[go: up one dir, main page]

JP2010253366A - Catalytic structure - Google Patents

Catalytic structure Download PDF

Info

Publication number
JP2010253366A
JP2010253366A JP2009105283A JP2009105283A JP2010253366A JP 2010253366 A JP2010253366 A JP 2010253366A JP 2009105283 A JP2009105283 A JP 2009105283A JP 2009105283 A JP2009105283 A JP 2009105283A JP 2010253366 A JP2010253366 A JP 2010253366A
Authority
JP
Japan
Prior art keywords
catalyst
plate
gas flow
catalyst structure
flow direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009105283A
Other languages
Japanese (ja)
Inventor
Toshifumi Mukai
利文 向井
Hiroshi Urabe
祐 占部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2009105283A priority Critical patent/JP2010253366A/en
Publication of JP2010253366A publication Critical patent/JP2010253366A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalytic structure which has a small draft loss, is made compact, has high performance and can be prevented from being clogged with dust. <P>SOLUTION: The catalytic structure is obtained by layering a plurality of plate-like catalysts, on the surface of each of which a component having catalytic activity is deposited, on one another, has a flow path between the adjacent plate-like catalysts and is characterized in that the catalytic structure is divided into two or more stages with respect to the flow direction of gas and the plate-like catalyst-layered directions of the adjacent divided stages are rotated alternately by 90°. It is better in order to exhibit the maximum performance of the catalytic structure when used for cleaning exhaust gas that the ratio L/d of the length L of the plate-like catalyst to the pitch width d of the layered plate-like catalysts is <100 and the ratio s/d of the space s between the adjacent ones of the layered plate-like catalysts to the pitch width d is <5. As a result, the catalytic structure can exhibit such an effect that the catalytic structure has the small draft loss, is made compact, has high performance and can be prevented from being clogged with dust. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、ボイラ排ガス中の窒素酸化物を除去するための脱硝装置等に用いられる板状触媒を積層した触媒構造体に関するものである。   The present invention relates to a catalyst structure in which plate-like catalysts used in a denitration apparatus for removing nitrogen oxides in boiler exhaust gas are laminated.

発電所、各種工場、自動車などから排出される排煙中の窒素酸化物(NOx)は、光化学スモッグや酸性雨の原因物質であり、その効果的な除去方法として、アンモニア(NH3)を還元剤とした選択的接触還元による排煙脱硝法が火力発電所を中心に幅広く用いられている。触媒には、活性や耐久性を考慮して、バナジウム(V)、モリブデン(Mo)あるいはタングステン(W)を活性成分にした酸化チタン(TiO2)系触媒が主に使用されている。 Nitrogen oxides (NOx) in smoke emitted from power plants, various factories, automobiles, etc. are the causative substances of photochemical smog and acid rain. As an effective removal method, ammonia (NH 3 ) is reduced. The flue gas denitration method using selective catalytic reduction as an agent is widely used mainly in thermal power plants. In consideration of activity and durability, a titanium oxide (TiO 2 ) -based catalyst containing vanadium (V), molybdenum (Mo) or tungsten (W) as an active component is mainly used as the catalyst.

前記脱硝触媒は通常ハニカム状や板状に成形されて用いられ、各種製造法が発明、考案されてきた。中でも図1に示すような金属薄板をメタルラス加工し、前記触媒成分をペースト化した後、ガスの流れ方向に同一形状断面で、複数の帯状突起からなる突条部2を平坦部3の間に平行に、かつ互いに等間隔に有する形状に成形して得られる一枚の板状触媒(以下、触媒エレメントということがある)1を積層した触媒ユニット4を図3に示すように触媒エレメント1の突条部2の長手方向がガス流れ方向に沿うようにユニット枠(ケーシング)6内に組み込んで積層して触媒構造体4とすることで、通風圧力損失が小さく、煤塵や石炭の燃焼灰で閉塞されにくいなどの優れた特徴があり、現在火力発電用ボイラ排ガスの脱硝装置に多数用いられている。   The denitration catalyst is usually formed into a honeycomb shape or a plate shape, and various manufacturing methods have been invented and devised. In particular, a metal thin plate as shown in FIG. 1 is subjected to metal lath processing, and the catalyst component is pasted. Then, the protrusion 2 having a plurality of strip-shaped protrusions is formed between the flat portions 3 with the same shape cross section in the gas flow direction. A catalyst unit 4 in which a single plate-like catalyst (hereinafter sometimes referred to as a catalyst element) 1 obtained by molding into shapes having parallel and equal intervals is laminated as shown in FIG. By incorporating and laminating in the unit frame (casing) 6 so that the longitudinal direction of the ridge 2 is along the gas flow direction, the catalyst structure 4 is formed, so that the ventilation pressure loss is small, and dust or coal combustion ash is used. It has excellent features such as being hard to be blocked, and is currently used in many denitration devices for boiler exhaust gas for thermal power generation.

一方、触媒の充填方法にも多くの発明・考案がなされており、特に図1に示す触媒エレメント1をガス流路内のガス流が乱れるように、隣接配置する触媒エレメント1,1の突条部2,2を交互に直角方向にユニット枠(ケーシング)6内に組み込んで得られる触媒構造体4を、図4に示すようにユニット枠(ケーシング)6の一側面から一つの触媒エレメント1の突条部2に直交する方向からガスを導入して使用する方法(特開昭55−152552号公報)は、ガス流れに直交する触媒エレメント1の突条部2で流路内のガス流が乱れて高脱硝率が得られる優れた方法である。   On the other hand, many inventions and devices have been made in the catalyst filling method, and in particular, the catalyst element 1 shown in FIG. 1 has the protrusions of the catalyst elements 1 and 1 arranged adjacent to each other so that the gas flow in the gas flow path is disturbed. As shown in FIG. 4, a catalyst structure 4 obtained by alternately incorporating the portions 2 and 2 into the unit frame (casing) 6 in a perpendicular direction is formed from one side of the unit frame (casing) 6. In the method of introducing gas from a direction orthogonal to the ridge 2 (Japanese Patent Laid-Open No. 55-152552), the gas flow in the flow path is caused by the ridge 2 of the catalyst element 1 orthogonal to the gas flow. It is an excellent method that can be disturbed to obtain a high denitration rate.

特開昭55−152552号公報JP-A-55-152552

図3及び図4に示した触媒構造体は、高効率・コンパクトな装置を達成する上で以下に示す二つの問題を有していた。
第一の問題点は、触媒エレメント1を長尺化した場合において、単位面積あたりの触媒の活性が低下することである。このメカニズムは次の通りである。
The catalyst structure shown in FIGS. 3 and 4 has the following two problems in achieving a highly efficient and compact apparatus.
The first problem is that when the catalyst element 1 is elongated, the activity of the catalyst per unit area is reduced. This mechanism is as follows.

すなわち、触媒の性能である総括物質移動係数kは、触媒表面における真の脱硝性能である触媒面反応速度係数kwと、反応するガスが触媒表面まで物質移動する物質移動係数kfによって決まることが知られており、次の式で示される。   That is, it is known that the overall mass transfer coefficient k, which is the performance of the catalyst, is determined by the catalyst surface reaction rate coefficient kw, which is the true denitration performance on the catalyst surface, and the mass transfer coefficient kf, where the reacting gas moves to the catalyst surface. And is represented by the following equation.

k=1/(1/kf+1/kw) (1)
ここで、k:総括物質移動係数(m/h)
kf:物質移動係数(m/h)
kw:触媒面反応速度係数(m/h)
上の式(1)で、触媒エレメント1のガス流れ方向の長さが長くなると触媒面反応速度定数kwは一定であるが、触媒表面における流れによる境界層が発達し、下流側に行くに従って境界層が厚くなり、物質移動の面からは抵抗体となり、物質移動係数kfが小さくなる。したがって、局所の総括物質移動係数kは脱硝反応速度は下流側に行くに従って低下する。これにより、流れ方向に平均化した平均総括物質移動係数は、触媒が長いより短いほうが大きくなる。
k = 1 / (1 / kf + 1 / kw) (1)
Where k: overall mass transfer coefficient (m / h)
kf: Mass transfer coefficient (m / h)
kw: catalyst surface reaction rate coefficient (m / h)
In the above equation (1), when the length of the catalyst element 1 in the gas flow direction becomes longer, the catalyst surface reaction rate constant kw becomes constant, but a boundary layer is developed by the flow on the catalyst surface, and the boundary becomes smaller as it goes downstream. The layer becomes thicker and becomes a resistor from the surface of mass transfer, and the mass transfer coefficient kf becomes small. Therefore, the local overall mass transfer coefficient k decreases as the denitration reaction rate goes downstream. As a result, the average overall mass transfer coefficient averaged in the flow direction becomes larger when the catalyst is shorter than when it is longer.

第二の問題点は、図3の充填方法では触媒エレメント1,1の間のピッチを大きくすることと触媒構造体4内のガス流路方向の長さを最適化して通風損失と触媒性能を自由に設定できるのに対し、図4の触媒構造体4では通風損失と性能を変化させる自由度が小さいことである。すなわち同一形状の触媒エレメント1の突条部2が隣接する触媒エレメント1の突条部2と交互に直交するように積層する図4の触媒構造体4では触媒エレメント1,1の間のピッチを変更しても触媒構造体4のガス流れ方向の開口率は変化しないため、通風損失はあまり低下しない上に触媒構造体4の長さは該構造体6の間口と同一寸法に固定され、自由に変更し難いことがある。   The second problem is that the filling method of FIG. 3 increases the pitch between the catalyst elements 1 and 1 and optimizes the length in the gas flow path direction in the catalyst structure 4 to reduce the ventilation loss and the catalyst performance. While the catalyst structure 4 in FIG. 4 can be set freely, the ventilation loss and the degree of freedom to change the performance are small. That is, in the catalyst structure 4 of FIG. 4 in which the protrusions 2 of the catalyst elements 1 having the same shape are laminated so as to be alternately orthogonal to the protrusions 2 of the adjacent catalyst elements 1, the pitch between the catalyst elements 1 and 1 is set. Even if it is changed, the aperture ratio in the gas flow direction of the catalyst structure 4 does not change, so the ventilation loss does not decrease so much and the length of the catalyst structure 4 is fixed to the same size as the opening of the structure 6 and is free. It may be difficult to change.

もちろん、形状の異なる触媒エレメント1を二種類用意し、これらを交互に用いてガス流れ方向の触媒長さを変化させることもできるが、製造工程が煩雑になり製造コストの増大をまねくことになる。また、図4に示す触媒構造体4はダスト等を含まないクリーンガスには大きな効果を発揮するが、ダストの多い場合はダスト詰まりの原因になることがある。   Of course, two types of catalyst elements 1 having different shapes can be prepared and used alternately to change the catalyst length in the gas flow direction, but the manufacturing process becomes complicated and the manufacturing cost increases. . Moreover, although the catalyst structure 4 shown in FIG. 4 exerts a great effect on clean gas containing no dust or the like, if the amount of dust is large, it may cause dust clogging.

本発明の課題は、上記従来技術の有する問題点をなくし、通風損失が小さく、コンパクトで高性能、なおかつダストの詰まりを防止できる触媒構造体を提供することである。   An object of the present invention is to provide a catalyst structure that eliminates the above-mentioned problems of the prior art, has low ventilation loss, is compact and has high performance, and can prevent clogging of dust.

本発明の上記課題は次の構成によって達成される。
すなわち、請求項1記載の発明は、表面に触媒活性を有する成分を担持し、平坦部と該平坦部を間隔を隔てて仕切る互いに平行であり、かつ該平坦部の互いに反対側の平面に配置される帯状突起からなる突条部とが交互に繰り返して配置される同一形状の板状触媒を互いに間隔をあけて複数枚積層し、隣接する板状触媒間にガス流路を形成した触媒構造体を一単位とし、ガス流れ方向に対して前記一単位の触媒構造体の複数段を、各段の触媒構造体の板状触媒の積層方向を交互に90°回転させて配置した触媒構造体である。
The above object of the present invention is achieved by the following configuration.
That is, the invention according to claim 1 carries a component having catalytic activity on the surface, is parallel to each other to partition the flat portion and the flat portion at an interval, and is disposed on the planes on the opposite sides of the flat portion. Catalyst structure in which a plurality of identically shaped plate-like catalysts arranged alternately with strips of strip-like protrusions are stacked at intervals to form a gas flow path between adjacent plate-like catalysts A catalyst structure in which a single unit is formed, and a plurality of stages of the catalyst structure of one unit with respect to the gas flow direction are arranged by alternately rotating the stacking direction of the plate-like catalyst of each stage of the catalyst structure by 90 ° It is.

請求項2記載の発明は、前記板状触媒はガス流れ方向に沿って形成された帯状の突起からなる互いに平行な等間隔で設けられる複数の突条部と隣接する突条部の間の平坦部とからなる請求項1記載の触媒構造体である。   According to a second aspect of the present invention, the plate-like catalyst is flat between a plurality of ridges provided at equal intervals parallel to each other and formed of strip-like protrusions formed along the gas flow direction. The catalyst structure according to claim 1, comprising a portion.

請求項3記載の発明は、一単位の触媒構造体の板状触媒のガス流れ方向の長さLが、該板状触媒の積層ピッチ幅dに対してL/d<100であり、各触媒構造体のガス流れ方向の各段の隙間sが、前記板状触媒の積層ピッチ幅dに対してs/d<5である請求項2記載の触媒構造体である。   In the invention according to claim 3, the length L in the gas flow direction of the plate-shaped catalyst of one unit of the catalyst structure is L / d <100 with respect to the stacking pitch width d of the plate-shaped catalyst, and each catalyst The catalyst structure according to claim 2, wherein the gap s between the steps in the gas flow direction of the structure is s / d <5 with respect to the stacking pitch width d of the plate-like catalyst.

本発明の触媒構造体の基本構成である触媒エレメント間に形成されるガス流路は、ガス流れに直交する方向の断面形状はどの位置においても同一である。例えば図1のように板状触媒エレメントのガス流れ方向に平坦部3と帯状突起2を等間隔に有する形状とすることで所望のガス流路を形成することができる。   The gas flow path formed between the catalyst elements, which is the basic structure of the catalyst structure of the present invention, has the same cross-sectional shape in the direction perpendicular to the gas flow at any position. For example, as shown in FIG. 1, a desired gas flow path can be formed by forming a flat portion 3 and strip-shaped protrusions 2 at equal intervals in the gas flow direction of the plate-like catalyst element.

さらに本発明の機能を最大限に発揮するためには、板状触媒のガス流れ方向の長さLが積層ピッチ幅dに対して
L/d<100
であり、各段の板状触媒構造体間の隙間sが
s/d<5
であればよい。
これらの発明により、通風損失が小さく、コンパクトで高性能、なおかつダストの詰まりを防止できる効果を発現することができる。
Furthermore, in order to maximize the function of the present invention, the length L in the gas flow direction of the plate catalyst is L / d <100 with respect to the stacking pitch width d.
And the gap s between the plate-like catalyst structures at each stage is s / d <5
If it is.
According to these inventions, it is possible to exhibit an effect that the ventilation loss is small, compact and high performance, and can prevent clogging of dust.

本発明によれば、通風損失を小さく維持したまま、コンパクト、高性能で、なおかつダストの詰まりを防止できる触媒構造体を提供することができる。   According to the present invention, it is possible to provide a compact and high-performance catalyst structure that can prevent clogging of dust while maintaining a small ventilation loss.

本発明の突条部と平坦部を設けた触媒エレメントの斜視図である。It is a perspective view of the catalyst element which provided the protrusion part and flat part of this invention. 本発明の触媒構造体をガス流れ方向に4段配置した例を示す斜視図である。It is a perspective view which shows the example which has arrange | positioned the catalyst structure of this invention 4 steps | paragraphs in the gas flow direction. 一般的な触媒構造体を示す図である。It is a figure which shows a general catalyst structure. 従来技術である触媒エレメントの突条部を相互に直角方向に組み込んだ触媒構造体を示す図である。It is a figure which shows the catalyst structure which incorporated the protrusion part of the catalyst element which is a prior art in the mutually orthogonal direction. 触媒活性比と触媒エレメント長さの関係を示す図である。It is a figure which shows the relationship between a catalyst activity ratio and catalyst element length.

本発明の実施例を図面と共に説明する。   Embodiments of the present invention will be described with reference to the drawings.

メタチタン酸スラリ(TiO2含有量:30wt%、SO4含有量:8wt%)67kgにパラモリブデン酸アンモン(NH46・Mo724・4H2O)を2.4kg、メタバナジン酸アンモニウム(NH4VO3)を1.28kg加え、加熱ニーダを用いて水を蒸発させながら混練し、水分約36%のペーストを得た。これを3¢の柱状に押し出し、造粒後流動層乾燥機で乾燥し、次に大気中250℃で24時間焼成した。得られた顆粒をハンマーミルで平均粒径5μmの粒径に粉砕して第一成分とした。このときの組成はV/Mo/Ti=4/5/91(原子比)である。 67 kg of metatitanate slurry (TiO 2 content: 30 wt%, SO 4 content: 8 wt%) and 2.4 kg of ammonium paramolybdate (NH 4 ) 6 .Mo 7 O 24 .4H 2 O), ammonium metavanadate ( 1.28 kg of NH 4 VO 3 ) was added and kneaded while evaporating water using a heating kneader to obtain a paste having a water content of about 36%. This was extruded into 3 ¢ columnar shapes, granulated, dried in a fluidized bed dryer, and then calcined in the atmosphere at 250 ° C for 24 hours. The obtained granule was pulverized with a hammer mill to a particle size of 5 μm in average particle size, and used as the first component. The composition at this time is V / Mo / Ti = 4/5/91 (atomic ratio).

以上の方法で得られた粉末20kg、Al23・SiO2系無機繊維3kgおよび水10kgをニーダを用いて1時間混練して粘土状にした。この触媒ペーストを幅500mm、厚さ0.2mmのSUS304製メタルラス基板にアルミニウム溶射を施して粗面化したものにローラを用いてラス目間およびラス目表面に塗布して厚さ約1.0mm、長さ500mmの平板状触媒を得た。この触媒をプレス成形することにより図1に示すような平板状触媒の両側に断面波形の突条部2を所定間隔で複数形成して突条部2と平坦部3からなる触媒エレメント1を得た。平坦部3の間に風乾後大気中で550℃−2時間焼成して触媒エレメント1とした。 20 kg of the powder obtained by the above method, 3 kg of Al 2 O 3 · SiO 2 inorganic fiber and 10 kg of water were kneaded for 1 hour using a kneader to form a clay. The catalyst paste is applied to the surface of the lath and the surface of the lath by applying aluminum spray to a SUS304 metal lath substrate having a width of 500 mm and a thickness of 0.2 mm using a roller, and a thickness of about 1.0 mm. A flat catalyst having a length of 500 mm was obtained. By press-molding this catalyst, a plurality of ridges 2 having a corrugated cross section are formed at predetermined intervals on both sides of a flat catalyst as shown in FIG. 1 to obtain a catalyst element 1 composed of the ridges 2 and flat portions 3. It was. The catalyst element 1 was obtained by air drying between the flat portions 3 and then firing in the atmosphere at 550 ° C. for 2 hours.

また、パラモリブデン酸アンモンに代えて所定量のパラタングステン酸アンモニウム(NH410H10W12746・6H2O)を用いてもよい。なお、各触媒エレメント1のガス流れ方向の長さを200mmとするように切断した。
得られた触媒エレメント1を交互に反転させて81枚積層して触媒ユニット4とし、これを積層バンド5により束ねて触媒積層エレメント(板状触媒構造体)7を得た。
Further, instead of ammonium paramolybdate, a predetermined amount of ammonium paratungstate (NH 4 ) 10 H 10 W 12 O 7 O 46 · 6H 2 O) may be used. In addition, it cut | disconnected so that the length of the gas flow direction of each catalyst element 1 might be set to 200 mm.
The obtained catalyst elements 1 were alternately reversed and 81 sheets were laminated to form a catalyst unit 4, which was bundled by a laminated band 5 to obtain a catalyst laminated element (plate-shaped catalyst structure) 7.

さらに、ユニット枠6内に該触媒積層エレメント7をガス流路方向に4段配置した。前記触媒積層エレメント7のユニット枠6内への充填に際しては、各段の触媒積層エレメント7の積層方向を交互に90°ずつ回転させ、図2にように固定した。このユニット枠6内の触媒積層エレメント7を風乾した後、焼成し、各触媒積層エレメント7内の触媒エレメント1の積層ピッチd=5.7mm、長さL=200mmとし、触媒積層エレメント7をガス流方向に隙間s=0mmで4段配置した。   Further, the catalyst laminated element 7 was arranged in four stages in the gas flow path direction in the unit frame 6. When filling the catalyst stacking element 7 into the unit frame 6, the stacking direction of the catalyst stacking element 7 at each stage was alternately rotated by 90 ° and fixed as shown in FIG. 2. The catalyst laminated element 7 in the unit frame 6 is air-dried and then fired, and the catalyst element 1 in each catalyst laminated element 7 has a lamination pitch d = 5.7 mm and a length L = 200 mm. Four stages were arranged in the flow direction with a gap s = 0 mm.

(比較例1)
実施例1と同一触媒組成と同製法にて得られたガス流れ方向の長さL=800mmの寸法を有する触媒エレメント1を積層ピッチd=5.7mmで積層して一体型の触媒構造体を得た。
(Comparative Example 1)
A catalyst element 1 having the same catalyst composition as in Example 1 and a length L = 800 mm in the gas flow direction obtained by the same manufacturing method is laminated at a lamination pitch d = 5.7 mm to obtain an integrated catalyst structure. Obtained.

上記実施例1と前記比較例の各触媒体をガス流れに直交する方向の断面150mm角とし、表1に示す条件にて脱硝性能を評価し、得られた結果を表2に示す。

Figure 2010253366
The catalyst bodies of Example 1 and Comparative Example were made to have a cross section of 150 mm square in the direction perpendicular to the gas flow, the denitration performance was evaluated under the conditions shown in Table 1, and the results obtained are shown in Table 2.
Figure 2010253366

Figure 2010253366
表2から明らかなように、触媒構造体800mmを流れ方向に4分割することにより、通風圧損はほぼ同等で、反応速度で約40%向上させることができた。
Figure 2010253366
As is clear from Table 2, by dividing the 800 mm catalyst structure into four parts in the flow direction, the ventilation pressure loss was almost the same, and the reaction rate could be improved by about 40%.

図1及び図2に示す実施例を用いて効果のメカニズムについて説明する。
排ガスは触媒ユニット4に流入し、該触媒ユニット4を構成する複数触媒エレメント1に沿って流れることになる。このとき排ガス中に含まれるNOxは、該触媒表面上において、上流側で注入されたNH3ガスによってN2とH2Oに還元される。ここでの触媒の性能は、前述したように、触媒面反応速度と物質移動速度によって決まることが知られている。この場合、触媒エレメント1のガス流れ方向の長さが長くなると触媒自体の触媒面反応速度は不変であるが、触媒表面における流れによる境界層が発達し、下流側に行くに従って境界層が厚くなり、物質移動速度の面からは抵抗体となる。すなわち、境界層の発達により、触媒表面近傍において未反応のNH3とNOxが主流ガスから供給されにくくなり、単位面積当たりの活性が低下することになる。
The mechanism of the effect will be described using the embodiment shown in FIGS.
The exhaust gas flows into the catalyst unit 4 and flows along the plurality of catalyst elements 1 constituting the catalyst unit 4. At this time, NOx contained in the exhaust gas is reduced to N 2 and H 2 O by NH 3 gas injected upstream on the catalyst surface. As described above, it is known that the catalyst performance is determined by the catalyst surface reaction rate and the mass transfer rate. In this case, when the length of the catalyst element 1 in the gas flow direction becomes longer, the catalyst surface reaction rate of the catalyst itself does not change, but a boundary layer due to the flow on the catalyst surface develops and becomes thicker toward the downstream side. In terms of mass transfer speed, it becomes a resistor. That is, due to the development of the boundary layer, unreacted NH 3 and NOx are hardly supplied from the mainstream gas near the catalyst surface, and the activity per unit area is reduced.

触媒反応の性能を上げる方法として、(a)境界層を発達させないように流れを乱す方法、(b)境界層が発達する前の触媒がガスに最初に接触する触媒エレメント1の前縁部を活用する方法が考えられる。
(a)に関しては、従来技術で述べたように特開昭55−152552号公報に示されたように、単位面積当たりの活性は向上するものの、通風圧損が上昇するといった問題が避けられない。それに加えて、ダストを含んだガスに適用した場合、ダストの詰まりや、局所的に流速の早い領域が発生し、粉体摩耗が生じることもある。それに対して、(b)に関しては、流路長さをできるだけ短くすることで達成される。
As a method for improving the performance of the catalytic reaction, (a) a method of disturbing the flow so as not to develop the boundary layer, (b) a front edge of the catalytic element 1 where the catalyst before the boundary layer develops first contacts the gas A method to utilize is conceivable.
Regarding (a), as described in the prior art, as disclosed in Japanese Patent Application Laid-Open No. 55-152552, the activity per unit area is improved, but the problem of increased ventilation pressure loss is unavoidable. In addition, when applied to a gas containing dust, dust clogging or a region with a high local flow velocity may occur, resulting in powder wear. On the other hand, (b) is achieved by making the flow path length as short as possible.

図5は、触媒の総括反応速度に対する長さの影響を調べたものである。
実施例1の触媒エレメント1(積層ピッチd=5.7mm、長さL=200mm)と、長さLを550mm、800mmにそれぞれ変えた触媒エレメント1を比較している。この図から明らかなように、触媒エレメント1のガス流れ方向の長さが短い(これを短尺化という)ほど単位面積当たりの活性が高くなることが分かる。ここで重要なことは、短尺化した触媒エレメント1の積層隙間である。触媒エレメント1の下流端から発達した境界層が完全に整流させるまでには、一般にはL/d>5必要になる。この隙間を大きくとることにより、触媒エレメント1の単位面積当たりの活性は向上するが、触媒エレメント1の充填されない空間が多くなるため、単位体積当たりの活性はかえって低下することになり、触媒構造体をコンパクト化する上で障害となる。
FIG. 5 shows the effect of length on the overall reaction rate of the catalyst.
The catalyst element 1 of Example 1 (lamination pitch d = 5.7 mm, length L = 200 mm) is compared with the catalyst element 1 in which the length L is changed to 550 mm and 800 mm, respectively. As is apparent from this figure, it is understood that the activity per unit area increases as the length of the catalyst element 1 in the gas flow direction is shorter (this is referred to as shortening). What is important here is the stacking gap of the shortened catalyst elements 1. In general, L / d> 5 is required until the boundary layer developed from the downstream end of the catalytic element 1 is completely rectified. By increasing this gap, the activity per unit area of the catalyst element 1 is improved, but the space that is not filled with the catalyst element 1 is increased, so that the activity per unit volume is reduced, and the catalyst structure. It becomes an obstacle to downsizing.

そこで、本発明では種々検討を加えた結果、ガス流れ方向に4段設けた触媒積層エレメント7の各段において積層方向を90°回転させることにより、整流空間を設けず、境界層を解消できることを見出した。すなわち、触媒エレメント1の積層方向に速度分布や濃度分布が生じていた短尺ユニットを出て積層方向が90°回転した触媒積層エレメント7に導入することにより、各段の触媒積層エレメント7の入口近傍で短期間に整流されることになる。このことにより、触媒エレメント1の単位面積当たりの活性と単位体積当たりの活性を両立することができる。   Therefore, as a result of various studies in the present invention, it is possible to eliminate the boundary layer without providing a rectifying space by rotating the stacking direction by 90 ° in each stage of the catalyst stacking element 7 provided in four stages in the gas flow direction. I found it. That is, by introducing the short unit in which the velocity distribution and the concentration distribution are generated in the stacking direction of the catalyst element 1 and introducing it into the catalyst stacking element 7 whose stacking direction is rotated by 90 °, the vicinity of the inlet of the catalyst stacking element 7 in each stage It will be rectified in a short time. Thereby, the activity per unit area and the activity per unit volume of the catalyst element 1 can be made compatible.

触媒エレメント1のガス流れ方向の長さはできるだけ短いものが望ましく、L/d<100が望ましい。逆にあまり短くし過ぎると生産性の低下に繋がることになり、生産性が確保できる5<L/d<100の領域を推奨する。また、触媒積層エレメント7間の隙間sに関しては、空間効率や構造強度の面でs/d<5が許容できるが、触媒エレメント1を積層した一単位の触媒構造体4同士が接触しているものが最も望ましい。   The length of the catalyst element 1 in the gas flow direction is desirably as short as possible, and L / d <100 is desirable. On the other hand, if it is too short, it will lead to a decrease in productivity, and an area of 5 <L / d <100 that can ensure productivity is recommended. Further, regarding the gap s between the catalyst laminated elements 7, s / d <5 is allowable in terms of space efficiency and structural strength, but one unit of the catalyst structure 4 in which the catalyst elements 1 are laminated is in contact. Things are most desirable.

本発明の触媒構造体を用いると、触媒体積や触媒量が確実に低減でき、原材料の使用量低減や製品重量低減の可能性がある。   When the catalyst structure of the present invention is used, the catalyst volume and the amount of catalyst can be surely reduced, and there is a possibility of reducing the amount of raw materials used and the product weight.

1 触媒エレメント 2 突条部
3 平坦部 4 触媒ユニット
5 積層バンド 6 ユニット枠
7 触媒積層エレメント
DESCRIPTION OF SYMBOLS 1 Catalyst element 2 Projection part 3 Flat part 4 Catalyst unit 5 Lamination band 6 Unit frame 7 Catalyst lamination element

Claims (3)

表面に触媒活性を有する成分を担持し、平坦部と該平坦部を間隔を隔てて仕切る互いに平行であり、かつ該平坦部の互いに反対側の平面に配置される帯状突起からなる突条部とが交互に繰り返して配置される同一形状の板状触媒を互いに間隔をあけて複数枚積層し、隣接する板状触媒間にガス流路を形成した触媒構造体を一単位とし、ガス流れ方向に対して前記一単位の触媒構造体の複数段を、各段の触媒構造体の板状触媒の積層方向を交互に90°回転させて配置したことを特徴とする触媒構造体。   A protrusion having a strip-like protrusion disposed on a plane parallel to each other and carrying a component having catalytic activity on the surface, parallel to each other and partitioning the flat portion with a space therebetween; A plurality of identically shaped plate-like catalysts arranged alternately are stacked at intervals and a catalyst structure in which a gas flow path is formed between adjacent plate-like catalysts is taken as one unit in the gas flow direction. On the other hand, a catalyst structure characterized in that a plurality of stages of the catalyst structure of one unit are arranged by alternately rotating the stacking direction of the plate-like catalyst of each stage of the catalyst structure by 90 °. 前記板状触媒はガス流れ方向に沿って形成された帯状の突起からなる互いに平行な等間隔で設けられる複数の突条部と隣接する突条部の間の平坦部とからなることを特徴とする請求項1記載の触媒構造体。   The plate-like catalyst is composed of a plurality of ridges provided at equal intervals parallel to each other and formed of strip-like protrusions formed along the gas flow direction, and a flat part between adjacent ridges. The catalyst structure according to claim 1. 一単位の触媒構造体の板状触媒のガス流れ方向の長さLが、該板状触媒の積層ピッチ幅dに対してL/d<100であり、各触媒構造体のガス流れ方向の各段の隙間sが、前記板状触媒の積層ピッチ幅dに対してs/d<5であることを特徴とする請求項2記載の触媒構造体。   The length L in the gas flow direction of the plate-shaped catalyst of one unit of the catalyst structure is L / d <100 with respect to the stacking pitch width d of the plate-shaped catalyst. The catalyst structure according to claim 2, wherein a gap s between steps is s / d <5 with respect to a stacking pitch width d of the plate-like catalyst.
JP2009105283A 2009-04-23 2009-04-23 Catalytic structure Pending JP2010253366A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009105283A JP2010253366A (en) 2009-04-23 2009-04-23 Catalytic structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009105283A JP2010253366A (en) 2009-04-23 2009-04-23 Catalytic structure

Publications (1)

Publication Number Publication Date
JP2010253366A true JP2010253366A (en) 2010-11-11

Family

ID=43314932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009105283A Pending JP2010253366A (en) 2009-04-23 2009-04-23 Catalytic structure

Country Status (1)

Country Link
JP (1) JP2010253366A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015128660A1 (en) * 2014-02-28 2015-09-03 Johnson Matthey Catalysts (Germany) Gmbh Catalytic device, element box for a catalytic device and handling tool for handling the element box
US20150258494A1 (en) * 2012-11-13 2015-09-17 Mitsubishi Hitachi Power Systems, Ltd. Catalyst structure for exhaust gas cleaning
CN113039056A (en) * 2018-11-05 2021-06-25 巴斯夫欧洲公司 Catalyst, catalyst support or absorbent monolith of stacked bundles
KR20240002267A (en) * 2022-06-28 2024-01-05 (주) 세라컴 Hydrogen generation device using ammonia decomposition catalyst

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5118341U (en) * 1974-07-30 1976-02-10
JPS5428275A (en) * 1977-08-05 1979-03-02 Hitachi Ltd Catalyst structure in catalytic reactor
JPS5479188A (en) * 1977-12-08 1979-06-23 Babcock Hitachi Kk Platelike catalyst
JPS55152552A (en) * 1979-05-14 1980-11-27 Babcock Hitachi Kk Plate catalyst assemblage
JPH0283254A (en) * 1988-09-19 1990-03-23 Inax Corp Honeycomb structure having thermal shock resistance and production thereof
JP2000117120A (en) * 1998-10-14 2000-04-25 Babcock Hitachi Kk Catalyst structure body
JP2002513671A (en) * 1998-05-07 2002-05-14 シーメンス アクチエンゲゼルシヤフト Catalytic converter module
JP2006181442A (en) * 2004-12-27 2006-07-13 Babcock Hitachi Kk Method of regenerating denitrification catalyst
JP2008155078A (en) * 2006-12-20 2008-07-10 Babcock Hitachi Kk Catalyst structure and exhaust gas cleaner using the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5118341U (en) * 1974-07-30 1976-02-10
JPS5428275A (en) * 1977-08-05 1979-03-02 Hitachi Ltd Catalyst structure in catalytic reactor
JPS5479188A (en) * 1977-12-08 1979-06-23 Babcock Hitachi Kk Platelike catalyst
JPS55152552A (en) * 1979-05-14 1980-11-27 Babcock Hitachi Kk Plate catalyst assemblage
JPH0283254A (en) * 1988-09-19 1990-03-23 Inax Corp Honeycomb structure having thermal shock resistance and production thereof
JP2002513671A (en) * 1998-05-07 2002-05-14 シーメンス アクチエンゲゼルシヤフト Catalytic converter module
JP2000117120A (en) * 1998-10-14 2000-04-25 Babcock Hitachi Kk Catalyst structure body
JP2006181442A (en) * 2004-12-27 2006-07-13 Babcock Hitachi Kk Method of regenerating denitrification catalyst
JP2008155078A (en) * 2006-12-20 2008-07-10 Babcock Hitachi Kk Catalyst structure and exhaust gas cleaner using the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150258494A1 (en) * 2012-11-13 2015-09-17 Mitsubishi Hitachi Power Systems, Ltd. Catalyst structure for exhaust gas cleaning
US9694318B2 (en) 2012-11-13 2017-07-04 Mitsubishi Hitachi Power Systems, Ltd. Catalyst structure for exhaust gas cleaning
WO2015128660A1 (en) * 2014-02-28 2015-09-03 Johnson Matthey Catalysts (Germany) Gmbh Catalytic device, element box for a catalytic device and handling tool for handling the element box
CN106030065A (en) * 2014-02-28 2016-10-12 庄信万丰催化剂(德国)有限公司 Catalytic device, component box for catalytic device and handling tool for handling component box
US9879584B2 (en) 2014-02-28 2018-01-30 Johnson Matthey Catalysts (Germany) Gmbh Catalyst device, element box for a catalytic device, and handling tool for handling the element box
CN106030065B (en) * 2014-02-28 2019-02-12 庄信万丰催化剂(德国)有限公司 Catalytic unit, element cassette for catalytic unit and handling tool for handling element cassette
CN113039056A (en) * 2018-11-05 2021-06-25 巴斯夫欧洲公司 Catalyst, catalyst support or absorbent monolith of stacked bundles
KR20240002267A (en) * 2022-06-28 2024-01-05 (주) 세라컴 Hydrogen generation device using ammonia decomposition catalyst
KR102774189B1 (en) 2022-06-28 2025-02-28 (주) 세라컴 Hydrogen generation device using ammonia decomposition catalyst

Similar Documents

Publication Publication Date Title
US9724683B2 (en) Catalyst structure
JP5896883B2 (en) Exhaust gas purification catalyst structure
KR102625031B1 (en) Catalysts, exhaust systems and methods for exhaust gas treatment
JP2010253366A (en) Catalytic structure
TWI803818B (en) Denitration catalyst sytucture
JP4309046B2 (en) Exhaust gas purification catalyst element, catalyst structure, manufacturing method thereof, exhaust gas purification device, and exhaust gas purification method using the same
JP5198744B2 (en) Catalyst structure
JP5804909B2 (en) Exhaust gas purification catalyst structure and manufacturing method thereof
KR102610338B1 (en) Honeycomb catalyst for removing nitrogen oxides in flue gas and exhaust gas and method for manufacturing the same
JP6978827B2 (en) Exhaust gas purification catalyst unit
JP7630958B2 (en) Catalyst unit for purifying exhaust gas and plate-shaped catalyst element for use in the catalyst unit for purifying exhaust gas
JP4959218B2 (en) Method for producing plate-shaped denitration catalyst
JP2014050824A (en) Catalyst element for cleaning exhaust gas and catalyst structure for cleaning exhaust gas
JP2014113569A (en) Catalyst structure for purifying exhaust gas
JP3759832B2 (en) Plate-shaped catalyst structure and catalytic reaction apparatus using the catalyst structure
JP2002191986A (en) Catalyst structure for cleaning exhaust gas and metal lath plate used in formation thereof
JPH09239243A (en) Apparatus and method for exhaust gas denitration
JPH11290699A (en) Honeycomb catalyst
JPH0910599A (en) Unit-plate-shaped catalyst, plate-shaped catalyst structure, and gas purification apparatus
JP2000117120A (en) Catalyst structure body
JP2006181442A (en) Method of regenerating denitrification catalyst
JP3704628B2 (en) Operation method of exhaust gas purification device
JP2020116490A (en) Catalyst structure for purifying exhaust gas
JP5491342B2 (en) Exhaust gas treatment catalyst and catalyst structure
JP2014113568A (en) Catalyst structure for purifying an exhaust gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121204

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130423