[go: up one dir, main page]

JP2010267537A - Enzyme electrode - Google Patents

Enzyme electrode Download PDF

Info

Publication number
JP2010267537A
JP2010267537A JP2009118877A JP2009118877A JP2010267537A JP 2010267537 A JP2010267537 A JP 2010267537A JP 2009118877 A JP2009118877 A JP 2009118877A JP 2009118877 A JP2009118877 A JP 2009118877A JP 2010267537 A JP2010267537 A JP 2010267537A
Authority
JP
Japan
Prior art keywords
enzyme
electrode
substrate
carrier
immobilized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009118877A
Other languages
Japanese (ja)
Inventor
Tatsuhiro Sugimoto
多津宏 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2009118877A priority Critical patent/JP2010267537A/en
Publication of JP2010267537A publication Critical patent/JP2010267537A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Inert Electrodes (AREA)

Abstract

【課題】酵素燃料電池やバイオセンサーなどの電気化学反応装置の電極として用いる酵素固定化電極において、酵素への気体基質の供給量を増加させ、高い出力を発揮できる電極を提供する。
【解決手段】酵素固定化電極を構成する導電性基体2の一部分を電解液9に接するように、導電性基体2のその他の部分を基質含有気体8に接するようにし、該導電性基体2の基質含有気体8に接している部分の少なくとも一部分に酵素6を固定化することにより、出力電力を向上する。なお、酵素6は、担体5をバインダー7で固定し、この担体5上に担持して間接的に固定化するか、あるいは担体5に直接固定化する。また、電解液接触部側にも酵素を固定化することもできる。
【選択図】図1
In an enzyme-immobilized electrode used as an electrode of an electrochemical reaction device such as an enzyme fuel cell or a biosensor, an electrode capable of increasing the amount of gas substrate supplied to the enzyme and exhibiting high output is provided.
The other part of the conductive substrate 2 is in contact with the substrate-containing gas 8 so that a part of the conductive substrate 2 constituting the enzyme-immobilized electrode is in contact with the electrolyte solution 9. By immobilizing the enzyme 6 on at least a part of the part in contact with the substrate-containing gas 8, the output power is improved. The enzyme 6 is immobilized on the carrier 5 by fixing the carrier 5 on the binder 7 and indirectly immobilizing it on the carrier 5 or directly immobilizing on the carrier 5. Moreover, an enzyme can also be immobilized on the electrolyte contact portion side.
[Selection] Figure 1

Description

本発明は、酵素電極に関し、特に、酵素燃料電池やバイオセンサーなど、電気化学反応装置の電極として利用可能な酵素電極に関する。       The present invention relates to an enzyme electrode, and more particularly to an enzyme electrode that can be used as an electrode of an electrochemical reaction device such as an enzyme fuel cell or a biosensor.

酵素は、基質の特異性が高く、一般的に一定基質の一定反応下で強力に作用する。また、酵素は室温・中性の比較的温和な条件下で反応が進行する特徴をもつ。       Enzymes have a high substrate specificity and generally act strongly under a certain reaction of a certain substrate. In addition, enzymes have the characteristic that the reaction proceeds under relatively mild conditions at room temperature and neutrality.

古くから、このような酵素の触媒作用が利用されてきたが、近年、酵素を利用したバイオセンサー、バイオ燃料電池など、電子工学部門への応用が検討・実用化されている。中でも、酵素と基質との酸化還元反応に伴って発生する電流を利用した酵素電極は、その利用が期待され、開発が進んでいる。   The catalytic action of such an enzyme has been used for a long time, but in recent years, its application to the electronic engineering sector such as a biosensor using an enzyme and a biofuel cell has been studied and put into practical use. Among them, an enzyme electrode using an electric current generated in accordance with an oxidation-reduction reaction between an enzyme and a substrate is expected to be used and is being developed.

酵素電極においては、一般的に、アノード電極では、糖、アミン、有機酸、水素等が基質として用いられる。一方、カソード電極では、酸素が基質としてよく用いられる。アノード電極の水素、カソード電極の酸素のように、酵素の基質として気体が用いられることがある。       In the enzyme electrode, generally, in the anode electrode, sugar, amine, organic acid, hydrogen and the like are used as a substrate. On the other hand, oxygen is often used as a substrate in the cathode electrode. Gases may be used as enzyme substrates, such as hydrogen for the anode electrode and oxygen for the cathode electrode.

特許文献1には、電解液中にアノード電極とカソード電極があり、カソード電極に酸素を供給するために、電解液中に気体供給管を通して空気又は酸素を送り込み、バブリングを行っているバイオ燃料電池が開示されている。しかしながら、液中への酸素の溶解度は低く、拡散係数も小さいことから、カソード電極への酸素の供給には限界があり、出力の向上効果は十分でなかった。
そこで、非特許文献1には、カソード電極に酸素を供給しやすくするため、導電性基体の一方の面を空気中に、他方の面を電解液に接するように配置し、酵素を導電性基体の電解液に接する面のみに固定化した酵素電極が開示されている。
In Patent Document 1, there are an anode electrode and a cathode electrode in an electrolytic solution, and in order to supply oxygen to the cathode electrode, air or oxygen is sent into the electrolytic solution through a gas supply pipe and bubbling is performed. Is disclosed. However, since the solubility of oxygen in the liquid is low and the diffusion coefficient is small, there is a limit to the supply of oxygen to the cathode electrode, and the output improvement effect is not sufficient.
Therefore, in Non-Patent Document 1, in order to make it easy to supply oxygen to the cathode electrode, one surface of the conductive substrate is disposed in the air and the other surface is in contact with the electrolyte solution, and the enzyme is disposed in the conductive substrate. An enzyme electrode immobilized only on the surface in contact with the electrolyte is disclosed.

特開2007-121280JP2007-121280

学会要旨 2008年 214th Meeting of the Electrochemical Society October 12-17(Honolulu)Academic Meeting 2008 214th Meeting of the Electrochemical Society October 12-17 (Honolulu)

本発明の目的は、酵素電極において、酵素への気体基質の供給量を増加させ、高い出力を発揮できる電極を提供することである。       An object of the present invention is to provide an electrode capable of increasing the supply amount of a gaseous substrate to the enzyme and exhibiting high output in the enzyme electrode.

上述した目的を達成するために、本発明者らが鋭意検討した結果、電極を構成する導電性基体の一部分を電解液に接するように、導電性基体のその他の部分を基質含有気体に接するようにし、該導電性基体の基質含有気体に接している部分の少なくとも一部分に酵素を固定化することにより、出力電力を向上できるといった新知見を見出し、本発明を完成するに至った。       In order to achieve the above-described object, the present inventors have intensively studied. As a result, the other part of the conductive substrate is in contact with the substrate-containing gas so that the part of the conductive substrate constituting the electrode is in contact with the electrolytic solution. Thus, the inventors have found a new finding that the output power can be improved by immobilizing an enzyme on at least a part of the conductive substrate in contact with the substrate-containing gas, and the present invention has been completed.

すなわち、本発明に関わる酵素電極は、導電性基体と、該導電性基体に
固定化された酵素とを有する酵素電極において、前記導電性基体は、電解液に接触する電解液接触部と、基質含有気体に接触する気体接触部とを有し、前記気体接触部の少なくとも一部分に、前記酵素が固定化されていることを特徴とするものである。
また、本発明に関わる酵素電極は、前記気体接触部に第一の酵素が、前記電解液接触部に第二の酵素が固定化されていることを特徴とするものである。第一の酵素と第二の酵素は、同じでも良いし、異なっていても良い。
本発明に関わる酵素電極は、前記導電性基体に担体がバインダーで固定化され、該担体に酵素が担持されていることを特徴とする。
さらに、前記気体接触部のバインダーが疎水性であり、前記電解液接触部のバインダーが親水性であることを特徴とする。
本発明の酵素電極を利用する対象として、バイオ燃料電池やバイオセン
サーが挙げられる。
That is, the enzyme electrode according to the present invention is an enzyme electrode having a conductive substrate and an enzyme immobilized on the conductive substrate, wherein the conductive substrate includes an electrolyte contact portion that contacts the electrolyte, and a substrate. And a gas contact portion that contacts the contained gas, wherein the enzyme is immobilized on at least a part of the gas contact portion.
The enzyme electrode according to the present invention is characterized in that a first enzyme is immobilized on the gas contact portion and a second enzyme is immobilized on the electrolyte contact portion. The first enzyme and the second enzyme may be the same or different.
The enzyme electrode according to the present invention is characterized in that a carrier is fixed to the conductive substrate with a binder, and the enzyme is supported on the carrier.
Furthermore, the binder of the gas contact part is hydrophobic, and the binder of the electrolyte solution contact part is hydrophilic.
Biofuel cells and biosensors can be used as targets for utilizing the enzyme electrode of the present invention.

本発明の酵素電極では、酵素が直接的に基質含有気体に接することにより、酵素に供給される気体基質を増やすことができる。また、酵素を担持させる担体を固定化するバインダーを疎水性と親水性で塗り分けることにより、酵素に接する電解液の供給もコントロールすることができ、高い酵素機能を発揮することが可能になる。よって、本発明の酵素電極をバイオ燃料電池やバイオセンサーに用いることで、出力向上を図ることができる。       In the enzyme electrode of the present invention, the gas substrate supplied to the enzyme can be increased by the enzyme directly contacting the substrate-containing gas. In addition, by separately applying a binder for immobilizing the carrier carrying the enzyme depending on hydrophobicity and hydrophilicity, the supply of the electrolyte solution in contact with the enzyme can be controlled, and a high enzyme function can be exhibited. Therefore, output improvement can be aimed at by using the enzyme electrode of the present invention for a biofuel cell or a biosensor.

本発明の第一の実施形態の一例を示す酵素電極の構成を示す模式断面図である。It is a schematic cross section which shows the structure of the enzyme electrode which shows an example of 1st embodiment of this invention. 本発明の第二の実施形態の一例を示す酵素電極の構成を示す模式断面図である。It is a schematic cross section which shows the structure of the enzyme electrode which shows an example of 2nd embodiment of this invention. 実施例1、2、比較例1の酵素電極のクロノアンペロメトリー測定結果を示すグラフである。It is a graph which shows the chronoamperometry measurement result of the enzyme electrode of Examples 1, 2 and Comparative Example 1. 実施例3、4、比較例2の酵素電極のクロノアンペロメトリー測定結果を示すグラフである。It is a graph which shows the chronoamperometry measurement result of the enzyme electrode of Example 3, 4 and the comparative example 2. FIG. 本発明の酵素電極を用いた酵素燃料電池の一例を示す模式断面図である。It is a schematic cross section which shows an example of the enzyme fuel cell using the enzyme electrode of this invention.

以下、本発明の具体的な実施の形態について、図を参照しながら説明するが、本発明は以下の例に限られるものではなく、従来公知の構成を付加したり、材料を変更したりする等、本発明の要旨を変更しない範囲での種々の応用が可能である。       Hereinafter, specific embodiments of the present invention will be described with reference to the drawings. However, the present invention is not limited to the following examples, and conventionally known configurations are added or materials are changed. Various applications are possible without departing from the scope of the present invention.

図1に示すように、本発明の第一の実施形態である酵素電極1は、導電性基体2、酵素6、担体5およびバインダー7とを有している。導電性基体2は、基質含有気体8に接触する気体接触部3と、電解液9に接触する電解液接触部4を有しており、気体接触部3には酵素6が、担体5とともにバインダー7で固定化されている。       As shown in FIG. 1, the enzyme electrode 1 which is 1st embodiment of this invention has the electroconductive base | substrate 2, the enzyme 6, the support | carrier 5, and the binder 7. As shown in FIG. The conductive substrate 2 has a gas contact portion 3 that comes into contact with the substrate-containing gas 8 and an electrolyte solution contact portion 4 that comes into contact with the electrolyte solution 9. 7 is fixed.

図2に示すように、本発明の第二の実施形態である酵素電極10は、導電性基体2、第一の酵素6a、第二の酵素6b、担体5およびバインダー7を有している。導電性基体2は、基質含有気体8に接触する気体接触部3と、電解液9に接触する電解液接触部4を有しており、気体接触部3には第一の酵素6aが、電解液接触部4には第二の酵素6bが、担体5とともにバインダー7で固定化されている。       As shown in FIG. 2, the enzyme electrode 10 according to the second embodiment of the present invention includes a conductive substrate 2, a first enzyme 6 a, a second enzyme 6 b, a carrier 5, and a binder 7. The conductive substrate 2 has a gas contact portion 3 that contacts the substrate-containing gas 8 and an electrolyte solution contact portion 4 that contacts the electrolyte solution 9. In the gas contact portion 3, the first enzyme 6 a is electrolyzed. A second enzyme 6 b is fixed to the liquid contact portion 4 together with the carrier 5 with a binder 7.

図1、図2では、導電性基体2に担体5をバインダー7で固定化し、担体5に酵素6、6a、6bを担持することにより、酵素を導電性基体に固定化しているが、本発明の酵素の導電性基体への固定化は、特に間接的な固定化に限定されることはなく、酵素を直接、導電性基体に固定化してもよい。       In FIG. 1 and FIG. 2, the carrier 5 is fixed to the conductive substrate 2 with the binder 7 and the enzyme 6, 6a, 6b is supported on the carrier 5 so that the enzyme is fixed to the conductive substrate. Immobilization of the enzyme to the conductive substrate is not particularly limited to indirect immobilization, and the enzyme may be directly immobilized to the conductive substrate.

酵素と導電性部材間における電子の受け渡しを効率的に行うためには電子メディエータを使用してもよい。電子メディエータとしては、例えば、ABTS(2,2’-アジノビス(3-エチルベンゾチアゾリン-6-スルホン酸))、ジアンモニウム塩、ビタミンK3、2-アミノ-3カルボキシ-1, 4-ナフトキノンを使用することができる。また、これらの電子メディエータを誘導体化処理をして用いることもできる。       An electron mediator may be used to efficiently transfer electrons between the enzyme and the conductive member. For example, ABTS (2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonic acid)), diammonium salt, vitamin K3, 2-amino-3carboxy-1,4-naphthoquinone is used as the electron mediator can do. Further, these electron mediators can be used after being derivatized.

導電性基体2は、酵素、担体及びメディエータをより多く固定化ができる点において、例えば、カーボンフェルト、カーボンペーパー、カーボンクロス、カーボンスポンジなどの高表面積を持つ炭素繊維の集合体が適している。酵素およびメディエータ溶液の担持と電子伝達が可能な素材であれば、これら炭素繊維材料でなくとも、例えば導電性樹脂などを使用することもできる。   The conductive substrate 2 is preferably an aggregate of carbon fibers having a high surface area, such as carbon felt, carbon paper, carbon cloth, and carbon sponge, in that more enzyme, carrier and mediator can be immobilized. For example, a conductive resin can be used instead of the carbon fiber material as long as it is a material capable of carrying the enzyme and the mediator solution and transferring electrons.

担体5は、酵素およびメディエータを担持させるために必要なもので、
より多くの酵素およびメディエータを担持させるという点で多孔性の微粒
子材料などが好ましく用いられる。具体的には、ケッチェンブラック、カ
ーボンクライオゲル、活性炭、グラファイト、カーボンナノチューブ、カ
ーボンナノホーンなどが挙げられる。
The carrier 5 is necessary for supporting the enzyme and the mediator,
A porous fine particle material or the like is preferably used in terms of supporting more enzymes and mediators. Specific examples include ketjen black, carbon cryogel, activated carbon, graphite, carbon nanotube, and carbon nanohorn.

酵素6、6a、6bは、気体基質を酸化または還元できればよい。アノード電極において、基質を水素とする場合には、水素を酸化できればよく、具体的には、水素酸化酵素(ヒドロゲナーゼ、ニトロゲナーゼ)などが用いられる。カソード電極において、基質を酸素とする場合には、酸素を還元できればよく、具体的には、ビリルビンオキシダーゼ、ラッカーゼ、ペルオキシダーゼ、マルチ銅オキシダーゼ(CueO)などが用いられる。
酵素の固定化は、特に導電性基体の表面だけに限定されることはなく、導電性基体内部に酵素を固定化してもよい。
The enzymes 6, 6a and 6b only need to be able to oxidize or reduce a gaseous substrate. In the anode electrode, when hydrogen is used as the substrate, it is sufficient that hydrogen can be oxidized. Specifically, hydrogen oxidase (hydrogenase, nitrogenase) or the like is used. In the cathode electrode, when oxygen is used as a substrate, it is sufficient that oxygen can be reduced. Specifically, bilirubin oxidase, laccase, peroxidase, multi-copper oxidase (CueO) or the like is used.
Enzyme immobilization is not particularly limited to the surface of the conductive substrate, and the enzyme may be immobilized inside the conductive substrate.

バインダー7は、担体5を導電性基体2に固定化するために用いられるものである。具体的には、疎水性のバインダーとしては、ポリテトラフルオロエチレン(テフロン(登録商標))、ポリフッ化ビニリデン(PVDF)などが挙げられ、親水性のバインダーとしては、ポリビニルピリジン、ポリメタクリル酸ヒドロキシエチル、アルギン酸カルシウム、κ-カラギーナンなどが挙げられる。また、この他にレシチンなどの両極性化合物を用いたり、前記疎水性のバインダーと親水性のバインダーを混合して用いたりすることもできる。気体接触部3に疎水性のバインダーを、電解液接触部4には親水性のバインダーを用いると、気体接触部への電解液の供給量をコントロールすることができ、気体接触部に固定化された酵素への気体基質と電解液との供給バランスがとれ、電力の高出力化を図ることができるので好ましい。       The binder 7 is used for fixing the carrier 5 to the conductive substrate 2. Specifically, examples of the hydrophobic binder include polytetrafluoroethylene (Teflon (registered trademark)) and polyvinylidene fluoride (PVDF). Examples of the hydrophilic binder include polyvinyl pyridine and polyhydroxyethyl methacrylate. , Calcium alginate, κ-carrageenan and the like. In addition, a bipolar compound such as lecithin may be used, or the hydrophobic binder and the hydrophilic binder may be mixed and used. When a hydrophobic binder is used for the gas contact portion 3 and a hydrophilic binder is used for the electrolyte solution contact portion 4, the amount of electrolyte supplied to the gas contact portion can be controlled and fixed to the gas contact portion. This is preferable because the supply balance of the gas substrate and the electrolyte to the enzyme can be balanced, and the output of electric power can be increased.

基質含有気体8は、気体基質単体、または気体基質を含む混合気体であれば特に限定されない。カソード電極の基質として、酸素を用いる場合には、他の装置や材料などの用意が必要なく、容易に実施できることから、空気が好ましく用いられる。   The substrate-containing gas 8 is not particularly limited as long as it is a gas substrate alone or a mixed gas containing a gas substrate. When oxygen is used as the substrate of the cathode electrode, air is preferably used because it can be easily carried out without preparing other devices and materials.

電解液9は、リン酸ナトリウム緩衝液、リン酸カリウム緩衝液、トリス塩酸塩緩衝液、MOPS(3-(N-morpholino)propanesulfonic acid)緩衝溶液、MacIlvine溶液などが、使用する酵素の至適pHに応じて用いられる。電解液9中にはアノード電極やカソード電極の酵素に作用する基質物質が混合されていても良く、例えば、メタノール等のアルコール類、グルコース等の糖類、脂肪類、タンパク質、糖代謝の中間生成物の有機酸(グルコース-6-リン酸、フルクトース-6-リン酸、フルクトース-1,6-ビスリン酸、トリオースリン酸イソメラーゼ、1,3-ビスホスホグリセリン酸、3-ホスホグリセリン酸、2-ホスホグリセリン酸、ホスホエノールピルビン酸、ピルビン酸、アセチル-CoA、クエン酸、cis-アコニット酸、イソクエン酸、オキサロコハク酸、2-オキソグルタル酸、スクシニル-CoA、コハク酸、フマル酸、L-リンゴ酸、オキサロ酢酸など)、これらの混合物などが用いられる。また、溶液中のイオン強度を高めるために支持電解質として適当な塩類を混合しても良い。       Electrolyte 9 includes sodium phosphate buffer, potassium phosphate buffer, Tris hydrochloride buffer, MOPS (3- (N-morpholino) propanesulfonic acid) buffer solution, MacIlvine solution, etc. Depending on the use. The electrolytic solution 9 may be mixed with a substrate substance that acts on the enzyme of the anode electrode or the cathode electrode. For example, alcohols such as methanol, sugars such as glucose, fats, proteins, and intermediate products of sugar metabolism Organic acids (glucose-6-phosphate, fructose-6-phosphate, fructose-1,6-bisphosphate, triosephosphate isomerase, 1,3-bisphosphoglycerate, 3-phosphoglycerate, 2-phosphoglycerin Acid, phosphoenolpyruvate, pyruvate, acetyl-CoA, citric acid, cis-aconitic acid, isocitric acid, oxalosuccinic acid, 2-oxoglutaric acid, succinyl-CoA, succinic acid, fumaric acid, L-malic acid, oxalo Acetic acid, etc.), and mixtures thereof. Moreover, in order to raise the ionic strength in a solution, you may mix suitable salts as a supporting electrolyte.

第一の実施形態および第二の実施形態に示される酵素電極は酵素に対する気体基質の供給量が多いことから、酵素燃料電池やバイオセンサーの電極として用いられることが好ましい。前記酵素電極をカソード電極11として組み付け、気体基質として酸素を用いた酵素燃料電池の一例を図5に示す。カソード電極11とアノード電極12の間にはセパレーターを設けてもよい。セパレーターは、プロトン伝導性を有し、電解液9が染み出すような構成とし、セパレーターから染み出した電解液9がカソード電極11に触れるようにする。セパレーターとしては具体的には、セロハン、ナフィオン、PVDF膜、ろ紙など上記目的を達すればどのような素材でも良い。       The enzyme electrode shown in the first embodiment and the second embodiment is preferably used as an electrode of an enzyme fuel cell or a biosensor because the amount of gas substrate supplied to the enzyme is large. An example of an enzyme fuel cell in which the enzyme electrode is assembled as a cathode electrode 11 and oxygen is used as a gas substrate is shown in FIG. A separator may be provided between the cathode electrode 11 and the anode electrode 12. The separator is configured to have proton conductivity so that the electrolyte solution 9 oozes out, and the electrolyte solution 9 oozed out of the separator touches the cathode electrode 11. Specifically, any material may be used as the separator, such as cellophane, Nafion, PVDF membrane, filter paper, etc., as long as the above purpose is achieved.

本発明の酵素電極の具体的なサンプルを、クロノアンペロメトリー測定によって、評価を行った。           Specific samples of the enzyme electrode of the present invention were evaluated by chronoamperometry measurement.

<酵素電極の作製>
直径1.2cmに切り抜いた厚さ370μmのカーボンペーパー(東レ社製)を用意し、以下に示す手順に従って、酵素電極A〜Dを作製した。
ケッチェンブラック(ライオン社製)10mg、2-プロパノール4ml、テフロン6.67mg秤量し、超音波破砕機を用いて成分を十分分散させ、カーボンスラリーを作製した。前記カーボンペーパーの一方の面に該カーボンスラリーを適量塗布し、60℃の乾燥機にて溶媒を除去乾燥させ担体面を形成させ、担体面を一方の面にのみ有する電極材料Aを作製した。電極材料Aを、濃度が10mg/mlとなるように調節したビリルビンオキシダーゼ溶液(天野エンザイム社製)に浸漬、4℃で12時間静置して酵素を固定化し、酵素担持面を一方の面にのみ有する酵素電極Aを作製した。
前記カーボンスラリーを前記カーボンペーパーの両面に適量塗布した以外は酵素電極Aと同様にし、酵素担持面を両面に有する酵素電極Bを作製した。
ケッチェンブラックをカーボンクライオゲルに変えた以外は酵素電極Aと同様にし、酵素担持面を一方の面にのみ有する酵素電極Cを作製した。
ケッチェンブラックをカーボンクライオゲルに変えた以外は酵素電極Bと同様にし、酵素担持面を両面に有する酵素電極Dを作製した。
<Production of enzyme electrode>
Carbon paper (manufactured by Toray Industries, Inc.) having a thickness of 370 μm cut out to a diameter of 1.2 cm was prepared, and enzyme electrodes A to D were prepared according to the following procedure.
Ketjen Black (manufactured by Lion) 10 mg, 2-propanol 4 ml, and Teflon 6.67 mg were weighed, and components were sufficiently dispersed using an ultrasonic crusher to prepare a carbon slurry. An appropriate amount of the carbon slurry was applied to one side of the carbon paper, the solvent was removed by drying at 60 ° C. to form a carrier surface, and an electrode material A having the carrier surface only on one side was produced. Immerse electrode material A in a bilirubin oxidase solution (Amano Enzyme) adjusted to a concentration of 10 mg / ml, leave it at 4 ° C for 12 hours to immobilize the enzyme, and place the enzyme-supported surface on one side Enzyme electrode A having only was prepared.
An enzyme electrode B having an enzyme carrying surface on both sides was prepared in the same manner as the enzyme electrode A, except that an appropriate amount of the carbon slurry was applied to both sides of the carbon paper.
An enzyme electrode C having an enzyme-supporting surface only on one surface was prepared in the same manner as the enzyme electrode A except that ketjen black was changed to carbon cryogel.
An enzyme electrode D having an enzyme carrying surface on both sides was produced in the same manner as the enzyme electrode B except that ketjen black was changed to carbon cryogel.

<電極の組み付け方>
それぞれの酵素電極の構成と組み付け方を表1に示す。
(実施例1)酵素電極Aの酵素担持面に基質となる酸素を含む空気が、酵素非担持面に電解液が接触するように電極評価用の筐体に組み付けた。
(実施例2)酵素電極Bの酵素担持面の一方の面に基質となる酸素を含む空気が、他方の面に電解液が接触するように電極評価用の筐体に組み付けた。
(実施例3)酵素電極Aを酵素電極Cに変えた以外は実施例1と同様にして、電極評価用の筐体に組み付けた。
(実施例4)酵素電極Bを酵素電極Dに変えた以外は実施例2と同様に
して、電極評価用の筐体に組み付けた。
(比較例1)酵素電極Aの酵素担持面に電解液が、酵素非担持面に基質となる酸素を含む空気が接触するように電極評価用の筐体に組み付けた。
(比較例2)電極材料Aを電極材料Cに変えた以外は比較例1と同様に
して、電極評価用の筐体に組み付けた。



酵素電極
担体
電解液 接触部
気体接触部

実施例1
A
ケッチェンブラック
酵素非担持
酵素担持

実施例2
B
ケッチェンブラック
酵素担持
酵素担持

実施例3
C
カーボンクライオゲル
酵素非担持
酵素担持

実施例4
D
カーボンクライオゲル
酵素担持
酵素担持

比較例1
A
ケッチェンブラック
酵素担持
酵素非担持

比較例2
B
カーボンクライオゲル
酵素担持
酵素非担持

<How to assemble electrodes>
Table 1 shows the structure and assembly method of each enzyme electrode.
(Example 1) Air containing oxygen serving as a substrate on the enzyme-carrying surface of enzyme electrode A was assembled in a housing for electrode evaluation so that the electrolyte solution was in contact with the non-enzyme-carrying surface.
(Example 2) Air containing oxygen serving as a substrate on one surface of the enzyme-carrying surface of enzyme electrode B was assembled in a housing for electrode evaluation so that the electrolyte solution was in contact with the other surface.
(Example 3) Except that the enzyme electrode A was changed to the enzyme electrode C, it was assembled in a housing for electrode evaluation in the same manner as in Example 1.
(Example 4) Except that the enzyme electrode B was changed to the enzyme electrode D, it was assembled in a housing for electrode evaluation in the same manner as in Example 2.
(Comparative Example 1) The electrode was assembled in an electrode evaluation casing so that the electrolyte solution was in contact with the enzyme-carrying surface of the enzyme electrode A and the oxygen-containing surface was in contact with air containing oxygen as a substrate.
(Comparative Example 2) Same as Comparative Example 1 except that the electrode material A is changed to the electrode material C
And it assembled | attached to the housing | casing for electrode evaluation.



Enzyme electrode
Carrier
Electrolyte contact part
Gas contact part

Example 1
A
Ketjen Black Enzyme not supported Enzyme supported

Example 2
B
Ketjen Black Enzyme-supported Enzyme-supported

Example 3
C
Carbon cryogel Enzyme not supported Enzyme supported

Example 4
D
Carbon cryogel Enzyme support Enzyme support

Comparative Example 1
A
Ketjen Black Enzyme-supported Enzyme non-supported

Comparative Example 2
B
Carbon cryogel Enzyme supported Not enzyme supported

<クロノアンペロメトリー測定>
電解液として、pH7のリン酸ナトリウムバッファーを用い、電気化学アナライザーLS/CH 708cを用いて作用電極、参照電極、カウンター電極の3電極式装置で測定した。作用電極には、前記酵素電極を、参照電極には銀-塩化銀電極(製品名:RE-1B 参照電極)を、カウンター電極には白金電極(製品名:VC-2用Ptカウンター電極)を用いた。室温で、測定電位は、0.1Vとし、600秒を目安として、得られる電流が安定するまで測定を行い、安定した電流値を記録した。
<Chronoamperometry measurement>
As an electrolytic solution, a sodium phosphate buffer of pH 7 was used, and an electrochemical analyzer LS / CH 708c was used to measure with a three-electrode apparatus of a working electrode, a reference electrode, and a counter electrode. The working electrode is the enzyme electrode, the reference electrode is a silver-silver chloride electrode (product name: RE-1B reference electrode), and the counter electrode is a platinum electrode (product name: Pt counter electrode for VC-2). Using. At room temperature, the measurement potential was 0.1 V, and the measurement was performed until 600 seconds as a guide until the obtained current became stable, and a stable current value was recorded.

担体として、ケッチェンブラックを用いた実施例1, 2と比較例1の出力値の結果を図3に示す。
電解液接触部に、酵素が固定化されていた比較例1の電極よりも、気体接触部に酵素が固定化されている実施例1の電極の方が、高出力であることが分かる。また、電解液接触部、気体接触部の両方に酵素が固定化された実施例2の電極が最も高出力であり、好ましいことが分かる。
担体として、カーボンクライオゲルを用いた実施例3,4と比較例2の出力値の結果を図4に示す。図4も図3と同様の傾向にあり、酵素の担体であるカーボンの種類は特に限定されないことが分かる。
The results of the output values of Examples 1 and 2 and Comparative Example 1 using ketjen black as a carrier are shown in FIG.
It can be seen that the electrode of Example 1 in which the enzyme is immobilized in the gas contact portion has higher output than the electrode of Comparative Example 1 in which the enzyme is immobilized in the electrolyte contact portion. Moreover, it turns out that the electrode of Example 2 by which the enzyme was fix | immobilized in both the electrolyte solution contact part and the gas contact part has the highest output, and is preferable.
The results of the output values of Examples 3 and 4 and Comparative Example 2 using carbon cryogel as the carrier are shown in FIG. FIG. 4 also has the same tendency as FIG. 3, and it can be seen that the type of carbon that is the carrier of the enzyme is not particularly limited.

このように、電極を構成する導電性基体が、基質含有気体に接触する気体接触部と、電解液に接する電解液接触部とを有し、前記気体接触部の少なくとも一部分に酵素が固定化されていることを特徴とする酵素電極を用いることにより、酵素に気体基質を十分に供給することができ、出力を向上させることができた。
高出力である本発明の酵素電極は、酵素燃料電池および、酵素センサーに利用することができる。
Thus, the conductive substrate constituting the electrode has a gas contact portion that contacts the substrate-containing gas and an electrolyte solution contact portion that contacts the electrolyte, and an enzyme is immobilized on at least a part of the gas contact portion. By using the enzyme electrode characterized in that the gas substrate was sufficiently supplied to the enzyme, the output could be improved.
The enzyme electrode of the present invention having a high output can be used for an enzyme fuel cell and an enzyme sensor.

1、10 酵素電極 2 導電性基体 3 気体接触部
4 電解液接触部 5 担体
6、6a、6b 酵素
7 バインダー 8 基質含有気体 9 電解液
11 カソード電極 12 アノード電極
1, 10 Enzyme electrode 2 Conductive substrate 3 Gas contact part 4 Electrolyte contact part 5 Carrier
6, 6a, 6b Enzyme 7 Binder 8 Substrate-containing gas 9 Electrolyte
11 Cathode electrode 12 Anode electrode

Claims (6)

導電性基体と、該導電性基体に固定化された酵素とを有する酵素電極において、
前記導電性基体は、基質含有気体に接触する気体接触部と、電解液に接触する電解液接触部とを有し、
前記気体接触部の少なくとも一部分に、前記酵素が固定化されていることを特徴とする酵素電極。
In an enzyme electrode having a conductive substrate and an enzyme immobilized on the conductive substrate,
The conductive substrate has a gas contact portion that contacts a substrate-containing gas, and an electrolyte solution contact portion that contacts an electrolyte solution,
The enzyme electrode, wherein the enzyme is immobilized on at least a part of the gas contact portion.
前記気体接触部に第一の酵素が、前記電解液接触部に第二の酵素が固定化されていることを特徴とする請求項1記載の酵素電極。         The enzyme electrode according to claim 1, wherein a first enzyme is immobilized on the gas contact portion, and a second enzyme is immobilized on the electrolyte contact portion. 導電性基体に担体がバインダーで固定化され、該担体に酵素が担持されていることを特徴とする請求項1又は2記載の酵素電極。               The enzyme electrode according to claim 1 or 2, wherein a carrier is fixed to a conductive substrate with a binder, and an enzyme is supported on the carrier. 前記気体接触部のバインダーが疎水性で、前記電解液接触部のバインダーが親水性であることを特徴とする請求項3に記載の酵素電極。       The enzyme electrode according to claim 3, wherein the binder in the gas contact portion is hydrophobic and the binder in the electrolyte solution contact portion is hydrophilic. 請求項1乃至4のいずれかに記載の酵素電極を備えることを特徴とする燃料電池。               A fuel cell comprising the enzyme electrode according to claim 1. 請求項1乃至4のいずれかに記載の酵素電極を備えることを特徴とす
る酵素センサー。
An enzyme sensor comprising the enzyme electrode according to claim 1.
JP2009118877A 2009-05-15 2009-05-15 Enzyme electrode Pending JP2010267537A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009118877A JP2010267537A (en) 2009-05-15 2009-05-15 Enzyme electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009118877A JP2010267537A (en) 2009-05-15 2009-05-15 Enzyme electrode

Publications (1)

Publication Number Publication Date
JP2010267537A true JP2010267537A (en) 2010-11-25

Family

ID=43364327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009118877A Pending JP2010267537A (en) 2009-05-15 2009-05-15 Enzyme electrode

Country Status (1)

Country Link
JP (1) JP2010267537A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013065581A1 (en) * 2011-11-02 2013-05-10 ソニー株式会社 Biofuel cell, method for manufacturing biofuel cell, electronic device, enzyme-immobilized electrode, method for producing enzyme-immobilized electrode, electrode for production of enzyme-immobilized electrode, method for producing electrode for production of enzyme-immobilized electrode, and enzyme reaction-utilizing apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013065581A1 (en) * 2011-11-02 2013-05-10 ソニー株式会社 Biofuel cell, method for manufacturing biofuel cell, electronic device, enzyme-immobilized electrode, method for producing enzyme-immobilized electrode, electrode for production of enzyme-immobilized electrode, method for producing electrode for production of enzyme-immobilized electrode, and enzyme reaction-utilizing apparatus
JPWO2013065581A1 (en) * 2011-11-02 2015-04-02 ソニー株式会社 Biofuel cell, biofuel cell manufacturing method, electronic device, enzyme-immobilized electrode, enzyme-immobilized electrode manufacturing method, enzyme-immobilized electrode manufacturing electrode, enzyme-immobilized electrode manufacturing electrode manufacturing method, and enzyme reaction utilization apparatus

Similar Documents

Publication Publication Date Title
Niiyama et al. High-performance enzymatic biofuel cell based on flexible carbon cloth modified with MgO-templated porous carbon
Scherbahn et al. Biofuel cells based on direct enzyme–electrode contacts using PQQ-dependent glucose dehydrogenase/bilirubin oxidase and modified carbon nanotube materials
Zafar et al. Characterization of different FAD-dependent glucose dehydrogenases for possible use in glucose-based biosensors and biofuel cells
Sakai et al. A high-power glucose/oxygen biofuel cell operating under quiescent conditions
JP5233176B2 (en) Fuel cells and electronics
Wen et al. A single-walled carbon nanohorn-based miniature glucose/air biofuel cell for harvesting energy from soft drinks
Sakai et al. Direct electron transfer-type bioelectrocatalytic interconversion of carbon dioxide/formate and NAD+/NADH redox couples with tungsten-containing formate dehydrogenase
JP5307316B2 (en) FUEL CELL, METHOD OF USING FUEL CELL, CATHODE ELECTRODE FOR FUEL CELL, ELECTRONIC DEVICE, ELECTRODE REACTION USE DEVICE, AND ELECTRODE REACTION USE DEVICE ELECTRODE
US20100047670A1 (en) Enzyme-immobilized electrode, fuel cell, electronic device, appartus utilizing enzyme reaction, and enzyme-immobilized substrate
Shen et al. Two-dimensional graphene paper supported flexible enzymatic fuel cells
Tsujimura From fundamentals to applications of bioelectrocatalysis: bioelectrocatalytic reactions of FAD-dependent glucose dehydrogenase and bilirubin oxidase
Das et al. Biofuel cell for generating power from methanol substrate using alcohol oxidase bioanode and air-breathed laccase biocathode
WO2009113340A1 (en) Fuel cell and electronic device
WO2009113572A1 (en) Fuel cell and method for manufacturing the same, enzyme-immobilized electrode and method for producing the same, and electronic device
JP5298479B2 (en) Fuel cells and electronics
Crepaldi et al. Ferrocene entrapped in polypyrrole film and PAMAM dendrimers as matrix for mediated glucose/O2 biofuel cell
Li et al. A miniature glucose/O2 biofuel cell with a high tolerance against ascorbic acid
Suraniti et al. Thermophilic biocathode with bilirubin oxidase from Bacillus pumilus
Morshed et al. A disposable enzymatic biofuel cell for glucose sensing via short-circuit current
Saleh et al. A promising dehydrogenase-based bioanode for a glucose biosensor and glucose/O 2 biofuel cell
KR101581120B1 (en) Enzyme -graphine oxide complex for electrochemical applications and method for fabricating the same
Yasujima et al. Multi‐Enzyme Immobilized Anodes Utilizing Maltose Fuel for Biofuel Cell Applications
Wang et al. Preserved enzymatic activity of glucose oxidase immobilized on an unmodified electrode
Gao et al. Electrocatalytic activity of carbon spheres towards NADH oxidation at low overpotential and its applications in biosensors and biofuel cells
WO2010041685A1 (en) Fuel cell, electronic device and buffer solution for fuel cell