62 and the column electrode 63, the conductive portion 65 and the row electrode 62 and the column electrode 63 are electrically insulated. Since the current generated by the unit cell 10 flows in the stacking direction through a plurality of conductive portions 65 provided in the stacking plane, the current distribution in the stacking plane direction is suppressed from being biased.

本実施形態では導電部65は15個設けられるが、導電部65の設置数はこれに限定されるものではない。   In the present embodiment, 15 conductive portions 65 are provided, but the number of conductive portions 65 is not limited to this.

上記した面圧検出部60の導電部65は、積層方向に弾性変形可能に構成される。図4(A)〜図4(D)を参照して、導電部65について説明する。   The conductive portion 65 of the above-described surface pressure detector 60 is configured to be elastically deformable in the stacking direction. With reference to FIGS. 4A to 4D, the conductive portion 65 will be described.

図4(A)に示すように、導電部65は、棒形状であって、両端に配置される大径筒部65Aと、これら大径筒部65Aを連結する小径筒部65Bとを備える。   As shown in FIG. 4A, the conductive portion 65 has a rod shape and includes a large-diameter cylindrical portion 65A disposed at both ends, and a small-diameter cylindrical portion 65B that connects these large-diameter cylindrical portions 65A.

大径筒部65Aは、単位セル側が開口しており、反対側に端面65Cを有する。2つの大径筒部65Aの端面65Cには、小径筒部65Bが連結する。大径筒部65Aと小径筒部65Bとは同心で配置される。   The large diameter cylindrical portion 65A is open on the unit cell side and has an end face 65C on the opposite side. The small-diameter cylindrical portion 65B is connected to the end faces 65C of the two large-diameter cylindrical portions 65A. The large diameter cylindrical portion 65A and the small diameter cylindrical portion 65B are arranged concentrically.

積層面圧ゼロ時の導電部65の様子を示す図4(B)及び最大積層面圧時の導電部65の様子を示す図4(C)を参照すると、大径筒部65Aの深さDA及び外径RA、小径筒部65Bの長さLBは以下のように設定される。 Referring to FIG. 4 (B) showing the state of the conductive portion 65 when the lamination surface pressure is zero and FIG. 4 (C) showing the state of the conductive portion 65 at the maximum lamination surface pressure, the depth D of the large diameter cylindrical portion 65A. A and the outer diameter R A and the length L B of the small-diameter cylindrical portion 65B are set as follows.

Figure 2010276520
Figure 2010276520

Figure 2010276520
Figure 2010276520

Figure 2010276520
Figure 2010276520

上記した導電部65では大径筒部65Aと小径筒部65Bの接合境界である端面65Cがダイアフラムとして機能するので、図4(B)及び図4(C)に示すように導電部65は積層方向に弾性変形することができる。燃料電池スタック100において周囲温度や単位セル10の膨潤収縮等により積層面圧が変化しても、導電部65は速やかに積層方向に変形するので、内側絶縁部61や各電極62、63の変位を妨げることがない。   In the conductive part 65 described above, the end face 65C, which is a joining boundary between the large diameter cylindrical part 65A and the small diameter cylindrical part 65B, functions as a diaphragm. Therefore, as shown in FIGS. 4B and 4C, the conductive part 65 is laminated. It can be elastically deformed in the direction. In the fuel cell stack 100, even if the lamination surface pressure changes due to the ambient temperature or the swelling / shrinkage of the unit cell 10, the conductive portion 65 is quickly deformed in the lamination direction, so that the displacement of the inner insulating portion 61 and the electrodes 62, 63 Will not be disturbed.

また、図4(D)に示すように、大きな積層面圧が加わってダイアフラムとして機能する端面65Cが塑性変形した場合であっても、行電極62と列電極63との間には内側絶縁部61が介在し、内側絶縁部61の復元力によって行電極62及び列電極63の変形は抑制される。そのため端面65Cが塑性変形しても、積層面圧検出精度が悪化することがない。   In addition, as shown in FIG. 4D, even if the end face 65C functioning as a diaphragm is plastically deformed due to a large lamination surface pressure, the inner insulating portion is interposed between the row electrode 62 and the column electrode 63. 61 is interposed, and the deformation of the row electrode 62 and the column electrode 63 is suppressed by the restoring force of the inner insulating portion 61. Therefore, even if the end face 65C is plastically deformed, the lamination surface pressure detection accuracy does not deteriorate.

なお、導電部65では、図4(A)に示すように、大径筒部65Aと外部に設けられた電圧計93とが外側絶縁部64の内部に設けられる信号線93Aを介して接続する。電圧計93は、導電部65の両端間の電位差Viを検出する。コントローラ90は、電圧計93によって検出された電位差Viと、導電部65の形状及び体積抵抗率によって求められる電気抵抗値Rとに基づいて導電部65を流れる電流値Iを導電部65ごとに算出し、面圧検出部60を通過する発電電流の電流密度を算出する。   In the conductive portion 65, as shown in FIG. 4A, the large-diameter cylindrical portion 65A and an external voltmeter 93 are connected via a signal line 93A provided inside the outer insulating portion 64. . The voltmeter 93 detects a potential difference Vi between both ends of the conductive portion 65. The controller 90 calculates the current value I flowing through the conductive portion 65 for each conductive portion 65 based on the potential difference Vi detected by the voltmeter 93 and the electrical resistance value R obtained by the shape and volume resistivity of the conductive portion 65. Then, the current density of the generated current passing through the surface pressure detection unit 60 is calculated.

図5(A)及び図5(B)を参照して、燃料電池スタック100における面圧分布検出について説明する。図5(A)は、コントローラ90に設けられる面圧信号検出回路91の構成を示す。また、図5(B)は、面圧信号検出回路91における静電容量検出回路91Cの構成を示す。   With reference to FIGS. 5A and 5B, the detection of the surface pressure distribution in the fuel cell stack 100 will be described. FIG. 5A shows a configuration of a surface pressure signal detection circuit 91 provided in the controller 90. FIG. 5B shows the configuration of the capacitance detection circuit 91 </ b> C in the surface pressure signal detection circuit 91.

コントローラ90の面圧信号検出回路91は、行電極側スイッチ回路91Aと、列電極側スイッチ回路91Bと、静電容量検出回路91Cとを備える。   The surface pressure signal detection circuit 91 of the controller 90 includes a row electrode side switch circuit 91A, a column electrode side switch circuit 91B, and a capacitance detection circuit 91C.

行電極側スイッチ回路91Aは、面圧検出部60の行電極62毎にスイッチSr1〜Sr4を有している。スイッチSr1〜Sr4は、信号線R1〜R4を介して各行電極62に接続する。   The row electrode side switch circuit 91 </ b> A has switches Sr <b> 1 to Sr <b> 4 for each row electrode 62 of the surface pressure detection unit 60. The switches Sr1 to Sr4 are connected to the row electrodes 62 through signal lines R1 to R4.

列電極側スイッチ回路91Bは、面圧検出部60の列電極63毎にスイッチSc1〜Sc4を有している。スイッチSc1〜Sc4は、信号線C1〜C4を介して各列電極63に接続する。   The column electrode side switch circuit 91 </ b> B has switches Sc <b> 1 to Sc <b> 4 for each column electrode 63 of the surface pressure detection unit 60. The switches Sc1 to Sc4 are connected to the column electrodes 63 via signal lines C1 to C4.

静電容量検出回路91Cは、行電極側スイッチ回路91A及び列電極側スイッチ回路91Bによって選択された行電極62と列電極63との間の静電容量Cdを検出する。   The electrostatic capacitance detection circuit 91C detects the electrostatic capacitance Cd between the row electrode 62 and the column electrode 63 selected by the row electrode side switch circuit 91A and the column electrode side switch circuit 91B.

面圧検出時には、行電極側スイッチ回路91AのスイッチSr1〜Sr4のいずれか一つをオンにし、その他はオフにするとともに、列電極側スイッチ回路91BのスイッチSc1〜Sc4のいずれか1つをオンにし、その他をオフにして、16ヵ所ある面圧検出位置を順次選択する。静電容量検出回路91Cには、選択された行電極62及び列電極63において、行電極62と列電極63とが対向する位置(面圧検出位置)における行電極信号Cin+と列電極信号Cin−が入力する。静電容量検出回路91Cは、行電極信号Cin+と列電極信号Cin−とに基づいて、面圧検出位置を示す位置情報r、cを付加して静電容量Cdを出力する。   When detecting the surface pressure, one of the switches Sr1 to Sr4 of the row electrode side switch circuit 91A is turned on, the other is turned off, and any one of the switches Sc1 to Sc4 of the column electrode side switch circuit 91B is turned on. With the others turned off, 16 surface pressure detection positions are sequentially selected. The capacitance detection circuit 91C includes a row electrode signal Cin + and a column electrode signal Cin− at the position (surface pressure detection position) where the row electrode 62 and the column electrode 63 face each other in the selected row electrode 62 and column electrode 63. Enter. Based on the row electrode signal Cin + and the column electrode signal Cin−, the capacitance detection circuit 91C adds position information r and c indicating the surface pressure detection position and outputs the capacitance Cd.

また、静電容量検出回路91Cは、選択された行電極62及び列電極63のうち高電位側と同電位の電圧信号Gを、非選択状態にある行電極62及び列電極63に出力するように構成されている。つまり、電圧信号Gは行電極側スイッチ回路91Aと列電極側スイッチ回路91Bへ供給され、オフ状態の行電極62及び列電極63に印加される。これによりオン状態の行電極62、列電極63とオフ状態の行電極62、列電極63との電位差がゼロになり、各信号線間には浮遊静電容量(Stray Capacitor)が形成されないため、静電容量検出回路91Cで検知される静電容量は、オン状態の行電極62と列電極63との間に形成される静電容量のみとなる。また同様にオフ状態となっている行電極62及び列電極63と接続する信号線においても電位差がゼロになることから浮遊静電容量(Stray Capacitor)が形成されることがない。このような構成とした面圧信号検出回路91によれば、面圧検出位置における行電極62と列電極63の間の静電容量の検出精度を高めることができる。   The capacitance detection circuit 91C outputs the voltage signal G having the same potential as the high potential side of the selected row electrode 62 and column electrode 63 to the row electrode 62 and the column electrode 63 in the non-selected state. It is configured. That is, the voltage signal G is supplied to the row electrode side switch circuit 91A and the column electrode side switch circuit 91B, and is applied to the row electrode 62 and the column electrode 63 in the off state. As a result, the potential difference between the on-state row electrode 62 and column electrode 63 and the off-state row electrode 62 and column electrode 63 becomes zero, and no stray capacitance is formed between the signal lines. The capacitance detected by the capacitance detection circuit 91C is only the capacitance formed between the row electrode 62 and the column electrode 63 in the on state. Similarly, in the signal lines connected to the row electrode 62 and the column electrode 63 that are in the off state, the potential difference is zero, so that no stray capacitance is formed. According to the surface pressure signal detection circuit 91 having such a configuration, it is possible to increase the detection accuracy of the capacitance between the row electrode 62 and the column electrode 63 at the surface pressure detection position.

上記した静電容量検出回路91Cは、図5(B)に示すように、演算増幅器911と、コンデンサ912、交流信号源913、トランス914と、静電容量算出回路915とを備える。   The capacitance detection circuit 91C described above includes an operational amplifier 911, a capacitor 912, an AC signal source 913, a transformer 914, and a capacitance calculation circuit 915, as shown in FIG.

演算増幅器911の反転入力端子には、行電極側スイッチ回路91Aのオン側の信号線が接続する。演算増幅器911の非反転入力端子には、行電極側スイッチ回路91A及び列電極側スイッチ回路91Bのオフ側の信号線が接続する。演算増幅器911の出力部と反転入力端子との間には、基準静電容量Crのコンデンサ912が設けられる。   The ON-side signal line of the row electrode side switch circuit 91A is connected to the inverting input terminal of the operational amplifier 911. The non-inverting input terminal of the operational amplifier 911 is connected to the off-side signal lines of the row electrode side switch circuit 91A and the column electrode side switch circuit 91B. A capacitor 912 having a reference capacitance Cr is provided between the output portion of the operational amplifier 911 and the inverting input terminal.

列電極側スイッチ回路91Bのオン側の信号線は、基準電位GNDに接続されるとともに、交流信号源913を介して演算増幅器911の非反転入力端子に接続される。   The ON-side signal line of the column electrode side switch circuit 91B is connected to the reference potential GND and also connected to the non-inverting input terminal of the operational amplifier 911 via the AC signal source 913.

トランス914は、演算増幅器911の出力に含まれる検出信号Vdと測定交流信号Voscのうち、検出信号Vdのみを取り出す。   The transformer 914 extracts only the detection signal Vd from the detection signal Vd and the measurement AC signal Vosc included in the output of the operational amplifier 911.

静電容量算出回路915は、次式に基づいて、面圧検出位置における行電極62と列電極63の間の静電容量Cdを出力する。   The capacitance calculation circuit 915 outputs the capacitance Cd between the row electrode 62 and the column electrode 63 at the surface pressure detection position based on the following equation.

Figure 2010276520
Figure 2010276520

コントローラ90は、上記のように算出された行電極62と列電極63の間の静電容量Cdに基づき、(5)式及び6(式)から面圧検出位置での面圧Pを求め、全面圧検出位置における面圧Pから積層面における面圧分布を算出する。   Based on the capacitance Cd between the row electrode 62 and the column electrode 63 calculated as described above, the controller 90 obtains the surface pressure P at the surface pressure detection position from Equations (5) and 6 (Equation), The surface pressure distribution on the laminated surface is calculated from the surface pressure P at the entire surface pressure detection position.

Figure 2010276520
Figure 2010276520

Figure 2010276520
Figure 2010276520

以上により、第1実施形態の面圧分布検出装置では、下記の効果を得ることができる。   As described above, the surface pressure distribution detection device according to the first embodiment can obtain the following effects.

面圧検出部60は、隣接する単位セル10同士を電気的に接続するとともに積層方向に弾性変形可能な導電部65を、行電極62及び列電極63とは電気的に絶縁した状態で、単位セル10の電極面に対応する領域で複数備える。そのため単位セル10の電極面から面圧検出部60を介して流れる電流の電流密度の偏りを抑制することができる。したがって、面圧検出部60は、電流密度に起因する発電性能の悪化を抑制しつつ、燃料電池スタック100における面圧分布を検出することができる。   The surface pressure detection unit 60 electrically connects adjacent unit cells 10 and elastically deforms the conductive unit 65 in the stacking direction in a state in which the row electrode 62 and the column electrode 63 are electrically insulated from each other. A plurality of regions are provided in regions corresponding to the electrode surfaces of the cell 10. Therefore, it is possible to suppress a deviation in current density of current flowing from the electrode surface of the unit cell 10 via the surface pressure detection unit 60. Therefore, the surface pressure detection unit 60 can detect the surface pressure distribution in the fuel cell stack 100 while suppressing the deterioration of the power generation performance due to the current density.

導電部65は、2つの大径筒部65Aを小径筒部65Bによって連結して、積層方向に伸縮可能に形成したので、燃料電池スタック100において周囲温度や単位セル10の膨潤収縮等により積層面圧が変化しても、内側絶縁部61や各電極62、63の変位を妨げることがなく、面圧検出精度を改善することができる。   The conductive portion 65 is formed by connecting two large-diameter cylindrical portions 65A by a small-diameter cylindrical portion 65B so that the conductive portion 65 can be expanded and contracted in the stacking direction. Even if the pressure changes, the displacement of the inner insulating portion 61 and the electrodes 62 and 63 is not hindered, and the surface pressure detection accuracy can be improved.

導電部65は、格子状に配置される行電極62及び列電極63の隙間を通過し、外側絶縁部64及び内側絶縁部61を積層方向に貫通するように設けられるので、面圧検出部60が大形化するのを回避することができる。   Since the conductive portion 65 is provided so as to pass through the gap between the row electrode 62 and the column electrode 63 arranged in a lattice shape and penetrate the outer insulating portion 64 and the inner insulating portion 61 in the stacking direction, the surface pressure detecting portion 60 is provided. Can be prevented from becoming large.

各導電部65を流れる電流値を外部に設けられた電圧計93を用いて検出するので、面圧検出部60において積層面圧分布を検出するだけではなく、発電電流の電流密度分布をリアルタイムに検出することができる。   Since the current value flowing through each conductive portion 65 is detected using a voltmeter 93 provided outside, the surface pressure detector 60 not only detects the laminated surface pressure distribution but also the current density distribution of the generated current in real time. Can be detected.

(第2実施形態)
第2実施形態における面圧分布検出装置は、第1実施形態とほぼ同様の構成であるが、面圧検出部60の導電部65の構成において相違する。以下、その相違点を中心に説明する。
(Second Embodiment)
The surface pressure distribution detection device according to the second embodiment has substantially the same configuration as that of the first embodiment, but differs in the configuration of the conductive portion 65 of the surface pressure detection unit 60. Hereinafter, the difference will be mainly described.

図6(A)は、面圧検出部60の一部縦断面図である。また、図6(B)は、面圧検出部60の分解斜視図である。なお、図6(B)では図を見やすくするために内側絶縁部61の図示を省略している。   FIG. 6A is a partial vertical cross-sectional view of the surface pressure detection unit 60. FIG. 6B is an exploded perspective view of the surface pressure detection unit 60. In FIG. 6B, the illustration of the inner insulating portion 61 is omitted for easy understanding of the drawing.

第1実施形態では導電部65を面圧検出部60内を積層方向に貫通させて設けたが、第2実施形態では導電部65を面圧検出部60の外側に設ける。   In the first embodiment, the conductive portion 65 is provided so as to penetrate the surface pressure detection unit 60 in the stacking direction. However, in the second embodiment, the conductive portion 65 is provided outside the surface pressure detection unit 60.

導電部65は、隣接する単位セル10を電気的に接続する部材であり、銅やアルミの薄板のように電気導電性と熱伝導性が高い材料によって形成される。導電部65は、帯状に形成され、一対の外側絶縁部64の外縁部分を跨ぐように2つ折りにされる。導電部65の一端側の集電部65Dは行電極62側の外側絶縁部64の外側に接続し、他端側の集電部65Dは列電極63側の外側絶縁部64の外側に接続する。導電部65は2つ折りにされて構成されるので、積層方向に弾性変形が可能となる。   The conductive portion 65 is a member that electrically connects the adjacent unit cells 10 and is formed of a material having high electrical conductivity and thermal conductivity, such as a thin plate of copper or aluminum. The conductive portion 65 is formed in a band shape and is folded in two so as to straddle the outer edge portions of the pair of outer insulating portions 64. The current collecting portion 65D on one end side of the conductive portion 65 is connected to the outside of the outer insulating portion 64 on the row electrode 62 side, and the current collecting portion 65D on the other end side is connected to the outside of the outer insulating portion 64 on the column electrode 63 side. . Since the conductive portion 65 is formed by being folded in half, it can be elastically deformed in the stacking direction.

導電部65は、図6(B)に示す通り、外側絶縁部64の一端側に4つ設けられ、他端側にも4つ設けられる。これら導電部65は、それぞれ水平状態で設けられ、鉛直方向に平行となるように配置される。   As shown in FIG. 6B, four conductive portions 65 are provided on one end side of the outer insulating portion 64, and four conductive portions 65 are also provided on the other end side. These conductive parts 65 are provided in a horizontal state and are arranged so as to be parallel to the vertical direction.

なお、各導電部65の集電部65Dの合計面積は、単位セル10の電極面の面積とほぼ等しくなるように設定される。   Note that the total area of the current collectors 65 </ b> D of each conductive part 65 is set to be approximately equal to the area of the electrode surface of the unit cell 10.

以上により、第2実施形態の面圧分布検出装置では、下記の効果を得ることができる。   As described above, in the surface pressure distribution detection device of the second embodiment, the following effects can be obtained.

面圧検出部60は、一対の外側絶縁部64の外縁部分を跨ぐように2つ折りにされ、一端側の集電部65Dが行電極62側の外側絶縁部64の外側に設置され、他端側の集電部65Dが列電極63側の外側絶縁部64の外側に設置される導電部65を複数備えるので、単位セル10の取り出し電流の面内方向の電流分布状態を保ちながら積層面圧分布を検出することができる。   The surface pressure detection unit 60 is folded in two so as to straddle the outer edge portions of the pair of outer insulating portions 64, the current collecting portion 65D on one end side is installed outside the outer insulating portion 64 on the row electrode 62 side, and the other end Since the current collector 65D on the side includes a plurality of conductive parts 65 installed outside the outer insulating part 64 on the column electrode 63 side, the stacking surface pressure is maintained while maintaining the current distribution state in the in-plane direction of the extraction current of the unit cell 10 Distribution can be detected.

また、導電部65は2つ折りにされることで積層方向に弾性変形が可能となり、燃料電池スタック100において周囲温度や単位セル10の膨潤収縮等により積層面圧が変化しても、内側絶縁部61や各電極62、63の変位を妨げることがなく、面圧を感度良く検出することができる。   In addition, the conductive portion 65 can be folded in half to be elastically deformed in the stacking direction. Even if the stack surface pressure changes due to the ambient temperature or the swelling shrinkage of the unit cell 10 in the fuel cell stack 100, the inner insulating portion The surface pressure can be detected with high sensitivity without hindering the displacement of the electrode 61 and the electrodes 62 and 63.

(第3実施形態)
第3実施形態における面圧分布検出装置は、第1実施形態とほぼ同様の構成であるが、面圧検出部60の内側絶縁部61の構成において相違する。以下、その相違点を中心に説明する。
(Third embodiment)
The surface pressure distribution detection device according to the third embodiment has substantially the same configuration as that of the first embodiment, but differs in the configuration of the inner insulating portion 61 of the surface pressure detection unit 60. Hereinafter, the difference will be mainly described.

図7(A)は、単位セル側から見た面圧検出部60の平面図である。図7(B)は、図7(A)における面圧検出部60のB−B断面図である。   FIG. 7A is a plan view of the surface pressure detection unit 60 viewed from the unit cell side. FIG. 7B is a BB cross-sectional view of the surface pressure detection unit 60 in FIG.

図7(A)及び図7(B)に示すように、内側絶縁部61は、行電極62と列電極63との間であって、行電極62と列電極63とが対向する位置に空気室61Aを備える。空気室61Aは、直径rの円柱状に形成される。   As shown in FIGS. 7A and 7B, the inner insulating portion 61 is located between the row electrode 62 and the column electrode 63, and the air is located at a position where the row electrode 62 and the column electrode 63 face each other. A chamber 61A is provided. The air chamber 61A is formed in a cylindrical shape having a diameter r.

面圧検出部60は、外側絶縁部64の外側に集電層67を有する。導電部65は、集電層67を介して隣接する単位セル10に電気的に接続する。列電極63側の集電層67は、面内方向に延びる溝部67Aを形成する。   The surface pressure detection unit 60 includes a current collecting layer 67 outside the outer insulating unit 64. The conductive portion 65 is electrically connected to the adjacent unit cell 10 via the current collecting layer 67. The current collecting layer 67 on the column electrode 63 side forms a groove 67A extending in the in-plane direction.

列電極63及び列電極63側の外側絶縁部64には、内側絶縁部61の空気室61Aと集電層67の溝部67Aとを連通する貫通孔63A、64Aが形成される。   In the column electrode 63 and the outer insulating portion 64 on the column electrode 63 side, through holes 63A and 64A are formed to communicate the air chamber 61A of the inner insulating portion 61 and the groove portion 67A of the current collecting layer 67.

上記の通り、本実施形態の面圧検出部60では、内側絶縁部61の空気室61Aに外気が自由に出入りすることができるようになっている。   As described above, in the surface pressure detection unit 60 of the present embodiment, outside air can freely enter and exit the air chamber 61A of the inner insulating portion 61.

以上により、第3実施形態の面圧分布検出装置では、下記の効果を得ることができる。   As described above, in the surface pressure distribution detection device according to the third embodiment, the following effects can be obtained.

面圧検出部60の内側絶縁部61は、行電極62と列電極63とが対向する位置に空気室61Aを備えるので、行電極62と列電極63の間の静電容量における誘電率は空気の誘電率が支配的となる。空気の誘電率は真空中の誘電率にほぼ等しく、温度係数が小さいことから、面圧検出部60の温度環境が大きく変化しても、検出される静電容量の温度依存変動量を低く抑えることができる。したがって、静電容量に基づいて算出される積層面圧の温度依存誤差を低減することができる。   Since the inner insulating portion 61 of the surface pressure detection unit 60 includes the air chamber 61A at a position where the row electrode 62 and the column electrode 63 face each other, the dielectric constant in the electrostatic capacitance between the row electrode 62 and the column electrode 63 is air. The dielectric constant of becomes dominant. Since the dielectric constant of air is almost equal to the dielectric constant in vacuum and the temperature coefficient is small, even if the temperature environment of the surface pressure detector 60 changes greatly, the temperature-dependent variation amount of the detected capacitance is kept low. be able to. Therefore, it is possible to reduce the temperature dependent error of the lamination surface pressure calculated based on the capacitance.

また、内側絶縁部61の空気室61Aは外気と連通するように構成されるので、面圧検出部60の温度環境が大きく変化しても空気室61A内の圧力を一定とすることができ、空気室61A内の圧力変化に起因する面圧検出誤差を低減することができる。   In addition, since the air chamber 61A of the inner insulating portion 61 is configured to communicate with the outside air, the pressure in the air chamber 61A can be kept constant even if the temperature environment of the surface pressure detecting portion 60 changes greatly, It is possible to reduce a surface pressure detection error caused by a pressure change in the air chamber 61A.

なお、内側絶縁部61に空気室61Aを形成すると、面圧検出部60の積層方向の剛性が低下してしまう。したがって、面圧検出部60によって高面圧分布を検出する場合には、図7(C)に示すように、空気室61A内に行電極62と列電極63とを支持する支持部材61Bを設けて、行電極62や列電極63、外側絶縁部64の曲げ剛性を補強するようにしてもよい。支持部材61Bは、誘電率の温度係数がなるべく小さいものを選ぶことが望ましい。面圧検出部60においては行電極62と列電極63の間の合成誘電率が検出感度に影響するため、温度係数が大きいものを選ぶと、検出される静電容量の温度依存誤差が大きくなるからである。   If the air chamber 61A is formed in the inner insulating portion 61, the rigidity of the surface pressure detecting portion 60 in the stacking direction is reduced. Accordingly, when the high surface pressure distribution is detected by the surface pressure detector 60, as shown in FIG. 7C, a support member 61B for supporting the row electrode 62 and the column electrode 63 is provided in the air chamber 61A. Thus, the bending rigidity of the row electrode 62, the column electrode 63, and the outer insulating portion 64 may be reinforced. It is desirable to select a support member 61B having a dielectric constant temperature coefficient as small as possible. In the surface pressure detection unit 60, the composite dielectric constant between the row electrode 62 and the column electrode 63 affects the detection sensitivity. Therefore, if a material having a large temperature coefficient is selected, the temperature-dependent error of the detected capacitance increases. Because.

(第4実施形態)
第4実施形態における面圧分布検出装置は、第3実施形態とほぼ同様の構成であるが、面圧検出部60の内側絶縁部61の構成において相違する。以下、その相違点を中心に説明する
図8(A)は面圧検出部60の内側絶縁部61の斜視図である。図8(B)は、図8(A)における内側絶縁部61のB断面を示す。
(Fourth embodiment)
The surface pressure distribution detection device according to the fourth embodiment has substantially the same configuration as that of the third embodiment, but differs in the configuration of the inner insulating portion 61 of the surface pressure detection unit 60. Hereinafter, the difference will be mainly described. FIG. 8A is a perspective view of the inner insulating portion 61 of the surface pressure detecting portion 60. FIG. 8B shows a B cross section of the inner insulating portion 61 in FIG.

第3実施形態では内側絶縁部61の空気室61Aを外気に連通するように構成したが、本実施形態では内側絶縁部61の空気室61Aを、図8(B)に示すように行電極62と列電極63との間で密閉するように構成する。   In the third embodiment, the air chamber 61A of the inner insulating portion 61 is configured to communicate with the outside air. However, in this embodiment, the air chamber 61A of the inner insulating portion 61 is connected to the row electrode 62 as shown in FIG. And the column electrode 63 are hermetically sealed.

また、内側絶縁部61は、図8(A)及び図8(B)に示すように、隣接する空気室61A同士を連通させる連通路61Cと、角部に配置される空気室61Aの1つと圧力調整装置94とを接続する接続通路61Dとを備える。   Further, as shown in FIGS. 8 (A) and 8 (B), the inner insulating portion 61 includes a communication passage 61C for communicating adjacent air chambers 61A and one of the air chambers 61A disposed at the corners. And a connection passage 61D for connecting the pressure adjusting device 94.

圧力調整装置94は、空気室61A内に乾燥空気を供給したり、空気室61A内の乾燥空気を吸い出したりして、空気室61A内の圧力を調整する装置である。   The pressure adjusting device 94 is a device that adjusts the pressure in the air chamber 61A by supplying dry air into the air chamber 61A or sucking out the dry air in the air chamber 61A.

以上により、第4実施形態の面圧分布検出装置では下記の効果を得ることができる。   As described above, the following effects can be obtained in the surface pressure distribution detection apparatus of the fourth embodiment.

面圧検出部60では行電極62と列電極63との間の絶縁体の変形のしやすさによって面圧検出感度(測定レンジ)が変化する。本実施形態では内側絶縁部61に形成される空気室61Aの圧力を圧力調整装置94によって調整することができるので、面圧検出部60での面圧検出感度を変更することが可能となる。このように面圧検出感度を選択できるようになると、面圧検出部60の適用範囲を拡大する。   In the surface pressure detector 60, the surface pressure detection sensitivity (measurement range) changes depending on the ease of deformation of the insulator between the row electrode 62 and the column electrode 63. In the present embodiment, since the pressure of the air chamber 61A formed in the inner insulating portion 61 can be adjusted by the pressure adjusting device 94, the surface pressure detection sensitivity in the surface pressure detection unit 60 can be changed. When the surface pressure detection sensitivity can be selected in this way, the application range of the surface pressure detection unit 60 is expanded.

また、空気室61Aは密閉されるように構成されるので、面圧検出精度の悪化を招く水分や塵等が空気室61A内に入り込むことを防止することができる。   Further, since the air chamber 61A is configured to be hermetically sealed, it is possible to prevent moisture, dust, or the like that causes deterioration of the surface pressure detection accuracy from entering the air chamber 61A.

(第5実施形態)
第5実施形態における面圧分布検出装置は、第1実施形態とほぼ同様の構成であるが、面圧検出部60の行電極62及び列電極63の構成において相違する。以下、その相違点を中心に説明する
図9(A)は面圧検出部60の行電極62と列電極63とを模式的に示す図である。図9(B)は、行電極62に対する列電極63の配置状態を示す図である。
(Fifth embodiment)
The surface pressure distribution detection apparatus according to the fifth embodiment has substantially the same configuration as that of the first embodiment, but differs in the configuration of the row electrode 62 and the column electrode 63 of the surface pressure detection unit 60. Hereinafter, the difference will be mainly described. FIG. 9A is a diagram schematically illustrating the row electrode 62 and the column electrode 63 of the surface pressure detection unit 60. FIG. 9B is a diagram illustrating an arrangement state of the column electrodes 63 with respect to the row electrodes 62.

図9(A)に示すように、面圧検出部60の行電極62は、列電極63と対向する面圧検出位置の形状を直径rAの円形に形成する。1つの行電極62には、4つの円形部が形成される。 As shown in FIG. 9 (A), the row electrodes 62 of the surface pressure detector 60 forms the shape of the surface pressure detection position facing the column electrode 63 into a circle with a diameter r A. Four circular portions are formed in one row electrode 62.

一方、列電極63は、行電極62と対向する面圧検出位置の形状を直径rBの円形に形成する。列電極63の円形部の直径rBは、行電極62の円形部の直径rAよりも小さく設定される。1つの列電極63には、4つの円形部が形成される。 On the other hand, the column electrodes 63 form a shape of the surface pressure detection position opposing the row electrode 62 in a circular shape having a diameter of r B. The diameter r B of the circular part of the column electrode 63 is set smaller than the diameter r A of the circular part of the row electrode 62. Four circular portions are formed in one column electrode 63.

面圧検出部60においては、面圧検出部60の製造時や経時変化によって列電極63が行電極62に対して面内方向にずれることがある。本実施形態では、上記のように行電極62及び列電極63を構成するので、図9(B)に示すように列電極63が行電極62に対してずれても、面圧検出位置における行電極62と列電極63の実質有効検出面積は列電極63の円形部の面積となり、有効検出面積が大きく変化することがない。   In the surface pressure detection unit 60, the column electrode 63 may be displaced in the in-plane direction with respect to the row electrode 62 due to the manufacture of the surface pressure detection unit 60 or a change with time. In this embodiment, since the row electrode 62 and the column electrode 63 are configured as described above, even if the column electrode 63 is displaced from the row electrode 62 as shown in FIG. The substantial effective detection area of the electrode 62 and the column electrode 63 is the area of the circular portion of the column electrode 63, and the effective detection area does not change greatly.

以上により、第5実施形態の面圧分布検出装置では、下記の効果を得ることができる。   As described above, in the surface pressure distribution detection device of the fifth embodiment, the following effects can be obtained.

面圧検出部60の列電極63は、行電極62と対向する面圧検出位置の形状を行電極62よりも大面積となるように形成するので、面圧検出位置での面積差分相当の位置決め交差が許容され、行電極62と列電極63のずれによる面圧検出精度の悪化を抑制することができる。   Since the column electrode 63 of the surface pressure detection unit 60 is formed so that the shape of the surface pressure detection position facing the row electrode 62 is larger than the area of the row electrode 62, positioning corresponding to the area difference at the surface pressure detection position is performed. Crossing is allowed, and deterioration of surface pressure detection accuracy due to a shift between the row electrode 62 and the column electrode 63 can be suppressed.

(第6実施形態)
第6実施形態における面圧分布検出装置は、第1実施形態とほぼ同様の構成であるが、コントローラ90の面圧信号検出回路91の構成において相違する。以下、その相違点を中心に説明する
図10は、コントローラ90の面圧信号検出回路91の構成を示す図である。
(Sixth embodiment)
The surface pressure distribution detection device according to the sixth embodiment has substantially the same configuration as that of the first embodiment, but differs in the configuration of the surface pressure signal detection circuit 91 of the controller 90. Hereinafter, the difference will be mainly described. FIG. 10 is a diagram illustrating a configuration of the surface pressure signal detection circuit 91 of the controller 90.

第1実施形態の面圧信号検出回路91では行電極側スイッチ回路91Aと列電極側スイッチ回路91Bとが静電容量検出回路91Cに接続するように構成した。これに対して本実施形態では行電極62毎に静電容量検出回路91Cを備え、各静電容量検出回路91Cと列電極側スイッチ回路91Bとを接続するように構成する。したがって、各静電容量検出回路91Cには、各行電極62からの行電極信号Cin+が常時入力する。   The surface pressure signal detection circuit 91 according to the first embodiment is configured such that the row electrode side switch circuit 91A and the column electrode side switch circuit 91B are connected to the capacitance detection circuit 91C. In contrast, in the present embodiment, each row electrode 62 is provided with a capacitance detection circuit 91C, and each capacitance detection circuit 91C is connected to the column electrode side switch circuit 91B. Therefore, the row electrode signal Cin + from each row electrode 62 is always input to each capacitance detection circuit 91C.

列電極側スイッチ回路91Bは、列電極63毎にスイッチSc1〜Sc4を有している。スイッチSc1〜Sc4がオンになると、列電極信号Cin−が列電極側スイッチ回路91Bから各静電容量検出回路91Cに出力される。スイッチSc1〜Sc4がオフになると、交流信号源913と同電位の電圧信号Gが静電容量検出回路91Cから列電極側スイッチ回路91Bに出力される。   The column electrode side switch circuit 91 </ b> B has switches Sc <b> 1 to Sc <b> 4 for each column electrode 63. When the switches Sc1 to Sc4 are turned on, the column electrode signal Cin− is output from the column electrode side switch circuit 91B to each capacitance detection circuit 91C. When the switches Sc1 to Sc4 are turned off, a voltage signal G having the same potential as that of the AC signal source 913 is output from the capacitance detection circuit 91C to the column electrode side switch circuit 91B.

なお、交流信号源913は、4つの静電容量検出回路91Cに共通のものとされる。   The AC signal source 913 is common to the four capacitance detection circuits 91C.

本実施形態では、面圧検出時に、列電極側スイッチ回路91BのスイッチSc1〜Sc4の内の1つをオンにし、その他はオフとして、1つの列電極63内の4つの面圧検出位置における面圧を同時に検出する。そして、オン状態にするスイッチSc1〜Sc4を順次変更することで、全面圧検出位置の面圧を検出する。   In the present embodiment, at the time of detecting the surface pressure, one of the switches Sc1 to Sc4 of the column electrode side switch circuit 91B is turned on and the other is turned off, and the surfaces at the four surface pressure detection positions in one column electrode 63 are turned on. The pressure is detected at the same time. Then, the surface pressure at the entire pressure detection position is detected by sequentially changing the switches Sc1 to Sc4 to be turned on.

以上により、第6実施形態の面圧分布検出装置では、下記の効果を得ることができる。   As described above, in the surface pressure distribution detection device according to the sixth embodiment, the following effects can be obtained.

本実施形態では行電極62毎に静電容量検出回路91Cを備えるので、面圧検出時に列電極側スイッチ回路91BのスイッチSc1〜Sc4の内の1つをオンにすることで、1つの列電極63内の4つの面圧検出位置における面圧を同時に検出することができる。これにより、第1実施形態よりも面圧検出速度を高速化でき、面圧分布検出に要する時間を短縮することができる。   In the present embodiment, since the capacitance detection circuit 91C is provided for each row electrode 62, one column electrode is turned on by turning on one of the switches Sc1 to Sc4 of the column electrode side switch circuit 91B when detecting the surface pressure. The surface pressures at the four surface pressure detection positions in 63 can be detected simultaneously. Thereby, the surface pressure detection speed can be increased as compared with the first embodiment, and the time required for detecting the surface pressure distribution can be shortened.

1つの列電極63の複数位置で静電容量を同時に測定する際には隣接する列電極63との信号干渉が問題となるが、本実施形態では交流信号源913を全静電容量検出回路91Cに共通とするので、列電極63間が等価的に絶縁されて信号干渉を回避することができる。   When simultaneously measuring capacitance at a plurality of positions of one column electrode 63, signal interference with adjacent column electrodes 63 becomes a problem. In this embodiment, the AC signal source 913 is connected to the total capacitance detection circuit 91C. Therefore, the column electrodes 63 are equivalently insulated so that signal interference can be avoided.

なお、本発明は上記の実施形態に限定されずに、その技術的な思想の範囲内において種々の変更がなしうることは明白である。   Note that the present invention is not limited to the above-described embodiment, and it is obvious that various modifications can be made within the scope of the technical idea.

上記した第1〜第6実施形態では燃料電池の場合について説明したが、本発明における面圧分布検出装置は単位セルを複数積層するリチウムイオン電池等の積層型電池についても適用することができる。   In the first to sixth embodiments described above, the case of the fuel cell has been described. However, the surface pressure distribution detection device in the present invention can also be applied to a stacked battery such as a lithium ion battery in which a plurality of unit cells are stacked.

100 燃料電池スタック
10 単位セル
60 面圧検出部
61 内側絶縁部
61A 空気室
61B 支持部材
61C 連通路
62 行電極(第2電極)
63 列電極(第1電極)
64 外側絶縁部
65 導電部
65A 大径筒部
65B 小径筒部
65C 端面
65D 集電部
90 コントローラ(面圧分布測定部)
91 面圧信号検出回路
91A 行電極側スイッチ回路(第2電極選択部)
91B 列電極側スイッチ回路(第1電極選択部)
91C 静電容量検出回路(静電容量算出部)
92 面圧演算回路
93 電圧計
94 圧力調整装置
DESCRIPTION OF SYMBOLS 100 Fuel cell stack 10 Unit cell 60 Surface pressure detection part 61 Inner insulation part 61A Air chamber 61B Support member 61C Communication path 62 Row electrode (2nd electrode)
63 row electrode (first electrode)
64 Outer insulating part 65 Conductive part 65A Large diameter cylindrical part 65B Small diameter cylindrical part 65C End face 65D Current collecting part 90 Controller (surface pressure distribution measuring part)
91 Surface pressure signal detection circuit 91A Row electrode side switch circuit (second electrode selection unit)
91B Column electrode side switch circuit (first electrode selection unit)
91C Capacitance detection circuit (capacitance calculation unit)
92 Surface Pressure Calculation Circuit 93 Voltmeter 94 Pressure Adjustment Device

Claims (12)

発電単位セルが複数積層される積層型電池の積層面圧分布を検出する面圧分布検出装置において、
前記単位セルの積層方向に弾性変形可能な内側絶縁部と、
前記内側絶縁部の一方の積層方向側面に複数設けられる第1電極と、
前記内側絶縁部の他方の積層方向側面に複数設けられ、前記第1電極と対向する前記第2電極と、
前記第1電極と第1電極側単位セルとの間に設けられるとともに、前記第2電極と第2電極側単位セルとの間に設けられる一対の外側絶縁部と、
積層方向に弾性変形可能に構成され、前記第1電極及び前記第2電極に対して電気絶縁した状態で、前記第1電極側単位セルと前記第2電極側単位セルとを電気的に接続する複数の導電部と、
前記第1電極と前記第2電極との対向距離に応じて変化する静電容量に基づいて積層面圧を算出し、積層面圧に基づいて積層面圧分布を求める面圧分布測定部と、
を備えることを特徴とする面圧分布検出装置。
In the surface pressure distribution detection device for detecting the stack surface pressure distribution of a stacked battery in which a plurality of power generation unit cells are stacked,
An inner insulating portion that is elastically deformable in the stacking direction of the unit cells;
A plurality of first electrodes provided on one side in the stacking direction of the inner insulating portion;
A plurality of second electrodes provided on the other side in the stacking direction of the inner insulating portion and facing the first electrode;
A pair of outer insulating portions provided between the first electrode and the first electrode side unit cell, and provided between the second electrode and the second electrode side unit cell;
The first electrode side unit cell and the second electrode side unit cell are electrically connected while being elastically deformable in the stacking direction and being electrically insulated from the first electrode and the second electrode. A plurality of conductive parts;
A surface pressure distribution measuring unit that calculates a lamination surface pressure based on a capacitance that varies according to a facing distance between the first electrode and the second electrode, and obtains a lamination surface pressure distribution based on the lamination surface pressure;
A surface pressure distribution detecting device comprising:
前記第1電極は、短冊状に形成された電極であって、前記内側絶縁部の一方の積層方向側面に互い平行に配置され、
前記第2電極は、短冊状に形成された電極であって、前記内側絶縁部の他方の積層方向側面に互いに平行に配置されるとともに、前記第1電極に対して直交して交差するように設けられる、
ことを特徴とする請求項1に記載の面圧分布検出装置。
The first electrode is an electrode formed in a strip shape, and is disposed in parallel to one side in the stacking direction of the inner insulating portion,
The second electrode is an electrode formed in a strip shape, and is disposed parallel to each other on the other side in the stacking direction of the inner insulating portion and intersects the first electrode at right angles. Provided,
The surface pressure distribution detection apparatus according to claim 1, wherein
前記導電部は、前記内側絶縁部と前記外側絶縁部とを積層方向に貫通するように形成され、前記第1電極側単位セル及び前記第2電極側単位セルに当接する一対の大径筒部と、前記一対の大径筒部を連結する小径筒部とを備え、積層方向に弾性変形できるように前記小径筒部が接続する前記大径筒部の端面をダイアフラムとして機能させる、
ことを特徴とする請求項1又は請求項2に記載の面圧分布検出装置。
The conductive portion is formed so as to penetrate the inner insulating portion and the outer insulating portion in the stacking direction, and a pair of large diameter cylindrical portions that are in contact with the first electrode side unit cell and the second electrode side unit cell. And a small-diameter cylindrical portion that connects the pair of large-diameter cylindrical portions, and allows the end surface of the large-diameter cylindrical portion connected to the small-diameter cylindrical portion to function as a diaphragm so as to be elastically deformable in the stacking direction
The surface pressure distribution detection apparatus according to claim 1 or 2, wherein
前記導電部は、帯状に形成され、両端部に前記外側絶縁部の外側に配置される集電部を備え、積層方向に弾性変形できるように前記外側絶縁部の縁部を跨いで2つ折りにする、
ことを特徴とする請求項1又は請求項2に記載の面圧分布検出装置。
The conductive part is formed in a band shape, and has a current collecting part disposed outside the outer insulating part at both ends, and is folded in two across the edge of the outer insulating part so as to be elastically deformable in the stacking direction. To
The surface pressure distribution detection apparatus according to claim 1 or 2, wherein
前記内側絶縁部は、対向する前記第1電極と前記第2電極との間に空気室を形成する、
ことを特徴とする請求項1から請求項4のいずれか1つに記載の面圧分布検出装置。
The inner insulating portion forms an air chamber between the first electrode and the second electrode facing each other;
The surface pressure distribution detection device according to claim 1, wherein
前記内側絶縁部の空気室は、大気に連通するように構成される、
ことを特徴とする請求項5に記載の面圧分布検出装置。
The air chamber of the inner insulating portion is configured to communicate with the atmosphere.
The surface pressure distribution detecting apparatus according to claim 5.
前記内側絶縁部の空気室内の圧力を調整する圧力調整装置をさらに備える、
ことを特徴とする請求項5に記載の面圧分布検出装置。
A pressure adjusting device for adjusting the pressure in the air chamber of the inner insulating portion;
The surface pressure distribution detecting apparatus according to claim 5.
対向する前記第1電極と前記第2電極のうち一方の電極が他方の電極領域を内包するように、一方の電極の面圧検出位置における電極面積を他方の電極面積よりも大きくする、
ことを特徴とする請求項1〜請求項7のいずれか1つに記載の面圧分布検出装置。
The electrode area at the surface pressure detection position of one electrode is made larger than the other electrode area so that one electrode of the first electrode and the second electrode facing each other includes the other electrode region.
The surface pressure distribution detection apparatus according to claim 1, wherein
前記面圧分布測定部は、前記導電部の両端の電位差に基づいて前記導電部を流れる電流値を算出し、算出された電流値に基づいて積層面内における電流値分布を検出する、
ことを特徴とする請求項1〜請求項8のいずれか1つに記載の面圧分布検出装置。
The surface pressure distribution measuring unit calculates a current value flowing through the conductive part based on a potential difference between both ends of the conductive part, and detects a current value distribution in the stacked surface based on the calculated current value.
The surface pressure distribution detection apparatus according to claim 1, wherein
前記面圧分布測定部は、
複数の前記第1電極から1つの電極を選択する第1電極選択部と、
複数の前記第2電極から1つの電極を選択する第2電極選択部と、
順次選択された前記第1電極と前記第2電極との間の静電容量を算出する静電容量算出部と、を備え、
全面圧検出位置での静電容量に基づいて積層面圧を算出し、積層面圧分布を求める、
ことを特徴とする請求項2に記載の面圧分布検出装置。
The surface pressure distribution measuring unit is
A first electrode selector that selects one electrode from the plurality of first electrodes;
A second electrode selector that selects one electrode from the plurality of second electrodes;
A capacitance calculating unit that calculates a capacitance between the first electrode and the second electrode that are sequentially selected;
Calculate the lamination surface pressure based on the capacitance at the whole surface pressure detection position, and obtain the lamination surface pressure distribution.
The surface pressure distribution detecting device according to claim 2.
前記面圧分布測定部は、
複数の前記第1電極から1つの電極を選択する第1電極選択部と、
前記第2電極毎に設けられ、それぞれの前記第2電極と選択された前記第1電極との間の静電容量を同時に算出する静電容量算出部と、を備え、
全面圧検出位置での静電容量に基づいて積層面圧を算出し、積層面圧分布を求める、
ことを特徴とする請求項2に記載の面圧分布検出装置。
The surface pressure distribution measuring unit is
A first electrode selector that selects one electrode from the plurality of first electrodes;
A capacitance calculating unit that is provided for each of the second electrodes and that simultaneously calculates the capacitance between each of the second electrodes and the selected first electrode;
Calculate the lamination surface pressure based on the capacitance at the whole surface pressure detection position, and obtain the lamination surface pressure distribution.
The surface pressure distribution detecting device according to claim 2.
前記面圧分布測定部は、選択されていない前記第1電極及び前記第2電極に、選択された電極間の電位差と同電位差の電圧を印加する、
ことを特徴とする請求項10又は請求項11に記載の面圧分布検出装置。
The surface pressure distribution measurement unit applies a voltage having the same potential difference as the potential difference between the selected electrodes to the first electrode and the second electrode that are not selected.
The surface pressure distribution detection apparatus according to claim 10 or claim 11, wherein
JP2009130537A 2009-05-29 2009-05-29 Surface pressure distribution detector for laminated battery Pending JP2010276520A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009130537A JP2010276520A (en) 2009-05-29 2009-05-29 Surface pressure distribution detector for laminated battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009130537A JP2010276520A (en) 2009-05-29 2009-05-29 Surface pressure distribution detector for laminated battery

Publications (1)

Publication Number Publication Date
JP2010276520A true JP2010276520A (en) 2010-12-09

Family

ID=43423613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009130537A Pending JP2010276520A (en) 2009-05-29 2009-05-29 Surface pressure distribution detector for laminated battery

Country Status (1)

Country Link
JP (1) JP2010276520A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102095543A (en) * 2010-12-10 2011-06-15 浙江天能电池(江苏)有限公司 Automatic tester for pressure of accumulator polar group
JP2012113847A (en) * 2010-11-22 2012-06-14 Honda Motor Co Ltd Fuel cell system
CN103376171A (en) * 2012-04-20 2013-10-30 希姆通信息技术(上海)有限公司 Electronic product battery anomaly detection device and detection method thereof
CN105651432A (en) * 2015-12-30 2016-06-08 新源动力股份有限公司 Proton exchange membrane fuel cell contact state characterization method
JP2017033664A (en) * 2015-07-29 2017-02-09 株式会社日本自動車部品総合研究所 Current measurement device
WO2019172646A1 (en) * 2018-03-06 2019-09-12 주식회사 엘지화학 Device for evaluating performance of fuel cell stack
DE102019219781A1 (en) * 2019-12-17 2021-06-17 Robert Bosch Gmbh Cell stacks, in particular the stack structure of a fuel cell
CN113496198A (en) * 2020-04-01 2021-10-12 株式会社日本显示器 Detection device
CN114981630A (en) * 2020-06-03 2022-08-30 株式会社Lg新能源 Battery cell pressure measurement apparatus and method
JP7241946B1 (en) 2022-03-01 2023-03-17 Apb株式会社 Measuring jig, measuring device, bipolar battery, and method for manufacturing bipolar battery
WO2024136386A1 (en) * 2022-12-23 2024-06-27 주식회사 엘지에너지솔루션 Secondary battery manufacturing device

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012113847A (en) * 2010-11-22 2012-06-14 Honda Motor Co Ltd Fuel cell system
CN102095543A (en) * 2010-12-10 2011-06-15 浙江天能电池(江苏)有限公司 Automatic tester for pressure of accumulator polar group
CN102095543B (en) * 2010-12-10 2012-03-28 浙江天能电池(江苏)有限公司 Battery pole group pressure automatic detector
CN103376171A (en) * 2012-04-20 2013-10-30 希姆通信息技术(上海)有限公司 Electronic product battery anomaly detection device and detection method thereof
CN103376171B (en) * 2012-04-20 2015-04-01 希姆通信息技术(上海)有限公司 Electronic product battery anomaly detection device and detection method thereof
JP2017033664A (en) * 2015-07-29 2017-02-09 株式会社日本自動車部品総合研究所 Current measurement device
CN105651432A (en) * 2015-12-30 2016-06-08 新源动力股份有限公司 Proton exchange membrane fuel cell contact state characterization method
WO2019172646A1 (en) * 2018-03-06 2019-09-12 주식회사 엘지화학 Device for evaluating performance of fuel cell stack
DE102019219781A1 (en) * 2019-12-17 2021-06-17 Robert Bosch Gmbh Cell stacks, in particular the stack structure of a fuel cell
CN113496198A (en) * 2020-04-01 2021-10-12 株式会社日本显示器 Detection device
CN114981630A (en) * 2020-06-03 2022-08-30 株式会社Lg新能源 Battery cell pressure measurement apparatus and method
US20230052447A1 (en) * 2020-06-03 2023-02-16 Lg Energy Solution, Ltd. Apparatus and Method for Measuring Pressure of Battery Cells
CN114981630B (en) * 2020-06-03 2024-03-19 株式会社Lg新能源 Battery cell pressure measurement apparatus and method
JP7241946B1 (en) 2022-03-01 2023-03-17 Apb株式会社 Measuring jig, measuring device, bipolar battery, and method for manufacturing bipolar battery
WO2023167215A1 (en) * 2022-03-01 2023-09-07 Apb株式会社 Measuring jig, measuring device, bipolar battery, and method for manufacturing bipolar battery
JP2023127268A (en) * 2022-03-01 2023-09-13 Apb株式会社 Measurement jig, measurement apparatus, bipolar type battery and manufacturing method of bipolar type battery
WO2024136386A1 (en) * 2022-12-23 2024-06-27 주식회사 엘지에너지솔루션 Secondary battery manufacturing device

Similar Documents

Publication Publication Date Title
JP2010276520A (en) Surface pressure distribution detector for laminated battery
Hahn et al. Development of a planar micro fuel cell with thin film and micro patterning technologies
JP5867615B2 (en) Multilayer battery impedance measurement device
CN103261898B (en) Layered battery internal resistance measuring apparatus and measuring method
US20230204445A1 (en) Micro Pressure Sensor
JP2008027712A (en) FUEL CELL MEMBRANE EVALUATION DEVICE, FUEL CELL MEMBRANE EVALUATION DEVICE MANUFACTURING METHOD, AND FUEL CELL CONTROL DEVICE
JP6167800B2 (en) Current measuring device
JP2016062852A (en) Assembling method of fuel cell stack
JP5474839B2 (en) Fuel cell current density distribution measuring device
JP4856437B2 (en) Fuel cell stack
JP4696523B2 (en) Fuel cell
JP2006120346A (en) Fuel cell system
JP5708219B2 (en) Current measuring device
KR101675343B1 (en) Fuel cell segmented measuring module
JP2004127809A (en) Fuel cell stack
JP6352153B2 (en) Water detector for fuel cell
JP5488163B2 (en) Current measuring device
Ali et al. Self-powered flexible triboelectric nanogenerators (TENGs) based on lateral sliding mode
JP2005183296A (en) Fuel cell
Shrivastava et al. Segmentation of Polymer Electrolyte Fuel Cell (PEFC) With sub–millimeter Resolution in the Land-Channel Direction
JP5474744B2 (en) Fuel cell system
JP5622650B2 (en) Fuel cell system
JP2006196261A (en) Current measuring device of fuel cell
Hahn et al. Development of micro fuel cells with organic substrates and electronics manufacturing technologies
KR20240063515A (en) Fuel cell and apparatus for measuring surface pressure thereof