[go: up one dir, main page]

JP2010247118A - CODCr reduction method for high concentration silicone waste liquid - Google Patents

CODCr reduction method for high concentration silicone waste liquid Download PDF

Info

Publication number
JP2010247118A
JP2010247118A JP2009101595A JP2009101595A JP2010247118A JP 2010247118 A JP2010247118 A JP 2010247118A JP 2009101595 A JP2009101595 A JP 2009101595A JP 2009101595 A JP2009101595 A JP 2009101595A JP 2010247118 A JP2010247118 A JP 2010247118A
Authority
JP
Japan
Prior art keywords
treatment
cod
waste liquid
silicone
high concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009101595A
Other languages
Japanese (ja)
Other versions
JP5350870B2 (en
Inventor
Michio Kurita
道夫 栗田
Eiji Shibuya
栄二 渋谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Momentive Performance Materials Inc
Original Assignee
Momentive Performance Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Momentive Performance Materials Inc filed Critical Momentive Performance Materials Inc
Priority to JP2009101595A priority Critical patent/JP5350870B2/en
Publication of JP2010247118A publication Critical patent/JP2010247118A/en
Application granted granted Critical
Publication of JP5350870B2 publication Critical patent/JP5350870B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Activated Sludge Processes (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

【課題】CODCr500mg/l以上の高濃度シリコーン廃液をCODCr100mg/l以下のレベルまで簡便且つ安定して低減する方法を提供する。
【解決手段】高濃度シリコーン廃液に対し、pH調整、フェントン処理、pHを高くすることによる析出ならびに凝集沈澱処理、活性汚泥処理、凝集沈澱処理を順に行い、最後に活性炭吸着処理を行い、高濃度シリコーン廃液のCODCrを低減させる。
【選択図】なし
Provided is a method for easily and stably reducing a high-concentration silicone waste liquid having COD Cr of 500 mg / l or more to a level of COD Cr of 100 mg / l or less.
SOLUTION: High concentration silicone waste liquid is subjected to pH adjustment, Fenton treatment, precipitation by increasing pH, coagulation precipitation treatment, activated sludge treatment, coagulation precipitation treatment in order, and finally activated carbon adsorption treatment, Reduce COD Cr in silicone waste liquid.
[Selection figure] None

Description

本発明は、高濃度シリコーン廃液のCODCrを低減する方法に関する。 The present invention relates to a method for reducing COD Cr in a high concentration silicone waste liquid.

シリコーンモノマー生産時には種々の廃棄物が生成する。これには、シリコーンモノマー生産時に発生するシリコーンを含む廃液と各クロロシランタンクベントガス等がある。各クロロシラン製造工程で発生するクロロシランのベントガスはアルカリスクラバーで塩酸ガス吸収されるが、クロロシランの加水分解によって生じる廃水に溶解したシロキサンあるいはシラノールがCODCr対象物となる。この主要な成分は、トリメチルシランモノオール、ジメチルシランジオール、メチルシラントリオール、あるいはダイマー、トリマー等である。 Various wastes are generated during the production of silicone monomers. This includes waste liquids containing silicone generated during the production of silicone monomers and each chlorosilane tank vent gas. The vent gas of chlorosilane generated in each chlorosilane production process is absorbed by hydrochloric acid gas with an alkali scrubber, but siloxane or silanol dissolved in waste water generated by hydrolysis of chlorosilane becomes a CODCr object. This main component is trimethylsilane monool, dimethylsilanediol, methylsilanetriol, dimer, trimer or the like.

CODCr規制は、この分解しにくいシリコーンが対象であり、その主発生源は、メチルクロライド製造時に発生するシロキサンを含む廃液とジメチルジクロロシラン加水分解オイル製造時に発生するシロキサンを含む廃液などである。 COD Cr regulation is the decomposition hard silicone target, the main source is waste liquid containing a siloxane generated during manufacturing waste and dimethyldichlorosilane hydrolysis oils containing siloxane generated during methyl chloride production.

この点を更に詳細に説明すると以下の通りである。   This point will be described in more detail as follows.

メチルクロライドの原料である塩酸の大部分は、ジメチルジクロロシランの加水分解時、オイル製造時に発生する塩酸を再利用している。そのため、塩酸ガスにシロキサン蒸気圧分に相当する低沸点シロキサンが同伴され、最終的には未反応塩酸廃液に含まれて廃水として発生する。ジメチルジクロロシランの加水分解塩酸ガス発生は、吸熱反応のため、−10℃程度のかなり低温で操作されるが、それでもCODCr成分としては600mg/l以上含まれる。また、未反応のメタノールも、反応後できるだけ蒸留回収されるが、残存することが多い。 Most of hydrochloric acid, which is a raw material of methyl chloride, reuses hydrochloric acid generated during oil production during hydrolysis of dimethyldichlorosilane. For this reason, low boiling point siloxane corresponding to the siloxane vapor pressure is accompanied with hydrochloric acid gas, and finally, it is contained in unreacted hydrochloric acid waste liquid and generated as waste water. Hydrochloric acid gas generation of dimethyldichlorosilane is operated at a considerably low temperature of about −10 ° C. due to endothermic reaction, but still contains 600 mg / l or more of COD Cr component. Unreacted methanol is also recovered by distillation as much as possible after the reaction, but often remains.

廃水処理が一般的に実施されているCODCr濃度規制のみなら、CODCrの高いシリコーン廃液を集めてフェントン処理等の処理を行うことにより、約半分の濃度までCODCrを低減でき、この処理廃液を低濃度のシリコーン廃液で希釈し、規制値をクリアすることも可能である。しかしながら、水量規制も追加された総量規制下では、低濃度のシリコーン廃液で希釈する方法では限界がある。 If COD Cr concentration regulating only the wastewater treatment is generally carried out, by performing the processing of the Fenton process such as attracting high COD Cr silicone waste, it reduces the COD Cr to a concentration of approximately half this waste liquid Can be diluted with low-concentration silicone waste liquid to clear the regulation value. However, there is a limit to the method of diluting with a low-concentration silicone waste liquid under the total amount regulation to which the water amount regulation is added.

一方、有機物含有廃水の処理方法の1つとして、過酸化水素および鉄塩を添加して、フェントン反応により有機物を分解するフェントン法が知られており、活性炭処理と組み合わせた手法も提案されている(特許文献1)。   On the other hand, as one of the treatment methods for organic matter-containing wastewater, the Fenton method is known in which hydrogen peroxide and iron salt are added to decompose organic matter by Fenton reaction, and a method combined with activated carbon treatment is also proposed. (Patent Document 1).

しかしながら、従来提案されている方法では、CODCr500mg/l以上の高濃度シリコーン廃液をCODCr100mg/l以下のレベルまで簡便且つ安定して低減することは困難であった。 However, in the conventional proposed method, it is difficult to COD Cr 500 mg / l or more high density silicone waste reduced by simple and stable until COD Cr 100 mg / l or less level.

特開平10−277568号公報JP-A-10-277568

本発明は、CODCr500mg/l以上の高濃度シリコーン廃液をCODCr100mg/l以下のレベルまで簡便且つ安定して低減する方法の提供を目的とするものである。 An object of the present invention is to provide a method for easily and stably reducing a high-concentration silicone waste liquid having COD Cr of 500 mg / l or more to a level of COD Cr of 100 mg / l or less.

本発明者は、上記目的達成のため鋭意検討した結果、フェントン処理を含む前処理と活性炭吸着処理を組み合わせることが極めて有効であることを見出し、本発明を完成するに至った。   As a result of intensive studies for achieving the above object, the present inventor has found that combining pretreatment including Fenton treatment and activated carbon adsorption treatment is extremely effective, and has completed the present invention.

即ち本発明は、高濃度シリコーン廃液に対し、pH調整、フェントン処理、pHを高くすることによる析出ならびに凝集沈澱処理、活性汚泥処理、凝集沈澱処理を順に行い、最後に活性炭吸着処理を行うことを特徴とする高濃度シリコーン廃液のCODCr低減方法である。 That is, in the present invention, pH adjustment, Fenton treatment, precipitation by increasing pH, coagulation precipitation treatment, activated sludge treatment, coagulation precipitation treatment are sequentially performed on the high concentration silicone waste liquid, and finally the activated carbon adsorption treatment is performed. It is the COD Cr reduction method of the high concentration silicone waste liquid characterized.

シリコーンモノマー製造廃液を、生物処理しやすさを示すBOD値に対して、化学的に分解できる指標(CODCr)として示すと、BOD比率が10%程度と小さく、非常に生物処理しにくい廃水に分類される。 When the silicone monomer production waste liquid is shown as an index (COD Cr ) that can be chemically decomposed with respect to the BOD value indicating the ease of biological treatment, the BOD ratio is as small as about 10%, and the waste water is very difficult to biologically treat. being classified.

次亜塩素酸処理、オゾン処理でシリコーン分解を試みたが、溶解性シリコーンは、非常に安定でCODCrで10%も低下しないことが確認された。一方、酸化力の最も強いヒドロキシルラジカルを生成するフェントン処理では、次亜塩素酸処理、オゾン処理の10%以下に比べ、シリコーンに対して、CODCr比較で30〜60%分解することが確認された。 Although silicone decomposition was attempted by hypochlorous acid treatment and ozone treatment, it was confirmed that the soluble silicone was very stable and did not decrease by 10% with COD Cr . On the other hand, in Fenton treatment that generates hydroxyl radicals with the strongest oxidizing power, it is confirmed that it decomposes by 30 to 60% compared to COD Cr in comparison with 10% or less of hypochlorous acid treatment and ozone treatment. It was.

溶解性シリコーンとは、トリメチルシランモノオール、ジメチルシランジオール、メチルトリシランジオールなどのモノシランと部分的に縮重合したジシラン、トリシランなども含まれる極性基を有する低分子シリコーンである。
この他にも塩酸を中和した中和塩などでシロキサン環状物も、イオン交換水には、25mg/l程度しか溶解しないものが、中和塩などで水への溶解度がアップしていく。
The soluble silicone is a low molecular silicone having a polar group that also includes disilane, trisilane, and the like partially condensed with monosilane such as trimethylsilane monool, dimethylsilanediol, and methyltrisilanediol.
In addition to this, siloxane cyclics such as neutralized salts neutralized with hydrochloric acid, which dissolve only about 25 mg / l in ion-exchanged water, increase the solubility in water with neutralized salts.

本発明の高濃度シリコーン廃液のCODCr低減方法においては、前処理として、pH調整、フェントン処理、pHを高くすることによる析出ならびに凝集沈澱処理、活性汚泥処理、凝集沈澱処理を順に行う。 In the COD Cr reduction method of the high-concentration silicone waste liquid of the present invention, as pretreatment, pH adjustment, Fenton treatment, precipitation by increasing pH, aggregation precipitation treatment, activated sludge treatment, and aggregation precipitation treatment are sequentially performed.

これら前処理の各工程に特に制限はなく、従来知られている手法を適用することができる。
(pH調整・フェントン処理)
一般的に、高濃度シリコーン廃液は、中和処理後でpH6〜8程度である。過酸化水素は、酸性下では、安定で酸化力を発揮しないが、鉄イオンが共存すると、フェントン反応に基づくヒドロキシラジカルを生成し、強い酸化力を発揮する。実際には、これらの存在下にpHを調整し、具体的にはpH4.5以下、好ましくはpH2〜4で処理すると、ヒドロキシラジカルを生成し、水溶液中でほとんどの有機物や還元性物質を酸化し、最終的に二酸化炭素と水に分解する。
(析出・沈殿濃縮処理)
フェントン処理後に、pH10〜11まで高くすることにより、Fe(OH)3、Fe(OH)2が鉄化合物として析出し、除去できる。
(活性汚泥処理)
活性汚泥処理は、分解しにくい物質を吸着する性質もあるが、フェントン処理、電解処理などで分解され増加したBOD成分の処理と分解しにくい成分の一部吸着によりCODCr成分を取り込むことによるCODCrの低減効果がある。
There is no restriction | limiting in particular in each process of these pre-processing, The technique known conventionally can be applied.
(PH adjustment / Fenton treatment)
Generally, the high concentration silicone waste liquid has a pH of about 6 to 8 after the neutralization treatment. Hydrogen peroxide is stable and does not exhibit oxidizing power under acidic conditions, but when iron ions coexist, it generates hydroxy radicals based on the Fenton reaction and exhibits strong oxidizing power. In practice, when the pH is adjusted in the presence of these, specifically, when the pH is 4.5 or lower, preferably pH 2 to 4, hydroxy radicals are generated, and most organic substances and reducing substances are oxidized in an aqueous solution. Finally, it decomposes into carbon dioxide and water.
(Deposition / precipitation concentration treatment)
By increasing the pH to 10 to 11 after the Fenton treatment, Fe (OH) 3 and Fe (OH) 2 are precipitated as iron compounds and can be removed.
(Activated sludge treatment)
Activated sludge treatment has the property of adsorbing substances that are difficult to decompose, but COD by incorporating COD Cr components through treatment of BOD components that have been decomposed and increased by Fenton treatment, electrolytic treatment, etc. and partial adsorption of components that are difficult to decompose There is an effect of reducing Cr .

CODCr成分としては、(1)活性炭処理しにくい極性成分であるメタノール、ジメチルシランジオール、(2)非極性(シロキサン環状物など)、微極性の水溶性成分(トリメチルシランモノオール、シラノール一部縮合物など)が存在する。また、(3)亜硝酸(NO2)、水酸化第1鉄(Fe(OH)2)などの無機物も重クロム酸カリウムで酸化されるため、CODCrの数字を示す。前処理で少なくとも(1)成分、(3)成分を低減させ、活性炭処理で(2)成分を吸着除去することを特徴とする。例えば、化学的分解法として有効性の示された前処理であるフェントン処理では、分解しやすいメタノールが90%以上分解することが確認された。一方、水溶性シリコーンが分解して活性炭に吸着しにくい極性低分子でもあるジメチルシランジオールの増加を懸念したが、60%程減少することが確認された。吸着しにくいメタノール、ジメチルシランジオールが初期にそれぞれ、156mg/l、162mg/lあったものが、それぞれ11mg/l,57mg/lまで低下した。濃度的には、合わせて318mg/lから68mg/lまで低下したことになる。一方、CODCrで見ると、459mg/lから96mg/lまで低下したことになる。活性汚泥処理後の処理液は、高分子凝集剤等を添加後、沈殿槽にて汚泥を凝集沈殿させ、汚泥と処理液とに分けられる。 COD Cr components include (1) methanol and dimethylsilanediol, which are polar components that are difficult to treat with activated carbon, (2) nonpolar (such as siloxane cyclics), and slightly polar water-soluble components (trimethylsilane monool, part of silanol) Condensates and the like). In addition, (3) inorganic substances such as nitrous acid (NO 2 ) and ferrous hydroxide (Fe (OH) 2 ) are also oxidized with potassium dichromate, and therefore indicate the number of COD Cr . At least component (1) and component (3) are reduced by pretreatment, and component (2) is adsorbed and removed by activated carbon treatment. For example, it was confirmed that methanol that is easily decomposed decomposes 90% or more in the Fenton treatment, which is a pretreatment that has been shown to be effective as a chemical decomposition method. On the other hand, although there was concern about the increase in dimethylsilanediol, which is also a polar low molecule that is difficult to adsorb on activated carbon due to decomposition of water-soluble silicone, it was confirmed that it decreased by 60%. Methanol and dimethylsilanediol, which were difficult to adsorb, were initially 156 mg / l and 162 mg / l, respectively, but decreased to 11 mg / l and 57 mg / l, respectively. In terms of concentration, the total decreased from 318 mg / l to 68 mg / l. On the other hand, in terms of COD Cr , it was reduced from 459 mg / l to 96 mg / l. The treatment liquid after the activated sludge treatment is divided into sludge and treatment liquid by adding a polymer flocculant and the like to coagulate and precipitate the sludge in a settling tank.

この活性炭に吸着しにくい極性分子を前処理工程で可能な限り低下させ、その後に、活性炭吸着法で残存CODcr成分を吸着する方法である。ただ、粒状活性炭吸着量は、比較的少ないのですぐにCODCr100mg/lを超えてしまうので、少なくとも2系列を有し、半連続的に、あるいは連続的に、処理済粒状活性炭を温水、スチーム脱着、乾燥再生をおこなうことが不可欠となる。 In this method, polar molecules that are difficult to adsorb on activated carbon are reduced as much as possible in the pretreatment step, and then the residual CODcr component is adsorbed by the activated carbon adsorption method. However, since the amount of granular activated carbon adsorbed is relatively small, it immediately exceeds COD Cr 100 mg / l, so it has at least two series, semi-continuously or continuously treated granular activated carbon with hot water, steam. It is indispensable to perform desorption and drying regeneration.

実施例1
CODCrの主発生源であるメチルクロライド製造時に発生するシロキサンのCODCrを測定したところ、2500mg/lであった。残存メタノール、ジメチルシランジオールは、初期にはそれぞれ156mg/l,162mg/l存在した。CODCrに換算すると、それぞれ234mg/l,225mg/lとなり、合わせて459mg/lと推定された。
Example 1
The COD Cr of siloxane generated during the production of methyl chloride, which is the main source of COD Cr, was measured and found to be 2500 mg / l. Residual methanol and dimethylsilanediol were initially present at 156 mg / l and 162 mg / l, respectively. When converted to COD Cr , they were 234 mg / l and 225 mg / l, respectively, and were estimated to be 459 mg / l in total.

CODCrを100mg/l以下にするには、この活性炭吸着しにくい上記2成分を目安となる100mg/l程度まで前処理で低下させ、その後に、活性炭吸着塔を通す必要がある。 In order to reduce COD Cr to 100 mg / l or less, it is necessary to reduce the above-mentioned two components that are difficult to adsorb on activated carbon to about 100 mg / l as a guide, and then pass through an activated carbon adsorption tower.

サンプル264gに硫酸鉄7水和物4g添加攪拌しているところに、過酸化水素を5g添加と10g添加を実施した。これらの存在下にpH3でフェントン処理をしたところ、双方とも、メタノール、ジメチルシロキサンジオール由来のCODCr成分は、目安となる100mg/l程度まで低下することが確認された。その後に、粒状活性炭充填塔を通すことで、CODCr100mg/l以下の処理水が得られた。 While 4 g of iron sulfate heptahydrate was added to 264 g of sample and stirred, 5 g of hydrogen peroxide and 10 g of hydrogen peroxide were added. When Fenton treatment was performed at pH 3 in the presence of these, it was confirmed that the COD Cr component derived from methanol and dimethylsiloxane diol decreased to about 100 mg / l as a guide. Then, the treated water of COD Cr 100 mg / l or less was obtained by passing through a granular activated carbon packed tower.

実施例2
CODCrの主発生源であるジメチルジクロロシランの加水分解時に発生するシロキサンを主成分とする廃液のCODCrを測定したところ2150mg/lであった。まず、過酸化水素および鉄塩を添加し、これらの存在下にpH3でフェントン処理をしたところ、4時間後にはCODCr925mg/lまで低下した。その後pHを高くすることによって鉄塩を十分析出沈殿分離させた。次に、活性汚泥処理したところCODCrは520mg/lまで低下した。最後に、活性汚泥を凝集沈澱させたものを濾紙濾過して取り除き、粒状活性炭をカラムにつめた活性炭吸着塔を通したところ、CODCr100mg/l以下を示した。
実施例2の操作によるデータを表1に示す。
Example 2
The COD Cr of the waste liquid mainly composed of siloxane generated during hydrolysis of dimethyldichlorosilane, which is the main source of COD Cr , was 2150 mg / l. First, hydrogen peroxide and an iron salt were added, and Fenton treatment was performed at pH 3 in the presence of them, and after 4 hours, the COD Cr decreased to 925 mg / l. Thereafter, the iron salt was sufficiently precipitated and separated by increasing the pH. Next, when activated sludge treatment was performed, COD Cr decreased to 520 mg / l. Finally, the activated sludge coagulated and precipitated was removed by filtration with a filter paper, and passed through an activated carbon adsorption tower in which granular activated carbon was packed in a column. COD Cr was 100 mg / l or less.
Data from the operation of Example 2 is shown in Table 1.

Figure 2010247118
Figure 2010247118

Claims (1)

高濃度シリコーン廃液に対し、pH調整、フェントン処理、pHを高くすることによる析出ならびに凝集沈澱処理、活性汚泥処理、凝集沈澱処理を順に行い、最後に活性炭吸着処理を行うことを特徴とする高濃度シリコーン廃液のCODCr低減方法。 High concentration silicone waste liquid is characterized by pH adjustment, Fenton treatment, precipitation by increasing pH, coagulation precipitation treatment, activated sludge treatment, coagulation precipitation treatment in order, and finally activated carbon adsorption treatment COD Cr reduction method for silicone waste liquid.
JP2009101595A 2009-04-20 2009-04-20 Method for reducing CODCr of waste liquid generated during production of silicone monomer Expired - Fee Related JP5350870B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009101595A JP5350870B2 (en) 2009-04-20 2009-04-20 Method for reducing CODCr of waste liquid generated during production of silicone monomer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009101595A JP5350870B2 (en) 2009-04-20 2009-04-20 Method for reducing CODCr of waste liquid generated during production of silicone monomer

Publications (2)

Publication Number Publication Date
JP2010247118A true JP2010247118A (en) 2010-11-04
JP5350870B2 JP5350870B2 (en) 2013-11-27

Family

ID=43310084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009101595A Expired - Fee Related JP5350870B2 (en) 2009-04-20 2009-04-20 Method for reducing CODCr of waste liquid generated during production of silicone monomer

Country Status (1)

Country Link
JP (1) JP5350870B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014223574A (en) * 2013-05-15 2014-12-04 住友重機械エンバイロメント株式会社 Silicone removal device, biological treatment system, and silicone removal method
CN104310453A (en) * 2014-09-30 2015-01-28 四川悦承环保节能科技有限公司 Method for recovering silver and acid in CODcr determination waste liquid
CN104386866A (en) * 2014-10-24 2015-03-04 苏州富奇诺水治理设备有限公司 Method for treating water through Fenton oxidation of activated molecular oxygen by utilizing ultrasonic catalysis
CN105129958A (en) * 2015-07-15 2015-12-09 深圳市板明科技有限公司 Method of treating circuit board film-removal organic waste water
CN112456673A (en) * 2020-10-12 2021-03-09 浙江省环境科技有限公司 Method for improving biodegradability of organic silicon wastewater
CN114262118A (en) * 2021-12-10 2022-04-01 浙江宏创新材料有限公司 Wastewater treatment method for organic silicon resin production
CN114436440A (en) * 2022-01-21 2022-05-06 内蒙古恒星化学有限公司 Processing system of low salt waste water in organosilicon production

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5594676A (en) * 1978-10-10 1980-07-18 Gen Electric Method of purifying polluted water
JPS5721990A (en) * 1980-07-11 1982-02-04 Matsushita Electronics Corp Treating method for silicone waste liquid
JPS5895593A (en) * 1981-12-01 1983-06-07 Mitsubishi Heavy Ind Ltd Solid-liquid separation in activated sludge treating method
JPS62277193A (en) * 1986-03-26 1987-12-02 アドバンスト、シリコン、マテリアルズ インコーポレーテッド Treatment method of waste from high-purity silicon method
JPH03139526A (en) * 1989-10-24 1991-06-13 Shin Etsu Chem Co Ltd Method for producing organosilicon resin
JPH0671289A (en) * 1992-08-28 1994-03-15 Nippon Steel Corp Method for biological treatment of wastewater containing reducing sulfur compounds
JPH0810785A (en) * 1994-06-27 1996-01-16 Sumitomo Heavy Ind Ltd Activated sludge device
JPH1099868A (en) * 1996-09-18 1998-04-21 Wacker Chemie Gmbh Post-treatment of waste water containing alcohol from hydrolysis of silane
JPH10277568A (en) * 1997-04-02 1998-10-20 Kurita Water Ind Ltd Treatment of wastewater containing organic matter
JPH11267693A (en) * 1998-03-25 1999-10-05 Japan Organo Co Ltd Treatment of waste water of silicon wafer polishing
JP2001259688A (en) * 2000-03-16 2001-09-25 Kurita Water Ind Ltd Waste liquid treatment method
JP2001300575A (en) * 2000-04-21 2001-10-30 Kurita Water Ind Ltd Sludge outflow prevention device
JP2003251364A (en) * 2002-03-05 2003-09-09 Mitsubishi Rayon Co Ltd Method for treating waste liquid containing emulsion polymerization polymer
JP2004331784A (en) * 2003-05-07 2004-11-25 Ge Toshiba Silicones Co Ltd Silicone emulsion composition

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5594676A (en) * 1978-10-10 1980-07-18 Gen Electric Method of purifying polluted water
JPS5721990A (en) * 1980-07-11 1982-02-04 Matsushita Electronics Corp Treating method for silicone waste liquid
JPS5895593A (en) * 1981-12-01 1983-06-07 Mitsubishi Heavy Ind Ltd Solid-liquid separation in activated sludge treating method
JPS62277193A (en) * 1986-03-26 1987-12-02 アドバンスト、シリコン、マテリアルズ インコーポレーテッド Treatment method of waste from high-purity silicon method
JPH03139526A (en) * 1989-10-24 1991-06-13 Shin Etsu Chem Co Ltd Method for producing organosilicon resin
JPH0671289A (en) * 1992-08-28 1994-03-15 Nippon Steel Corp Method for biological treatment of wastewater containing reducing sulfur compounds
JPH0810785A (en) * 1994-06-27 1996-01-16 Sumitomo Heavy Ind Ltd Activated sludge device
JPH1099868A (en) * 1996-09-18 1998-04-21 Wacker Chemie Gmbh Post-treatment of waste water containing alcohol from hydrolysis of silane
JPH10277568A (en) * 1997-04-02 1998-10-20 Kurita Water Ind Ltd Treatment of wastewater containing organic matter
JPH11267693A (en) * 1998-03-25 1999-10-05 Japan Organo Co Ltd Treatment of waste water of silicon wafer polishing
JP2001259688A (en) * 2000-03-16 2001-09-25 Kurita Water Ind Ltd Waste liquid treatment method
JP2001300575A (en) * 2000-04-21 2001-10-30 Kurita Water Ind Ltd Sludge outflow prevention device
JP2003251364A (en) * 2002-03-05 2003-09-09 Mitsubishi Rayon Co Ltd Method for treating waste liquid containing emulsion polymerization polymer
JP2004331784A (en) * 2003-05-07 2004-11-25 Ge Toshiba Silicones Co Ltd Silicone emulsion composition

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014223574A (en) * 2013-05-15 2014-12-04 住友重機械エンバイロメント株式会社 Silicone removal device, biological treatment system, and silicone removal method
CN104310453A (en) * 2014-09-30 2015-01-28 四川悦承环保节能科技有限公司 Method for recovering silver and acid in CODcr determination waste liquid
CN104386866A (en) * 2014-10-24 2015-03-04 苏州富奇诺水治理设备有限公司 Method for treating water through Fenton oxidation of activated molecular oxygen by utilizing ultrasonic catalysis
CN105129958A (en) * 2015-07-15 2015-12-09 深圳市板明科技有限公司 Method of treating circuit board film-removal organic waste water
CN112456673A (en) * 2020-10-12 2021-03-09 浙江省环境科技有限公司 Method for improving biodegradability of organic silicon wastewater
CN112456673B (en) * 2020-10-12 2022-04-12 浙江省环境科技有限公司 Method for improving biodegradability of organic silicon wastewater
CN114262118A (en) * 2021-12-10 2022-04-01 浙江宏创新材料有限公司 Wastewater treatment method for organic silicon resin production
CN114262118B (en) * 2021-12-10 2023-11-03 浙江宏创新材料有限公司 Wastewater treatment method for organic silicon resin production
CN114436440A (en) * 2022-01-21 2022-05-06 内蒙古恒星化学有限公司 Processing system of low salt waste water in organosilicon production

Also Published As

Publication number Publication date
JP5350870B2 (en) 2013-11-27

Similar Documents

Publication Publication Date Title
JP5350870B2 (en) Method for reducing CODCr of waste liquid generated during production of silicone monomer
Han et al. Trihalomethanes (THMs) precursor fractions removal by coagulation and adsorption for bio-treated municipal wastewater: molecular weight, hydrophobicity/hydrophily and fluorescence
JP5828969B2 (en) Coal gasification wastewater treatment system and coal gasification wastewater treatment method
Li et al. Pretreatment of acrylic fiber manufacturing wastewater by the Fenton process
WO2018126312A1 (en) A system and process for treating water
Tubić et al. Removal of natural organic matter from groundwater using advanced oxidation processes at a pilot scale drinking water treatment plant in the Central Banat Region (Serbia)
JP7166795B2 (en) Method for treating wastewater containing COD components
WO2013146852A1 (en) Method for membrane-treating formaldehyde-containing discharge water
JP4662059B2 (en) Purification process for steel manufacturing wastewater
Yao et al. Comparison of UV-based advanced oxidation processes for the removal of different fractions of NOM from drinking water
Pan et al. Application of Fenton pre-oxidation, Ca-induced coagulation, and sludge reclamation for enhanced treatment of ultra-high concentration poly (vinyl alcohol) wastewater
KR101834438B1 (en) Apparatus and method for treating desulfurization waste water
Zhu et al. Advanced treatment of landfill leachate by catalytic ozonation with MnCeOx/γ-Al2O3 catalyst
JP2014198288A (en) Method for treating poorly biodegradable organic matter-containing water and treatment apparatus thereof
CN110981013A (en) Method for treating waste liquid after extraction of thiamine
Zhang et al. Potential of coagulation/GAC adsorption combined with UV/H2O2 and ozonation for removing dissolved organic matter from secondary RO concentrate
Al-Abri et al. Pretreatment of Oil Produced Water using low-cost Adsorbents
CN105461107A (en) Water resource recovering technology for coking wastewater biochemical treatment effluent
JP6830801B2 (en) Treatment method of wastewater containing oxidizable substances
Rabii et al. Evaluation of lead and COD removal from lead octoate drier effluent by chemical precipitation, coagulation–flocculation, and potassium persulfate oxidation processes
CN108249697A (en) A kind of processing method for the aluminium wastewater that Friedel-Crafts reaction generates
AU2017221284B2 (en) Process for reduction of sulfide from water and wastewater
KR101064472B1 (en) 1,4-dioxane containing wastewater treatment method
CN108706774A (en) A kind of processing method of the waste water containing xanthate
CN1156408C (en) Process and equipment for treating sewage in oil field

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120404

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130813

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130822

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees