JP2010263092A - Method for producing electrode active material for electric double layer and electric double layer capacitor - Google Patents
Method for producing electrode active material for electric double layer and electric double layer capacitor Download PDFInfo
- Publication number
- JP2010263092A JP2010263092A JP2009113109A JP2009113109A JP2010263092A JP 2010263092 A JP2010263092 A JP 2010263092A JP 2009113109 A JP2009113109 A JP 2009113109A JP 2009113109 A JP2009113109 A JP 2009113109A JP 2010263092 A JP2010263092 A JP 2010263092A
- Authority
- JP
- Japan
- Prior art keywords
- double layer
- electric double
- active material
- layer capacitor
- electrode active
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003990 capacitor Substances 0.000 title claims abstract description 46
- 239000007772 electrode material Substances 0.000 title claims abstract description 40
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 22
- 239000011302 mesophase pitch Substances 0.000 claims abstract description 17
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 16
- 239000000295 fuel oil Substances 0.000 claims abstract description 14
- 238000000605 extraction Methods 0.000 claims abstract description 13
- 238000010438 heat treatment Methods 0.000 claims abstract description 8
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 7
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 7
- 239000003245 coal Substances 0.000 claims abstract description 7
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 7
- 239000001257 hydrogen Substances 0.000 claims abstract description 7
- 239000003208 petroleum Substances 0.000 claims abstract description 6
- SMWDFEZZVXVKRB-UHFFFAOYSA-N Quinoline Chemical compound N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 claims description 28
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 claims description 23
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 claims description 16
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 claims description 14
- 239000003960 organic solvent Substances 0.000 claims description 12
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 claims description 8
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 claims description 7
- 239000011149 active material Substances 0.000 claims description 5
- 239000000463 material Substances 0.000 claims description 3
- 239000002641 tar oil Substances 0.000 claims description 3
- 239000000126 substance Substances 0.000 abstract description 5
- 239000011347 resin Substances 0.000 abstract description 4
- 229920005989 resin Polymers 0.000 abstract description 4
- 239000011368 organic material Substances 0.000 abstract description 3
- 238000000034 method Methods 0.000 description 14
- 238000001994 activation Methods 0.000 description 9
- 239000011295 pitch Substances 0.000 description 9
- 239000007833 carbon precursor Substances 0.000 description 8
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 6
- 230000004913 activation Effects 0.000 description 6
- 238000009835 boiling Methods 0.000 description 6
- 239000003575 carbonaceous material Substances 0.000 description 6
- 239000002904 solvent Substances 0.000 description 6
- 239000000243 solution Substances 0.000 description 5
- 239000000843 powder Substances 0.000 description 4
- 239000000654 additive Substances 0.000 description 3
- 230000000996 additive effect Effects 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 239000011269 tar Substances 0.000 description 3
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- 238000003763 carbonization Methods 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 239000008151 electrolyte solution Substances 0.000 description 2
- 238000005470 impregnation Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 229910021470 non-graphitizable carbon Inorganic materials 0.000 description 2
- 239000007800 oxidant agent Substances 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- QIVUCLWGARAQIO-OLIXTKCUSA-N (3s)-n-[(3s,5s,6r)-6-methyl-2-oxo-1-(2,2,2-trifluoroethyl)-5-(2,3,6-trifluorophenyl)piperidin-3-yl]-2-oxospiro[1h-pyrrolo[2,3-b]pyridine-3,6'-5,7-dihydrocyclopenta[b]pyridine]-3'-carboxamide Chemical compound C1([C@H]2[C@H](N(C(=O)[C@@H](NC(=O)C=3C=C4C[C@]5(CC4=NC=3)C3=CC=CN=C3NC5=O)C2)CC(F)(F)F)C)=C(F)C=CC(F)=C1F QIVUCLWGARAQIO-OLIXTKCUSA-N 0.000 description 1
- 235000013162 Cocos nucifera Nutrition 0.000 description 1
- 244000060011 Cocos nucifera Species 0.000 description 1
- 241000282320 Panthera leo Species 0.000 description 1
- 238000000944 Soxhlet extraction Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 229910000272 alkali metal oxide Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000003610 charcoal Substances 0.000 description 1
- 239000011280 coal tar Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000000921 elemental analysis Methods 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000002309 gasification Methods 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 239000003273 ketjen black Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- -1 nitrogen-containing heterocyclic compounds Chemical class 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- UPOHIXYDQZCJLR-UHFFFAOYSA-J tetraethylazanium tetrafluoride Chemical compound C(C)[N+](CC)(CC)CC.[F-].[F-].[F-].[F-].C(C)[N+](CC)(CC)CC.C(C)[N+](CC)(CC)CC.C(C)[N+](CC)(CC)CC UPOHIXYDQZCJLR-UHFFFAOYSA-J 0.000 description 1
- 125000003944 tolyl group Chemical group 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
Landscapes
- Carbon And Carbon Compounds (AREA)
- Working-Up Tar And Pitch (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
Abstract
【課題】
安価で且つ電極単位体積当たりの静電容量が高い電気二重層キャパシタを得ることができる電気二重層キャパシタ用電極活物質の製造方法および電気二重層キャパシタ用電極活物質を提供する
【解決手段】
本発明に係る電気二重層キャパシタ電極活物質の製造方法は、石炭系重質油、石油系重質油および樹脂を熱処理して得られるタールのうちから選ばれた1または2以上の物質由来のメソフェーズピッチを有機用材で抽出処理するときの抽出残分を電極活物質に用いるため、電極単位体積当たりの静電容量が高い電気二重層キャパシタを得ることができる。
また、本発明に係る電気二重層キャパシタは、上記の電気二重層キャパシタ電極活物質の製造方法によって得られ、炭素に対する水素の原子比(H/C)が0.35〜0.42の範囲内に、さらに比表面積が5〜65の範囲内にあることを特徴とする。
【選択図】なし
【Task】
A method for producing an electrode active material for an electric double layer capacitor and an electrode active material for an electric double layer capacitor capable of obtaining an electric double layer capacitor that is inexpensive and has a high capacitance per electrode unit volume.
The method for producing an electric double layer capacitor electrode active material according to the present invention is derived from one or more substances selected from coal-based heavy oil, petroleum-based heavy oil and tar obtained by heat treatment of a resin. Since the extraction residue when the mesophase pitch is extracted with the organic material is used as the electrode active material, an electric double layer capacitor having a high capacitance per electrode unit volume can be obtained.
Moreover, the electric double layer capacitor according to the present invention is obtained by the above-described method for producing an electric double layer capacitor electrode active material, and the atomic ratio of hydrogen to carbon (H / C) is in the range of 0.35 to 0.42. Further, the specific surface area is in the range of 5 to 65.
[Selection figure] None
Description
本発明は、電気二重層用電極活物質の製造方法および電気二重層キャパシタに関する。 The present invention relates to a method for producing an electrode active material for an electric double layer and an electric double layer capacitor.
電気二重層キャパシタは、蓄電デバイスの一種であり、導電材料からなる電極の界面にイオンを吸脱着させることで電気を充放電する。イオンは電極界面に吸着することから、導電材料として高比表面積の活性炭等の多孔質炭素材料が主に使用されている。電気二重層キャパシタは、これまで、小型電子部品用永久電源として商品化されてきたが、近年、ハイブリッド自動車(HEV)用電源としても使用が検討されており、HEV用途では、低価格化と高性能化、特に単位体積当たりの高容量化が望まれている。 An electric double layer capacitor is a kind of electricity storage device, and charges and discharges electricity by adsorbing and desorbing ions at an interface of an electrode made of a conductive material. Since ions are adsorbed on the electrode interface, porous carbon materials such as activated carbon having a high specific surface area are mainly used as the conductive material. The electric double layer capacitor has been commercialized as a permanent power source for small electronic parts so far. However, in recent years, the use as a power source for a hybrid vehicle (HEV) has been studied. There is a demand for higher performance, particularly higher capacity per unit volume.
かかる高性能化要求に対し、電気二重層キャパシタの電極活物質として使用される多孔質炭素材料に関してさまざまな提案がなされており、なかでも、炭素材料を賦活したものを電極活物質として用いる技術が数多く提案されてきた。
例えば、椰子殻炭等を水蒸気存在下1000℃程度で加熱し、水成ガス化を用いて賦活する水蒸気賦活法が提案されている。しかしながら、この方法は一般に多孔質炭素材料の歩留が低い。また、比表面積を高めると、水蒸気賦活炭の嵩密度が低下し、体積当たりの高容量化が困難になる。
In response to such demands for high performance, various proposals have been made regarding porous carbon materials used as electrode active materials for electric double layer capacitors. Among them, a technology using activated carbon materials as electrode active materials has been proposed. Many have been proposed.
For example, a steam activation method has been proposed in which coconut shell charcoal or the like is heated at about 1000 ° C. in the presence of water vapor and activated using aquatic gasification. However, this method generally has a low yield of porous carbon materials. Further, when the specific surface area is increased, the bulk density of the steam activated coal is lowered, and it is difficult to increase the capacity per volume.
また、アルカリ金属酸化物を酸化剤に用いるアルカリ賦活法が知られている。この方法で、例えば3000〜4500m2/g程度の高い比表面積を持つ活性炭が得られるが、この方法は、副生アルカリ金属が高反応性を持つことによる反応器の腐食や安全性の点で工業生産上の課題がある(特許文献1)。 Further, an alkali activation method using an alkali metal oxide as an oxidizing agent is known. In this way, for example 3000~4500m activated carbon having a high specific surface area of about 2 / g is obtained, the method in terms of reactor corrosion and safety caused by-product alkali metal has a high reactivity There is a problem in industrial production (Patent Document 1).
これに対して、特定の処理を施した炭素材料を用いて賦活処理する技術も開示されている。
例えば、熱処理前のピッチ類に2〜3環の軽沸点油を添加剤として混合・成形した後、ピッチ成形体を得、ついで、添加剤を選択的に溶解する溶剤で軽沸点油のみを抽出除去した後、酸化剤を用いて不融化し、得られる不融性の多孔性のピッチ成形体に炭化・賦活処理を施す方法が開示されている(特許文献2)。
この方法によれば、不融化した多孔性のピッチ系前躯体(ピッチ成形体)において、ピッチ中の成分の多様化が促進され、微細孔表面に難黒鉛化性炭素前躯体層が優先的に存在し、炭素化、ならびに賦活過程において、これら難黒鉛化性炭素前躯体層が優先的に消失して、比較的低い賦活処理レベルでより黒鉛リッチの微細構造が形成され、この黒鉛リッチの微細構造、比較的低い電気抵抗を有し比較的高い密度の電気二重層キャパシタ材料として有効に機能するものと推定されている。しかしながら、上記の製造方法により得られる炭素材は、溶剤を用いた抽出処理によって、ピッチは殆ど溶解せず、添加剤のみを抽出することで、元来非多孔質であるピッチ成形体を多孔質化し、さらに、炭化・賦活処理によってより多孔質化するものであるため、前記した他の賦活処理技術の場合と同様に、炭素材の嵩密度が低下し、体積当たりの高容量化が困難になるものと考えられる。
On the other hand, the technique of activating using the carbon material which performed the specific process is also disclosed.
For example, after mixing and molding 2 or 3 rings of light boiling oil as an additive to pitches before heat treatment, a pitch molded body is obtained, and then only light boiling oil is extracted with a solvent that selectively dissolves the additive. A method is disclosed in which after removal, the resultant is infusible with an oxidizing agent, and the resulting infusible porous pitch formed body is carbonized and activated (Patent Document 2).
According to this method, in the infusible porous pitch-based precursor (pitch molded body), diversification of the components in the pitch is promoted, and the non-graphitizable carbon precursor layer is preferentially formed on the micropore surface. In the carbonization and activation process, these non-graphitizable carbon precursor layers disappear preferentially and a more graphite-rich microstructure is formed at a relatively low activation treatment level. It is presumed to function effectively as an electric double layer capacitor material having a structure and a relatively low electrical resistance and a relatively high density. However, the carbon material obtained by the above-described production method does not substantially dissolve the pitch by the extraction process using the solvent, and the pitch molded body that is originally nonporous is made porous by extracting only the additive. In addition, since it is made more porous by carbonization / activation treatment, the bulk density of the carbon material is reduced, and it is difficult to increase the capacity per volume, as in the case of the other activation treatment techniques described above. It is considered to be.
上記のように、従来の賦活処理を伴う電気二重層キャパシタ用電極活物質の製造方法は、特許文献2のものを含め、電極単位体積当たりの高容量化を得ることが困難であることが考えられる。 As described above, the conventional method for producing an electrode active material for an electric double layer capacitor involving activation treatment, including that of Patent Document 2, is considered difficult to obtain a high capacity per unit electrode volume. It is done.
本発明は、上記の課題に鑑みてなされたものであり、安価で且つ電極単位体積当たりの静電容量が高い電気二重層キャパシタを得ることができる電気二重層キャパシタ用電極活物質の製造方法および電気二重層キャパシタ用電極活物質を提供することを目的とする。 The present invention has been made in view of the above problems, and a method for producing an electrode active material for an electric double layer capacitor capable of obtaining an electric double layer capacitor that is inexpensive and has a high capacitance per electrode unit volume, and It aims at providing the electrode active material for electric double layer capacitors.
本発明に係る電気二重層キャパシタ用電極活物質の製造方法は、石炭系重質油、石油系重質油および樹脂を熱処理して得られるタール油のうちから選ばれた1または2以上の物質由来のメソフェーズピッチを有機溶剤で抽出処理するときの抽出残分を電極活物質に用いることを特徴とする。 The method for producing an electrode active material for an electric double layer capacitor according to the present invention includes one or more substances selected from coal-based heavy oil, petroleum-based heavy oil, and tar oil obtained by heat-treating a resin. It is characterized in that an extraction residue obtained by extracting a mesophase pitch derived from an organic solvent with an organic solvent is used as an electrode active material.
また、本発明に係る電気二重層キャパシタ用電極活物質の製造方法は、好ましくは、前記有機溶剤が、トルエンまたはトルエンと同等以上の前記メソフェーズピッチ溶解力を有する溶剤であることを特徴とする。
また、本発明に係る電気二重層キャパシタ用電極活物質の製造方法は、好ましくは、前記の有機溶剤が、少なくともテトラヒドロフラン、ピリジンまたはキノリンを含むことを特徴とする。
In the method for producing an electrode active material for an electric double layer capacitor according to the present invention, preferably, the organic solvent is toluene or a solvent having a mesophase pitch solubility equal to or higher than that of toluene.
The method for producing an electrode active material for an electric double layer capacitor according to the present invention is preferably characterized in that the organic solvent contains at least tetrahydrofuran, pyridine or quinoline.
また、本発明に係る電気二重層キャパシタは、上記の電気二重層キャパシタ電極活物質の製造方法によって得られ、炭素に対する水素の原子比(H/C)が0.35〜0.42の範囲内にある電気二重層キャパシタ用電極活物質を用いることを特徴とする。 Moreover, the electric double layer capacitor according to the present invention is obtained by the above-described method for producing an electric double layer capacitor electrode active material, and the atomic ratio of hydrogen to carbon (H / C) is in the range of 0.35 to 0.42. The electrode active material for an electric double layer capacitor is used.
また、本発明に係る電気二重層キャパシタは、上記の電気二重層キャパシタ電極活物質の製造方法によって得られ、比表面積が5〜65m2/gの範囲内にある電気二重層キャパシタ用電極活物質を用いることを特徴とする。 Moreover, the electric double layer capacitor according to the present invention is obtained by the above-described method for producing an electric double layer capacitor electrode active material, and has a specific surface area of 5 to 65 m 2 / g. It is characterized by using.
本発明に係る電気二重層キャパシタ電極活物質の製造方法は、石炭系重質油、石油系重質油および樹脂を熱処理して得られるタールのうちから選ばれた1または2以上の物質由来のメソフェーズピッチを有機用材で抽出処理するときの抽出残分を電極活物質に用いるため、電極単位体積当たりの静電容量が高い電気二重層キャパシタを得ることができる。またこのとき、従来技術のような賦活処理を必要としない。
また、本発明に係る電気二重層キャパシタは、上記の電気二重層キャパシタ電極活物質の製造方法によって得られ、炭素に対する水素の原子比(H/C)が0.35〜0.42の範囲内に、さらに比表面積が5〜65m2/gの範囲内にある電気二重層キャパシタ用電極活物質を用いるため、上記本発明に係る電気二重層キャパシタ電極活物質の製造方法の効果を好適に発揮することができる。
The method for producing an electric double layer capacitor electrode active material according to the present invention is derived from one or more substances selected from coal-based heavy oil, petroleum-based heavy oil and tar obtained by heat treatment of a resin. Since the extraction residue when the mesophase pitch is extracted with the organic material is used as the electrode active material, an electric double layer capacitor having a high capacitance per electrode unit volume can be obtained. At this time, the activation process as in the prior art is not required.
Moreover, the electric double layer capacitor according to the present invention is obtained by the above-described method for producing an electric double layer capacitor electrode active material, and the atomic ratio of hydrogen to carbon (H / C) is in the range of 0.35 to 0.42. Furthermore, since the electrode active material for electric double layer capacitors having a specific surface area in the range of 5 to 65 m 2 / g is used, the effect of the method for producing an electric double layer capacitor electrode active material according to the present invention is preferably exhibited. can do.
本発明の実施の形態(以下、本実施の形態例という) Embodiment of the present invention (hereinafter referred to as this embodiment)
本実施の形態例に係る電気二重層キャパシタ用電極活物質の製造方法は、電極活物質として石炭系重質油、石油系重質油および樹脂を熱処理して得られるタールのうちから選ばれた1または2以上の物質由来のメソフェーズピッチを有機用材で抽出処理するときの抽出残分を電極活物質に用いるものである。 The method for producing an electrode active material for an electric double layer capacitor according to the present embodiment was selected from coal-based heavy oil, petroleum-based heavy oil, and tar obtained by heat treatment as an electrode active material. The extraction residue when the mesophase pitch derived from one or more substances is extracted with an organic material is used as the electrode active material.
上記メソフェーズピッチは、好ましくは、(1)石炭系重質油、(2)石油系重質油および(3)樹脂を熱処理して得られるタールのうちから選ばれた1または2以上の物質由来のメソフェーズピッチであってもよく、また、これらのメソフェーズピッチをさらに熱処理して得られるメソフェーズピッチであってもよい。
なお、重質油やタール油は、一次キノリン不溶分(QI)と呼ばれる成分を含む場合がある。この一次QIは、不純物を含むことがあるため、高純度の電極活物質を得る観点からは、一次QIを予め遠心分離あるいは精密ろ過器で除去した後、熱処理によってメソフェーズピッチ製造するのが好ましい。
The mesophase pitch is preferably derived from one or more substances selected from (1) coal-based heavy oil, (2) petroleum-based heavy oil, and (3) tar obtained by heat treating a resin. The mesophase pitch may also be a mesophase pitch obtained by further heat-treating these mesophase pitches.
Heavy oil and tar oil may contain a component called primary quinoline insoluble matter (QI). Since this primary QI may contain impurities, it is preferable to produce the mesophase pitch by heat treatment after removing the primary QI with a centrifugal separator or a microfilter in advance from the viewpoint of obtaining a high purity electrode active material.
有機溶剤は、その種類を限定するものでないが、電極用活物質を用いて非水系電気二重層キャパシタを構成したとき、電極用活物質から電解液への油分の溶出を避ける必要があることから、トルエンまたはトルエンと同等以上の、重質油等の炭素前駆体溶解力を有する溶剤を用いることが好ましい。このようなトルエンと同等以上の炭素前駆体溶解力を有する有機溶剤として、窒素含有複素環化合物であるキノリン、ピリジン、テトラハイドロフラン(THF)等を挙げることができる。これらの有機溶剤は単独で用いてもよく、また、混合して用いても良い。
ここで、抽出残分となる例えばトルエン不溶分(以下TI)とはJIS K 2425で定義されるものとする。キノリン不溶分(以下QI)、その他の溶剤不溶分についても、上記JIS K 2425の分析法に準ずるものとする。
The type of organic solvent is not limited. However, when a non-aqueous electric double layer capacitor is configured using an electrode active material, it is necessary to avoid elution of oil from the electrode active material into the electrolyte. It is preferable to use a solvent having a carbon precursor dissolving power, such as heavy oil, which is equal to or higher than toluene or toluene. Examples of the organic solvent having a carbon precursor solubility equal to or higher than that of toluene include nitrogen-containing heterocyclic compounds such as quinoline, pyridine, and tetrahydrofuran (THF). These organic solvents may be used alone or in combination.
Here, for example, a toluene insoluble matter (hereinafter referred to as TI) serving as an extraction residue is defined by JIS K 2425. The quinoline insoluble matter (hereinafter referred to as QI) and other solvent insoluble matter shall be in accordance with the analysis method of JIS K 2425.
有機溶剤を使って炭素前駆体を抽出処理するには、適宜の方法を用いることができ、例えば、ソックスレー抽出法を用いることができる。
また、有機溶剤を使って炭素前駆体を抽出処理するに際し、予め、適宜の方法で粉砕した炭素前駆体を用いてもよい。
また、有機溶剤を使って炭素前駆体を抽出処理するに際し、加熱して抽出温度を高くすると、溶解速度や溶解力を上げるうえで好ましい。
また、抽出処理を多段階で行なってもよく、例えば、トルエンで抽出した後、さらに、溶解力の強い例えばキノリン等で抽出してもよい。
In order to extract the carbon precursor using an organic solvent, an appropriate method can be used. For example, a Soxhlet extraction method can be used.
In addition, when the carbon precursor is extracted using an organic solvent, a carbon precursor pulverized in advance by an appropriate method may be used.
Moreover, when extracting a carbon precursor using an organic solvent, it is preferable to raise the extraction temperature by heating to increase the dissolution rate and the dissolving power.
Further, the extraction treatment may be performed in multiple stages. For example, after extraction with toluene, extraction may be performed with quinoline or the like having a strong dissolving power.
抽出処理後の抽出残分を回収するには、適宜の分離方法を用いることができ、例えば、遠心分離、ろ過法などが使用される。 In order to collect the extraction residue after the extraction treatment, an appropriate separation method can be used. For example, a centrifugal separation method, a filtration method, or the like is used.
得られる電極活物質は、熱処理による脱溶剤を行なってもよい。例えば、不活性雰囲気下、300〜400℃に加熱してもよく、さらにまた、酸等で洗浄し、重金属等の不純物を除去してもよい。
また、電極活物質は、用途に応じ、適宜の方法で粉砕・分級等を行い、粒度を調整してもよい。
The obtained electrode active material may be subjected to solvent removal by heat treatment. For example, it may be heated to 300 to 400 ° C. in an inert atmosphere, and may be washed with an acid or the like to remove impurities such as heavy metals.
In addition, the electrode active material may be pulverized and classified by an appropriate method according to the use, and the particle size may be adjusted.
以上説明した本実施の形態例に係る電気二重層キャパシタ用電極活物質の製造方法によれば、電極単位体積当たりの静電容量が高い電気二重層キャパシタを得ることができる。また、このとき、従来技術のような賦活処理を必要としない。 According to the method for manufacturing an electrode active material for an electric double layer capacitor according to the present embodiment described above, an electric double layer capacitor having a high capacitance per electrode unit volume can be obtained. Further, at this time, the activation process as in the prior art is not required.
つぎに、本実施の形態に係る電気二重層キャパシタは、上記の電気二重層キャパシタ用電極活物質の製造方法によって得られ、炭素に対する水素の原子比(H/C)が0.35〜0.42の範囲内で、且つ、BET比表面積が5〜65m2/gにある電気二重層キャパシタ用電極活物質である。
本実施の形態例に係る電気二重層キャパシタは、特に非水系電気二重層キャパシタ用途に敵である。
Next, the electric double layer capacitor according to the present embodiment is obtained by the method for producing an electrode active material for an electric double layer capacitor described above, and the atomic ratio of hydrogen to carbon (H / C) is 0.35 to 0. It is an electrode active material for an electric double layer capacitor having a BET specific surface area of 5 to 65 m 2 / g within the range of 42.
The electric double layer capacitor according to the present embodiment is an enemy especially for non-aqueous electric double layer capacitor applications.
以下、本実施の形態例に係る電気二重層キャパシタ用電極活物質の製造方法および電気二重層キャパシタの実施例を説明する。なお、本発明は、いかに説明する実施例に限定されるものでない。 Hereinafter, the manufacturing method of the electrode active material for electric double layer capacitors and the example of the electric double layer capacitor according to the present embodiment will be described. In addition, this invention is not limited to the Example described how.
(実施例―1)
(電極活物質の調製)
活性炭前駆体として用いたコールタール系メソフェーズピッチ(CTPmp)はメソフェーズ含有量が100%である。このメソフェーズピッチを32メッシュ以下に粉砕した後、メソフェーズピッチの粉末20gに対し、200gのTHF中、60℃で6時間煮沸した。煮沸後、遠心分離機でTHF溶液を除いた後、新たにTHFを加えて、THFが着色しなくなるまで上記操作を繰り返した。
その後、残渣を回収し、真空中、110℃で6時間乾燥し、81%の活物質―1を得た。
(BET比表面積の測定)
ユアサアイオニクス社製AUTOSORB I型装置により活物質のBET比表面積を測定した。比表面積は5m2/gであった。
(H/Cの測定)
LECO社の元素分析装置 CHN−2000を用いて活物質の炭素に対する水素の原子数比(H/C)を分析した。H/Cの算出は、元素分析で得られた炭素の重量%WCと、水素の重量%WHから、次式で求めた。
H/C[−]=WC/WH×12
得られた活物質―1のH/Cは0.41であった。
(Example-1)
(Preparation of electrode active material)
The coal tar mesophase pitch (CTPmp) used as the activated carbon precursor has a mesophase content of 100%. After this mesophase pitch was pulverized to 32 mesh or less, 20 g of mesophase pitch powder was boiled in 200 g of THF at 60 ° C. for 6 hours. After boiling, the THF solution was removed by a centrifuge, and then THF was newly added, and the above operation was repeated until the THF was not colored.
Thereafter, the residue was recovered and dried in vacuum at 110 ° C. for 6 hours to obtain 81% of active material-1.
(Measurement of BET specific surface area)
The BET specific surface area of the active material was measured with an AUTOSORB I type apparatus manufactured by Yuasa Ionics. The specific surface area was 5 m 2 / g.
(Measurement of H / C)
The atomic ratio (H / C) of hydrogen to carbon of the active material was analyzed using an elemental analyzer CHN-2000 from LECO. The H / C was calculated from the weight% WC of carbon obtained by elemental analysis and the weight% WH of hydrogen by the following formula.
H / C [−] = WC / WH × 12
H / C of the obtained active material-1 was 0.41.
(シート電極の調製)
活物質、三井デュポンフルオロケミカル社製PTFE−Jおよびライオン製ケッチェンブラックEC600JDを重量比8:1:1で混合・分散し、シート化して厚み100μmのシート電極を得た。シート電極は、直径16mmφの円盤状に打ち抜き、120℃で8時間減圧乾燥した。
(Preparation of sheet electrode)
The active material, PTFE-J made by Mitsui DuPont Fluorochemical Co., Ltd., and Ketjen Black EC600JD made by Lion were mixed and dispersed at a weight ratio of 8: 1: 1 and formed into a sheet to obtain a sheet electrode having a thickness of 100 μm. The sheet electrode was punched into a disk shape with a diameter of 16 mmφ and dried under reduced pressure at 120 ° C. for 8 hours.
(テストセルの調製)
市販のガラス繊維製ろ紙をセパレータに用い、上記シートを用いて2極式のテストセルを組んだ。テストセルには、宝泉製HSフラットセルを用いた。
電解液は、富山薬品工業株式会社製の1モル/kgのテトラエチルアンモニウムテトラフルオーブルマイド(Et4NBF4)を含有するプロピレンカーボネート溶液を用いた。
シート電極は、充放電前に、電解質液を減圧下3時間含浸させた。
(Preparation of test cell)
A commercially available glass fiber filter paper was used as a separator, and a bipolar test cell was assembled using the above sheet. An HS flat cell manufactured by Hosen was used as the test cell.
As the electrolytic solution, a propylene carbonate solution containing 1 mol / kg of tetraethylammonium tetrafluoride (Et 4 NBF 4 ) manufactured by Toyama Pharmaceutical Co., Ltd. was used.
The sheet electrode was impregnated with an electrolyte solution under reduced pressure for 3 hours before charging and discharging.
(静電容量の測定)
上記2極式セルで、充放電装置としてナガノ製充放電装置(BTS2004W)を用い、2.7Vの電圧を印加し、100mA/gで5回充放電させ、5回目の放電工程の電流―電圧曲線の傾きから静電容量を測定した。
(Measurement of capacitance)
In the above bipolar cell, a charge / discharge device (BTS2004W) manufactured by Nagano was used as a charge / discharge device, a voltage of 2.7 V was applied, and charge / discharge was performed 5 times at 100 mA / g. The capacitance was measured from the slope of the curve.
(静電容量の算出)
テストセルに装入されたシート電極の重量W(g)とし、充放電電流IをI=100mA/g*Wと設定した。
次式で、静電容量C(単位:F)を求めた。
C=I*(T2−T1)/(V1−V2)
V1:充電電圧80%となる値(単位:V)
V2:充電電圧40%となる値(単位:V)
T1:V1における時間(単位:sec)
T2:V2における時間(単位:sec)
I:放電電流(単位:A)
得られた静電容量Cを正負極のシート電極体積(含浸工程前に測定する)の和で割って体積毎静電容量(単位体積当たりの静電容量 単位:F/cc)と正負極のシート電極重量(含浸工程前に測定する)の和で割って重量毎静電容量(単位重量当たりの静電容量 単位:F/g)を算出した。これらの結果を表―1に示す。以下の他の実施例についても同様である。
(Calculation of capacitance)
The weight W (g) of the sheet electrode charged in the test cell was set, and the charge / discharge current I was set to I = 100 mA / g * W.
The electrostatic capacity C (unit: F) was determined by the following formula.
C = I * (T2-T1) / (V1-V2)
V1: Value at which the charging voltage is 80% (unit: V)
V2: Value for 40% charge voltage (unit: V)
T1: Time at V1 (unit: sec)
T2: Time in V2 (unit: sec)
I: Discharge current (unit: A)
The obtained capacitance C is divided by the sum of positive and negative sheet electrode volumes (measured before the impregnation step), and the capacitance per volume (capacitance unit per unit volume: F / cc) and positive and negative electrode The electrostatic capacity per weight (capacitance unit per unit weight: F / g) was calculated by dividing by the sum of the sheet electrode weights (measured before the impregnation step). These results are shown in Table-1. The same applies to the following other embodiments.
(実施例―2)
実施例―1で使用したメソフェーズピッチの粉末20gに対し、200gのピリジン中、115℃で6時間煮沸した。煮沸後、遠心分離機でピリジン溶液を除いた後、新たにピリジンを加えて、ピリジンが着色しなくなるまで上記操作を繰り返した。
その後、残渣を回収し、アセトンで洗浄し、真空中、110℃で6時間乾燥し、71%の活物質―2を得た。得られた活物質―2は実施例―1と同様に処理し、測定評価した。
(Example-2)
20 g of mesophase pitch powder used in Example-1 was boiled at 115 ° C. for 6 hours in 200 g of pyridine. After boiling, the pyridine solution was removed with a centrifuge, pyridine was newly added, and the above operation was repeated until the pyridine was not colored.
Thereafter, the residue was recovered, washed with acetone, and dried in vacuum at 110 ° C. for 6 hours to obtain 71% of active material-2. The obtained active material-2 was treated and evaluated in the same manner as in Example-1.
(実施例―3)
実施例―1で使用したメソフェーズピッチの粉末20gに対し、200gのキノリン中、90℃で6時間煮沸した。煮沸後、遠心分離機でキノリン溶液を除いた後、新たにキノリンを加えて、キノリンが着色しなくなるまで上記操作を繰り返した。
その後、残渣を回収し、アセトンで洗浄し、真空中、110℃で6時間乾燥し、48%の活物質―3を得た。得られた活物質―3は実施例―1と同様に処理し、測定評価した。
(Example-3)
20 g of the mesophase pitch powder used in Example-1 was boiled at 90 ° C. for 6 hours in 200 g of quinoline. After boiling, the quinoline solution was removed with a centrifuge, quinoline was newly added, and the above operation was repeated until the quinoline was not colored.
Thereafter, the residue was collected, washed with acetone, and dried in vacuum at 110 ° C. for 6 hours to obtain 48% of active material-3. The obtained active material-3 was treated and evaluated in the same manner as in Example-1.
(実施例―4)
実施例―1で使用したメソフェーズピッチを電気炉中450℃(CTPmp450)で1時間処理した。このCTPmp450を32メッシュ以下に粉砕した後、粉末20gに対し、200gのキノリン中、90℃で6時間煮沸した。煮沸後、遠心分離機でキノリン溶液を除いた後、新たにキノリンを加えて、キノリンが着色しなくなるまで上記操作を繰り返した。その後、残渣を回収し、アセトンで洗浄し、真空中、真空中、110℃で6時間乾燥し、73%の活物質―4を得た。得られた活物質―4は実施例―1と同様に処理し、測定評価した。
(Example-4)
The mesophase pitch used in Example-1 was treated in an electric furnace at 450 ° C. (CTPmp450) for 1 hour. This CTPmp450 was pulverized to 32 mesh or less, and then boiled at 90 ° C. for 6 hours in 200 g of quinoline with respect to 20 g of the powder. After boiling, the quinoline solution was removed with a centrifuge, quinoline was newly added, and the above operation was repeated until the quinoline was not colored. Thereafter, the residue was recovered, washed with acetone, and dried in vacuum, under vacuum, at 110 ° C. for 6 hours to obtain 73% of active material-4. The obtained active material-4 was processed and evaluated in the same manner as in Example-1.
(比較例―1)
市販のナフタレン系メソフェーズピッチ(NAR)を32メッシュ以下に粉砕した後、実施例―1と同様に処理し、測定評価した。
(Comparative Example-1)
A commercially available naphthalene-based mesophase pitch (NAR) was pulverized to 32 mesh or less, treated in the same manner as in Example-1, and evaluated.
Claims (3)
It is obtained by the method for producing an electrode active material for an electric double layer capacitor according to any one of claims 1 and 2, and the atomic ratio of hydrogen to carbon (H / C) is in the range of 0.35 to 0.42. And an electric double layer capacitor active material having a specific surface area of 5 to 65 m 2 / g.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009113109A JP2010263092A (en) | 2009-05-08 | 2009-05-08 | Method for producing electrode active material for electric double layer and electric double layer capacitor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009113109A JP2010263092A (en) | 2009-05-08 | 2009-05-08 | Method for producing electrode active material for electric double layer and electric double layer capacitor |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2010263092A true JP2010263092A (en) | 2010-11-18 |
Family
ID=43360943
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009113109A Pending JP2010263092A (en) | 2009-05-08 | 2009-05-08 | Method for producing electrode active material for electric double layer and electric double layer capacitor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2010263092A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012216635A (en) * | 2011-03-31 | 2012-11-08 | Kyushu Univ | Production method of electrode active material for electrical double layer and electrical double layer capacitor |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61233080A (en) * | 1985-04-08 | 1986-10-17 | Mitsubishi Chem Ind Ltd | Porous bulk mesophase and production thereof |
JPS61268353A (en) * | 1985-04-25 | 1986-11-27 | Agency Of Ind Science & Technol | Preparation of porous carbonaceous adsorbent having molecular sieve action |
JPS6481890A (en) * | 1987-09-24 | 1989-03-28 | Nippon Carbon Co Ltd | Porous carbonaceous spherule and production thereof |
JPH06341019A (en) * | 1993-05-26 | 1994-12-13 | Sekiyu Sangyo Kasseika Center | Production of carbon filler |
JPH09255320A (en) * | 1996-03-19 | 1997-09-30 | Maruzen Petrochem Co Ltd | Method for producing porous carbon material having fine pores |
JPH11222732A (en) * | 1997-12-04 | 1999-08-17 | Petoca Ltd | Mesophase pitch-based activated carbon fiber and electric double layer capacitor using the same |
JP2004289130A (en) * | 2003-03-04 | 2004-10-14 | Jeol Ltd | Electric double-layer capacitor |
JP2008135587A (en) * | 2006-11-29 | 2008-06-12 | Nippon Steel Chem Co Ltd | Method for manufacturing electrode active material for electric double layer capacitor and the electric double layer capacitor |
JP2009260112A (en) * | 2008-04-18 | 2009-11-05 | Mitsubishi Gas Chem Co Inc | Producing method of positive-electrode active material for electrochemical capacitor |
JP2010021413A (en) * | 2008-07-11 | 2010-01-28 | Kyushu Univ | Electrode active material for electric double-layer capacitor, and method of manufacturing the same |
-
2009
- 2009-05-08 JP JP2009113109A patent/JP2010263092A/en active Pending
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61233080A (en) * | 1985-04-08 | 1986-10-17 | Mitsubishi Chem Ind Ltd | Porous bulk mesophase and production thereof |
JPS61268353A (en) * | 1985-04-25 | 1986-11-27 | Agency Of Ind Science & Technol | Preparation of porous carbonaceous adsorbent having molecular sieve action |
JPS6481890A (en) * | 1987-09-24 | 1989-03-28 | Nippon Carbon Co Ltd | Porous carbonaceous spherule and production thereof |
JPH06341019A (en) * | 1993-05-26 | 1994-12-13 | Sekiyu Sangyo Kasseika Center | Production of carbon filler |
JPH09255320A (en) * | 1996-03-19 | 1997-09-30 | Maruzen Petrochem Co Ltd | Method for producing porous carbon material having fine pores |
JPH11222732A (en) * | 1997-12-04 | 1999-08-17 | Petoca Ltd | Mesophase pitch-based activated carbon fiber and electric double layer capacitor using the same |
JP2004289130A (en) * | 2003-03-04 | 2004-10-14 | Jeol Ltd | Electric double-layer capacitor |
JP2008135587A (en) * | 2006-11-29 | 2008-06-12 | Nippon Steel Chem Co Ltd | Method for manufacturing electrode active material for electric double layer capacitor and the electric double layer capacitor |
JP2009260112A (en) * | 2008-04-18 | 2009-11-05 | Mitsubishi Gas Chem Co Inc | Producing method of positive-electrode active material for electrochemical capacitor |
JP2010021413A (en) * | 2008-07-11 | 2010-01-28 | Kyushu Univ | Electrode active material for electric double-layer capacitor, and method of manufacturing the same |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012216635A (en) * | 2011-03-31 | 2012-11-08 | Kyushu Univ | Production method of electrode active material for electrical double layer and electrical double layer capacitor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5344972B2 (en) | Carbon material for electric double layer capacitor electrode and manufacturing method thereof | |
KR101545116B1 (en) | Carbonaceous material for negative electrodes of lithium ion capacitors and method for producing same | |
JP5931326B2 (en) | Activated carbon for electric double layer capacitors | |
KR20120091383A (en) | Activated carbon for electric double-layer capacitor electrode and method for producing the same | |
JP2008135587A (en) | Method for manufacturing electrode active material for electric double layer capacitor and the electric double layer capacitor | |
JP5242090B2 (en) | Method for producing activated carbon for electric double layer capacitor electrode | |
JP4576374B2 (en) | Activated carbon, its production method and its use | |
KR101948020B1 (en) | Method for manufacturing activated carbon for electrode material | |
JP2006024747A (en) | Carbon material for electric double-layer capacitor electrode, and its production method | |
JP5619367B2 (en) | Method for producing activated carbon and electric double layer capacitor using activated carbon obtained by the method | |
JP2010263092A (en) | Method for producing electrode active material for electric double layer and electric double layer capacitor | |
JP2013080780A (en) | Negative electrode material for nonaqueous lithium type power storage element, and nonaqueous lithium type power storage element using the same | |
JP2008021833A (en) | Porous carbon material for electric double layer capacitor, manufacturing method thereof, and non-aqueous electric double layer capacitor | |
JP4065011B1 (en) | Non-porous carbon and electric double layer capacitors made from raw materials containing subelements | |
JP3884060B1 (en) | Electric field activation method for electric double layer capacitor | |
US11072532B2 (en) | Method for manufacturing activated carbon for electrode material | |
JP2005001968A (en) | Production method for porous carbon | |
JP2012216635A (en) | Production method of electrode active material for electrical double layer and electrical double layer capacitor | |
JP2009260112A (en) | Producing method of positive-electrode active material for electrochemical capacitor | |
KR20200065994A (en) | Method for manufacturing electrode material for capacitors | |
JP2008021876A (en) | Porous carbon material for non-aqueous electric double layer capacitor, manufacturing method thereof and non-aqueous electric double layer capacitor | |
JP2009253255A (en) | Method for manufacturing active electrode material for electric double layer capacitor | |
JP2016201419A (en) | Carbon material for electricity storage device electrode and method for producing the same | |
WO2021131907A1 (en) | Carbonaceous material, method for producing same, electrode active material for electric double layer capacitors, electrode for electric double layer capacitors, and electric double layer capacitor | |
JP2008288466A (en) | Method for producing non-porous carbon material for electric double layer capacitor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120330 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130208 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130312 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20130723 |