JP2010270167A - Method for manufacturing cross-linked polyethylene tube - Google Patents
Method for manufacturing cross-linked polyethylene tube Download PDFInfo
- Publication number
- JP2010270167A JP2010270167A JP2009120686A JP2009120686A JP2010270167A JP 2010270167 A JP2010270167 A JP 2010270167A JP 2009120686 A JP2009120686 A JP 2009120686A JP 2009120686 A JP2009120686 A JP 2009120686A JP 2010270167 A JP2010270167 A JP 2010270167A
- Authority
- JP
- Japan
- Prior art keywords
- polyethylene
- density
- polyethylene resin
- tube
- mfr
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229920003020 cross-linked polyethylene Polymers 0.000 title claims abstract description 37
- 239000004703 cross-linked polyethylene Substances 0.000 title claims abstract description 37
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 16
- 238000000034 method Methods 0.000 title abstract description 27
- 229920013716 polyethylene resin Polymers 0.000 claims abstract description 50
- 239000002994 raw material Substances 0.000 claims abstract description 24
- 238000009826 distribution Methods 0.000 claims abstract description 22
- 229920001684 low density polyethylene Polymers 0.000 claims abstract description 20
- 239000004702 low-density polyethylene Substances 0.000 claims abstract description 20
- 229920001903 high density polyethylene Polymers 0.000 claims abstract description 17
- 239000004700 high-density polyethylene Substances 0.000 claims abstract description 17
- -1 silane compound Chemical class 0.000 claims abstract description 16
- SCPYDCQAZCOKTP-UHFFFAOYSA-N silanol Chemical compound [SiH3]O SCPYDCQAZCOKTP-UHFFFAOYSA-N 0.000 claims abstract description 11
- 229910000077 silane Inorganic materials 0.000 claims abstract description 10
- 239000003054 catalyst Substances 0.000 claims abstract description 8
- 238000009833 condensation Methods 0.000 claims abstract description 8
- 230000005494 condensation Effects 0.000 claims abstract description 8
- 239000000203 mixture Substances 0.000 claims abstract description 7
- 239000011342 resin composition Substances 0.000 claims abstract description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 7
- 239000004698 Polyethylene Substances 0.000 claims description 6
- 229920000573 polyethylene Polymers 0.000 claims description 6
- 238000006482 condensation reaction Methods 0.000 claims description 4
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims 1
- 239000005977 Ethylene Substances 0.000 claims 1
- 238000000465 moulding Methods 0.000 abstract description 17
- 150000003254 radicals Chemical class 0.000 abstract description 7
- 238000004132 cross linking Methods 0.000 abstract description 5
- 238000002156 mixing Methods 0.000 description 13
- 230000000052 comparative effect Effects 0.000 description 8
- 239000011347 resin Substances 0.000 description 8
- 229920005989 resin Polymers 0.000 description 8
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- UKLDJPRMSDWDSL-UHFFFAOYSA-L [dibutyl(dodecanoyloxy)stannyl] dodecanoate Chemical compound CCCCCCCCCCCC(=O)O[Sn](CCCC)(CCCC)OC(=O)CCCCCCCCCCC UKLDJPRMSDWDSL-UHFFFAOYSA-L 0.000 description 3
- 239000012975 dibutyltin dilaurate Substances 0.000 description 3
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2-(2-cyanopropan-2-yldiazenyl)-2-methylpropanenitrile Chemical compound N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 description 2
- XMNIXWIUMCBBBL-UHFFFAOYSA-N 2-(2-phenylpropan-2-ylperoxy)propan-2-ylbenzene Chemical compound C=1C=CC=CC=1C(C)(C)OOC(C)(C)C1=CC=CC=C1 XMNIXWIUMCBBBL-UHFFFAOYSA-N 0.000 description 2
- QUSNBJAOOMFDIB-UHFFFAOYSA-N Ethylamine Chemical compound CCN QUSNBJAOOMFDIB-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 238000004587 chromatography analysis Methods 0.000 description 2
- LSXWFXONGKSEMY-UHFFFAOYSA-N di-tert-butyl peroxide Chemical compound CC(C)(C)OOC(C)(C)C LSXWFXONGKSEMY-UHFFFAOYSA-N 0.000 description 2
- JQVDAXLFBXTEQA-UHFFFAOYSA-N dibutylamine Chemical compound CCCCNCCCC JQVDAXLFBXTEQA-UHFFFAOYSA-N 0.000 description 2
- 150000001451 organic peroxides Chemical class 0.000 description 2
- BOOBDAVNHSOIDB-UHFFFAOYSA-N (2,3-dichlorobenzoyl) 2,3-dichlorobenzenecarboperoxoate Chemical compound ClC1=CC=CC(C(=O)OOC(=O)C=2C(=C(Cl)C=CC=2)Cl)=C1Cl BOOBDAVNHSOIDB-UHFFFAOYSA-N 0.000 description 1
- GWQOYRSARAWVTC-UHFFFAOYSA-N 1,4-bis(2-tert-butylperoxypropan-2-yl)benzene Chemical compound CC(C)(C)OOC(C)(C)C1=CC=C(C(C)(C)OOC(C)(C)C)C=C1 GWQOYRSARAWVTC-UHFFFAOYSA-N 0.000 description 1
- BMVXCPBXGZKUPN-UHFFFAOYSA-N 1-hexanamine Chemical compound CCCCCCN BMVXCPBXGZKUPN-UHFFFAOYSA-N 0.000 description 1
- ODBCKCWTWALFKM-UHFFFAOYSA-N 2,5-bis(tert-butylperoxy)-2,5-dimethylhex-3-yne Chemical compound CC(C)(C)OOC(C)(C)C#CC(C)(C)OOC(C)(C)C ODBCKCWTWALFKM-UHFFFAOYSA-N 0.000 description 1
- DMWVYCCGCQPJEA-UHFFFAOYSA-N 2,5-bis(tert-butylperoxy)-2,5-dimethylhexane Chemical compound CC(C)(C)OOC(C)(C)CCC(C)(C)OOC(C)(C)C DMWVYCCGCQPJEA-UHFFFAOYSA-N 0.000 description 1
- LBLYYCQCTBFVLH-UHFFFAOYSA-N 2-Methylbenzenesulfonic acid Chemical compound CC1=CC=CC=C1S(O)(=O)=O LBLYYCQCTBFVLH-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 239000004342 Benzoyl peroxide Substances 0.000 description 1
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 description 1
- YIVJZNGAASQVEM-UHFFFAOYSA-N Lauroyl peroxide Chemical compound CCCCCCCCCCCC(=O)OOC(=O)CCCCCCCCCCC YIVJZNGAASQVEM-UHFFFAOYSA-N 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- ISKQADXMHQSTHK-UHFFFAOYSA-N [4-(aminomethyl)phenyl]methanamine Chemical compound NCC1=CC=C(CN)C=C1 ISKQADXMHQSTHK-UHFFFAOYSA-N 0.000 description 1
- NBJODVYWAQLZOC-UHFFFAOYSA-L [dibutyl(octanoyloxy)stannyl] octanoate Chemical compound CCCCCCCC(=O)O[Sn](CCCC)(CCCC)OC(=O)CCCCCCC NBJODVYWAQLZOC-UHFFFAOYSA-L 0.000 description 1
- 125000000751 azo group Chemical group [*]N=N[*] 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 235000019400 benzoyl peroxide Nutrition 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 125000004177 diethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 1
- MASNVFNHVJIXLL-UHFFFAOYSA-N ethenyl(ethoxy)silicon Chemical compound CCO[Si]C=C MASNVFNHVJIXLL-UHFFFAOYSA-N 0.000 description 1
- FWDBOZPQNFPOLF-UHFFFAOYSA-N ethenyl(triethoxy)silane Chemical compound CCO[Si](OCC)(OCC)C=C FWDBOZPQNFPOLF-UHFFFAOYSA-N 0.000 description 1
- NKSJNEHGWDZZQF-UHFFFAOYSA-N ethenyl(trimethoxy)silane Chemical compound CO[Si](OC)(OC)C=C NKSJNEHGWDZZQF-UHFFFAOYSA-N 0.000 description 1
- MBGQQKKTDDNCSG-UHFFFAOYSA-N ethenyl-diethoxy-methylsilane Chemical compound CCO[Si](C)(C=C)OCC MBGQQKKTDDNCSG-UHFFFAOYSA-N 0.000 description 1
- IJNRGJJYCUCFHY-UHFFFAOYSA-N ethenyl-dimethoxy-phenylsilane Chemical compound CO[Si](OC)(C=C)C1=CC=CC=C1 IJNRGJJYCUCFHY-UHFFFAOYSA-N 0.000 description 1
- WOXXJEVNDJOOLV-UHFFFAOYSA-N ethenyl-tris(2-methoxyethoxy)silane Chemical compound COCCO[Si](OCCOC)(OCCOC)C=C WOXXJEVNDJOOLV-UHFFFAOYSA-N 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- GIWKOZXJDKMGQC-UHFFFAOYSA-L lead(2+);naphthalene-2-carboxylate Chemical compound [Pb+2].C1=CC=CC2=CC(C(=O)[O-])=CC=C21.C1=CC=CC2=CC(C(=O)[O-])=CC=C21 GIWKOZXJDKMGQC-UHFFFAOYSA-L 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 239000012968 metallocene catalyst Substances 0.000 description 1
- GEMHFKXPOCTAIP-UHFFFAOYSA-N n,n-dimethyl-n'-phenylcarbamimidoyl chloride Chemical compound CN(C)C(Cl)=NC1=CC=CC=C1 GEMHFKXPOCTAIP-UHFFFAOYSA-N 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 125000000962 organic group Chemical group 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 150000004819 silanols Chemical class 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- PFBLRDXPNUJYJM-UHFFFAOYSA-N tert-butyl 2-methylpropaneperoxoate Chemical compound CC(C)C(=O)OOC(C)(C)C PFBLRDXPNUJYJM-UHFFFAOYSA-N 0.000 description 1
- GJBRNHKUVLOCEB-UHFFFAOYSA-N tert-butyl benzenecarboperoxoate Chemical compound CC(C)(C)OOC(=O)C1=CC=CC=C1 GJBRNHKUVLOCEB-UHFFFAOYSA-N 0.000 description 1
- SWAXTRYEYUTSAP-UHFFFAOYSA-N tert-butyl ethaneperoxoate Chemical compound CC(=O)OOC(C)(C)C SWAXTRYEYUTSAP-UHFFFAOYSA-N 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
Images
Landscapes
- Processes Of Treating Macromolecular Substances (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
本発明は、架橋ポリエチレン管の製造方法に関する。 The present invention relates to a method for producing a crosslinked polyethylene pipe.
架橋ポリエチレン管は、「常温時の柔軟性」、「高温時の強度(耐熱性、高クリープ性能)」が両立できるとともに、耐食性、耐寒性を備え、給水・給湯管や床暖房用温水配管などに使用されている。
この架橋ポリエチレン管の製造方法としては、以下に説明する2段成形法及び1段成形法(モノシル法)がある(特許文献1,2参照)。
Cross-linked polyethylene pipes are compatible with both "flexibility at normal temperature" and "strength at high temperatures (heat resistance, high creep performance)", as well as corrosion resistance and cold resistance, such as hot and cold water supply pipes and hot water pipes for floor heating. Is used.
As a manufacturing method of this crosslinked polyethylene pipe, there are a two-stage molding method and a one-stage molding method (monosil method) described below (see
すなわち、2段成形法は、原料ポリエチレン樹脂(架橋前の樹脂)と、シラン化合物と、ラジカル発生剤とを加熱しながら溶融、混練、反応させて、シラン変性ポリエチレン組成物を得るグラフト工程、及び、この得られたシラン変性ポリエチレン組成物と、シラノール縮合触媒を含有させたポリエチレン樹脂組成物とを、押出機内で加熱しながら溶融、混練して、管状に押出し、前記シラン変性ポリエチレン組成物からなる成形管とする成形工程の2段階で成形管を得たのち、得られた成形管を水雰囲気下にてシラノール縮合反応させて架橋処理するようになっている。 That is, the two-stage molding method includes a grafting step in which a raw material polyethylene resin (resin before crosslinking), a silane compound, and a radical generator are heated, melted, kneaded, and reacted to obtain a silane-modified polyethylene composition, and The obtained silane-modified polyethylene composition and a polyethylene resin composition containing a silanol condensation catalyst are melted and kneaded while being heated in an extruder, extruded into a tubular shape, and composed of the silane-modified polyethylene composition. After obtaining a molded tube in two stages of the molding process to form a molded tube, the obtained molded tube is subjected to a crosslinking treatment by a silanol condensation reaction in a water atmosphere.
一方、1段成形法は、原料ポリエチレン樹脂と、シラノール縮合触媒と、シラン化合物と、ラジカル発生剤とを、押出機内で加熱しながら溶融、混練、反応させるとともに、これを管状に押出して、グラフト化と成形とを同時に行う、すなわち、1段階で成形管を得たのち、得られた成形管を水雰囲気下にてシラノール縮合反応させて架橋処理するようになっている。
ところで、上記2段成形法は、グラフト工程と成形工程の2つの工程を別々に行うため、工数が多くなり、1段成形法に比べ、生産性が悪いとともに、設備コストがかかるという問題がある。
On the other hand, in the one-stage molding method, a raw material polyethylene resin, a silanol condensation catalyst, a silane compound, and a radical generator are melted, kneaded and reacted while being heated in an extruder, and extruded into a tube to be grafted. The forming tube is obtained in one stage, that is, after obtaining the formed tube in one stage, the obtained formed tube is subjected to a crosslinking treatment by a silanol condensation reaction in a water atmosphere.
By the way, the two-stage molding method has two problems, that is, the grafting process and the molding process are performed separately, which increases man-hours, and has a problem that the productivity is worse and the equipment cost is higher than the one-stage molding method. .
他方、上記1段成形法は、生産性及び設備コストの点では、2段成形法に比べて優れているものの、床暖房用の架橋ポリエチレン管のように、口径が10mm以下の小口径の架橋ポリエチレン管を安定して製造することが難しいという欠点がある。
すなわち、1段成形法においては、原料ポリエチレン樹脂として溶融粘度の低いものが用いられるため、その肉厚が大口径の管に比べ薄くなる小口径の管の場合、押出機から押し出されると、管状体を保形できず、所謂「ドローダウン」といった現象を起こし、安定した寸法の架橋ポリエチレン管が得られない。
On the other hand, the above-mentioned one-stage molding method is superior to the two-stage molding method in terms of productivity and equipment cost. There is a drawback that it is difficult to stably manufacture the polyethylene pipe.
That is, in the one-stage molding method, since a raw material polyethylene resin having a low melt viscosity is used, in the case of a small-diameter pipe whose wall thickness is thinner than that of a large-diameter pipe, The body cannot be retained, so-called “drawdown” occurs, and a cross-linked polyethylene tube having a stable dimension cannot be obtained.
本発明は、上記事情に鑑みて、口径が10mm以下の小口径であっても安定した口径の架橋ポリエチレン管を、1段成形法を用いて生産性よく製造することができる架橋ポリエチレン管の製造方法を提供することを目的としている。 In view of the above circumstances, the present invention provides a cross-linked polyethylene pipe that can produce a cross-linked polyethylene pipe having a stable diameter even with a small diameter of 10 mm or less with high productivity using a one-stage molding method. It aims to provide a method.
上記目的を達成するために、本発明にかかる架橋ポリエチレン管の製造方法は、原料ポリエチレン樹脂と、シラノール縮合触媒と、シラン化合物と、ラジカル発生剤とを含むシラン変性ポリエチレン樹脂組成物を、押出機内で加熱しながら溶融、混練、反応させた後、これを管状に押出し、冷却することで、前記シラン変性ポリエチレン樹脂組成物からなる成形管とし、この成形管を水雰囲気下にてシラノール縮合反応させて架橋処理する架橋ポリエチレン管の製造方法において、前記原料ポリエチレン樹脂は、低密度ポリエチレンが原料ポリエチレン樹脂全体の10〜20重量%含まれた高密度ポリエチレンと低密度ポリエチレンとの混合物からなるとともに、原料ポリエチレン樹脂の、密度が0.930〜0.940g/cm3、MFRが2.0〜4.0g/10分、分子量分布(Mw/Mn)が4.0〜5.0であることを特徴としている。 In order to achieve the above object, a method for producing a crosslinked polyethylene pipe according to the present invention includes a silane-modified polyethylene resin composition containing a raw material polyethylene resin, a silanol condensation catalyst, a silane compound, and a radical generator. After being melted, kneaded and reacted while being heated in, it is extruded into a tube and cooled to form a molded tube made of the silane-modified polyethylene resin composition, and this molded tube is subjected to a silanol condensation reaction in a water atmosphere. In the method for producing a crosslinked polyethylene pipe subjected to crosslinking treatment, the raw polyethylene resin is composed of a mixture of high-density polyethylene and low-density polyethylene containing 10 to 20% by weight of low-density polyethylene in the whole raw polyethylene resin, polyethylene resin, density 0.930~0.940g / cm 3, MFR 2.0~4.0g / 10 min, a molecular weight distribution (Mw / Mn) is characterized by a 4.0 to 5.0.
本発明の架橋ポリエチレン管の製造方法は、特に限定されないが、口径が10mm以下の架橋ポリエチレン管の製造に好適である。 Although the manufacturing method of the crosslinked polyethylene pipe | tube of this invention is not specifically limited, It is suitable for manufacture of the crosslinked polyethylene pipe | tube whose diameter is 10 mm or less.
本発明において、原料ポリエチレン樹脂は、低密度ポリエチレンの配合割合が10〜20重量%、密度が0.930〜0.940g/cm3、MFRが2.0〜4.0g/10分、分子量分布(Mw/Mn)が4.0〜5.0に限定される。
その理由は、以下のとおりである。
In the present invention, the raw polyethylene resin has a low-density polyethylene blending ratio of 10 to 20% by weight, a density of 0.930 to 0.940 g / cm 3 , an MFR of 2.0 to 4.0 g / 10 minutes, and a molecular weight distribution. (Mw / Mn) is limited to 4.0 to 5.0.
The reason is as follows.
すなわち、低密度ポリエチレンの配合割合が10重量%を下回ると、成形性に問題が生じ、20重量%を超えると、高クリープ性能を確保できなくなる。 That is, if the blending ratio of the low density polyethylene is less than 10% by weight, there is a problem in moldability, and if it exceeds 20% by weight, high creep performance cannot be secured.
原料ポリエチレン樹脂の密度が、0.930g/cm3を下回ると、得られる架橋ポリエチレン管が柔らかくなりすぎて、耐圧性能などの強度が阻害され、0.940g/cm3を超えると、得られる架橋ポリエチレン管が硬くなりすぎて、曲げにくくなるとともに、曲げにより破損する。 When the density of the raw material polyethylene resin is less than 0.930 g / cm 3 , the resulting crosslinked polyethylene tube becomes too soft, and the strength such as pressure resistance is hindered. When the density exceeds 0.940 g / cm 3 , the resulting crosslinked The polyethylene tube becomes too hard and difficult to bend, and is damaged by bending.
原料ポリエチレン樹脂のMFRが2.0g/10分を下回ると、樹脂の粘度が高くなるので、成形が難しくなり、4.0g/10分を超えると、粘度が低くなりすぎて、ドローダウン現象を起こして、安定した寸法が得られない。 If the MFR of the raw material polyethylene resin is less than 2.0 g / 10 min, the viscosity of the resin becomes high, so that molding becomes difficult, and if it exceeds 4.0 g / 10 min, the viscosity becomes too low and the drawdown phenomenon is caused. As a result, stable dimensions cannot be obtained.
原料ポリエチレン樹脂の分子量分布が4.0を下回ると、可塑化した樹脂の粘度が高くなるので、成形が難しくなり、5.0を超えると、得られる架橋ポリエチレン管のクリープ特性が低下する。
なお、本発明において、分子量分布(Mw/Mn)は、 クロマトグラフィー法で測定されたMw(重量平均分子量)を、クロマトグラフィー法で測定されたMn(数平均分子量)で除した値である。
When the molecular weight distribution of the raw material polyethylene resin is less than 4.0, the viscosity of the plasticized resin becomes high, so that molding becomes difficult. When the molecular weight distribution exceeds 5.0, the creep characteristics of the resulting crosslinked polyethylene pipe are deteriorated.
In the present invention, the molecular weight distribution (Mw / Mn) is a value obtained by dividing Mw (weight average molecular weight) measured by a chromatography method by Mn (number average molecular weight) measured by a chromatography method.
本発明において用いられる低密度ポリエチレンとしては、特に限定されないが、密度が0.920〜0.930g/cm3のものが好ましい。
また、MFRは、特に限定されないが、0.5〜10g/10分が好ましい。
The low density polyethylene used in the present invention is not particularly limited, but those having a density of 0.920 to 0.930 g / cm 3 are preferable.
Moreover, although MFR is not specifically limited, 0.5-10 g / 10min is preferable.
本発明において用いられる高密度ポリエチレンとしては、特に限定されないが、密度が
0.935〜0.945g/cm3のものが好ましい。
MFRは、特に限定されないが、2.0〜4.0g/10分が好ましい。
上記高密度ポリエチレンの製造方法は、特に限定されないが、メタロセン触媒を用いた方法が好ましい。
The high-density polyethylene used in the present invention is not particularly limited, but those having a density of 0.935 to 0.945 g / cm 3 are preferable.
Although MFR is not specifically limited, 2.0-4.0 g / 10min is preferable.
Although the manufacturing method of the said high density polyethylene is not specifically limited, The method using a metallocene catalyst is preferable.
本発明において用いられるシラノール縮合触媒としては、シラノール間の脱水縮合を促進する触媒として一般的に用いられる任意の化合物であればよく、例えば、ジブチル錫ジラウレート、ジブチル錫ジアセテート、ジブチル錫ジオクトエート、酢酸第一錫、ナフテン酸コバルト、ナフテン酸鉛、エチルアミン、ジブチルアミン、ヘキシルアミン、ピリジン等の化合物、硫酸、塩酸等の無機塩、トルエンスルホン酸、酢酸、ステアリン酸、マレイン酸等が挙げられ、これらの1種もしくは2種以上が好適に用いられるが、中でもジブチル錫ジラウレートがより好適に用いられる。 The silanol condensation catalyst used in the present invention may be any compound generally used as a catalyst for promoting dehydration condensation between silanols, such as dibutyltin dilaurate, dibutyltin diacetate, dibutyltin dioctoate, acetic acid. Examples include stannous, cobalt naphthenate, lead naphthenate, ethylamine, dibutylamine, hexylamine, pyridine and the like, inorganic salts such as sulfuric acid and hydrochloric acid, toluenesulfonic acid, acetic acid, stearic acid, maleic acid, etc. 1 type or 2 types or more are preferably used, and dibutyltin dilaurate is more preferably used.
本発明において用いられるシラン化合物としては、オレフィン系不飽和結合、および、加水分解可能な有機基を持つシラン化合物であれば特に限定されないが、本発明に用いるに好ましいシラン化合物としては、例えば、ビニルトリスアルコキシランがあり、中でも、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス( メトキシエトキシ)シランが好ましい。また、ビニルメチルジエトキシシラン、ビニルフェニルジメトキシシラン等でもよい。
シラン化合物のオレフィン系不飽和結合部位は、ポリエチレン系樹脂中に発生した遊離ラジカル部位と反応する。
The silane compound used in the present invention is not particularly limited as long as it is a silane compound having an olefinic unsaturated bond and a hydrolyzable organic group, but as a preferred silane compound for use in the present invention, for example, vinyl There are trisalkoxylanes, among which vinyltrimethoxysilane, vinyltriethoxysilane, and vinyltris (methoxyethoxy) silane are preferable. Further, vinylmethyldiethoxysilane, vinylphenyldimethoxysilane or the like may be used.
The olefinic unsaturated bond site of the silane compound reacts with a free radical site generated in the polyethylene resin.
本発明において用いられるラジカル発生剤としては、例えば、有機ペルオキシド、有機ペルエステル等があり、中でも、ベンゾイルペルオキシド、ジクロルベンゾイルペルオキシド、ジクミルペルオキシド、ジ−t −ブチルペルオキシド、2,5−ジメチル−2,5−ジ(ペルオキシベンゾエート) ヘキシン−3 、1,4−ビス(t− ブチルペルオキシイソプロピル)ベンゼン、ラウロイルペルオキシド、t−ブチルペルアセテート、2,5−ジメチル−2,5−ジ(t−ブチルペルオキシ)ヘキシン−3 、2,5−ジメチル−2 ,5−ジ(t−ブチルペルオキシ)ヘキサン、t−ブチルペルベンゾエート、t−ブチルペルフェニルアセテート、t−ブチルペルイソブチレート、t−ブチルペル−sec−オクトエート、t−ブチルペルピバレート、クミルペルピバレート、t−ブチルペルジエチルアセテート等の過酸化物、アゾビス− イソブチルニトリル、ジメチルアゾイソブチレート等のアゾ化合物が挙げられる。 Examples of the radical generator used in the present invention include organic peroxides and organic peroxides. Among them, benzoyl peroxide, dichlorobenzoyl peroxide, dicumyl peroxide, di-t-butyl peroxide, 2,5-dimethyl- 2,5-di (peroxybenzoate) hexyne-3, 1,4-bis (t-butylperoxyisopropyl) benzene, lauroyl peroxide, t-butylperacetate, 2,5-dimethyl-2,5-di (t- Butylperoxy) hexyne-3, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane, t-butylperbenzoate, t-butylperphenylacetate, t-butylperisobutyrate, t-butylper -Sec-octoate, t-butyl per Bareto, cumyl perpivalate, peroxides such as t- butyl peroxide diethyl acetate, azobis - isobutyronitrile, azo compounds such as dimethyl azoisobutyrate and the like.
本発明にかかる架橋ポリエチレン管の製造方法は、以上のように、密度が0.930〜0.940g/cm3、MFRが2.0〜4.0g/10分、分子量分布(Mw/Mn)が4.0〜5.0である低密度ポリエチレンを原料ポリエチレン樹脂全体の10〜20重量%含む高密度ポリエチレンと低密度ポリエチレンとの混合物を、原料ポリエチレン樹脂として用いるようにしたので、1段成形法を用いた場合においても口径10mm以下の小口径管を製造する場合においても、ドローダウン現象を起こすことなく、安定した寸法で生産性よく製造することができる。 As described above, the method for producing a crosslinked polyethylene pipe according to the present invention has a density of 0.930 to 0.940 g / cm 3 , an MFR of 2.0 to 4.0 g / 10 min, and a molecular weight distribution (Mw / Mn). Since a mixture of high-density polyethylene and low-density polyethylene containing 10 to 20% by weight of low-density polyethylene of 4.0 to 5.0 is used as raw polyethylene resin, one-stage molding Even when the method is used and when a small diameter pipe having a diameter of 10 mm or less is manufactured, it can be manufactured with a stable size and high productivity without causing a drawdown phenomenon.
以下に、本発明の具体的な実施例を詳しく説明する。 Hereinafter, specific embodiments of the present invention will be described in detail.
(実施例1)
高密度ポリエチレン(密度0.941g/cm3、MFR2.5g/10分)と、低密度ポリエチレン(密度0.921g/cm3、MFR0.5g/10分)とを、重量比で9対1にブレンドして密度0.938g/cm3、MFR2.2g/10分、分子量分布4.6の原料ポリエチレン樹脂Aを得た。
得られた原料ポリエチレン樹脂A100重量部に対して、シラン化合物としてのビニルエトキシシランが3重量部、ラジカル発生剤としてのジクミルペルオキシド(1分半減期温度173℃)が0.12重量部、シラノール縮合触媒としてのジブチル錫ジラウレートが0.0135重量部の配合割合となるように樹脂温度185℃ に設定した押出機内に投入し、シラン変性ポリエチレン樹脂組成物からなる内径7.0mm、外径10.0mmの成形管を押出成形した。
そして、得られた成形管を水蒸気が充満した処理槽内に入れて架橋させて架橋ポリエチレン管を得た。
Example 1
High-density polyethylene (density 0.941 g / cm 3 , MFR 2.5 g / 10 minutes) and low-density polyethylene (density 0.921 g / cm 3 , MFR 0.5 g / 10 minutes) in a weight ratio of 9 to 1 By blending, a raw material polyethylene resin A having a density of 0.938 g / cm 3 , MFR of 2.2 g / 10 min, and a molecular weight distribution of 4.6 was obtained.
3 parts by weight of vinylethoxysilane as a silane compound, 0.12 parts by weight of dicumyl peroxide (1 minute half-life temperature 173 ° C.) as a radical generator, 100 parts by weight of the obtained raw material polyethylene resin A, silanol The dibutyltin dilaurate as the condensation catalyst was put in an extruder set at a resin temperature of 185 ° C. so that the blending ratio was 0.0135 parts by weight, and the inner diameter was 7.0 mm and the outer diameter was 10. A 0 mm shaped tube was extruded.
Then, the obtained molded tube was put in a treatment tank filled with water vapor and crosslinked to obtain a crosslinked polyethylene tube.
(実施例2)
高密度ポリエチレン(密度0.941g/cm3、MFR2.5g/10分)と、低密度ポリエチレン(密度0.921g/cm3、MFR0.5g/10分)とを、重量比で8対2にブレンドして密度0.938g/cm3、MFR3.9g/10分、分子量分布4.2の原料ポリエチレン樹脂Bを得た。
得られた原料ポリエチレン樹脂Bを用いて実施例1と同様にして架橋ポリエチレン管を得た。
(Example 2)
High-density polyethylene (density 0.941 g / cm 3 , MFR 2.5 g / 10 min) and low-density polyethylene (density 0.921 g / cm 3 , MFR 0.5 g / 10 min) in a weight ratio of 8 to 2. By blending, a raw material polyethylene resin B having a density of 0.938 g / cm 3 , MFR of 3.9 g / 10 minutes, and a molecular weight distribution of 4.2 was obtained.
Using the obtained raw polyethylene resin B, a crosslinked polyethylene pipe was obtained in the same manner as in Example 1.
(実施例3)
高密度ポリエチレン(密度0.941g/cm3、MFR2.5g/10分)と、低密度ポリエチレン(密度0.921g/cm3、MFR0.5g/10分)とを、重量比で9対1にブレンドして密度0.939g/cm3、MFR2.2g/10分、分子量分布4.9の原料ポリエチレン樹脂Cを得た。
得られた原料ポリエチレン樹脂Cを用いて実施例1と同様にして架橋ポリエチレン管を得た。
(Example 3)
High-density polyethylene (density 0.941 g / cm 3 , MFR 2.5 g / 10 minutes) and low-density polyethylene (density 0.921 g / cm 3 , MFR 0.5 g / 10 minutes) in a weight ratio of 9 to 1 By blending, a raw material polyethylene resin C having a density of 0.939 g / cm 3 , MFR 2.2 g / 10 min, and molecular weight distribution 4.9 was obtained.
Using the obtained raw polyethylene resin C, a crosslinked polyethylene pipe was obtained in the same manner as in Example 1.
(実施例4)
高密度ポリエチレン(密度0.941g/cm3、MFR5.0g/10分)と、低密度ポリエチレン(密度0.930g/cm3、MFR0.3g/10分)とを、重量比で85対15にブレンドして密度0.939g/cm3、MFR3.8g/10分、分子量分布4.8の原料ポリエチレン樹脂Dを得た。
得られた原料ポリエチレン樹脂Dを用いて実施例1と同様にして架橋ポリエチレン管を得た。
Example 4
High-density polyethylene (density 0.941 g / cm 3 , MFR 5.0 g / 10 min) and low-density polyethylene (density 0.930 g / cm 3 , MFR 0.3 g / 10 min) to 85:15 by weight ratio By blending, a raw material polyethylene resin D having a density of 0.939 g / cm 3 , MFR 3.8 g / 10 min, and molecular weight distribution 4.8 was obtained.
A crosslinked polyethylene pipe was obtained in the same manner as in Example 1 by using the obtained raw polyethylene resin D.
(実施例5)
高密度ポリエチレン(密度0.941g/cm3、MFR2.0g/10分)と、低密度ポリエチレン(密度0.921g/cm3、MFR7.0g/10分)とを、重量比で9対1にブレンドして密度0.938g/cm3、MFR2.2g/10分、分子量分布4.2の原料ポリエチレン樹脂Eを得た。
得られた原料ポリエチレン樹脂Eを用いて実施例1と同様にして架橋ポリエチレン管を得た。
(Example 5)
High-density polyethylene (density 0.941 g / cm 3 , MFR 2.0 g / 10 minutes) and low-density polyethylene (density 0.921 g / cm 3 , MFR 7.0 g / 10 minutes) in a weight ratio of 9 to 1 By blending, a raw material polyethylene resin E having a density of 0.938 g / cm 3 , an MFR of 2.2 g / 10 min, and a molecular weight distribution of 4.2 was obtained.
Using the obtained raw polyethylene resin E, a crosslinked polyethylene pipe was obtained in the same manner as in Example 1.
(実施例6)
高密度ポリエチレン(密度0.941g/cm3、MFR5.0g/10分)と、低密度ポリエチレン(密度0.928g/cm3、MFR1.0g/10分)とを、重量比で8対2にブレンドして密度0.931g/cm3、MFR3.0g/10分、分子量分布4.3の原料ポリエチレン樹脂Fを得た。
得られた原料ポリエチレン樹脂Fを用いて実施例1と同様にして架橋ポリエチレン管を得た。
(Example 6)
High-density polyethylene (density 0.941 g / cm 3 , MFR 5.0 g / 10 min) and low-density polyethylene (density 0.928 g / cm 3 , MFR 1.0 g / 10 min) in a weight ratio of 8 to 2. By blending, a raw material polyethylene resin F having a density of 0.931 g / cm 3 , MFR of 3.0 g / 10 min, and a molecular weight distribution of 4.3 was obtained.
Using the obtained raw polyethylene resin F, a crosslinked polyethylene pipe was obtained in the same manner as in Example 1.
(比較例1)
原料ポリエチレン樹脂Aに代えて、高密度ポリエチレン(密度0.947g/cm3、MFR4.9g/10分、分子量分布4.8)のみを原料ポリエチレン樹脂として用いて実施例1と同様にして架橋ポリエチレン管を得た。
(Comparative Example 1)
In place of the raw material polyethylene resin A, only high density polyethylene (density 0.947 g / cm 3 , MFR 4.9 g / 10 min, molecular weight distribution 4.8) was used as the raw material polyethylene resin in the same manner as in Example 1 to cross-linked polyethylene. Got the tube.
(比較例2)
高密度ポリエチレン(密度0.941g/cm3、MFR5.0g/10分)と、低密度ポリエチレン(密度0.930g/cm3、MFR0.3g/10分)とを、重量比で8対2にブレンドして密度0.938g/cm3、MFR4.2g/10分、分子量分布3.9の原料ポリエチレン樹脂Gを得た。
得られた原料ポリエチレン樹脂Gを用いて実施例1と同様にして架橋ポリエチレン管を得た。
(Comparative Example 2)
High-density polyethylene (density 0.941 g / cm 3 , MFR 5.0 g / 10 minutes) and low-density polyethylene (density 0.930 g / cm 3 , MFR 0.3 g / 10 minutes) in a weight ratio of 8 to 2. By blending, a raw material polyethylene resin G having a density of 0.938 g / cm 3 , MFR of 4.2 g / 10 minutes, and a molecular weight distribution of 3.9 was obtained.
Using the obtained raw polyethylene resin G, a crosslinked polyethylene pipe was obtained in the same manner as in Example 1.
(比較例3)
高密度ポリエチレン(密度0.941g/cm3、MFR5.0g/10分)と、低密度ポリエチレン(密度0.928g/cm3、MFR1.0g/10分)とを、重量比で9対1にブレンドして密度0.937g/cm3、MFR4.2g/10分、分子量分布5.2の原料ポリエチレン樹脂Hを得た。
得られた原料ポリエチレン樹脂Hを用いて実施例1と同様にして架橋ポリエチレン管を得た。
(Comparative Example 3)
High-density polyethylene (density 0.941 g / cm 3 , MFR 5.0 g / 10 min) and low-density polyethylene (density 0.928 g / cm 3 , MFR 1.0 g / 10 min) in a weight ratio of 9 to 1 By blending, a raw material polyethylene resin H having a density of 0.937 g / cm 3 , MFR of 4.2 g / 10 minutes, and a molecular weight distribution of 5.2 was obtained.
A crosslinked polyethylene pipe was obtained in the same manner as in Example 1 using the obtained raw polyethylene resin H.
(比較例4)
高密度ポリエチレン(密度0.941g/cm3、MFR2.5g/10分)と、低密度ポリエチレン(密度0.928g/cm3、MFR1.0g/10分)とを、重量比で9対1にブレンドして密度0.938g/cm3、MFR1.8g/10分、分子量分布5.5の原料ポリエチレン樹脂Iを得た。
得られた原料ポリエチレン樹脂Iを用いて実施例1と同様にして架橋ポリエチレン管を得た。
(Comparative Example 4)
High-density polyethylene (density 0.941 g / cm 3 , MFR 2.5 g / 10 min) and low-density polyethylene (density 0.928 g / cm 3 , MFR 1.0 g / 10 min) in a weight ratio of 9 to 1 By blending, a raw material polyethylene resin I having a density of 0.938 g / cm 3 , an MFR of 1.8 g / 10 min, and a molecular weight distribution of 5.5 was obtained.
Using the obtained raw polyethylene resin I, a crosslinked polyethylene pipe was obtained in the same manner as in Example 1.
(比較例5)
高密度ポリエチレン(密度0.941g/cm3、MFR2.5g/10分)と、低密度ポリエチレン(密度0.930g/cm3、MFR0.3g/10分)とを、重量比で8対2にブレンドして密度0.938g/cm3、MFR1.8g/10分、分子量分布3.8の原料ポリエチレン樹脂Jを得た。
得られた原料ポリエチレン樹脂Jを用いて実施例1と同様にして架橋ポリエチレン管を得た。
(Comparative Example 5)
High-density polyethylene (density 0.941 g / cm 3 , MFR 2.5 g / 10 min) and low-density polyethylene (density 0.930 g / cm 3 , MFR 0.3 g / 10 min) in a weight ratio of 8 to 2. By blending, a raw material polyethylene resin J having a density of 0.938 g / cm 3 , an MFR of 1.8 g / 10 min, and a molecular weight distribution of 3.8 was obtained.
Using the obtained raw polyethylene resin J, a crosslinked polyethylene tube was obtained in the same manner as in Example 1.
上記実施例1〜6及び比較例1〜5の成形管成形時の賦形性、樹脂圧力(管の成形性)、押出機のモータ負荷(管の成形性)、得られた架橋ポリエチレンの管外観、ゲル分率(管の強度)、引張降伏強さ(管の強度)、曲げ弾性率(管の柔軟性)を調べ、その結果を表1に示した。 Formability during molding of molded pipes of Examples 1 to 6 and Comparative Examples 1 to 5, resin pressure (pipe moldability), motor load of extruder (pipe moldability), and obtained cross-linked polyethylene pipe Appearance, gel fraction (pipe strength), tensile yield strength (pipe strength), flexural modulus (pipe flexibility) were examined, and the results are shown in Table 1.
なお、賦形性については、ドローダウンを起こすことなく成形できるものを○、ドローダウンは起こさないが、成形困難なものを△、ドローダウンを起こし、成形できないものを×と評価した。
樹脂圧力は、アダプター部の樹脂出口付近に取り付けた樹脂圧計により測定した。
モータ負荷は、押出機の負荷電流値を測定した。
管外観については、目視により、光沢があり、凹凸のないものを○、光沢はあるが、凹凸があるものを△、光沢がなく、凹凸があるものを×と評価した。
ゲル分率は、JIS K 6769の方法に基づいて求めた。
引っ張り降伏強さは、JIS K 6769の方法に基づいて求めた。
曲げ弾性率は、JIS K 7113の方法に基づいて求めた。
Regarding the formability, those that can be molded without causing drawdown were evaluated as “◯”, those that did not cause drawdown were evaluated as “Δ”, those that were difficult to mold were evaluated as “×”, and those that could not be molded and evaluated as “X”.
The resin pressure was measured with a resin pressure gauge attached near the resin outlet of the adapter part.
As the motor load, the load current value of the extruder was measured.
As for the tube appearance, it was visually evaluated that the glossy and non-concave portion was evaluated as “◯”, the glossy portion was uneven but “Δ”, the non-glossy portion and the uneven portion was evaluated as “X”.
The gel fraction was determined based on the method of JIS K 6769.
The tensile yield strength was determined based on the method of JIS K 6769.
The flexural modulus was determined based on the method of JIS K 7113.
上記表1から、本発明の製造方法によれば、賦形性と外観(光沢)とのバランスが取れ、かつ、常温時の柔軟性と高温時の強度を兼ね備えている架橋ポリエチレン管を小径管においても安定して得られることがわかる。 From Table 1 above, according to the production method of the present invention, a cross-linked polyethylene pipe having a good balance between formability and appearance (gloss) and having both flexibility at normal temperature and strength at high temperature is a small diameter pipe. It can be seen that it can be obtained stably.
また、図1に、上記実施例1〜6及び比較例1〜5で用いた原料ポリエチレン樹脂のMFRと分子量分布を、横軸にMFR,縦軸に分子量分布を採って比較して示した。 FIG. 1 shows the MFR and molecular weight distribution of the raw polyethylene resins used in Examples 1 to 6 and Comparative Examples 1 to 5 by comparing the MFR on the horizontal axis and the molecular weight distribution on the vertical axis.
上記実施例1〜6で得た原料ポリエチレン樹脂A〜Fを用いて上記実施例1と同様にして内径10mm、外径13mmの架橋ポリエチレン管及び内径5mm、外径6.3mmの架橋ポリエチレン管をそれぞれ成形したところ、賦形性及び管外観の評価はいずれも上記実施例1〜6と同様の結果であった。 Using the raw polyethylene resins A to F obtained in Examples 1 to 6, a crosslinked polyethylene pipe having an inner diameter of 10 mm and an outer diameter of 13 mm and a crosslinked polyethylene pipe having an inner diameter of 5 mm and an outer diameter of 6.3 mm were obtained in the same manner as in Example 1. When each was molded, the evaluations of the formability and the tube appearance were the same as those in Examples 1 to 6.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009120686A JP2010270167A (en) | 2009-05-19 | 2009-05-19 | Method for manufacturing cross-linked polyethylene tube |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009120686A JP2010270167A (en) | 2009-05-19 | 2009-05-19 | Method for manufacturing cross-linked polyethylene tube |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2010270167A true JP2010270167A (en) | 2010-12-02 |
Family
ID=43418458
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009120686A Pending JP2010270167A (en) | 2009-05-19 | 2009-05-19 | Method for manufacturing cross-linked polyethylene tube |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2010270167A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109244333A (en) * | 2018-10-16 | 2019-01-18 | 上海恩捷新材料科技有限公司 | A kind of crosslinking lithium ion battery separator and preparation method thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5817136A (en) * | 1981-05-15 | 1983-02-01 | ユニオン・カ−バイド・コ−ポレ−シヨン | Gloss improvement of blend for pipe formation containing low pressure low density polyethylene at extrusion |
JPS6143639A (en) * | 1984-08-07 | 1986-03-03 | Mitsubishi Chem Ind Ltd | polyethylene resin composition |
JPS61221245A (en) * | 1985-03-27 | 1986-10-01 | Sumitomo Chem Co Ltd | polyethylene composition |
JPH11320651A (en) * | 1998-05-21 | 1999-11-24 | Sekisui Chem Co Ltd | Manufacture of crosslinked polyethylene tube |
JP2008285604A (en) * | 2007-05-18 | 2008-11-27 | Asahi Kasei Chemicals Corp | Polymer blend-based polyethylene resin composition and molded article thereof |
-
2009
- 2009-05-19 JP JP2009120686A patent/JP2010270167A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5817136A (en) * | 1981-05-15 | 1983-02-01 | ユニオン・カ−バイド・コ−ポレ−シヨン | Gloss improvement of blend for pipe formation containing low pressure low density polyethylene at extrusion |
JPS6143639A (en) * | 1984-08-07 | 1986-03-03 | Mitsubishi Chem Ind Ltd | polyethylene resin composition |
JPS61221245A (en) * | 1985-03-27 | 1986-10-01 | Sumitomo Chem Co Ltd | polyethylene composition |
JPH11320651A (en) * | 1998-05-21 | 1999-11-24 | Sekisui Chem Co Ltd | Manufacture of crosslinked polyethylene tube |
JP2008285604A (en) * | 2007-05-18 | 2008-11-27 | Asahi Kasei Chemicals Corp | Polymer blend-based polyethylene resin composition and molded article thereof |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109244333A (en) * | 2018-10-16 | 2019-01-18 | 上海恩捷新材料科技有限公司 | A kind of crosslinking lithium ion battery separator and preparation method thereof |
CN109244333B (en) * | 2018-10-16 | 2021-07-27 | 上海恩捷新材料科技有限公司 | Cross-linked lithium ion battery diaphragm and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2158263B1 (en) | Crosslinked polyethylene articles and processes to produce same | |
US8192813B2 (en) | Crosslinked polyethylene articles and processes to produce same | |
US6465547B1 (en) | Crosslinked compositions containing silane-modified polypropylene blends | |
CA2607282A1 (en) | Crosslinked polyethylene compositions | |
JP2009114435A (en) | Polypropylene modified with maleic anhydride and resin composition containing the same | |
JP2008260954A (en) | Polyethylene resin composition for molding cross-linked polyethylene water/hot water-supply pipe, and molding compound of the same | |
CN100532441C (en) | Silane cross-linked polyethylene plastic for low-shrinkage anti-cracking pipe and preparation method | |
JP4845617B2 (en) | Crosslinkable resin for hollow molded fuel tank and molded product | |
JP2010270167A (en) | Method for manufacturing cross-linked polyethylene tube | |
JP6845720B2 (en) | Silane cross-linked polyethylene pipe | |
JP7008421B2 (en) | Silane cross-linked polyethylene pipe | |
JP2010150357A (en) | Resin composition for blow molding, and molded product | |
JP5244073B2 (en) | Extruded resin composition and method for producing crosslinked polyethylene pipe | |
JP2011235486A (en) | Method of manufacturing molded body made of silane-modified ethylene-based polymer, and resin composition | |
JP2023142435A (en) | Crosslinked polyethylene pipe | |
JP2023117854A (en) | Crosslinked polyethylene and crosslinked polyethylene pipe and method for manufacturing the same | |
JP4691086B2 (en) | Piping method | |
JP2006265364A (en) | Polyethylene-based resin composition and crosslinked polyethylene pipe | |
JP2023050112A (en) | Cross-linked polyethylene pipe and manufacturing method thereof | |
JP2005321074A (en) | Method for producing cross-linked polyethylene pipe | |
JP2024132585A (en) | Crosslinked polyolefin molded article and method for producing same | |
JP2000154889A (en) | Crosslinked polyolefin pipe | |
JP4593076B2 (en) | Cross-linked polyethylene pipe | |
JP2020152834A (en) | Tubular bodies, pipes and hoses and modified ethylene / α-olefin copolymers | |
CN107987353A (en) | A kind of floor heating heating tube of low linear expansion coefficient and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Effective date: 20120116 Free format text: JAPANESE INTERMEDIATE CODE: A621 |
|
A977 | Report on retrieval |
Effective date: 20120404 Free format text: JAPANESE INTERMEDIATE CODE: A971007 |
|
A131 | Notification of reasons for refusal |
Effective date: 20130709 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20131105 |