JP2010252778A - Method for separating dental pulp-derived mesenchymal stem cell, separated stem cell and differentiation to hepatocyte lineage using them - Google Patents
Method for separating dental pulp-derived mesenchymal stem cell, separated stem cell and differentiation to hepatocyte lineage using them Download PDFInfo
- Publication number
- JP2010252778A JP2010252778A JP2009238443A JP2009238443A JP2010252778A JP 2010252778 A JP2010252778 A JP 2010252778A JP 2009238443 A JP2009238443 A JP 2009238443A JP 2009238443 A JP2009238443 A JP 2009238443A JP 2010252778 A JP2010252778 A JP 2010252778A
- Authority
- JP
- Japan
- Prior art keywords
- cell
- mesenchymal stem
- dental pulp
- derived mesenchymal
- cells
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 210000003074 dental pulp Anatomy 0.000 title claims abstract description 104
- 210000002901 mesenchymal stem cell Anatomy 0.000 title claims abstract description 86
- 238000000034 method Methods 0.000 title claims abstract description 46
- 210000003494 hepatocyte Anatomy 0.000 title claims abstract description 34
- 230000004069 differentiation Effects 0.000 title claims description 23
- 210000000130 stem cell Anatomy 0.000 title description 10
- 210000004027 cell Anatomy 0.000 claims abstract description 191
- 238000000926 separation method Methods 0.000 claims abstract description 19
- 102100032912 CD44 antigen Human genes 0.000 claims abstract description 9
- 101000868273 Homo sapiens CD44 antigen Proteins 0.000 claims abstract description 9
- UREBDLICKHMUKA-CXSFZGCWSA-N dexamethasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)C[C@@H]2O UREBDLICKHMUKA-CXSFZGCWSA-N 0.000 claims abstract description 6
- 229960003957 dexamethasone Drugs 0.000 claims abstract description 6
- 108010014608 Proto-Oncogene Proteins c-kit Proteins 0.000 claims abstract description 5
- 102000016971 Proto-Oncogene Proteins c-kit Human genes 0.000 claims abstract description 5
- 238000002372 labelling Methods 0.000 claims description 27
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 claims description 22
- 239000002609 medium Substances 0.000 claims description 20
- 101150086694 SLC22A3 gene Proteins 0.000 claims description 10
- 238000000684 flow cytometry Methods 0.000 claims description 8
- 238000012258 culturing Methods 0.000 claims description 6
- 210000001900 endoderm Anatomy 0.000 claims description 6
- 230000001939 inductive effect Effects 0.000 claims description 5
- 229910052711 selenium Inorganic materials 0.000 claims description 5
- 239000011669 selenium Substances 0.000 claims description 5
- 101710160107 Outer membrane protein A Proteins 0.000 claims description 4
- 108091005804 Peptidases Proteins 0.000 claims description 4
- 102000035195 Peptidases Human genes 0.000 claims description 4
- 239000011324 bead Substances 0.000 claims description 4
- 238000001943 fluorescence-activated cell sorting Methods 0.000 claims description 3
- 230000002062 proliferating effect Effects 0.000 claims description 3
- 210000004357 third molar Anatomy 0.000 description 22
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 20
- 239000012091 fetal bovine serum Substances 0.000 description 20
- 210000000515 tooth Anatomy 0.000 description 18
- 210000004489 deciduous teeth Anatomy 0.000 description 15
- 210000001519 tissue Anatomy 0.000 description 12
- 238000002073 fluorescence micrograph Methods 0.000 description 11
- 239000000243 solution Substances 0.000 description 11
- 239000006285 cell suspension Substances 0.000 description 10
- 239000003550 marker Substances 0.000 description 10
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 8
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 8
- 230000006698 induction Effects 0.000 description 8
- 108090000623 proteins and genes Proteins 0.000 description 7
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 6
- 102000003745 Hepatocyte Growth Factor Human genes 0.000 description 6
- 108090000100 Hepatocyte Growth Factor Proteins 0.000 description 6
- 238000012744 immunostaining Methods 0.000 description 6
- 239000008188 pellet Substances 0.000 description 6
- 239000006228 supernatant Substances 0.000 description 6
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 5
- 108090000631 Trypsin Proteins 0.000 description 5
- 102000004142 Trypsin Human genes 0.000 description 5
- 239000000427 antigen Substances 0.000 description 5
- 102000036639 antigens Human genes 0.000 description 5
- 108091007433 antigens Proteins 0.000 description 5
- 238000005138 cryopreservation Methods 0.000 description 5
- 239000003814 drug Substances 0.000 description 5
- 238000000605 extraction Methods 0.000 description 5
- 230000009545 invasion Effects 0.000 description 5
- 210000001778 pluripotent stem cell Anatomy 0.000 description 5
- 230000001172 regenerating effect Effects 0.000 description 5
- 210000000246 tooth germ Anatomy 0.000 description 5
- 239000012588 trypsin Substances 0.000 description 5
- 229960001322 trypsin Drugs 0.000 description 5
- 102100033421 Keratin, type I cytoskeletal 18 Human genes 0.000 description 4
- 102100033420 Keratin, type I cytoskeletal 19 Human genes 0.000 description 4
- 108010066327 Keratin-18 Proteins 0.000 description 4
- 108010066302 Keratin-19 Proteins 0.000 description 4
- 102000008730 Nestin Human genes 0.000 description 4
- 108010088225 Nestin Proteins 0.000 description 4
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 4
- 239000004202 carbamide Substances 0.000 description 4
- 210000005055 nestin Anatomy 0.000 description 4
- 102000004169 proteins and genes Human genes 0.000 description 4
- 239000007760 Iscove's Modified Dulbecco's Medium Substances 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 210000000988 bone and bone Anatomy 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 239000007850 fluorescent dye Substances 0.000 description 3
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 2
- 108010088751 Albumins Proteins 0.000 description 2
- 102000009027 Albumins Human genes 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 2
- 208000005623 Carcinogenesis Diseases 0.000 description 2
- 102000029816 Collagenase Human genes 0.000 description 2
- 108060005980 Collagenase Proteins 0.000 description 2
- 101100335081 Mus musculus Flt3 gene Proteins 0.000 description 2
- 210000001185 bone marrow Anatomy 0.000 description 2
- 230000036952 cancer formation Effects 0.000 description 2
- 231100000504 carcinogenesis Toxicity 0.000 description 2
- 210000004413 cardiac myocyte Anatomy 0.000 description 2
- 229960002424 collagenase Drugs 0.000 description 2
- 210000002808 connective tissue Anatomy 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 239000003102 growth factor Substances 0.000 description 2
- 230000002440 hepatic effect Effects 0.000 description 2
- 238000011532 immunohistochemical staining Methods 0.000 description 2
- 210000004283 incisor Anatomy 0.000 description 2
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 2
- 210000004185 liver Anatomy 0.000 description 2
- 238000007885 magnetic separation Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 210000000214 mouth Anatomy 0.000 description 2
- 210000005036 nerve Anatomy 0.000 description 2
- 230000035755 proliferation Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000001356 surgical procedure Methods 0.000 description 2
- 210000003556 vascular endothelial cell Anatomy 0.000 description 2
- 102100023635 Alpha-fetoprotein Human genes 0.000 description 1
- 102000027791 CD44 antigen Human genes 0.000 description 1
- 108091016585 CD44 antigen Proteins 0.000 description 1
- 241000282465 Canis Species 0.000 description 1
- 102000012422 Collagen Type I Human genes 0.000 description 1
- 108010022452 Collagen Type I Proteins 0.000 description 1
- 241000701022 Cytomegalovirus Species 0.000 description 1
- 238000002965 ELISA Methods 0.000 description 1
- 102100031573 Hematopoietic progenitor cell antigen CD34 Human genes 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 101000777663 Homo sapiens Hematopoietic progenitor cell antigen CD34 Proteins 0.000 description 1
- 101000599951 Homo sapiens Insulin-like growth factor I Proteins 0.000 description 1
- 101001078143 Homo sapiens Integrin alpha-IIb Proteins 0.000 description 1
- 101001139134 Homo sapiens Krueppel-like factor 4 Proteins 0.000 description 1
- 101000610551 Homo sapiens Prominin-1 Proteins 0.000 description 1
- 101000738771 Homo sapiens Receptor-type tyrosine-protein phosphatase C Proteins 0.000 description 1
- 101000884271 Homo sapiens Signal transducer CD24 Proteins 0.000 description 1
- 108010003272 Hyaluronate lyase Proteins 0.000 description 1
- 102000001974 Hyaluronidases Human genes 0.000 description 1
- 102000004877 Insulin Human genes 0.000 description 1
- 108090001061 Insulin Proteins 0.000 description 1
- 102100037852 Insulin-like growth factor I Human genes 0.000 description 1
- 102100025306 Integrin alpha-IIb Human genes 0.000 description 1
- 102100020677 Krueppel-like factor 4 Human genes 0.000 description 1
- 101150008417 LIN gene Proteins 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 101710135898 Myc proto-oncogene protein Proteins 0.000 description 1
- 102100038895 Myc proto-oncogene protein Human genes 0.000 description 1
- 241000204031 Mycoplasma Species 0.000 description 1
- 108010067372 Pancreatic elastase Proteins 0.000 description 1
- 102000016387 Pancreatic elastase Human genes 0.000 description 1
- 102000004160 Phosphoric Monoester Hydrolases Human genes 0.000 description 1
- 108090000608 Phosphoric Monoester Hydrolases Proteins 0.000 description 1
- 241000288906 Primates Species 0.000 description 1
- 102100040120 Prominin-1 Human genes 0.000 description 1
- 108010059712 Pronase Proteins 0.000 description 1
- 101100247004 Rattus norvegicus Qsox1 gene Proteins 0.000 description 1
- 102100037422 Receptor-type tyrosine-protein phosphatase C Human genes 0.000 description 1
- 102100038081 Signal transducer CD24 Human genes 0.000 description 1
- 108010090804 Streptavidin Proteins 0.000 description 1
- 101710150448 Transcriptional regulator Myc Proteins 0.000 description 1
- 238000008083 Urea Assay Methods 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 230000001464 adherent effect Effects 0.000 description 1
- 210000001789 adipocyte Anatomy 0.000 description 1
- 108010026331 alpha-Fetoproteins Proteins 0.000 description 1
- 210000004102 animal cell Anatomy 0.000 description 1
- 230000001745 anti-biotin effect Effects 0.000 description 1
- 238000004166 bioassay Methods 0.000 description 1
- 229960002685 biotin Drugs 0.000 description 1
- 235000020958 biotin Nutrition 0.000 description 1
- 239000011616 biotin Substances 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 210000002449 bone cell Anatomy 0.000 description 1
- 210000000845 cartilage Anatomy 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 210000001612 chondrocyte Anatomy 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 210000003298 dental enamel Anatomy 0.000 description 1
- 210000001968 dental pulp cell Anatomy 0.000 description 1
- 210000004268 dentin Anatomy 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 108010007093 dispase Proteins 0.000 description 1
- 230000004064 dysfunction Effects 0.000 description 1
- 210000003981 ectoderm Anatomy 0.000 description 1
- 235000013601 eggs Nutrition 0.000 description 1
- 210000001671 embryonic stem cell Anatomy 0.000 description 1
- 210000004039 endoderm cell Anatomy 0.000 description 1
- 210000002919 epithelial cell Anatomy 0.000 description 1
- 238000010195 expression analysis Methods 0.000 description 1
- 210000002950 fibroblast Anatomy 0.000 description 1
- 239000012595 freezing medium Substances 0.000 description 1
- 210000004195 gingiva Anatomy 0.000 description 1
- 210000000301 hemidesmosome Anatomy 0.000 description 1
- 229960002773 hyaluronidase Drugs 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 229940125396 insulin Drugs 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 210000003716 mesoderm Anatomy 0.000 description 1
- 239000011325 microbead Substances 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 210000002569 neuron Anatomy 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 210000004416 odontoblast Anatomy 0.000 description 1
- 230000003239 periodontal effect Effects 0.000 description 1
- 210000004261 periodontium Anatomy 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 229940024999 proteolytic enzymes for treatment of wounds and ulcers Drugs 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 208000006860 root resorption Diseases 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 239000012679 serum free medium Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000011550 stock solution Substances 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 230000017423 tissue regeneration Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 230000035899 viability Effects 0.000 description 1
Landscapes
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Description
本発明は、歯髄から幹細胞を分離するための方法、該分離方法により分離した幹細胞及び該幹細胞を含む集団、該幹細胞の肝細胞系譜への分化及び肝細胞系譜に分化した細胞に関する。 The present invention relates to a method for separating stem cells from dental pulp, a stem cell separated by the separation method and a population containing the stem cells, differentiation of the stem cells into a hepatocyte lineage and cells differentiated into a hepatocyte lineage.
今日、患者自身の細胞を用いて行う再生医療は、組織適合不一致による拒絶反応の問題や、受精卵を材料とした胚性幹細胞の利用による生命倫理的な問題を回避することができることから、非常に大きな関心が寄せられている。 Today, regenerative medicine using patients' own cells can avoid the problem of rejection due to histocompatibility mismatch and the bioethical problem due to the use of embryonic stem cells made from fertilized eggs. There is great interest in
再生医療の治療や研究目的の細胞源としては、間葉系幹細胞が広く用いられている。間葉系幹細胞は、増殖能が高く、軟骨・筋肉・肝細胞・神経細胞・心筋細胞・血管内皮細胞等、種々の細胞に分化することが知られている。現在、間葉系幹細胞の取得は、主に骨髄からの取得により行われている。しかし、骨髄からの取得は、健常部への外科的侵襲を行うため苦痛を伴うものである。 Mesenchymal stem cells are widely used as a cell source for regenerative medicine treatment and research purposes. Mesenchymal stem cells are known to have a high proliferation ability and to differentiate into various cells such as cartilage, muscle, hepatocytes, nerve cells, cardiomyocytes, and vascular endothelial cells. Currently, acquisition of mesenchymal stem cells is performed mainly by acquisition from bone marrow. However, acquisition from the bone marrow is painful because of the surgical invasion of the healthy part.
また、人工多能性幹細胞(iPS細胞)が、拒絶反応や倫理的問題を回避できる再生医療に利用可能な細胞として期待が高まっている。しかし、遺伝子導入に起因する細胞の癌化等、安全性に関する課題は山積みである。 In addition, artificial pluripotent stem cells (iPS cells) are expected as cells that can be used in regenerative medicine that can avoid rejection and ethical problems. However, there are a lot of safety issues such as canceration of cells caused by gene transfer.
そこで、近年、歯関連組織に存在する間葉系幹細胞に関する知見が報告されている。歯関連組織は、外科的侵襲をほとんど加えることなく容易に採取できる細胞源であるという点で優れている。例えば特許文献1では、第三大臼歯(親知らず)の歯胚からの接着分離培養による間葉系幹細胞の取得、及び、当該細胞の骨、肝臓、神経等への誘導が開示されている。 Thus, in recent years, knowledge about mesenchymal stem cells present in tooth-related tissues has been reported. Teeth-related tissue is superior in that it is a cell source that can be easily harvested with little surgical invasion. For example, Patent Document 1 discloses acquisition of mesenchymal stem cells by adhesion-separation culture from tooth germs of third molars (wisdom teeth), and induction of the cells into bone, liver, nerves, and the like.
しかしながら、特許文献1では、骨性完全埋伏の第三大臼歯(親知らず)の歯胚を用いているため、(1)適用可能な年齢に制限が生じてしまう(例えば、10代後半前後)。(2)歯胚を摘出するために、顎骨削除など外科的侵襲を伴う大掛かりな手術を行う必要がある。(3)摘出手術中に、口腔内で種々の細菌(例えば、マイコプラズマ)・ウイルス(例えば、サイトメガロウイルス)等に感染する可能性が非常に高い。(4)摘出手術後の腫脹・開口障害・機能障害が強い、等の様々な問題を抱えている。 However, in patent document 1, since the tooth germ of the 3rd molar (a wisdom tooth) of bone complete impact is used, (1) The age which can be applied will be restricted (for example, around the late teens). (2) In order to remove a tooth germ, it is necessary to perform a large-scale operation involving a surgical invasion such as jaw bone removal. (3) During extraction surgery, there is a very high possibility of infection with various bacteria (for example, mycoplasma) and viruses (for example, cytomegalovirus) in the oral cavity. (4) It has various problems such as swelling, opening disorder, strong dysfunction after extraction surgery.
また、従来、歯関連組織細胞集団からの未分化多能性幹細胞の分離は、当該細胞集団を外植片培養に付して、付着細胞群を選別することにより行われている。しかしながら、このような接着培養による幹細胞の分離方法は、目的の細胞に性質変化が引き起こされる可能性、目的の細胞以外の細胞が混入する可能性があり、最終的に得られる細胞の性質にばらつきが生じる問題を抱えている。 Conventionally, the undifferentiated pluripotent stem cells are separated from the tooth-related tissue cell population by subjecting the cell population to explant culture and selecting the adherent cell group. However, such a method for separating stem cells by adhesion culture may cause a change in properties of the target cells and may be mixed with cells other than the target cells, resulting in variations in the properties of the finally obtained cells. Have a problem that occurs.
本発明者らは、上記課題を解決すべく鋭意検討を重ねた。その結果、乳歯や第三大臼歯(親知らず)の歯髄から間葉系幹細胞を分離するのに有用な細胞表面抗原を見いだした。また、該表面抗原に対する抗体を用いて歯髄由来間葉系幹細胞を特異的に検出することにより、夾雑細胞のコンタミネーションを防ぎかつ短時間で分離することが可能な方法を見いだした。さらに驚くべきことに、分離した細胞は、歯胚よりも成熟した組織である歯髄(外胚葉性)由来の細胞であるにもかかわらず非常に高い増殖能を示すと共に、内胚葉性である肝細胞系譜へと分化させることができることを見いだした。本発明は上記の知見を元にして完成されたものである。 The present inventors have intensively studied to solve the above problems. As a result, we found cell surface antigens useful for isolating mesenchymal stem cells from the pulp of deciduous teeth and third molars (wisdom teeth). Further, the present inventors have found a method capable of preventing contamination of contaminating cells and separating them in a short time by specifically detecting dental pulp-derived mesenchymal stem cells using an antibody against the surface antigen. Surprisingly, the isolated cells have a very high proliferative capacity despite being derived from the pulp (ectodermal), which is a more mature tissue than the tooth germ, and the liver is endodermal. We found that it can be differentiated into a cell lineage. The present invention has been completed based on the above findings.
すなわち、本発明の要旨は以下の通りである。
(1)歯髄由来間葉系幹細胞を含む細胞群に、CD117(c−kit)又はCD44いずれか少なくとも1種に対する抗体を加え、所定の細胞を直接標識法又は間接標識法により標識し、当該標識を利用して分離することを特徴とする歯髄由来間葉系幹細胞の分離方法。
(2)磁気細胞分離(MACS)又はフローサイトメトリー(FACS)のいずれか少なくとも一方を用いて行うことを特徴とする(1)記載の歯髄由来間葉系幹細胞の分離方法。
(3)(1)又は(2)に記載の方法であって、下記(a)〜(d)の工程を含むことを特徴とする歯髄由来間葉系幹細胞の分離方法。
(a)歯髄をタンパク質分解酵素で処理する工程
(b)(a)で得られた細胞を培養し、増殖させる工程
(c)(b)で培養した細胞群において歯髄由来間葉系幹細胞を磁気ビーズで標識する工程
(d)(c)の工程を経た細胞を分離カラムに添加し、標識した細胞を回収する工程
(4)前記歯髄は、上皮付着の破れていない歯から採取したものであることを特徴とする(1)乃至(4)記載の歯髄由来間葉系幹細胞の分離方法。
(5)CD117又はCD44いずれか少なくとも1種の細胞表面抗原を発現する歯髄由来間葉系幹細胞。
(6)(1)乃至(5)記載の分離方法により単離した歯髄由来間葉系幹細胞。
(7)内胚葉系譜に分化することができる(5)又は(6)記載の歯髄由来間葉系幹細胞。
(8)肝細胞系譜に分化することができる(5)乃至(7)記載の歯髄由来間葉系幹細胞。
(9)(5)乃至(8)記載の歯髄由来間葉系幹細胞を含む細胞集団。
(10)前記細胞集団において、少なくとも25%が細胞表面抗原CD117を発現し、少なくとも40%がOct3/4を発現し、少なくとも85%がnanogを発現している(9)記載の細胞集団。
(11)(9)又は(10)記載の細胞集団の継代方法であって、継代5回につき少なくとも1回、前記細胞集団にCD117又はCD44いずれか少なくとも1種に対する抗体を加え、所定の細胞を直接標識法又は間接標識法で標識することにより歯髄由来間葉系幹細胞の細胞株を維持する細胞の継代方法。
(12)(9)又は(10)記載の細胞集団であって、細胞集団倍加数が50回以上であるセルライン。
(13)(5)乃至(8)記載の歯髄由来間葉系幹細胞を肝細胞系譜に分化誘導する方法であって、下記(e)および(f)の工程を含むことを特徴とする歯髄由来間葉系幹細胞の肝細胞系譜への分化誘導方法。
(e)2%FBS及び20ng/mlHGFを含むDMEM培地で培養する工程
(f)2%FBS、20ng/mlHGF、10ng/mlオンコスタチン、10nMデキサメタゾン、50ng/mlインシュリン‐トランスフェリン‐セレニウムX(ITS−X)を含むDMEM培地で培養する工程
(14)(5)乃至(8)記載の歯髄由来間葉系幹細胞から分化した肝細胞系譜の細胞。
(15)(13)に記載の方法により分化した肝細胞系譜の細胞。
That is, the gist of the present invention is as follows.
(1) An antibody against at least one of CD117 (c-kit) and CD44 is added to a cell group containing dental pulp-derived mesenchymal stem cells, and a predetermined cell is labeled by a direct labeling method or an indirect labeling method. A method for isolating dental pulp-derived mesenchymal stem cells, which comprises separating using pulp.
(2) The method for separating dental pulp-derived mesenchymal stem cells according to (1), which is performed using at least one of magnetic cell separation (MACS) and flow cytometry (FACS).
(3) The method according to (1) or (2), comprising the following steps (a) to (d): A method for separating dental pulp-derived mesenchymal stem cells.
(A) Step of treating dental pulp with proteolytic enzyme (b) Step of culturing and proliferating the cells obtained in (a) (c) In the cell group cultured in (b), dental pulp-derived mesenchymal stem cells are magnetized Steps (d) and (c) for labeling with beads are added to the separation column, and the labeled cells are collected (4) The pulp is collected from a tooth whose epithelial adhesion is not broken. The method for separating dental pulp-derived mesenchymal stem cells according to any one of (1) to (4).
(5) Dental pulp-derived mesenchymal stem cells that express at least one cell surface antigen of either CD117 or CD44.
(6) Dental pulp-derived mesenchymal stem cells isolated by the separation method according to (1) to (5).
(7) The dental pulp-derived mesenchymal stem cell according to (5) or (6), which can differentiate into an endoderm lineage.
(8) The dental pulp-derived mesenchymal stem cell according to (5) to (7), which can be differentiated into a hepatocyte lineage.
(9) A cell population comprising the dental pulp-derived mesenchymal stem cells according to (5) to (8).
(10) The cell population according to (9), wherein in the cell population, at least 25% expresses cell surface antigen CD117, at least 40% expresses Oct3 / 4, and at least 85% expresses nanog.
(11) A method for subculture of a cell population according to (9) or (10), wherein an antibody against at least one of CD117 and CD44 is added to the cell population at least once every 5 passages, A cell passage method for maintaining a cell line of dental pulp-derived mesenchymal stem cells by labeling cells with a direct labeling method or an indirect labeling method.
(12) A cell line according to (9) or (10), wherein the cell population doubling number is 50 times or more.
(13) A method for inducing differentiation of dental pulp-derived mesenchymal stem cells according to (5) to (8) into a hepatocyte lineage, comprising the following steps (e) and (f): A method for inducing differentiation of mesenchymal stem cells into a hepatocyte lineage.
(E) Step of culturing in DMEM medium containing 2% FBS and 20 ng / ml HGF (f) 2% FBS, 20 ng / ml HGF, 10 ng / ml oncostatin, 10 nM dexamethasone, 50 ng / ml insulin-transferrin-selenium X (ITS- Step 14 of culturing in DMEM medium containing X) Cells of hepatocyte lineage differentiated from dental pulp-derived mesenchymal stem cells according to (5) to (8).
(15) Hepatocyte lineage cells differentiated by the method according to (13).
本発明の歯髄由来間葉系幹細胞の分離方法を用いることにより、乳歯や第三大臼歯(親知らず)の歯髄から、内胚葉系譜への分化が可能な幹細胞を取得することできる。また、夾雑細胞のコンタミネーションを防ぎ、従来よりも純度の高い歯髄幹細胞の集団を得ることができる。 By using the method for separating dental pulp-derived mesenchymal stem cells of the present invention, stem cells that can differentiate into endoderm lineage can be obtained from the dental pulp of deciduous teeth and third molars (wisdom tooth). Further, contamination of contaminating cells can be prevented, and a pulp stem cell population with higher purity than before can be obtained.
これは、従来は抜歯時に廃棄されていた乳歯や、萌出した第三大臼歯(親知らず)を材料源とし、外科的侵襲の負担を抑えて当該歯を採取し、当該歯の歯髄より分離した間葉系幹細胞を保存・利用することができるため、倫理的問題及び拒絶反応問題、発癌を回避した再生医療の早期実現に大きく貢献し得るものである。 This is because while the milk teeth that had been discarded at the time of tooth extraction and the erupted third molar (a wisdom tooth) were used as the source of material, the tooth was collected and separated from the dental pulp of the tooth while reducing the burden of surgical invasion. Since leaf stem cells can be stored and used, it can greatly contribute to the early realization of regenerative medicine avoiding ethical problems, rejection problems, and carcinogenesis.
本発明において歯髄とは、歯の中核に見られる血管と神経に富んだ結合組織であり、歯胚における歯乳頭が成長したものを意味する。本発明においては、哺乳類由来、例えばヒト等の霊長類由来の歯髄を用いることができる。
1.本発明の歯髄由来間葉系幹細胞の分離方法
In the present invention, the dental pulp is a connective tissue rich in blood vessels and nerves found in the core of the tooth, and means a tooth papilla grown in a tooth germ. In the present invention, pulps derived from mammals, for example, primates such as humans can be used.
1. Method for separating dental pulp-derived mesenchymal stem cells of the present invention
本発明の歯髄由来間葉系幹細胞の分離方法は、歯髄由来間葉系幹細胞を含む細胞群に、CD117(c−kit)又はCD44いずれか少なくとも1種に対する抗体を加え、所定の細胞を直接標識法又は間接標識法により標識し、当該標識を利用して分離することを特徴とする。 In the method for separating dental pulp-derived mesenchymal stem cells of the present invention, an antibody against at least one of CD117 (c-kit) and CD44 is added to a cell group containing dental pulp-derived mesenchymal stem cells, and predetermined cells are directly labeled. It is characterized by labeling by the method or indirect labeling method, and separating using the label.
本発明における歯髄供給源となる歯は、口腔内にあって細菌の侵入していない状態、いわゆるヘミデスモゾーム結合による上皮付着が破れていないものであればどのような歯であってもよい。歯肉上に萌出した歯であってもよく、具体的には、乳歯(門歯(切歯)、犬歯、臼歯)又は第三大臼歯(親知らず)を挙げることができる。また、歯根吸収段階は問わない。なお、歯髄供給源となる歯は、抜歯後に一旦冷凍保存しておき、必要に応じて解凍してもよい。 The tooth as a dental pulp supply source in the present invention may be any tooth as long as it is in the oral cavity and is not invaded by bacteria, that is, the epithelial adhesion due to so-called hemidesmosome binding is not broken. Teeth erupted on the gingiva may be mentioned, and specific examples include deciduous teeth (incisors (incisors), canines, molars) or third molars (wisdom teeth). Further, the root resorption stage does not matter. In addition, the tooth | gear used as a dental pulp supply source may be once frozen and preserve | saved after extraction, and may be thawed | decompressed as needed.
本発明に用いられる歯髄の採取は、当業者に周知の方法により行うことができる。例えば、抜去乳歯の場合、歯根はほぼ完全に吸収され、冠部歯髄は歯槽骨内に露出している。そこで、抜歯後直ちにこの露出部よりエキスカベーター又は抜髄用クレンザーにて摘出する。第3大臼歯の場合は、歯科用切削バーにて歯頚部周囲に溝を入れ、歯科用スパチュラを挿入して分割し、根部・冠部歯髄を乳歯の方法に準じ採取する。 The dental pulp used in the present invention can be collected by methods well known to those skilled in the art. For example, in the case of extracted deciduous teeth, the roots are almost completely absorbed and the crown pulp is exposed in the alveolar bone. Therefore, immediately after tooth extraction, it is extracted from this exposed portion with an excavator or a pulp removal cleanser. In the case of the third molar, a groove is made around the tooth neck with a dental cutting bar, a dental spatula is inserted and divided, and the root and crown pulp is collected according to the method of the deciduous tooth.
本発明における分離に供する歯髄由来細胞は、採取した歯髄を適当な緩衝液又は培養液中でタンパク質分解酵素により処理することにより得ることができる。タンパク質分解酵素としては、コラゲナーゼ、トリプシン、ヒアルロニダーゼ、エラスターゼ、プロナーゼ、ディスパーゼを挙げることができ、タイプIコラーゲンを用いることがより好ましい。 The dental pulp-derived cells to be subjected to separation in the present invention can be obtained by treating the collected dental pulp with a proteolytic enzyme in an appropriate buffer or culture solution. Examples of proteolytic enzymes include collagenase, trypsin, hyaluronidase, elastase, pronase, and dispase, and it is more preferable to use type I collagen.
また、分離ステップに進む前に、得られた細胞懸濁液はフィルター等を利用して細胞塊を除去し、単一細胞の懸濁液とすることが好ましい。なお、当該細胞は、分離ステップに必要な量(例えば、1×108個)にまで増殖させることが好ましい。 In addition, before proceeding to the separation step, the obtained cell suspension is preferably made into a single cell suspension by removing cell clumps using a filter or the like. In addition, it is preferable to grow the said cell to the quantity (for example, 1 * 10 < 8 >) required for a isolation | separation step.
分離に供する歯髄細胞、及び、本発明の方法により分離した歯髄由来間葉系幹細胞の培養は、動物細胞の培養に用いる通常の血清含有培地や無血清培地を用いて、通常の動物細胞培養の条件下で行うことができる。例えば、20%FBS(ウシ胎仔血清)含有のDMEM(Dulbecco’s Modified Eagle’s Medium)培地を用い、37℃、5%CO2インキュベーター中での静置培養により行うことができる。 The dental pulp cells to be separated and the dental pulp-derived mesenchymal stem cells separated by the method of the present invention can be cultured using a normal serum-containing medium or serum-free medium used for animal cell culture. Under the conditions. For example, using DMEM (Dulbecco's Modified Eagle's Medium) medium containing 20% FBS (fetal bovine serum), it can be performed by static culture in a 37 ° C., 5% CO 2 incubator.
本発明の歯髄由来間葉系幹細胞の分離は、歯髄由来間葉系幹細胞の表面に発現している抗原を認識する任意の抗体を用いて細胞を標識し、当該標識を利用して分離することにより行う。 Separation of dental pulp-derived mesenchymal stem cells of the present invention is performed by labeling cells using any antibody that recognizes the antigen expressed on the surface of dental pulp-derived mesenchymal stem cells, and separating using the label. To do.
ここで、歯髄由来間葉系幹細胞の表面に発現している抗原を認識する抗体としては、間葉系幹細胞を認識できるものであればどのようなものであってもよいが、CD44抗原を認識する抗体であることが好ましく、CD117(c−kit)抗原を認識する抗体であることがより好ましい。 Here, the antibody that recognizes the antigen expressed on the surface of dental pulp-derived mesenchymal stem cells may be any antibody that can recognize mesenchymal stem cells, but recognizes the CD44 antigen. The antibody that recognizes the CD117 (c-kit) antigen is more preferable.
細胞を標識する方法としては、直接標識法又は間接標識法のいずれを用いてもよい。ここで直接標識法とは、検出抗体(一次抗体)自身が標識されており一度の抗原抗体反応で細胞標識を行う方法を指し、間接標識法とは、検出抗体(一次抗体)は標識せずに、検出抗体を検出する別の抗体(二次抗体)を標識することにより細胞標識を行う方法を指す。例えば、間接標識は、蛍光色素標識、ビオチン標識又は非標識のいずれかの一次抗体で細胞を標識した後に、抗蛍光色素抗体、抗ビオチン抗体、ストレプトアビジン又は抗IgG抗体のいずれかを用いることにより行うことができる。 As a method for labeling cells, either a direct labeling method or an indirect labeling method may be used. Here, the direct labeling method refers to a method in which the detection antibody (primary antibody) itself is labeled and performs cell labeling by a single antigen-antibody reaction, and the indirect labeling method does not label the detection antibody (primary antibody). In addition, it refers to a method of labeling a cell by labeling another antibody (secondary antibody) that detects the detection antibody. For example, indirect labeling is performed by labeling cells with a primary antibody, either fluorescent dye-labeled, biotin-labeled or unlabeled, and then using either an anti-fluorescent dye antibody, anti-biotin antibody, streptavidin or anti-IgG antibody. It can be carried out.
分離手段としては、細胞を磁気ビーズの結合した抗体で標識して分離する磁気分離法(MACS)及び細胞を蛍光色素標識して分離するフローサイトメトリー(FACS)を用いることができる。ここで磁気分離法(MACS)は、少スケールでの実施が可能であること、分離時に細胞に及ぼす物理的ストレスが少ないことから、短時間で回収率・生存率が高い細胞を容易に取得でき、本発明の分離手段としてより好ましい。なお、磁気ビーズは、その大きさが極めて微小であるため、分離後の培養において生物学的に分解され、その後の細胞の機能や生存率に影響を与えるものではない。
2.本発明の歯髄由来間葉系幹細胞、該細胞を含む細胞集団及びセルライン
As the separation means, there can be used magnetic separation method (MACS) for labeling and separating cells with an antibody to which magnetic beads are bound, and flow cytometry (FACS) for labeling and separating cells with a fluorescent dye. Here, the magnetic separation method (MACS) can be performed on a small scale, and since there is little physical stress on the cells during the separation, cells with high recovery and viability can be easily obtained in a short time. More preferable as the separation means of the present invention. Since magnetic beads are extremely small in size, they are biologically degraded in the culture after separation, and do not affect the function and survival rate of subsequent cells.
2. Dental pulp-derived mesenchymal stem cell of the present invention, cell population containing the cell, and cell line
本発明の歯髄由来間葉系幹細胞、該細胞を含む細胞集団及びセルラインは、本発明の方法により分離された歯髄由来間葉系幹細胞、該細胞を含む細胞集団及びセルラインであることを特徴とする。 The dental pulp-derived mesenchymal stem cells, the cell population containing the cells and the cell line of the present invention are the dental pulp-derived mesenchymal stem cells isolated by the method of the present invention, the cell population containing the cells and the cell line, And
本発明の方法により得られた歯髄由来間葉系幹細胞を含む細胞集団は、増殖能力が非常に高く、通常の培養条件下で継代培養を行うことによりセルラインを樹立することができる。例えば、20%FBS(ウシ胎仔血清)含有のDMEM(Dulbecco’s Modified Eagle’s Medium)培地を用いて、25cm2フラスコで80%コンフルエントになるまで培養し、0.05%トリプシン/0.53mM EDTA PBSを用いて細胞を剥がし、1:3の分割比で再播種することによる継代培養によりセルラインを樹立することができる。 The cell population containing dental pulp-derived mesenchymal stem cells obtained by the method of the present invention has a very high proliferation ability, and a cell line can be established by performing subculture under normal culture conditions. For example, using a DMEM (Dulbecco's Modified Eagle's Medium) medium containing 20% FBS (fetal bovine serum) in a 25 cm 2 flask until 80% confluent, 0.05% trypsin / 0.53 mM Cell lines can be established by subculturing by detaching cells using EDTA PBS and reseeding at a 1: 3 split ratio.
なお、当該細胞集団の継代において、継代5回につき少なくとも1回、歯髄由来間葉系幹細胞に存在する分子に対する抗体を前記細胞集団に加え、所定の細胞を直接標識法又は間接標識法で標識することにより歯髄由来間葉系幹細胞の細胞株を維持してもよい。当該分子の例としては、CD117又はCD44等が挙げられるがこれらに限定されるものではない。また、2種以上の抗体を組み合わせて用いても良い。 In the passage of the cell population, an antibody against a molecule present in the dental pulp-derived mesenchymal stem cell is added to the cell population at least once every 5 passages, and a predetermined cell is directly or indirectly labeled. The cell line of dental pulp-derived mesenchymal stem cells may be maintained by labeling. Examples of the molecule include, but are not limited to, CD117 or CD44. Two or more kinds of antibodies may be used in combination.
本発明の歯髄由来間葉系幹細胞を含むセルラインは、細胞集団倍加数が50回以上であることが好ましく、60回以上、70回以上、80回以上、90回以上、100回以上であることが好ましい。 The cell line containing dental pulp-derived mesenchymal stem cells of the present invention preferably has a cell population doubling number of 50 times or more, 60 times or more, 70 times or more, 80 times or more, 90 times or more, 100 times or more. It is preferable.
本発明の歯髄由来間葉系幹細胞、該細胞を含む細胞集団及びセルラインは、免疫組織化学染色やフローサイトメトリーにより間葉系幹細胞に近い性質を示すことを確認することができる。マーカーとしては、未分化幹細胞、多能性幹細胞、間葉系幹細胞のマーカーとして当業者に公知のものを用いることができ、例えば、CD117、CD44H、Oct3/4、Nanog、ネスチン、サイトケラチン19、アルカリホスファターゼ(ALP)、SPARC(オステオネクチン)、CD24、CD34、CD41、CD45、CD133、Lin(Lineage marker)、Sca−1及びFlt3/Flk2を用いることができる。また、未分化マーカーとあわせて分化マーカーを用いることもでき、例えば、サイトケラチン18を用いることができる。 It can be confirmed that the dental pulp-derived mesenchymal stem cells, cell populations and cell lines containing the cells of the present invention show properties close to mesenchymal stem cells by immunohistochemical staining and flow cytometry. As the marker, those known to those skilled in the art as markers for undifferentiated stem cells, pluripotent stem cells, and mesenchymal stem cells can be used. For example, CD117, CD44H, Oct3 / 4, Nanog, nestin, cytokeratin 19, Alkaline phosphatase (ALP), SPARC (ostonectin), CD24, CD34, CD41, CD45, CD133, Lin (Lineage marker), Sca-1 and Flt3 / Flk2 can be used. In addition, a differentiation marker can be used in combination with an undifferentiation marker, for example, cytokeratin 18 can be used.
本発明の歯髄由来間葉系幹細胞及び該細胞を含むセルラインは、CD117、CD44H、Oct3/4、Nanog、ネスチン、サイトケラチン19、アルカリホスファターゼ(ALP)及びSPARC(オステオネクチン)陽性であり、サイトケラチン18陰性であることが好ましい。 The pulp-derived mesenchymal stem cell of the present invention and a cell line containing the cell are positive for CD117, CD44H, Oct3 / 4, Nanog, nestin, cytokeratin 19, alkaline phosphatase (ALP) and SPARC (ostonectin) It is preferably keratin 18 negative.
本発明の歯髄由来間葉系幹細胞を含む細胞集団は、Oct3/4陽性の細胞が40%以上であることが好ましく、50%以上であることが好ましく、65%以上であることが好ましい。また、Nanog陽性の細胞が85%以上であることが好ましく、95%以上であることが好ましく、99%以上であることが好ましい。さらに、CD117陽性の細胞が25%以上であることが好ましく、35%以上であることが好ましく、45%以上であることが好ましい。 The cell population containing dental pulp-derived mesenchymal stem cells of the present invention preferably has 40% or more of Oct3 / 4 positive cells, preferably 50% or more, and preferably 65% or more. In addition, Nanog positive cells are preferably 85% or more, preferably 95% or more, and preferably 99% or more. Furthermore, CD117 positive cells are preferably 25% or more, preferably 35% or more, and preferably 45% or more.
なお、本発明の歯髄由来間葉系幹細胞は、任意の遺伝子を導入したものであってもよい。例えば、本発明の歯髄由来間葉系幹細胞から、全能性に近い性質を持つと言われているiPS細胞を作製してもよい。iPS細胞は、Sox2、Oct3/4、KLF4、c−myc等、脱分化状態への移行を促す遺伝子を導入することにより作製することができる。
3.本発明の歯髄由来間葉系幹細胞の肝細胞系譜への分化誘導方法
In addition, the pulp-derived mesenchymal stem cell of the present invention may be one into which an arbitrary gene has been introduced. For example, iPS cells that are said to have properties close to totipotency may be produced from the dental pulp-derived mesenchymal stem cells of the present invention. iPS cells can be prepared by introducing genes that promote transition to a dedifferentiated state, such as Sox2, Oct3 / 4, KLF4, and c-myc.
3. Method for inducing differentiation of dental pulp-derived mesenchymal stem cells of the present invention into hepatocyte lineage
本発明の歯髄由来間葉系幹細胞は、内胚葉系譜、中胚葉系譜及び外胚葉系譜のいずれに分化させてもよい。例えば、骨細胞、軟骨細胞、肝細胞、膵臓細胞、脂肪細胞、神経細胞、心筋細胞、血管内皮細胞等の各種細胞や、歯関連細胞及び組織が挙げられる。歯関連細胞及び組織としては、例えば、象牙芽細胞、歯周組織、象牙質、セメント質、エナメル質、歯根膜組織、結合組織等が挙げられる。各種細胞及び組織への分化は当業者に周知の方法により行うことができる。 The dental pulp-derived mesenchymal stem cells of the present invention may be differentiated into any of the endoderm lineage, mesoderm lineage, and ectoderm lineage. Examples thereof include various cells such as bone cells, chondrocytes, hepatocytes, pancreatic cells, fat cells, nerve cells, cardiomyocytes, vascular endothelial cells, and tooth-related cells and tissues. Examples of the tooth-related cells and tissues include odontoblasts, periodontium, dentin, cementum, enamel, periodontal tissue, connective tissue, and the like. Differentiation into various cells and tissues can be performed by methods well known to those skilled in the art.
例えば、本発明の歯髄由来間葉系幹細胞は、内胚葉性である肝細胞系譜へと分化させることができる。まず、肝細胞増殖因子(HGF)及びウシ胎仔血清(FBS)を含有する培地で5日間程度培養する。HGF濃度は20ng/ml、FBS濃度は2%、基本培地はDMEM(Dulbecco’s Modified Eagle’s Medium)であることが好ましいがこれらに限定されるものではない。次に、デキサメタゾン、インシュリン‐トランスフェリン‐セレニウムX(ITS−X)、オンコスタチンを含有する培地で15日間程度培養する。デキサメタゾン濃度は10nM、インシュリン‐トランスフェリン‐セレニウムX(ITS−X)濃度は50ng/ml、オンコスタチン濃度は10ng/ml、基本培地はIMDM(Iscove’s Modified Dulbecco’s Medium)であることが好ましいがこれらに限定されるものではない。 For example, the dental pulp-derived mesenchymal stem cells of the present invention can be differentiated into an endoderm hepatocyte lineage. First, the cells are cultured for about 5 days in a medium containing hepatocyte growth factor (HGF) and fetal bovine serum (FBS). The HGF concentration is preferably 20 ng / ml, the FBS concentration is 2%, and the basic medium is preferably DMEM (Dulbecco's Modified Eagle's Medium), but is not limited thereto. Next, the cells are cultured for about 15 days in a medium containing dexamethasone, insulin-transferrin-selenium X (ITS-X), and oncostatin. Preferably, the dexamethasone concentration is 10 nM, the insulin-transferrin-selenium X (ITS-X) concentration is 50 ng / ml, the oncostatin concentration is 10 ng / ml, and the basic medium is IMDM (Iscove's Modified Dulbecco's Medium). It is not limited to these.
本発明の内胚葉又は肝細胞系譜への分化は、細胞の形態により確認することができる。例えば、乳歯歯髄由来間葉系幹細胞は、繊維芽細胞様の紡錘状の形態であるのに対し、肝細胞系譜への分化誘導後の細胞は、実質細胞様の多角形の形態である。 Differentiation into the endoderm or hepatocyte lineage of the present invention can be confirmed by cell morphology. For example, deciduous dental pulp-derived mesenchymal stem cells have a fibroblast-like spindle-like shape, whereas cells after induction of differentiation into a hepatocyte lineage have a parenchymal-like polygonal form.
また、分化の程度は、分化マーカーを用いた免疫組織化学染色やフローサイトメトリーにより確認することができる。肝細胞系譜に分化させた細胞では、マーカーとして例えば、α−フェトプロテイン、アルブミン及びインシュリン用増殖因子(IGF−1)を用いることができる。 The degree of differentiation can be confirmed by immunohistochemical staining using a differentiation marker or flow cytometry. In cells differentiated into the hepatocyte lineage, for example, α-fetoprotein, albumin, and insulin growth factor (IGF-1) can be used as markers.
本発明の細胞は、凍結保存しておくことができる。つまり、歯髄から分離した歯髄由来間葉系幹細胞及び/又は該細胞から肝細胞系譜に分化した細胞(初代培養、継代培養細胞、セルラインを含む)を細胞凍結保存液に入れ、−80℃以下の冷凍庫にて凍結保存することができる。細胞凍結保存液及び細胞凍結保存方法については、当業者に周知の方法により行うことができる。細胞凍結保存液としては、10%DMSO、30%FBS、60%DMEMから構成されるものであることが好ましいが、これに限定されるものではない。 The cells of the present invention can be stored frozen. That is, dental pulp-derived mesenchymal stem cells isolated from dental pulp and / or cells differentiated from the cells into hepatocyte lineage (including primary culture, subcultured cells, and cell line) are placed in a cell cryopreservation solution, and -80 ° C. It can be stored frozen in the following freezer. The cell cryopreservation solution and the cell cryopreservation method can be performed by methods well known to those skilled in the art. The cell cryopreservation solution is preferably composed of 10% DMSO, 30% FBS, and 60% DMEM, but is not limited thereto.
また、凍結保存した細胞は、細胞が必要になった際に当業者に周知の方法により解凍・洗浄し、必要に応じて細胞を増殖させたり、目的の細胞に分化させたりすることができる。これにより、例えば、組織修復の必要な患者のニーズに迅速に対応することが可能となる。 In addition, the cryopreserved cells can be thawed and washed by a method well known to those skilled in the art when the cells are needed, and the cells can be proliferated or differentiated into the target cells as necessary. Thereby, for example, it becomes possible to quickly respond to the needs of patients who need tissue repair.
以下、本発明を実施例により詳細に説明するが、本発明はこれら実施例に限定されるものではない。 EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to these Examples.
[試料の調製]
不要となり抜歯したヒトの乳歯及び第三大臼歯から、インフォームドコンセントを得た後、バーブドブローチを用いて歯髄を採取した。採取した歯髄をDMEM(20%FCS)に入れ、15mlのコニカル遠心チューブに移した後、3mg/mlコラゲナーゼ タイプI(Waco Pure Chemical Industries Ltd. # 03−1760)を1ml添加し、組織を切断した。組織切断後(最大10分)、1000×gで5分間遠心し、上清を除去し、細胞ペレットを20%FBS(Invitrogen, Sigma, HyClone)を添加した2mlのDMEM(# Invitrogen 12800−017)に懸濁した。その後、懸濁液を孔径30μmのフィルター(Miltenyi Biotech GmbH # 130−041−407)に通して細胞塊を除去した。
[Sample preparation]
Informed consent was obtained from human deciduous teeth and third molars that were no longer needed, and the pulp was collected using a barbed broach. The collected dental pulp was placed in DMEM (20% FCS), transferred to a 15 ml conical centrifuge tube, and then 1 ml of 3 mg / ml collagenase type I (Waco Pure Chemical Industries Ltd. # 03-1760) was added to cut the tissue. . After tissue cutting (maximum 10 min), centrifuge at 1000 × g for 5 min, remove supernatant, and cell pellet with 2 ml DMEM (# Invitrogen 12800-017) supplemented with 20% FBS (Invitrogen, Sigma, HyClone) It was suspended in. Thereafter, the suspension was passed through a filter (Miltenyi Biotech GmbH # 130-041-407) having a pore size of 30 μm to remove cell clumps.
得られた単一細胞の懸濁液を、DMEM(20%FBS)培地を用いて25cm2フラスコに播種し、37℃、5%CO2条件下で培養した。2〜3日毎にDMEM(10%FBS)で培地交換を行い、80%コンフルエントになるまで培養した。80%コンフルエントになった後、ピペットを用いて培地を除去し、5mlPBS(Invitrogen #14200)溶液で3分間洗浄した。その後、細胞を0.05%トリプシン/0.53mM EDTA(Invitrogen #25300−054)PBS中で5〜7分間インキュベートした。細胞懸濁液を15mlコニカル遠心チューブ(組織培養液入り)に回収して1000×gで5分間遠心した後、上清を除去し、細胞ペレットを3mlのDMEM(20%FBS)に懸濁した。 The obtained single cell suspension was seeded in a 25 cm 2 flask using DMEM (20% FBS) medium, and cultured at 37 ° C. under 5% CO 2 conditions. Every 2-3 days, the medium was changed with DMEM (10% FBS), and the cells were cultured until they became 80% confluent. After becoming 80% confluent, the medium was removed using a pipette and washed with 5 ml PBS (Invitrogen # 14200) solution for 3 minutes. Cells were then incubated for 5-7 minutes in 0.05% trypsin / 0.53 mM EDTA (Invitrogen # 25300-054) PBS. The cell suspension was collected in a 15 ml conical centrifuge tube (with tissue culture solution), centrifuged at 1000 × g for 5 minutes, the supernatant was removed, and the cell pellet was suspended in 3 ml of DMEM (20% FBS). .
[磁気細胞分離(MACS)によるCD117陽性細胞の分離]
以下の操作は、細胞を冷却状態に保ち、冷却した溶液を用いて、速やかに行った。
[Separation of CD117 positive cells by magnetic cell separation (MACS)]
The following operation was quickly performed using the cooled solution while keeping the cells in a cooled state.
実施例1により調製した細胞の細胞数を測定した後、細胞懸濁液を300×gで10分間遠心し、上清を完全に除去した。細胞ペレットを1×108個の細胞あたり300μlのバッファーに懸濁した。バッファーとしては、MACS BSA Stock Solution(Miltenyi Biotech GmbH # 130−091−376)と、autoMACS(登録商標) Rinsing Solution (Miltenyi Biotech GmbH # 130−091−222)を1:20で混合した溶液(0.5% BSA、2mM EDTAのPBS溶液)を脱気して用いた。更に、細胞懸濁液に、1×108個の細胞あたり100μlのFcR Blocking Reagent、1×108個の細胞あたり100μlのCD117 MicroBeads (Miltenyi Biotech # 130−091−332)を添加して混合し、4℃で15分間インキュベートした。その後、1×108個の細胞あたり1mlのバッファーを加えて細胞を洗浄して300×gで10分間遠心し、上清を完全に除去し、細胞ペレットを1×108個の細胞あたり500μlのバッファーに懸濁した。 After measuring the cell number of the cells prepared in Example 1, the cell suspension was centrifuged at 300 × g for 10 minutes, and the supernatant was completely removed. The cell pellet was suspended in 300 μl buffer per 1 × 10 8 cells. As a buffer, MACS BSA Stock Solution (Miltenyi Biotech GmbH # 130-091-376) and autoMACS (registered trademark) Rising Solution (Miltenyi Biotech GmbH # 130-091-222) were mixed at 1:20. 5% BSA, 2 mM EDTA in PBS) was used after degassing. Further, the cell suspension was mixed with the addition of 1 × 10 8 pieces of cells per 100μl FcR Blocking Reagent, 1 × 10 8 cells per 100μl CD117 MicroBeads (Miltenyi Biotech # 130-091-332 ) Incubated for 15 minutes at 4 ° C. Thereafter, 1 ml of buffer per 1 × 10 8 cells was added to wash the cells, centrifuged at 300 × g for 10 minutes, the supernatant was completely removed, and the cell pellet was 500 μl per 1 × 10 8 cells. In the buffer.
カラム(MS:Miltenyi Biotech GmbH # 130−042−201)をセパレーター(Mini MACS:Miltenyi Biotech GmbH)に設置し、500μlのバッファーでカラムをすすいだ後、細胞懸濁液をカラムにアプライした。カラムを500μlのバッファーで3回洗浄し、溶出した非標識細胞分画を回収した。カラムをセパレーターから外し、チューブの上に設置した後、1mlのバッファーをカラムにアプライし、プランジャーで磁気標識細胞分画を溶出した。 A column (MS: Miltenyi Biotech GmbH # 130-042-201) was placed on a separator (Mini MACS: Miltenyi Biotech GmbH), and the column was rinsed with 500 μl of buffer, and then the cell suspension was applied to the column. The column was washed 3 times with 500 μl of buffer and the eluted unlabeled cell fraction was collected. After removing the column from the separator and placing it on the tube, 1 ml of buffer was applied to the column, and the magnetically labeled cell fraction was eluted with a plunger.
[歯髄由来間葉系幹細胞を含むセルラインの樹立]
得られたCD117陽性細胞をDMEM(20%FBS)培地に懸濁し、25cm2フラスコに播種し、37℃、5%CO2条件下で1日培養した。2〜3日毎にDMEM(10%FBS)で培地交換を行い、80%コンフルエントになるまで培養した。80%コンフルエントになった後、ピペットを用いて培地を除去し、5mlPBS溶液で3分間洗浄した。その後、細胞を0.05%トリプシン/0.53mM EDTA(Invitrogen #25300−054)PBS中で5〜7分間インキュベートした。細胞懸濁液を15mlコニカル遠心チューブ(組織培養液入り)に回収して1000×gで5分間遠心した後、上清を除去し、細胞ペレットを3mlのDMEM(20%FBS)に懸濁した。その後、DMEM(20%FBS)、25cm2フラスコを用いて1:3の分割比で継代培養を行い、細胞集団倍加数が50回以上であるCD117陽性の歯髄由来間葉系幹細胞を含むセルラインを樹立した。
[Establishment of cell lines containing dental pulp-derived mesenchymal stem cells]
The obtained CD117 positive cells were suspended in DMEM (20% FBS) medium, seeded in a 25 cm 2 flask, and cultured for 1 day under conditions of 37 ° C. and 5% CO 2 . Every 2-3 days, the medium was changed with DMEM (10% FBS), and the cells were cultured until they became 80% confluent. After becoming 80% confluent, the medium was removed using a pipette and washed with 5 ml PBS solution for 3 minutes. Cells were then incubated for 5-7 minutes in 0.05% trypsin / 0.53 mM EDTA (Invitrogen # 25300-054) PBS. The cell suspension was collected in a 15 ml conical centrifuge tube (with tissue culture solution), centrifuged at 1000 × g for 5 minutes, the supernatant was removed, and the cell pellet was suspended in 3 ml of DMEM (20% FBS). . Then, cells containing CD117-positive dental pulp-derived mesenchymal stem cells that are subcultured at a split ratio of 1: 3 using DMEM (20% FBS) and 25 cm 2 flasks and have a cell population doubling number of 50 or more. A line was established.
[歯髄由来間葉系細胞のマーカー発現解析]
実施例1〜3により得られたヒト歯髄由来間葉系細胞のマーカータンパク質の発現を、免疫染色及びフローサイトメトリーにて解析した。
[Marker expression analysis of dental pulp-derived mesenchymal cells]
The expression of the marker protein of the human dental pulp-derived mesenchymal cells obtained in Examples 1 to 3 was analyzed by immunostaining and flow cytometry.
CD117、CD44H、Oct3/4、Nanog、ネスチン及びサイトケラチン19に対する免疫染色の結果をそれぞれ図1、図2、図3、図4、図5及び図6に示す。アルカリホスファターゼ(ALP)、SPARC(オステオネクチン)に対する免疫染色の結果をそれぞれ図7及び図8に示す。サイトケラチン18に対する免疫染色の結果を図9に示す。 The results of immunostaining for CD117, CD44H, Oct3 / 4, Nanog, nestin and cytokeratin 19 are shown in FIG. 1, FIG. 2, FIG. 3, FIG. 4, FIG. The results of immunostaining for alkaline phosphatase (ALP) and SPARC (ostonectin) are shown in FIGS. 7 and 8, respectively. The results of immunostaining for cytokeratin 18 are shown in FIG.
図1〜図6に示すように、多能性幹細胞のマーカーであるCD117、CD44H、Oct3/4、Nanog、ネスチン、サイトケラチン19が、ヒト歯髄由来間葉系細胞で発現していることを確認した。また、図7及び図8に示すように、未分化細胞のマーカーであるアルカリホスファターゼ(ALP)、SPARC(オステオネクチン)が同細胞で発現していることを確認した。その一方、図9に示すように、上皮又は内胚葉性細胞への分化マーカーであるサイトケラチン18は同細胞で発現していないことを確認した。 As shown in FIG. 1 to FIG. 6, it is confirmed that CD117, CD44H, Oct3 / 4, Nanog, nestin, and cytokeratin 19 that are markers of pluripotent stem cells are expressed in human dental pulp-derived mesenchymal cells. did. Moreover, as shown in FIG.7 and FIG.8, it confirmed that the alkaline phosphatase (ALP) and SPARC (ostonectin) which are the markers of an undifferentiated cell are expressing in the cell. On the other hand, as shown in FIG. 9, it was confirmed that cytokeratin 18, which is a differentiation marker for epithelial or endoderm cells, was not expressed in the same cells.
また、非標識細胞(コントロール)、Oct3/4、Nanog、CD117に対するフローサイトメトリーの結果を図10に示す。得られた細胞集団において、Oct3/4陽性の細胞が65%、Nanog陽性の細胞が99%、CD117陽性の細胞が45%存在することを確認した。 FIG. 10 shows the results of flow cytometry for unlabeled cells (control), Oct3 / 4, Nanog, and CD117. In the obtained cell population, it was confirmed that Oct3 / 4 positive cells were 65%, Nanog positive cells were 99%, and CD117 positive cells were 45%.
これらの結果により、実施例1〜3により得られたヒト歯髄由来間葉系細胞が、多能性幹細胞としての性質を示し、かつ、未分化な状態を維持した細胞であることが確認された。 From these results, it was confirmed that the human dental pulp-derived mesenchymal cells obtained in Examples 1 to 3 exhibited the properties as pluripotent stem cells and maintained the undifferentiated state. .
[歯髄由来間葉系幹細胞の肝細胞系譜への分化誘導]
実施例1〜3により得られたヒト歯髄由来間葉系幹細胞を用いて、肝細胞系譜への分化誘導を行った。分化誘導は、まず、20ng/ml HGF(R&D Systems Inc. # 294−HG)及び2%FBSを含むDMEM培地を用いて5日間培養し、次に、10nMデキサメタゾン(Waco Pure Chemical Industries Ltd. # 047−18863)、50ng/mlインシュリン‐トランスフェリン‐セレニウムX(Invitrogen ITS−X #51500)及び10ng/mlオンコスタチン(R&D Systems Inc. # 295−OM)を含むIMDM(# Invitrogen 12200−036)培地を用いて15日間培養することにより行った。
[Induction of differentiation of dental pulp-derived mesenchymal stem cells into hepatocyte lineage]
Using human dental pulp-derived mesenchymal stem cells obtained in Examples 1 to 3, differentiation induction into a hepatocyte lineage was performed. Differentiation induction was first cultured for 5 days in DMEM medium containing 20 ng / ml HGF (R & D Systems Inc. # 294-HG) and 2% FBS, and then 10 nM dexamethasone (Waco Pure Chemical Industries Ltd. # 047). 18863), IMDM (#Invitrogen 12200-036) medium containing 50 ng / ml insulin-transferrin-selenium X (Invitrogen ITS-X # 51500) and 10 ng / ml oncostatin (R & D Systems Inc. # 295-OM) For 15 days.
乳歯の歯髄由来間葉系幹細胞の肝細胞系譜への分化誘導前後の細胞写真を図11に示す。分化誘導前の細胞は、繊維芽細胞様の紡錘状の形態であるのに対し、分化誘導後の細胞は、実質細胞様の多角形の形態であることがわかる。 FIG. 11 shows cell photographs before and after induction of differentiation of the dental pulp derived from deciduous teeth into the hepatocyte lineage. It can be seen that the cells before differentiation induction are in the form of spindle-like fibroblasts, whereas the cells after differentiation induction are in the form of parenchymal cell-like polygons.
[肝細胞系譜への分化誘導した細胞の分化マーカー発現解析]
実施例5の方法により肝細胞系譜に分化させた乳歯の歯髄由来間葉系幹細胞及び第三大臼歯(親知らず)の歯髄由来間葉系幹細胞の分化マーカータンパク質の発現を免疫染色にて解析した。
[Analysis of differentiation marker expression in cells induced to differentiate into hepatic lineage]
The expression of differentiation marker proteins of the dental pulp-derived mesenchymal stem cells of the deciduous teeth and the dental pulp-derived mesenchymal stem cells of the third molar (parental wisdom tooth) differentiated into the hepatocyte lineage by the method of Example 5 was analyzed by immunostaining.
抗アルブミン抗体(R&D Systems Inc., Minneapolis, USA)および抗インシュリン様増殖因子(IGF−1)抗体(Raybiotech, Norcross, USA)を用いた免疫染色の結果をそれぞれ図12及び図13に示す。図12に示すように、乳歯及び第三大臼歯の歯髄由来間葉系幹細胞両方において、肝細胞が産出するタンパク質であるアルブミンが発現していることを確認した。また、図13に示すように、乳歯及び第三大臼歯の歯髄由来間葉系幹細胞両方において、一部の細胞が、主に肝細胞が産生するタンパク質であるインシュリン様増殖因子−1(IGF−1)を発現していることを確認した。乳歯の歯髄由来間葉系幹細胞及び第三大臼歯の歯髄由来間葉系幹細胞が、肝細胞系譜の細胞へと分化していることがわかる。 The results of immunostaining using anti-albumin antibody (R & D Systems Inc., Minneapolis, USA) and anti-insulin-like growth factor (IGF-1) antibody (Raybiotech, Norcross, USA) are shown in FIGS. 12 and 13, respectively. As shown in FIG. 12, it was confirmed that albumin, which is a protein produced by hepatocytes, was expressed in both dental pulp-derived mesenchymal stem cells of deciduous teeth and third molars. In addition, as shown in FIG. 13, in both the dental pulp-derived mesenchymal stem cells of deciduous teeth and third molars, some cells are insulin-like growth factor-1 (IGF-), which is a protein mainly produced by hepatocytes. It was confirmed that 1) was expressed. It can be seen that the dental pulp-derived mesenchymal stem cells of the deciduous teeth and the dental pulp-derived mesenchymal stem cells of the third molar are differentiated into cells of the hepatic cell lineage.
[肝細胞系譜への分化誘導した細胞の尿素産生解析]
実施例5の方法により肝細胞系譜に分化させた乳歯の歯髄由来間葉系幹細胞及び第三大臼歯(親知らず)の歯髄由来間葉系幹細胞の尿素産生量をELISAにて解析した。
[Analysis of urea production in cells induced to differentiate into hepatic lineage]
The amount of urea produced by the dental pulp-derived mesenchymal stem cells of the deciduous teeth and the dental pulp-derived mesenchymal stem cells of the third molar (parental wisdom tooth) differentiated into the hepatocyte lineage by the method of Example 5 was analyzed by ELISA.
肝細胞系譜に分化させた乳歯の歯髄由来間葉系幹細胞及び第三大臼歯の歯髄由来間葉系幹細胞にてQuantiChrom Urea Assay Kit(BioAssay Systems, USA)を用いて解析を行った結果を図14に示す。培養液中の尿素濃度は、コントロール培地と比較して4〜15%増加したことを確認した。乳歯の歯髄由来間葉系幹細胞及び第三大臼歯の歯髄由来間葉系幹細胞が、肝細胞系譜の細胞へと分化していることがわかる。 FIG. 14 shows the results of analysis using the Quantum Chure Urea Assay Kit (BioAssay Systems, USA) on the dental pulp derived mesenchymal stem cells of the deciduous teeth and the dental pulp derived mesenchymal stem cells of the third molar. Shown in It was confirmed that the urea concentration in the culture broth increased by 4 to 15% compared to the control medium. It can be seen that the dental pulp-derived mesenchymal stem cells of the deciduous teeth and the dental pulp-derived mesenchymal stem cells of the third molar are differentiated into cells of the hepatic cell lineage.
[細胞の凍結保存]
培地を除去し、細胞を5mlのPBSで3分間洗浄し、細胞を0.05%トリプシン/0.53mM EDTA(Invitrogen #25300−054)PBS中で5〜7分間インキュベートした。その後、細胞懸濁液を15mlコニカル遠心チューブ(組織培養液入り)に回収して1600rpmで5分間遠心した後、上清を除去し、細胞ペレットを1500μlの凍結培地(10%DMSO、30%FBS、60%DMEM)に懸濁した。当該細胞懸濁液を500μlずつクライオバイアルに分注し、−80℃に24時間置いた後、液体窒素中で長期間保存した。
[Cell cryopreservation]
Media was removed, cells were washed with 5 ml PBS for 3 minutes, and cells were incubated in 0.05% trypsin / 0.53 mM EDTA (Invitrogen # 25300-054) PBS for 5-7 minutes. Thereafter, the cell suspension was collected in a 15 ml conical centrifuge tube (containing a tissue culture solution), centrifuged at 1600 rpm for 5 minutes, the supernatant was removed, and the cell pellet was recovered in 1500 μl of freezing medium (10% DMSO, 30% FBS). , 60% DMEM). 500 μl of the cell suspension was dispensed into cryovials, placed at −80 ° C. for 24 hours, and stored for a long time in liquid nitrogen.
本発明は、特に乳歯や萌出した親知らずの歯髄を用いて実施することができるため、細胞源採取に伴う外科的侵襲の問題、倫理的な問題及び拒絶反応の問題、発癌を回避した再生医療の早期実現に大きく貢献し得るものである。 Since the present invention can be carried out especially using deciduous teeth and erupted wisdom dental pulps, there are problems of surgical invasion, ethical problems and rejection problems associated with cell source collection, and regenerative medicine avoiding carcinogenesis. It can greatly contribute to early realization.
Claims (15)
(a)歯髄をタンパク質分解酵素で処理する工程
(b)(a)で得られた細胞を培養し、増殖させる工程
(c)(b)で培養した細胞群において歯髄由来間葉系幹細胞を磁気ビーズで標識する工程
(d)(c)の工程を経た細胞を分離カラムに添加し、標識した細胞を回収する工程 The method according to claim 1 or 2, comprising the following steps (a) to (d): A method for separating dental pulp-derived mesenchymal stem cells.
(A) Step of treating dental pulp with proteolytic enzyme (b) Step of culturing and proliferating the cells obtained in (a) (c) In the cell group cultured in (b), dental pulp-derived mesenchymal stem cells are magnetized Step of labeling with beads (d) Step of adding the cells after the steps of (c) to the separation column and collecting the labeled cells
(e)2%FBS及び20ng/mlHGFを含むDMEM培地で培養する工程
(f)2%FBS、20ng/mlHGF、10ng/mlオンコスタチン、10nMデキサメタゾン、50ng/mlインシュリン‐トランスフェリン‐セレニウムX(ITS−X)を含むDMEM培地で培養する工程 A method for inducing differentiation of dental pulp-derived mesenchymal stem cells according to claim 5 to hepatocyte lineage, comprising the following steps (e) and (f): A method for inducing differentiation into a hepatocyte lineage.
(E) Step of culturing in DMEM medium containing 2% FBS and 20 ng / ml HGF (f) 2% FBS, 20 ng / ml HGF, 10 ng / ml oncostatin, 10 nM dexamethasone, 50 ng / ml insulin-transferrin-selenium X (ITS- Step of culturing in DMEM medium containing X)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009238443A JP2010252778A (en) | 2009-04-02 | 2009-10-15 | Method for separating dental pulp-derived mesenchymal stem cell, separated stem cell and differentiation to hepatocyte lineage using them |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009090559 | 2009-04-02 | ||
JP2009238443A JP2010252778A (en) | 2009-04-02 | 2009-10-15 | Method for separating dental pulp-derived mesenchymal stem cell, separated stem cell and differentiation to hepatocyte lineage using them |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2010252778A true JP2010252778A (en) | 2010-11-11 |
Family
ID=43314447
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009238443A Pending JP2010252778A (en) | 2009-04-02 | 2009-10-15 | Method for separating dental pulp-derived mesenchymal stem cell, separated stem cell and differentiation to hepatocyte lineage using them |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2010252778A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013146992A1 (en) | 2012-03-29 | 2013-10-03 | 日本ケミカルリサーチ株式会社 | Method for producing pluripotent stem cells derived from dental pulp |
JP2015500810A (en) * | 2011-11-30 | 2015-01-08 | アドバンスド セル テクノロジー、インコーポレイテッド | Mesenchymal stromal cells and related applications |
KR20160105002A (en) * | 2015-02-27 | 2016-09-06 | 단국대학교 천안캠퍼스 산학협력단 | Monoclonal antibody specific binding undifferentiated dental pulp stem cells and uses thereof |
JP2017532973A (en) * | 2014-10-29 | 2017-11-09 | アール バイオ カンパニー リミテッドR Bio Co., Ltd. | Medium composition for stem cell culture |
WO2020027163A1 (en) | 2018-07-31 | 2020-02-06 | Jcrファーマ株式会社 | Method for producing dental pulp-derived cells |
WO2021153719A1 (en) | 2020-01-30 | 2021-08-05 | Jcrファーマ株式会社 | Medicinal composition comprising dental pulp-derived cells |
WO2023090346A1 (en) * | 2021-11-18 | 2023-05-25 | 国立大学法人東京医科歯科大学 | Cell population including mesenchymal stem cells, cell sheet, and cell sheet production method |
WO2024135673A1 (en) | 2022-12-20 | 2024-06-27 | 国立大学法人 東京大学 | Dental pulp-derived stem cells expressing sodium iodide symporter |
US12209255B2 (en) | 2012-07-12 | 2025-01-28 | Astellas Institute For Regenerative Medicine | Mesenchymal-like stem cells derived from human embryonic stem cells, methods and uses thereof |
-
2009
- 2009-10-15 JP JP2009238443A patent/JP2010252778A/en active Pending
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12097223B2 (en) | 2011-11-30 | 2024-09-24 | Astellas Institute For Regenerative Medicine | Mesenchymal stromal cells and uses related thereto |
JP2015500810A (en) * | 2011-11-30 | 2015-01-08 | アドバンスド セル テクノロジー、インコーポレイテッド | Mesenchymal stromal cells and related applications |
JP2018027954A (en) * | 2011-11-30 | 2018-02-22 | アステラス インスティテュート フォー リジェネレイティブ メディシン | Mesenchymal stromal cells and uses related thereto |
WO2013146992A1 (en) | 2012-03-29 | 2013-10-03 | 日本ケミカルリサーチ株式会社 | Method for producing pluripotent stem cells derived from dental pulp |
US10041039B2 (en) | 2012-03-29 | 2018-08-07 | Jcr Pharmaceuticals Co., Ltd. | Method for producing pluripotent stem cells derived from dental pulp |
US12209255B2 (en) | 2012-07-12 | 2025-01-28 | Astellas Institute For Regenerative Medicine | Mesenchymal-like stem cells derived from human embryonic stem cells, methods and uses thereof |
JP2017532973A (en) * | 2014-10-29 | 2017-11-09 | アール バイオ カンパニー リミテッドR Bio Co., Ltd. | Medium composition for stem cell culture |
US10287551B2 (en) | 2014-10-29 | 2019-05-14 | R Bio Co., Ltd. | Medium composition for culturing stem cells |
KR101715464B1 (en) | 2015-02-27 | 2017-03-13 | 단국대학교 천안캠퍼스 산학협력단 | Monoclonal antibody specific binding undifferentiated dental pulp stem cells and uses thereof |
KR20160105002A (en) * | 2015-02-27 | 2016-09-06 | 단국대학교 천안캠퍼스 산학협력단 | Monoclonal antibody specific binding undifferentiated dental pulp stem cells and uses thereof |
KR20210041578A (en) | 2018-07-31 | 2021-04-15 | 제이씨알 파마 가부시키가이샤 | Method for producing pulp-derived cells |
WO2020027163A1 (en) | 2018-07-31 | 2020-02-06 | Jcrファーマ株式会社 | Method for producing dental pulp-derived cells |
WO2021153719A1 (en) | 2020-01-30 | 2021-08-05 | Jcrファーマ株式会社 | Medicinal composition comprising dental pulp-derived cells |
WO2023090346A1 (en) * | 2021-11-18 | 2023-05-25 | 国立大学法人東京医科歯科大学 | Cell population including mesenchymal stem cells, cell sheet, and cell sheet production method |
WO2024135673A1 (en) | 2022-12-20 | 2024-06-27 | 国立大学法人 東京大学 | Dental pulp-derived stem cells expressing sodium iodide symporter |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2010252778A (en) | Method for separating dental pulp-derived mesenchymal stem cell, separated stem cell and differentiation to hepatocyte lineage using them | |
KR101211913B1 (en) | Medium for Culturing Mesenchymal Stem Cells Derived from Amnion and Method for Culturing Mesenchymal Stem Cells Derived from Amnion Using thereof | |
Patel et al. | Multipotent menstrual blood stromal stem cells: isolation, characterization, and differentiation | |
Ishkitiev et al. | High-purity hepatic lineage differentiated from dental pulp stem cells in serum-free medium | |
CA2640644C (en) | A method for purifying cardiomyocytes or programmed cardiomyocytes derived from stem cells or fetuses | |
TWI535377B (en) | Storage, culture and application of umbilical cord tissue and its derived cells | |
WO2009128533A1 (en) | Mesenchymal stem cell and method for production thereof | |
WO2009136283A2 (en) | Multipotent adult stem cell population | |
CN104212763B (en) | A kind of separation of interstitial tissue[of testis] stem cell, cultural method and application thereof | |
US20150299661A1 (en) | Pluripotent stem cells obtained from dental pulp | |
US8187879B2 (en) | Collection and selection methods to isolate a stem cell population from human adult periodontal follicular tissues | |
TW201231663A (en) | Human multipotent embryonic stem cell-like progenitor cells | |
CN105331579A (en) | Separation and culture method and application of human testis mesenchymal stem cells | |
US9163214B2 (en) | Method for culturing stem cells | |
CN102533641B (en) | In vitro serum-free adult stem cell scale-up culture method and its culture medium | |
US20080081370A1 (en) | Directed differentiation of human embryonic stem cells into mesenchymal/stromal cells | |
TWI573873B (en) | Serum-free culture expansion of somatic stem/progenitor cells in vitro | |
AU2021377668A1 (en) | Early mesenchymal stem cells with reduced aging and preserved stem cell ability, and culturing method therefor | |
JP4859078B1 (en) | New mesenchymal stem cells | |
AU2007218265B2 (en) | Collection and selection methods of an embryonic- like stem cell population from human adult periodontal follicular tissues | |
WO2009124213A2 (en) | Dental stem cell differentiation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20110309 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20110309 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110426 |