[go: up one dir, main page]

JP2010276319A - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP2010276319A
JP2010276319A JP2009131803A JP2009131803A JP2010276319A JP 2010276319 A JP2010276319 A JP 2010276319A JP 2009131803 A JP2009131803 A JP 2009131803A JP 2009131803 A JP2009131803 A JP 2009131803A JP 2010276319 A JP2010276319 A JP 2010276319A
Authority
JP
Japan
Prior art keywords
tube
heat exchanger
torsion
pipe
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009131803A
Other languages
Japanese (ja)
Inventor
Naoe Sasaki
直栄 佐々木
Shigenao Maruyama
重直 圓山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Sumitomo Light Metal Industries Ltd
Original Assignee
Tohoku University NUC
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Sumitomo Light Metal Industries Ltd filed Critical Tohoku University NUC
Priority to JP2009131803A priority Critical patent/JP2010276319A/en
Publication of JP2010276319A publication Critical patent/JP2010276319A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Details Of Fluid Heaters (AREA)

Abstract

【課題】良好な耐圧強度を備えると共に、熱交換される2流体の伝熱促進をバランスよく実現して高い熱交換性能を発揮する熱交換器を提供すること。
【解決手段】直管状の外管12内に直管状の内管14を挿入、配置すると共に、外管12と内管14との間の間隙内に、その管壁が管外方と管内方に交互に屈曲・突出せしめられて、管軸方向に螺旋状に延びるフィン18が管内外面に形成されてなる捩り管形状の中管16を同軸的に配置し、かかるフィン18の外面側のフィン先端部22を外管12の内面と密接嵌合させて外側流路26を形成する一方、フィン18の内面側のフィン先端部24を内管14の外面と密接嵌合させて内側流路28を形成して、熱交換器10を構成した。
【選択図】図1
An object of the present invention is to provide a heat exchanger that has a good pressure resistance and realizes high heat exchange performance by realizing well-balanced heat transfer promotion of two fluids to be heat exchanged.
A straight tubular inner tube is inserted and arranged in a straight tubular outer tube, and the wall of the tube is disposed in the gap between the outer tube and the inner tube. A twisted tube-shaped inner tube 16 is formed by coaxially arranging fins 18 that are alternately bent and protruded, and are formed on the inner and outer surfaces of the tube 18 in a spiral manner in the tube axis direction. The tip 22 is closely fitted to the inner surface of the outer tube 12 to form the outer flow path 26, while the fin tip 24 on the inner surface side of the fin 18 is closely fitted to the outer surface of the inner tube 14 to be connected to the inner flow path 28. And the heat exchanger 10 was configured.
[Selection] Figure 1

Description

本発明は、管の内側を流れる流体と管の外側を流れる流体との間で熱交換を行う熱交換器に関し、特に、給湯器用として用いられる液−液熱交換器に関するものである。   The present invention relates to a heat exchanger that performs heat exchange between a fluid flowing inside a pipe and a fluid flowing outside the pipe, and more particularly to a liquid-liquid heat exchanger used for a hot water heater.

従来より、給湯器用として用いられる熱交換器としては、大径の外管の内部に小径の伝熱管を配置し、内管と外管との間の間隙に第1の流体を流通させる一方、内管内に第2の流体を流通させることによって、それら第1の流体と第2の流体との間で熱交換を行なうように構成した二重管式の熱交換器や、複数枚の伝熱プレートを重ね合わせて、隣接する伝熱プレートの間に流路を形成し、そこに熱交換媒体を交互に流通させるように構成したプレート式熱交換器等が知られている。   Conventionally, as a heat exchanger used for a hot water heater, a small-diameter heat transfer tube is arranged inside a large-diameter outer tube, and the first fluid is circulated in a gap between the inner tube and the outer tube, A double-pipe heat exchanger configured to exchange heat between the first fluid and the second fluid by circulating the second fluid in the inner tube, or a plurality of heat transfer 2. Description of the Related Art A plate heat exchanger or the like configured such that plates are overlapped to form a flow path between adjacent heat transfer plates and a heat exchange medium flows alternately therethrough is known.

そのような二重管式熱交換器として、例えば、特開2001−201275号公報(特許文献1)においては、内管と外管との間に、外管の内側流路を螺旋状に仕切る伝熱促進体を介設して、内管と外管との間に形成される流路の流路長さを増大させると共に、流路を流れる流体の流速や乱流化を増加させることによって、内管内を流れる流体から内管と外管との間を流れる流体への伝熱が促進されるようにした二重管式熱交換器が、明らかにされている。また、特開2007−85595号公報(特許文献2)においては、スパイラル状のひだ形中空フィンを有する内管と、該内管の外側に配置された外管から構成された給湯器用の液−液熱交換器が、明らかにされている。   As such a double tube heat exchanger, for example, in Japanese Patent Laid-Open No. 2001-201275 (Patent Document 1), the inner flow path of the outer tube is partitioned in a spiral manner between the inner tube and the outer tube. By increasing the flow path length of the flow path formed between the inner pipe and the outer pipe and increasing the flow velocity and turbulence of the fluid flowing through the flow path by interposing a heat transfer promoting body A double-tube heat exchanger has been clarified in which heat transfer from a fluid flowing in the inner tube to a fluid flowing between the inner tube and the outer tube is promoted. Further, in Japanese Patent Application Laid-Open No. 2007-85595 (Patent Document 2), a liquid for a hot water heater constituted by an inner tube having a spiral pleated hollow fin and an outer tube disposed outside the inner tube is provided. A liquid heat exchanger has been disclosed.

しかしながら、これらの二重管式熱交換器にあっては、各々、流通する流体に伝熱促進効果を付加すべく工夫はされているが、その効果は充分とはいえず、特に、熱交換を行う二つの流体に対する各々の伝熱促進効果において、その差が大きく、アンバランスなものであった。例えば、特許文献1にて明らかにされている二重管式熱交換器にあっては、内管と外管の間に伝熱促進体を介設することによって、内管と外管の間隙を流通する流体の伝熱促進効果を向上させているが、内管内を流通する流体側の伝熱促進効果は、充分ではないのである。そのため、そこでは、内管内にねじれテープ等からなる内管用伝熱促進体を挿入することも明らかにはされているが、それだけでは充分な伝熱促進効果を発揮するものではなかった。しかも、そのように内管内にねじれテープを挿入したり、内管と外管の間に螺旋状の伝熱促進体を介設したりすると、流通する流体の圧力損失を増大させることになるため、好ましくないのである。   However, these double tube heat exchangers have been devised to add a heat transfer promoting effect to the circulating fluid, but the effect is not sufficient. The difference in heat transfer promotion effect with respect to the two fluids performing the process was large and unbalanced. For example, in the double-pipe heat exchanger disclosed in Patent Document 1, a gap between the inner pipe and the outer pipe is provided by interposing a heat transfer promoter between the inner pipe and the outer pipe. However, the heat transfer promoting effect on the fluid side flowing through the inner pipe is not sufficient. For this reason, it has also been clarified that a heat transfer promoting body for an inner tube made of a twisted tape or the like is inserted into the inner tube, but that alone does not exhibit a sufficient heat transfer promoting effect. In addition, if a twisted tape is inserted into the inner tube or a spiral heat transfer promoting body is interposed between the inner tube and the outer tube, the pressure loss of the circulating fluid increases. It is not preferable.

また、特許文献2において明らかにされている熱交換器にあっては、ねじり力により壁面座屈させて形成されたスパイラル状のひだ形中空フィンを有する伝熱管を内管として、内管内を流れる流体や内管と外管の間を流れる流体の伝熱面積を共に増加させると共に、両流体に乱流効果を作用させて、熱交換効率の向上を図っているのであるが、内管内を流通する流体が、そのような形状とされた内管の中空フィン内に入り難く、そのため、内管内における伝熱促進効果は、期待できないものであった。   Further, in the heat exchanger disclosed in Patent Document 2, a heat transfer tube having a spiral pleated hollow fin formed by buckling a wall surface by a torsional force is used as an inner tube, and flows in the inner tube. The heat transfer area of the fluid and the fluid flowing between the inner and outer pipes is increased together, and the turbulent effect is applied to both fluids to improve heat exchange efficiency. It is difficult for the fluid to enter the hollow fin of the inner tube having such a shape, and therefore the heat transfer promoting effect in the inner tube cannot be expected.

一方、特開平2−89991号公報(特許文献3)にて明らかにされているプレート式熱交換器にあっては、伝熱促進効果の良好な熱交換器ではあるが、その構造上、耐圧強度不足を招きやすいという欠点を内在するものであった。また、特開2007−322051号公報(特許文献4)にて明らかにされているヒートポンプ式給湯装置にて用いられているプレート式熱交換器、即ち、かかる特許文献4の図3において断面形状が記載されているようなプレート式熱交換器にあっては、流路断面形状のバランスが悪く、特に、内側の流路の伝熱促進効果は期待できないものであった。   On the other hand, the plate heat exchanger disclosed in Japanese Patent Laid-Open No. 2-89991 (Patent Document 3) is a heat exchanger having a good heat transfer promoting effect, but its structure has a pressure resistance. There was a drawback that it was easy to cause a lack of strength. Moreover, the plate type heat exchanger used in the heat pump type hot water supply apparatus disclosed in Japanese Patent Application Laid-Open No. 2007-322051 (Patent Document 4), that is, the cross-sectional shape in FIG. In the plate-type heat exchanger as described, the balance of the channel cross-sectional shape is poor, and in particular, the heat transfer promoting effect of the inner channel cannot be expected.

特開2001−201275号公報JP 2001-201275 A 特開2007−85595号公報JP 2007-85595 A 特開平2−89991号公報JP-A-2-89991 特開2007−322051号公報JP 2007-322051 A

ここにおいて、本発明は、かかる事情を背景にして為されたものであって、その解決課題とするところは、良好な耐圧強度を備えると共に、熱交換される2流体の伝熱促進をバランスよく実現した、高い熱交換性能を発揮する熱交換器を提供することにある。   Here, the present invention has been made in the background of such circumstances, and the problem to be solved is that it has a good pressure resistance and a good balance of heat transfer enhancement of two fluids to be heat exchanged. An object of the present invention is to provide a heat exchanger that exhibits high heat exchange performance.

そして、本発明にあっては、かくの如き課題の解決のために、直管状の外管内に直管状の内管が挿入、配置されると共に、該外管と該内管との間の間隙内に同軸的に中管が配置されてなる形態の熱交換器であって、該中管として、管壁が管外方と管内方に交互に屈曲・突出せしめられて、管軸方向に螺旋状に延びるフィンが管内外面に形成されてなる捩り管が用いられて、該捩り管の外面側のフィンの先端部が前記外管の内面に密接嵌合させられ、該外管と該捩り管との間に螺旋状の外側流路が形成される一方、該捩り管の内面側のフィンの先端部が前記内管の外面に密接嵌合させられ、該捩り管と該内管との間に螺旋状の内側流路が形成されて、それら外側流路と内側流路とにそれぞれ別個の流体が流通せしめられ、それら流体間で熱交換が行われるように構成したことを特徴とする熱交換器を、その要旨とするものである。   In the present invention, in order to solve such problems, a straight tubular inner tube is inserted and arranged in the straight tubular outer tube, and a gap between the outer tube and the inner tube is provided. A heat exchanger in which a middle pipe is coaxially disposed inside, and as the middle pipe, a pipe wall is bent and protruded alternately outward and inward of the pipe and spiraled in the pipe axis direction. A torsion tube in which fins extending in the shape of the tube are formed on the inner and outer surfaces of the tube, the tip of the fin on the outer surface side of the torsion tube is closely fitted to the inner surface of the outer tube, and the outer tube and the torsion tube Is formed between the torsion tube and the inner tube, and the tip of the fin on the inner surface side of the torsion tube is closely fitted to the outer surface of the inner tube. A spiral inner flow path is formed, and separate fluids are passed through the outer flow path and the inner flow path, and heat exchange is performed between the fluids. A heat exchanger which is characterized by being configured to be performed, is to its gist.

なお、この本発明に従う熱交換器の望ましい態様の一つによれば、前記外管の径方向外側に、前記捩り管と同様な構造の追加捩り管と直管状の外挿管とを少なくとも1組以上交互に順次配設し、該追加捩り管毎に、その両側に追加の螺旋状の流路をそれぞれ形成して構成されることとなる。   According to one of the desirable embodiments of the heat exchanger according to the present invention, at least one set of an additional torsion tube having a structure similar to the torsion tube and a straight tubular extrapolation tube is provided on the radially outer side of the outer tube. These are alternately arranged in sequence, and each additional torsion tube is formed by forming additional spiral channels on both sides thereof.

従って、このような本発明に従う構成とされた熱交換器によれば、外管と内管との間の間隙内に同軸的に配置された捩り管である中管が、外管と内管との間の隙間を分割する隔壁となり、2つのほぼ等価な螺旋状の流路を形成しているところから、それぞれの流路を流れる2つの流体の伝熱促進効果がほぼ均等となり、以て、バランスのとれた熱交換器を実現することが可能となるのである。さらに、このように、2つの流路のバランスがとれているために、両流路間の隔壁を成す捩り管にかかる力も相殺されることとなり、その結果、耐圧強度にも優れた熱交換器とすることが出来るのである。   Therefore, according to such a heat exchanger configured according to the present invention, the inner tube, which is a torsion tube disposed coaxially in the gap between the outer tube and the inner tube, is replaced with the outer tube and the inner tube. Partitioning the gap between them and forming two substantially equivalent spiral channels, the heat transfer promoting effect of the two fluids flowing through each channel is almost equal, This makes it possible to realize a balanced heat exchanger. In addition, since the two flow paths are balanced in this way, the force applied to the torsion pipe forming the partition wall between the two flow paths is also canceled out. As a result, the heat exchanger has excellent pressure resistance. It can be.

しかも、そのような捩り管である中管によって形成される2つの流路を流れる流体が、共に旋回流となるところから、それぞれの流路において有利に伝熱促進効果が発揮されることとなり、大きな伝熱効果を実現することが可能となる。   And since the fluid which flows through the two flow paths formed by the middle pipe which is such a torsion pipe turns into a swirl flow, the heat transfer promoting effect is advantageously exhibited in each flow path, A large heat transfer effect can be realized.

さらに、かかる熱交換器にあっては、比較的単純な形態である捩り管にて構成される中管と、直管状の外管と内管とを使用し、これらを組み付けるだけで、目的とする熱交換器を構成することが可能であるところから、比較的容易に熱交換器を製作することが出来ると共に、生産コストも有利に低減することが出来ることとなる。   Furthermore, in such a heat exchanger, an intermediate tube composed of a torsion tube, which is a relatively simple form, and a straight tubular outer tube and an inner tube are used. Since the heat exchanger can be configured, the heat exchanger can be manufactured relatively easily and the production cost can be advantageously reduced.

本発明に従う熱交換器の一例を、その一部を切り欠いた断面にて示す、正面説明図である。It is front explanatory drawing which shows an example of the heat exchanger according to this invention in the cross section which notched the part. 図1に示される熱交換器の軸方向に平行な断面を示す縦断面説明図である。It is longitudinal cross-sectional explanatory drawing which shows the cross section parallel to the axial direction of the heat exchanger shown by FIG. 本発明に従う熱交換器の別の一例を、軸方向に平行な断面の形態にて示す縦断面説明図である。It is a longitudinal cross-sectional explanatory drawing which shows another example of the heat exchanger according to this invention with the form of a cross section parallel to an axial direction. 従来の構成の二重管式熱交換器を示す説明図であって、(a)は、その縦断面形態を、(b)は、(a)におけるA−A断面を、それぞれ示している。It is explanatory drawing which shows the double tube | pipe type heat exchanger of the conventional structure, Comprising: (a) is the longitudinal cross-sectional form, (b) has each shown the AA cross section in (a).

以下、本発明を更に具体的に明らかにするために、本発明の実施の形態について、図面を参照しつつ、詳細に説明することとする。   Hereinafter, in order to clarify the present invention more specifically, embodiments of the present invention will be described in detail with reference to the drawings.

先ず、図1には、本発明に従う熱交換器の一実施形態が、その一部が切り欠かれた断面を表す正面図の形態において、示されている。かかる図において、熱交換器10は、直管状の外管12内に直管状の内管14が挿入され、それらが同軸的に配置されると共に、かかる外管12の内周面と内管14の外周面との間に形成される間隙内に、管内外周面に所定高さのフィン18が管軸方向に螺旋状に連続して延びるように形成されている中管16が同軸的に配置されて、構成されている。   First, FIG. 1 shows an embodiment of a heat exchanger according to the present invention in the form of a front view showing a cross-section partly cut away. In this figure, the heat exchanger 10 includes a straight tubular inner tube 14 inserted into a straight tubular outer tube 12, which are arranged coaxially, and the inner peripheral surface of the outer tube 12 and the inner tube 14. In the gap formed between the inner tube 16 and the outer peripheral surface of the inner tube 16 is a coaxially disposed intermediate tube 16 in which fins 18 of a predetermined height are formed on the outer peripheral surface of the tube so as to continuously extend in a spiral shape in the tube axis direction. Has been configured.

より詳細には、外管12及び内管14は、アルミニウムや銅又はそれらの合金等の金属材料を用いて形成された、略円形形状の断面をもつ直管状の管体とされている。そして、そのサイズとしては、要求される熱交換器10の大きさや熱交換性能等に応じて、適宜に決定されることとなるが、一般に、外管12が、12.7〜25.4mm程度の管外径(D1 )を有すると共に、内管14は、かかる外管12よりも小径とされ、外管12の内部に挿入、配置され得る、9.52〜22.2mm程度の管外径(D3 )を有している。また、そのような大きさの管外径とされた外管12や内管16は、一般に、0.25〜1.3mm程度の管肉厚を有している。 More specifically, the outer tube 12 and the inner tube 14 are straight tubular tubes having a substantially circular cross section formed using a metal material such as aluminum, copper, or an alloy thereof. The size is appropriately determined according to the required size of the heat exchanger 10, the heat exchange performance, and the like. In general, the outer tube 12 is about 12.7 to 25.4 mm. and having a tube outer diameter of (D 1), the inner tube 14 is smaller in diameter than according outer tube 12, inserted into the outer tube 12 may be positioned, extravascular about 9.52~22.2mm It has a diameter (D 3 ). In addition, the outer tube 12 and the inner tube 16 having a tube outer diameter of such a size generally have a tube thickness of about 0.25 to 1.3 mm.

一方、中管16は、アルミニウムや銅又はそれらの合金等からなる金属材料を用いて形成された捩り管であって、前述した外管12や内管14と同程度の、或いはそれらよりも薄肉の厚さとされた管壁が、管外方と管内方に交互に屈曲・突出せしめられることによって、所定高さ(H)のフィン18として、管軸方向に螺旋状に連続して延びるように管内外面に形成されている。なお、かかるフィン18は、管軸方向において所定のリード角と所定の間隔をもって形成されているが、一般に、リード角(螺旋角度)が45〜85°程度、間隔(ピッチ):Pが2〜6mm程度とされている。   On the other hand, the intermediate tube 16 is a torsion tube formed using a metal material made of aluminum, copper, or an alloy thereof, and has the same thickness as or thinner than the outer tube 12 and the inner tube 14 described above. The tube wall having a thickness of 5 mm is bent and protruded alternately outward and inward of the tube so that the fin 18 has a predetermined height (H) and continuously extends in a spiral shape in the tube axis direction. It is formed on the inner and outer surfaces of the tube. The fins 18 are formed with a predetermined lead angle and a predetermined interval in the tube axis direction. Generally, the lead angle (spiral angle) is about 45 to 85 °, and the interval (pitch): P is 2 to 2. It is about 6 mm.

そして、そのような形状とされた中管16が、外管12と内管14との間に形成される間隙内に配置された状態、即ち、外管12内に中管16、そして中管16内に内管14という様に、外管12内に中管16と内管14を順次挿入して、それらを同軸的に配置した状態において、中管16のフィン18が、外面側のフィン先端部22において外管12の内周面と密接嵌合せしめられている一方、内面側のフィン先端部24において内管14の外周面と密接嵌合させられて、それらが一体となった熱交換器10が形成されているのである。   The intermediate tube 16 having such a shape is disposed in a gap formed between the outer tube 12 and the inner tube 14, that is, the intermediate tube 16 and the intermediate tube in the outer tube 12. In the state where the inner tube 16 and the inner tube 14 are sequentially inserted into the outer tube 12 like the inner tube 14 and are arranged coaxially, the fins 18 of the inner tube 16 are connected to the fins on the outer surface side. The tip 22 is closely fitted with the inner peripheral surface of the outer tube 12, while the fin tip 24 on the inner surface side is closely fitted with the outer peripheral surface of the inner tube 14 so that they are integrated into heat. The exchanger 10 is formed.

また、このように、外管12と内管14との間に形成される間隙内に配置された中管16の、フィン18の内外面のそれぞれのフィン先端部22,24が、外管12の内周面や内管14の外周面とそれぞれ密接嵌合させられていることによって、それぞれ独立した2つの螺旋状の外側流路26と内側流路28が管軸方向に連続して形成されている。即ち、図2に拡大して示される如く、中管16の外面側の隣り合うフィン18,18の間に形成される溝と外管12の内周面との間の空間に外側流路26が形成される一方、中管16の内面側の隣り合うフィン18,18の間に形成される溝と内管14の外周面との間の空間に内側流路28が形成されている。つまり、換言すれば、外管12と内管14との間に形成されている間隙を、その間隙内に配置された中管16の管壁によって、2つの独立した外側流路26と内側流路28に分割しているのである。   In addition, in this way, the fin tips 22 and 24 on the inner and outer surfaces of the fin 18 of the intermediate tube 16 disposed in the gap formed between the outer tube 12 and the inner tube 14 are respectively connected to the outer tube 12. 2 and the outer peripheral surface of the inner tube 14 are closely fitted to each other, so that two independent spiral outer flow paths 26 and inner flow paths 28 are continuously formed in the tube axis direction. ing. That is, as shown in an enlarged view in FIG. 2, the outer flow path 26 is formed in a space between the groove formed between the adjacent fins 18, 18 on the outer surface side of the intermediate tube 16 and the inner peripheral surface of the outer tube 12. On the other hand, an inner flow path 28 is formed in the space between the groove formed between the adjacent fins 18 and 18 on the inner surface side of the intermediate tube 16 and the outer peripheral surface of the inner tube 14. In other words, in other words, the gap formed between the outer pipe 12 and the inner pipe 14 is divided into two independent outer flow paths 26 and inner flow by the pipe wall of the middle pipe 16 disposed in the gap. The road 28 is divided.

そして、かかる熱交換器10にあっては、このようにして形成された外側流路26と内側流路28の2つの流路に、それぞれ別個の流体が流通せしめられることによって、それらの2流体間で熱交換が行われるようになっている。   In such a heat exchanger 10, separate fluids are circulated through the two flow paths, the outer flow path 26 and the inner flow path 28, thus formed. Heat exchange is performed between them.

このように、本発明に従う構造の熱交換器10によれば、中管16によって分割された外管12と内管14との間の間隙が、2つのほぼ等価な螺旋状の外側流路26と内側流路28とされているところから、それぞれの流路26,28を流れる2つの流体の伝熱促進効果をほぼ均等とすることが可能となる。そして、そのように、2つの流路26,28がほぼ等価とされ、構造的にもバランスがとれた構成とされているところから、両流路間の隔壁となる中管16にかかる力も相殺されることとなり、その結果、熱交換器10の耐圧強度をも、有利に向上し得ることとなる。   Thus, according to the heat exchanger 10 having the structure according to the present invention, the gap between the outer tube 12 and the inner tube 14 divided by the inner tube 16 is divided into two substantially equivalent spiral outer flow paths 26. Therefore, the heat transfer promotion effect of the two fluids flowing through the respective flow paths 26 and 28 can be made substantially uniform. Since the two flow paths 26 and 28 are substantially equivalent and have a balanced structure, the force applied to the intermediate tube 16 serving as the partition wall between the two flow paths is also offset. As a result, the pressure strength of the heat exchanger 10 can be advantageously improved.

さらに、それぞれの流路26,28が螺旋状に延びる流路となっており、そのため、それら流路内を流通せしめられる流体が、共に旋回流となるところから、それぞれの流路において効果的に伝熱促進効果が発揮されることとなり、以て、大きな伝熱効果が実現され得るのである。   Further, each of the flow paths 26 and 28 is a flow path extending in a spiral shape. Therefore, since the fluids circulated in the flow paths are both swirl flows, each flow path is effectively The heat transfer promoting effect is exhibited, and thus a large heat transfer effect can be realized.

加えて、かかる熱交換器10にあっては、単純な直管状の外管12や内管14と、比較的単純な形態である捩り管の中管16とを組み付けるのみで、目的とする熱交換器10を構成することが可能であるところから、熱交換器10の製作性を有利に向上し得ると共に、その生産コストも有利に低減することが可能となる効果も、発揮されることとなる。   In addition, in such a heat exchanger 10, the target heat can be obtained only by assembling the simple straight tubular outer tube 12 and inner tube 14 and the torsion tube inner tube 16 having a relatively simple form. Since it is possible to configure the exchanger 10, it is possible to advantageously improve the manufacturability of the heat exchanger 10, and to exhibit the effect that the production cost can be advantageously reduced. Become.

以上、本発明の代表的な実施形態の一つについて詳述してきたが、それは、あくまでも例示に過ぎないものであって、本発明は、そのような実施形態に係る具体的な記述によって、何等限定的に解釈されるものではないことが、理解されるべきである。   As described above, one of the representative embodiments of the present invention has been described in detail. However, this is merely an example, and the present invention is not limited by the specific description according to such an embodiment. It should be understood that this is not to be construed as limiting.

例えば、前述した実施形態においては、外管12と内管14との間の間隙に、中管16を配設して、2つの螺旋状の流路26,28が形成せしめられた熱交換器10を例示したが、図3に示される如く、外管12の径方向外側に、中管14と同様な構造とされた捩り管32と、更にその捩り管32の径方向外側に、直管状の外挿管34とを配設して、捩り管32の内外面のフィン先端部が、それぞれ、外管12の外周面や外挿管34の内周面と密接嵌合せしめられるようにすることによって、更に2つの螺旋状の流路36,38が形成された熱交換器30とすることも可能である。このような熱交換器30によれば、4つの流路が形成された熱交換器をコンパクトに構成することが出来ると共に、3種類以上の温度レベルの流体間での熱交換が可能となるといった効果が、有利に実現され得ることとなる。   For example, in the above-described embodiment, the heat exchanger in which the inner tube 16 is disposed in the gap between the outer tube 12 and the inner tube 14 and the two spiral flow paths 26 and 28 are formed. 10, as shown in FIG. 3, a torsion tube 32 having a structure similar to that of the intermediate tube 14 on the radially outer side of the outer tube 12, and a straight tube on the radially outer side of the torsion tube 32. The outer tube 34 is arranged so that the tip ends of the inner and outer surfaces of the torsion tube 32 are closely fitted to the outer peripheral surface of the outer tube 12 and the inner peripheral surface of the outer tube 34, respectively. Further, the heat exchanger 30 in which two spiral flow paths 36 and 38 are formed may be used. According to such a heat exchanger 30, a heat exchanger in which four flow paths are formed can be configured in a compact manner, and heat can be exchanged between fluids at three or more temperature levels. The effect can be realized advantageously.

なお、図3に例示した、1組の捩り管32と直管状の外挿管34とを、外管12の径方向外側に配設したものの他にも、2組や3組、或いはそれ以上の組数の捩り管と外挿管とを、外管12の径方向外側に交互に順次配設して、それぞれの追加の捩り管と外挿管毎に追加の螺旋状の流路が形成されるようにし、より多くの流体間において熱交換が可能となるようにした熱交換器とすることも、勿論可能である。   In addition to the one set of the torsion pipe 32 and the straight tubular extrapolation pipe 34 illustrated in FIG. 3 arranged on the outer side in the radial direction of the outer pipe 12, two sets, three sets, or more A number of sets of torsion tubes and extrapolation tubes are alternately arranged on the outer side in the radial direction of the outer tube 12 so that an additional spiral channel is formed for each additional torsion tube and extrapolation tube. Of course, it is also possible to provide a heat exchanger that can exchange heat between more fluids.

その他、一々列挙はしないが、本発明が、当業者の知識に基づいて、種々なる変更、修正、改良等を加えた態様において実施されるものであり、またそのような実施の態様が、本発明の趣旨を逸脱しない限りにおいて、何れも、本発明の範疇に属するものであることは、言うまでもないところである。   In addition, although not listed one by one, the present invention is implemented in a mode to which various changes, modifications, improvements and the like are added based on the knowledge of those skilled in the art. It goes without saying that any one of them falls within the scope of the present invention without departing from the spirit of the invention.

以下に、本発明の代表的な実施例を示し、本発明の特徴を更に具体的に明らかにすることとするが、本発明が、そのような実施例の記載によって、何等の制約をも受けるものでないことは、言うまでもないところである。   In the following, typical examples of the present invention will be shown to clarify the features of the present invention more specifically. However, the present invention is not restricted by the description of such examples. It goes without saying that it is not a thing.

先ず、図1に示されるような、本発明に従う構造の熱交換器を製造するために、その外管(12)として用いる管体として、外径:21.0mm、肉厚:0.7mmの、りん脱酸銅(JIS H 3300 C1220)からなる、断面が単純な円形の大径の平滑管を準備した。また、内管(14)として用いる管体として、外管と同様のりん脱酸銅からなる、外径:12mm、肉厚:0.6mmの、断面が単純な円形の小径の平滑管を準備した。更に、中管(16)として用いる捩り管として、外径:19.1mm、内径:12.5mm、肉厚:0.7mmの、山部ピッチ:3.0mm、山部高さ:2.6mmの、外管や内管と同様のりん脱酸銅からなる捩り管を準備した。なお、このような中管として用いた捩り管は、従来から公知の手法を用いて製作した。即ち、特開平2−242091号公報に記載されているような、平滑管の両端を把持装置にて把持せしめ、平滑管内に縮径量規制部材を挿入した状態で、その平滑管の軸心方向に圧縮力を作用させつつ、平滑管の両端を軸心周りに互いに反対方向に回転させる手法で製造した。   First, as shown in FIG. 1, in order to manufacture a heat exchanger having a structure according to the present invention, a tube used as an outer tube (12) has an outer diameter of 21.0 mm and a wall thickness of 0.7 mm. A large-diameter smooth tube having a simple cross section and made of phosphorous deoxidized copper (JIS H 3300 C1220) was prepared. In addition, as a tubular body to be used as the inner pipe (14), a smooth small pipe having a small cross section with a simple outer cross section having an outer diameter of 12 mm and a wall thickness of 0.6 mm made of the same phosphorous deoxidized copper as the outer pipe is prepared. did. Furthermore, as a torsion pipe used as the middle pipe (16), outer diameter: 19.1 mm, inner diameter: 12.5 mm, wall thickness: 0.7 mm, peak pitch: 3.0 mm, peak height: 2.6 mm The twisted tube made of phosphorous deoxidized copper similar to the outer tube and the inner tube was prepared. The torsion tube used as such an intermediate tube was manufactured using a conventionally known method. That is, as described in Japanese Patent Application Laid-Open No. 2-242091, both ends of the smooth tube are gripped by a gripping device, and the diameter-reducing regulating member is inserted into the smooth tube, and the axial direction of the smooth tube It was manufactured by rotating the both ends of the smooth tube around the axis in opposite directions while applying a compressive force.

次いで、このように準備された3種類のりん脱酸銅管を組み合わせて、中管内に内管を挿入し、更に中管を外管内に挿入した後、公知の合わせ抽伸加工等の操作によって、外管を外径(D1 ):20mmとなるまで縮径して、中管の内外面のフィン先端部を、それぞれ外管の内周面や内管の外周面と機械的に圧着して、図1に示される如き、本発明に従う熱交換器(10)を作製して、これを実施例1とした。この外管の縮径後の各管体の寸法は、外管(12)が、外径(D1 ):20mm、内径(D2 ):18.6mm、肉厚=0.7mm、内管(14)が、外径(D3 ):12mm、内径(D2 ):10.8mm、肉厚=0.6mm、中管(16)が、外径:18.6mm、内径:12mm、肉厚=0.7mm、山部ピッチ(P):3.0mm、山部高さ(H):2.6mmとなるようにした。 Then, combining the three types of phosphorous deoxidized copper tubes prepared in this way, inserting the inner tube into the inner tube, and further inserting the inner tube into the outer tube, then by an operation such as a known combined drawing process, The outer tube is reduced in diameter to an outer diameter (D 1 ): 20 mm, and the tip ends of the fins on the inner and outer surfaces of the inner tube are mechanically pressure-bonded to the inner peripheral surface of the outer tube and the outer peripheral surface of the inner tube, respectively. As shown in FIG. 1, a heat exchanger (10) according to the present invention was produced, and this was designated as Example 1. The dimensions of each tubular body after the diameter reduction of the outer tube are as follows: the outer tube (12) has an outer diameter (D 1 ): 20 mm, an inner diameter (D 2 ): 18.6 mm, a wall thickness = 0.7 mm, (14), outer diameter (D 3 ): 12 mm, inner diameter (D 2 ): 10.8 mm, wall thickness = 0.6 mm, middle tube (16), outer diameter: 18.6 mm, inner diameter: 12 mm, meat Thickness = 0.7 mm, peak pitch (P): 3.0 mm, peak height (H): 2.6 mm.

一方、比較のために、図4に示されるような、大径の外管42内に小径の内管44を挿入、配置することにより構成した形態の、単純な二重管式の熱交換器40を製作し、これを、比較例1とした。なお、かかる熱交換器40の外管42として用いる管体としては、外径(D5 ):20mm、内径(D6 ):18.6mm、肉厚:0.7mmの、りん脱酸銅(JIS H 3300 C1220)からなる、断面が単純な円形の大径の平滑管を用い、また内管44として用いる管体としては、外管と同様のりん脱酸銅からなる、外径(D7 ):16mm、内径(D8 ):14.6mm、肉厚:0.7mmの、断面が単純な円形の小径の平滑管を用いた。 On the other hand, for comparison, as shown in FIG. 4, a simple double-tube heat exchanger having a configuration constructed by inserting and arranging a small-diameter inner tube 44 in a large-diameter outer tube 42. 40 was produced, and this was designated as Comparative Example 1. In addition, as a tubular body used as the outer tube 42 of the heat exchanger 40, an outer diameter (D 5 ): 20 mm, an inner diameter (D 6 ): 18.6 mm, a wall thickness: 0.7 mm, phosphorous deoxidized copper ( A circular large-diameter smooth tube having a simple cross section made of JIS H 3300 C1220) and a tubular body used as the inner tube 44 have an outer diameter (D 7) made of the same phosphorous deoxidized copper as the outer tube. ): 16 mm, inner diameter (D 8 ): 14.6 mm, wall thickness: 0.7 mm, a circular small diameter smooth tube with a simple cross section was used.

そして、上記のようにして準備した実施例1と比較例1の熱交換器において、一方の流路内に、80℃の高温水を流通させる一方、他方の流路内には、25℃の低温水を流通させて、それら高温水と低温水との間で熱交換を行い、それぞれの熱交換器の熱交換性能を測定した。なお、ここでは、実施例1の熱交換器においては、中管(16)の内面側のフィン先端部(24)と内管(14)の外周面から形成される内側流路(28)に、高温水を4L/minの流速で流通させ、中管(16)の外面側のフィン先端部(22)と外管(12)の内周面から形成される外側流路(26)に、低温水を8L/minの流速で流通させた。一方、比較例1の熱交換器においては、内管44の内側となる流路48内に高温水を4L/minの流速で流通させ、外管42の内周面と内管44の外周面の間の間隙に形成される流路46内には、低温水を8L/minの流速で流通させた。なお、それらの水の流通方向は、それぞれの流通方向が反対方向となる方向に、即ち対向流となるように流通させた。   In the heat exchangers of Example 1 and Comparative Example 1 prepared as described above, high-temperature water at 80 ° C. is circulated in one flow path, while 25 ° C. is circulated in the other flow path. Low temperature water was circulated, heat exchange was performed between these high temperature water and low temperature water, and the heat exchange performance of each heat exchanger was measured. Here, in the heat exchanger of Example 1, the inner flow path (28) formed from the fin tip (24) on the inner surface side of the inner tube (16) and the outer peripheral surface of the inner tube (14) is used. The high-temperature water is circulated at a flow rate of 4 L / min, and the outer channel (26) formed from the fin tip (22) on the outer surface side of the inner tube (16) and the inner peripheral surface of the outer tube (12), Low temperature water was circulated at a flow rate of 8 L / min. On the other hand, in the heat exchanger of Comparative Example 1, high-temperature water is circulated at a flow rate of 4 L / min in the flow path 48 inside the inner tube 44, and the inner peripheral surface of the outer tube 42 and the outer peripheral surface of the inner tube 44. Low temperature water was circulated at a flow rate of 8 L / min in the flow path 46 formed in the gap between the two. In addition, it distribute | circulated so that the distribution | circulation direction of those water might be the direction from which each distribution direction becomes an opposite direction, ie, a counterflow.

上記の熱交換性能評価試験の結果、本発明に従う構成とされた実施例1の熱交換器にあっては、比較例1の従来の構成である単純な二重管式熱交換器に比べて、熱交換性能が25%向上することを確認した。   As a result of the above heat exchange performance evaluation test, the heat exchanger of Example 1 configured according to the present invention has a comparison with the simple double-pipe heat exchanger having the conventional configuration of Comparative Example 1. It was confirmed that the heat exchange performance was improved by 25%.

また、他の実施例として、図3に示される如き、一組の捩り管と外挿管とを追加して、螺旋状の流路が4つ形成された形態の熱交換器を製作した。即ち、先ず、上述した実施例1の熱交換器を構成するために用意した外管(12)、内管(14)、中管(16)と同様の管体を準備し、更に、それらよりも大径とされた、追加の捩り管(32)と、外挿管(34)として用いる断面が単純な円形の平滑管を準備した。なお、それらの管材質は、外管(12)等と同様に、りん脱酸銅とした。   As another example, as shown in FIG. 3, a heat exchanger in a form in which four spiral channels are formed by adding a pair of torsion tubes and an extrapolation tube was manufactured. That is, first, a tube similar to the outer tube (12), the inner tube (14), and the middle tube (16) prepared for configuring the heat exchanger of the first embodiment described above is prepared, An additional torsion pipe (32) having a large diameter and a round smooth pipe having a simple cross section used as an extrapolation pipe (34) were prepared. In addition, those pipe materials were phosphorus deoxidized copper like the outer pipe (12).

そして、このように準備された5種類のりん脱酸銅管を組み合わせて、実施例1の熱交換器を構成したときと同様に、中管(16)内に内管(14)を挿入した後、それらを外管(12)内に挿入し、更にそれを捩り管(32)内に、外挿管(34)内に、と順次挿入し、その後、公知の合わせ抽伸加工等の操作によって、外挿管を縮径して、外挿管(34)の内周面や外管(12)の外周面を捩り管(32)の内外面のフィン先端部と密接嵌合させて流路(36,38)を形成すると共に、外管(12)の内周面や内管(14)の外周面を中管(16)の内外面のフィン先端部と密接嵌合させて流路(26,28)を形成せしめて、図3に示される如き熱交換器(30)を作製した。   Then, the inner pipe (14) was inserted into the middle pipe (16) in the same manner as when the heat exchanger of Example 1 was configured by combining the five types of phosphorous deoxidized copper pipes thus prepared. After that, they are inserted into the outer tube (12), and further inserted into the torsion tube (32) and the outer intubation tube (34) in sequence, and thereafter, by an operation such as a known combined drawing process, The diameter of the outer insertion tube is reduced, and the inner peripheral surface of the outer insertion tube (34) and the outer peripheral surface of the outer tube (12) are closely fitted to the fin tips of the inner and outer surfaces of the torsion tube (32). 38), and the inner peripheral surface of the outer tube (12) and the outer peripheral surface of the inner tube (14) are closely fitted to the fin tip portions of the inner and outer surfaces of the inner tube (16) to thereby form the flow paths (26, 28). ) To form a heat exchanger (30) as shown in FIG.

なお、外挿管(34)を縮径させた後のそれぞれの管体の寸法は、外挿管(34)が、外径:28.6mm、内径:26.6mm、外管(12)が、外径:20mm、内径:18.6mm、内管(14)が、外径:12mm、内径:10.8mmとした。また、捩り管(32)の外径及び内径は、外径側は外面側のフィン先端部が外挿管(34)の内周面と密着嵌合させられているため、外挿管(34)の内径と同径の26.6mmとなり、内径側は内面側のフィン先端部が外管(12)の外周面と密着嵌合させられているため、外管(12)の外径と同径の20mmとなっている。さらに、中管(16)も同様の理由により、その外径が外管(12)の内径と同径の18.6mm、内径が内管(14)の外径と同径の12mmとなっている。また、それら捩り管(32)と中管(16)の山部ピッチ(フィンピッチ)は、どちらも3mmとし、更に、フィン高さは、どちらも2.6mmとした。   The dimensions of each tube after the diameter of the outer tube (34) is reduced are as follows: the outer tube (34) has an outer diameter of 28.6 mm, an inner diameter: 26.6 mm, and the outer tube (12) has an outer diameter. The diameter: 20 mm, the inner diameter: 18.6 mm, and the inner tube (14) had an outer diameter: 12 mm and an inner diameter: 10.8 mm. Further, the outer diameter and inner diameter of the torsion pipe (32) are such that the outer diameter side fin tips are closely fitted to the inner peripheral surface of the outer insertion pipe (34), so that the outer insertion pipe (34) The inner diameter side is 26.6 mm, and the inner diameter side has a fin tip on the inner surface side that is in close contact with the outer peripheral surface of the outer tube (12), so it has the same diameter as the outer diameter of the outer tube (12). It is 20 mm. Further, for the same reason, the outer diameter of the intermediate pipe (16) is 18.6 mm which is the same as the inner diameter of the outer pipe (12), and the inner diameter is 12 mm which is the same diameter as the outer diameter of the inner pipe (14). Yes. Further, the peak pitch (fin pitch) of the torsion pipe (32) and the middle pipe (16) is both 3 mm, and the fin height is both 2.6 mm.

そして、このようにして作製された熱交換器(30)のそれぞれの流路に対して、高温水と低温水を流通させて、それらの間で熱交換が行われることを確認した。即ち、外管(12)と内管(14)との間に形成された2つの流路(26,28)のうち、一方の流路(28)には80℃の高温水を流通させる一方、他方の流路(26)内に、25℃の低温水を流通させ、更に、外管(12)と外挿管(34)との間に形成された2つの流路(36,38)のうち、一方の流路(38)には80℃の高温水を流通させる一方、他方の流路(36)内に、25℃の低温水を流通させて、それら4つの流体(水)間で、熱交換が可能であることを確認した。   And it was confirmed that high-temperature water and low-temperature water were circulated through each flow path of the heat exchanger (30) thus produced, and that heat exchange was performed between them. That is, of the two flow paths (26, 28) formed between the outer pipe (12) and the inner pipe (14), one of the flow paths (28) circulates high-temperature water at 80 ° C. In the other channel (26), low-temperature water at 25 ° C. is circulated, and two channels (36, 38) formed between the outer tube (12) and the outer tube (34). Among them, one channel (38) circulates high-temperature water at 80 ° C., while the other channel (36) circulates low-temperature water at 25 ° C. between the four fluids (water). It was confirmed that heat exchange was possible.

10 熱交換器
12 外管
14 内管
16 中管
18 フィン
22,24 フィン先端部
26 外側流路
28 内側流路
DESCRIPTION OF SYMBOLS 10 Heat exchanger 12 Outer pipe 14 Inner pipe 16 Middle pipe 18 Fin 22, 24 Fin front-end | tip part 26 Outer flow path 28 Inner flow path

Claims (2)

直管状の外管内に直管状の内管が挿入、配置されると共に、該外管と該内管との間の間隙内に同軸的に中管が配置されてなる形態の熱交換器であって、
該中管として、管壁が管外方と管内方に交互に屈曲・突出せしめられて、管軸方向に螺旋状に延びるフィンが管内外面に形成されてなる捩り管が用いられて、該捩り管の外面側のフィンの先端部が前記外管の内面に密接嵌合させられ、該外管と該捩り管との間に螺旋状の外側流路が形成される一方、該捩り管の内面側のフィンの先端部が前記内管の外面に密接嵌合させられ、該捩り管と該内管との間に螺旋状の内側流路が形成されて、それら外側流路と内側流路とにそれぞれ別個の流体が流通せしめられ、それら流体間で熱交換が行われるように構成したことを特徴とする熱交換器。
A heat exchanger having a configuration in which a straight tubular inner tube is inserted and disposed in a straight tubular outer tube, and a middle tube is coaxially disposed in a gap between the outer tube and the inner tube. And
As the intermediate tube, a twisted tube is used in which a tube wall is alternately bent and protruded outward and inward, and a fin extending spirally in the tube axis direction is formed on the inner and outer surfaces of the tube. The tip of the fin on the outer surface side of the tube is closely fitted to the inner surface of the outer tube, and a spiral outer flow path is formed between the outer tube and the torsion tube, while the inner surface of the torsion tube The fins on the side are closely fitted to the outer surface of the inner tube, and a spiral inner channel is formed between the torsion tube and the inner tube. A heat exchanger characterized in that separate fluids are circulated in each of the two and heat exchange is performed between the fluids.
前記外管の径方向外側に、前記捩り管と同様な構造の追加捩り管と直管状の外挿管とが少なくとも1組以上交互に順次配設されて、該追加捩り管毎に、その両側に、追加の螺旋状の流路がそれぞれ形成されるように構成したことを特徴とする請求項1に記載の熱交換器。
At least one set of additional torsion pipes and straight tubular extrapolation pipes having the same structure as the torsion pipes are alternately arranged on the outer side in the radial direction of the outer pipe, and each additional torsion pipe is provided on both sides thereof. The heat exchanger according to claim 1, wherein the additional spiral flow path is formed.
JP2009131803A 2009-06-01 2009-06-01 Heat exchanger Pending JP2010276319A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009131803A JP2010276319A (en) 2009-06-01 2009-06-01 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009131803A JP2010276319A (en) 2009-06-01 2009-06-01 Heat exchanger

Publications (1)

Publication Number Publication Date
JP2010276319A true JP2010276319A (en) 2010-12-09

Family

ID=43423435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009131803A Pending JP2010276319A (en) 2009-06-01 2009-06-01 Heat exchanger

Country Status (1)

Country Link
JP (1) JP2010276319A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011214788A (en) * 2010-03-31 2011-10-27 Toto Ltd Heat exchanger and sanitary washing device including the same
CN114930105A (en) * 2019-12-26 2022-08-19 M技术株式会社 Heat exchanger

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011214788A (en) * 2010-03-31 2011-10-27 Toto Ltd Heat exchanger and sanitary washing device including the same
CN114930105A (en) * 2019-12-26 2022-08-19 M技术株式会社 Heat exchanger
US20230341187A1 (en) * 2019-12-26 2023-10-26 M. Technique Co., Ltd. Heat exchanger
US12228345B2 (en) * 2019-12-26 2025-02-18 M. Technique Co., Ltd. Heat exchanger

Similar Documents

Publication Publication Date Title
CN100520269C (en) Double-tube heat exchanger and method of producing the same
JP2007218486A (en) Heat exchanger tube for heat exchanger and heat exchanger using the same
WO2017032228A1 (en) Heat exchange tube for heat exchanger, heat exchanger and assembly method thereof
JP2013053804A (en) Structure of triple pipe, and heat exchanger
JP2012097920A (en) Heat exchanger
JP2010276319A (en) Heat exchanger
JP2008032296A (en) Heat exchanger
JP4440574B2 (en) Double tube heat exchanger and manufacturing method thereof
CN110567298A (en) Nested formula spiral baffling board and heat exchanger
JP2005083667A (en) Heat exchanger
KR20150030201A (en) Heat transfer pipe for fin-and-tube type heat exchanger, and fin-and-tube type heat exchanger
JP2008134003A (en) Tube type heat exchanger
RU2382973C1 (en) Single-flow tubular coil
CN106323041B (en) Micro-channel heat exchanger
CN107270744A (en) Efficient coaxial sleeve heat exchanger
WO2012017777A1 (en) Double pipe for heat exchanger
JP2007183076A (en) Heat exchanger
JP2009092269A (en) Double tube-type heat exchanger
JP5404589B2 (en) Twisted tube heat exchanger
JP2012007771A (en) Heat exchanger
EP4367464A1 (en) A shell-and-tube heat exchanger with helical baffles
JP2016044847A (en) Heat exchanger
JP2004085142A (en) Tube for heat exchanger, and heat exchanger
WO2015107970A1 (en) Heat transfer tube for heat exchanger and heat exchanger
JP2015535591A (en) Tube element of heat exchange means