[go: up one dir, main page]

JP2010246442A - Lactic acid bacteria count measuring method and lactic acid bacteria count measuring apparatus - Google Patents

Lactic acid bacteria count measuring method and lactic acid bacteria count measuring apparatus Download PDF

Info

Publication number
JP2010246442A
JP2010246442A JP2009097847A JP2009097847A JP2010246442A JP 2010246442 A JP2010246442 A JP 2010246442A JP 2009097847 A JP2009097847 A JP 2009097847A JP 2009097847 A JP2009097847 A JP 2009097847A JP 2010246442 A JP2010246442 A JP 2010246442A
Authority
JP
Japan
Prior art keywords
lactic acid
acid bacteria
light
area
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009097847A
Other languages
Japanese (ja)
Inventor
Shigeyuki Sawayama
成行 澤山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2009097847A priority Critical patent/JP2010246442A/en
Publication of JP2010246442A publication Critical patent/JP2010246442A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

【課題】乳酸菌含有検体から乳酸菌を効率良く採取し、乳酸菌を正確に検出し計測することを目的とする。
【解決手段】採取フィルタ7で、ろ過抽出した乳酸菌含有検体を蛍光発光色素で染色し、採取フィルタ7を乳酸菌数計測装置の検査台6にセット、励起光を照射し蛍光発光させ、光電変換素子で撮影した画像を面積解析する。面積解析は、発光点の面積および発光輝度から単体の菌と乳酸菌の塊、異物を区別し、乳酸菌と判断した発光点の面積および発光輝度から、乳酸菌の塊りと判断したものを発光面積の大きさにおける乳酸菌数を算出して乳酸菌数を計測する。
【選択図】図2
An object of the present invention is to efficiently collect lactic acid bacteria from a sample containing lactic acid bacteria, and to accurately detect and measure the lactic acid bacteria.
A sample containing a lactic acid bacterium filtered and extracted by a collection filter 7 is stained with a fluorescent luminescent dye, the collection filter 7 is set on an inspection table 6 of a lactic acid bacteria count measuring apparatus, irradiated with excitation light to emit fluorescence, and a photoelectric conversion element. Analyze the area of the image taken in step 1. Area analysis distinguishes single bacteria and lactic acid bacteria lumps and foreign substances from the area and luminescence brightness of the luminescent spots, and determines the luminescent area as determined from the area and luminescence brightness of the luminescent spots determined to be lactic acid bacteria. The number of lactic acid bacteria is calculated by calculating the number of lactic acid bacteria in the size.
[Selection] Figure 2

Description

本発明は、乳酸菌含有検体の乳酸菌数計測をおこなうための乳酸菌数計測方法および計測装置に関する。   The present invention relates to a method for measuring the number of lactic acid bacteria and a measuring apparatus for measuring the number of lactic acid bacteria in a sample containing lactic acid bacteria.

従来この種の計測および検査方法は、栄養成分が含まれる寒天培地に検体を0.1ml滴下しコンラージ棒にて塗抹する塗抹寒天培養法、寒天培地が固まらない状態で検体1mlを混釈する混釈培養法、液体培地にて検体を0.1mlもしくは1ml添加する液体培養法などで培養し、その増殖活性を検出する培養法が用いられている。培養法での検査は、現在最も広く利用されている検出手段であるが、培養に24〜72時間かかること、培養条件(温度、時間、培地栄養成分)が一致しない場合は培養することができないことなどが課題として挙げられる。   Conventionally, this type of measurement and testing method is a smear agar culture method in which 0.1 ml of a specimen is dropped on an agar medium containing nutrient components and smeared with a congeal stick, or a mixture in which 1 ml of a specimen is mixed while the agar medium does not solidify. A culture method in which the growth activity is detected by culturing by an incubation method, a liquid culture method in which 0.1 ml or 1 ml of a specimen is added in a liquid medium, and the like is used. Examination by culture method is currently the most widely used detection means, but it can not be cultured if the culture takes 24 to 72 hours and the culture conditions (temperature, time, medium nutrients) do not match. This is a problem.

また、メンブレンフィルターを使用して計測する方法として、アデノシン三リン酸(以下ATP)分解酵素を含む溶液をメンブレンフィルターに施した後、乾燥処理をしたメンブレンフィルターに検体中の微生物をろ過捕集し、必要であれば所要時間培養した後、ATPを抽出するための液体抽出試薬と発光試薬であるルシフェリン・ルシフェラーゼを霧状に噴霧することにより、ルシフェリンとルシフェラーゼがATPと反応して、1分子のルシフェリンの酸化によって1フォトンの発光をし、その発光を高感度CCDカメラで撮り込み微生物を計測していた(例えば、特許文献1参照)。   As a method of measurement using a membrane filter, a solution containing adenosine triphosphate (hereinafter referred to as ATP) degrading enzyme is applied to the membrane filter, and then the microorganisms in the sample are collected by filtration on the dried membrane filter. If necessary, after culturing for a required time, a liquid extraction reagent for extracting ATP and a luminescence reagent, luciferin luciferase, are sprayed in the form of a mist so that luciferin and luciferase react with ATP, One photon was emitted by oxidation of luciferin, and the emitted light was captured with a high-sensitivity CCD camera to measure microorganisms (see, for example, Patent Document 1).

特表平9−512713号公報Japanese National Patent Publication No. 9-512713

このような従来の検査法である培養法は、検査の結果が得られるまでに24〜48時間またはそれ以上の培養時間が必要となり、生鮮食品などの製造あるいは製品出荷の段階で検査結果待ちを要し、時間的、経済的に大きなデメリットとなっており、場合によっては検査結果が判る前に出荷せざるをえないという課題があり、検体中乳酸菌数を計測するのに要する時間を短時間にすることが要求されている。   The conventional culture method, which is a conventional test method, requires a culture time of 24 to 48 hours or more until a test result is obtained, and waits for the test result at the stage of production of fresh food or product shipment. In other words, it is a major disadvantage in terms of time and economics. In some cases, there is a problem that the product must be shipped before the test results are known, and the time required to measure the number of lactic acid bacteria in the sample is short. It is required to be.

また、検体中に乳酸菌と同じように発光する蛍光異物等が含まれる検体の検査においては、乳酸菌と同じように発光する蛍光異物等と乳酸菌の蛍光との明確な差が得られず、正確な乳酸菌数の計測ができないという課題があり、正確な乳酸菌数を計測することが要求されている。   In addition, in the inspection of specimens that contain fluorescent foreign substances that emit light in the same manner as lactic acid bacteria, there is no clear difference between the fluorescent foreign substances that emit light as in lactic acid bacteria and the fluorescence of lactic acid bacteria. There is a problem that the number of lactic acid bacteria cannot be measured, and it is required to accurately measure the number of lactic acid bacteria.

本発明は、従来の課題を解決するものであり、検体中の乳酸菌数を計測するのに要する時間を短時間に、また、メンブレンフィルターに捕集した乳酸菌と異物を判別し、検体中の正確な乳酸菌数を検出する乳酸菌数計測方法および乳酸菌数計測装置を提供することを目的としている。   The present invention solves the conventional problems, shortens the time required for measuring the number of lactic acid bacteria in a sample, discriminates lactic acid bacteria collected from a membrane filter from foreign substances, and accurately detects the number of lactic acid bacteria in a sample. An object of the present invention is to provide a method for measuring the number of lactic acid bacteria and a device for measuring the number of lactic acid bacteria that detect the number of lactic acid bacteria.

本発明の乳酸菌数計測方法および計測装置は上記目的を達成するために、ろ過抽出した乳酸菌含有検体に、励起光を照射し発光点を光電変換素子で撮影した画像を面積解析して乳酸菌数を計測することを特徴とする乳酸菌数計測方法としたものである。   In order to achieve the above-mentioned object, the lactic acid bacteria count method and measuring apparatus of the present invention analyze the area of an image obtained by irradiating a filter-extracted lactic acid bacteria-containing specimen with excitation light and photographing the emission point with a photoelectric conversion element, and calculating the number of lactic acid bacteria It is a method for measuring the number of lactic acid bacteria characterized by measuring.

また、面積解析は、発光点の面積および発光輝度から単体の菌と乳酸菌の塊、異物を区別する乳酸菌数計測方法としたものである。   In addition, the area analysis is a method for measuring the number of lactic acid bacteria, which distinguishes a single bacterium, a lump of lactic acid bacteria, and foreign substances from the area of the luminescent spot and the luminescence brightness.

また、乳酸菌と判断した発光点の面積および発光輝度から、乳酸菌の塊りと判断したものを発光面積の大きさにおける乳酸菌数を算出する乳酸菌数計測方法としたものである。   In addition, a method for measuring the number of lactic acid bacteria that calculates the number of lactic acid bacteria in the size of the luminescent area is determined based on the area of the luminescent spots determined as lactic acid bacteria and the luminance of the luminescent bacteria.

また、順次撮影した画像から、乳酸菌の数量を積算する手段を有する乳酸菌数計測方法としたものである。   In addition, the method is a method for measuring the number of lactic acid bacteria having means for accumulating the number of lactic acid bacteria from sequentially captured images.

また、ろ過抽出した乳酸菌含有検体に染色法を用いる乳酸菌数計測方法としたものである。   In addition, the method is a method for measuring the number of lactic acid bacteria using a staining method for the lactic acid bacteria-containing specimen extracted by filtration.

また、ろ過抽出した乳酸菌含有検体のpHを調整する乳酸菌数計測方法としたものである。   Further, the present invention is a method for measuring the number of lactic acid bacteria by adjusting the pH of the lactic acid bacteria-containing specimen extracted by filtration.

また、染色法が蛍光染色法である乳酸菌数計測方法としたものである。   The staining method is a method for measuring the number of lactic acid bacteria, which is a fluorescent staining method.

また、採取フィルタで乳酸菌をろ過抽出し、第1の試薬と、第2の試薬と、第3の試薬と、第4の試薬の中でいずれか1種類あるいは複数種類の試薬を用いて乳酸菌を染色した後、予め定められた波長域で励起光を照射する光源と、前記励起光によって照射されて発光する予め定めたれた波長域の光を前記採取フィルタの設定した一定面積を受光する受光手段と、前記光源によって照射されて発光した光を設定した一定の時間内に受光し撮影した画像を、その受光した光量が設定したしきい値の範囲で、かつ設定した面積の範囲であるものを乳酸菌と判断する乳酸菌判断手段と、乳酸菌判断手段によって乳酸菌と判断した発光点1個の大きさから、単体の菌と乳酸菌の塊りを判断して、塊りの大きさにおける乳酸菌の数量を算出し、順次積算することで乳酸菌の数量を算出する、前記採取フィルタの1部あるいは全面積の発光点を確認するために、前記採取フィルタあるいは受光手段を移動させる移動手段で、乳酸菌の数量を順次積算する手段を有する乳酸菌数測定方法を行なうための乳酸菌数計測装置としたものである。   In addition, the lactic acid bacteria are filtered and extracted with a collection filter, and the lactic acid bacteria are removed using one or more of the first reagent, the second reagent, the third reagent, and the fourth reagent. A light source that emits excitation light in a predetermined wavelength range after dyeing, and a light receiving means that receives light in a predetermined wavelength range that is irradiated with the excitation light and emits light in a predetermined area set by the sampling filter And an image obtained by receiving and photographing the light emitted and emitted by the light source within a set time, the received light amount being within a set threshold range and a set area range Lactic acid bacteria judging means to judge lactic acid bacteria, and from the size of one luminescent point judged to be lactic acid bacteria by lactic acid bacteria judging means, the mass of single bacteria and lactic acid bacteria is judged, and the quantity of lactic acid bacteria in the size of the lump is calculated Sequential integration A means for sequentially accumulating the quantity of lactic acid bacteria by a moving means for moving the collection filter or the light receiving means in order to confirm the light emission point of a part or the entire area of the collection filter. This is a lactic acid bacteria count measuring device for performing the lactic acid bacteria count measuring method.

また、前記採取フィルタが表面形状の変形しないフィルタである乳酸菌数計測装置としたものである。   Further, the sampling filter is a lactic acid bacteria count measuring device in which the surface shape is not deformed.

また、前記採取フィルタが色落ちしないフィルタである乳酸菌数計測装置としたものである。   Further, the sampling filter is a lactic acid bacteria count measuring device that is a filter that does not lose color.

また、前記フィルタ上に顔料を担持した乳酸菌数計測装置としたものである。   Moreover, it is set as the lactic acid bacteria count measuring apparatus which carry | supported the pigment on the said filter.

また、前記採取フィルタが暗色のフィルタである乳酸菌数計測装置としたものである。   Moreover, the said collection filter is set as the lactic acid bacteria count measuring apparatus which is a dark filter.

また、前記採取フィルタ上に金、銅、クロム、白金、パラジウムから選ばれる少なくとも1種類の金属成分を含む薄膜が形成された乳酸菌数計測装置としたものである。   Moreover, it is set as the lactic acid bacteria count measuring apparatus by which the thin film containing the at least 1 sort (s) of metal component chosen from gold | metal | money, copper, chromium, platinum, and palladium was formed on the said collection filter.

また、受光手段が、少なくとも乳酸菌の大きさが認識できる面積を有した複数個の光電変換素子である乳酸菌数計測装置としたものである。   Further, the light receiving means is a lactic acid bacteria count measuring device which is a plurality of photoelectric conversion elements having an area where at least the size of lactic acid bacteria can be recognized.

また、光源を1種類あるいは複数種類であり、予め定められた波長域を1種類あるいは複数種類であり、その1種類あるいは複数種類の波長域で照射された発光する光を予め定められた、複数種類の波長域の光を各々受光する受光手段と、各々の波長域での光量の比から発光した点あるいは面積を乳酸菌と判断する乳酸菌判断を有する乳酸菌数計測装置としたものである。   Further, the light source is of one type or a plurality of types, the predetermined wavelength range is one type or a plurality of types, and the light to be emitted emitted in the one type or a plurality of types of wavelength ranges is determined in advance. It is a lactic acid bacteria count measuring device having a light receiving means for receiving light of various types of wavelength ranges and a lactic acid bacteria judgment for judging the point or area of light emission from the ratio of the light quantity in each wavelength range as lactic acid bacteria.

また、複数種類の光源と複数の波長域を受光する受光手段を1種類あるいは設定した種類の前記光源および受光手段を切替て、設定した種類のみ波長域の光源と受光手段で乳酸菌を検知する乳酸菌数計測装置としたものである。   Further, a single type or a set type of light receiving means for receiving a plurality of types of light sources and a plurality of wavelength ranges is switched, and a lactic acid bacterium that detects a lactic acid bacterium with only a set type of light sources and light receiving units. This is a number measuring device.

また、乳酸菌判断手段によって、設定した面積以上のため微生物以外と認識された発光点の面積を順次積算あるいはその面積を1つと認識して順次個数を積算し、その総面積あるいは総個数が、設定した面積あるいは個数以上のときに注意を表わす注意手段を有した乳酸菌数計測装置としたものである。   Also, by the lactic acid bacteria judgment means, the area of the luminescent spots recognized as other than microorganisms because of more than the set area is sequentially integrated or the area is recognized as one and the number is sequentially integrated, and the total area or total number is set This is a lactic acid bacteria count measuring device having a caution means for indicating a caution when the area or number exceeds the specified area.

本発明によれば、乳酸菌含有検体において、採取フィルタ上で乳酸菌を捕集することが可能となり、連鎖菌が含まれる乳酸菌においても短時間で検出および計測ができる。   According to the present invention, it is possible to collect lactic acid bacteria on a collection filter in a sample containing lactic acid bacteria, and it is possible to detect and measure lactic acid bacteria containing streptococci in a short time.

また、採取フィルタに捕集した乳酸菌と異物を判別し、検体中の正確な乳酸菌数を検出および計測ができる。   In addition, it is possible to discriminate between lactic acid bacteria collected from the collection filter and foreign substances, and to detect and measure the exact number of lactic acid bacteria in the specimen.

また、フィルタ形状の変形や脱色しないフィルタであるため、染色法あるいは蛍光染色法での測定であっても、乳酸菌の検出および計測に影響を与えず精度良く乳酸菌検出および計測ができる。   In addition, since the filter does not deform or decolorize the filter shape, it is possible to detect and measure lactic acid bacteria with high accuracy without affecting the detection and measurement of lactic acid bacteria even when measuring by staining or fluorescent staining.

本発明の実施の形態2の乳酸菌数計測装置の一態様を示す構成図The block diagram which shows the one aspect | mode of the lactic acid bacteria count measuring apparatus of Embodiment 2 of this invention 同フローチャートSame flowchart 同計測フローチャートSame measurement flowchart 本発明の実施例の蛍光発光画像の顕微鏡写真Photomicrograph of fluorescence emission image of Example of the present invention

本発明の請求項1記載の乳酸菌数計測方法は、ろ過抽出した乳酸菌含有検体に励起光を照射し発光点を光電変換素子で撮影した画像を面積解析して乳酸菌数を計測することを特徴とする乳酸菌検出方法としたものであり、効率良く簡単な構成で乳酸菌を検出するという作用を有する。   The method for measuring the number of lactic acid bacteria according to claim 1 of the present invention is characterized in that the number of lactic acid bacteria is measured by area analysis of an image obtained by irradiating a filter-extracted lactic acid bacteria-containing specimen with excitation light and photographing the emission point with a photoelectric conversion element. The method for detecting lactic acid bacteria is to detect lactic acid bacteria efficiently and with a simple configuration.

また、面積解析は、発光点の面積および発光輝度から単体の菌と乳酸菌の塊、異物を区別し、検体中の発光物の判断をおこなって計測することができるという作用を有する。   In addition, the area analysis has an effect that a single bacterium, a lump of lactic acid bacteria, and a foreign substance can be distinguished from the area of the luminescent spot and the luminescent brightness, and the luminescent matter in the sample can be determined and measured.

また、乳酸菌と判断した発光点の面積および発光輝度から、乳酸菌の塊りと判断したものを発光面積の大きさにおける乳酸菌数を算出し、順次積算することで、乳酸菌の数量を積算する手段を有するものであり、検体中の乳酸菌濃度を正確に計測することができるという作用を有する。   In addition, a means for calculating the number of lactic acid bacteria by calculating the number of lactic acid bacteria in the size of the luminescent area from the area of the light emitting point determined to be lactic acid bacteria and the luminance of the luminescent bacteria and sequentially integrating the number of lactic acid bacteria, It has the effect | action that the lactic acid bacteria density | concentration in a test substance can be measured correctly.

また、順次撮影した画像から、乳酸菌の数量を積算する手段を有するものであり、検体中の乳酸菌濃度を正確に計測することができるという作用を有する。   Moreover, it has a means for accumulating the number of lactic acid bacteria from sequentially photographed images, and has the effect of accurately measuring the concentration of lactic acid bacteria in the specimen.

また、ろ過抽出した乳酸菌含有検体に染色法を用い乳酸菌を検出するという作用を有する。   Moreover, it has the effect | action of detecting lactic acid bacteria using the staining method to the lactic acid bacteria containing test substance extracted by filtration.

また、ろ過抽出した乳酸菌含有検体のpHを採取フィルタ表面上で乳酸菌の性質が変化しないように、pHを調整する手段を備える乳酸菌数計測方法としたものであり、検出時の染色性を高め、感度良く乳酸菌を検出することができるという作用を有する。   In addition, it is a method for measuring the number of lactic acid bacteria provided with means for adjusting the pH so that the pH of the lactic acid bacteria-containing specimen extracted by filtration does not change the properties of the lactic acid bacteria on the surface of the collection filter. It has the effect that lactic acid bacteria can be detected with high sensitivity.

また、前記採取フィルタ上に捕捉した、乳酸菌を染色法あるいは蛍光染色法で検知あるいはカウントする乳酸菌数計測方法であり、発光した乳酸菌を光学的に計測するという作用を有する。   Further, it is a method for measuring the number of lactic acid bacteria captured on the collection filter and detecting or counting lactic acid bacteria by a staining method or a fluorescent staining method, and has an effect of optically measuring the emitted lactic acid bacteria.

また、採取フィルタで乳酸菌をろ過抽出し、第1の試薬と、第2の試薬と、第3の試薬と、第4の試薬の中でいずれか1種類あるいは複数種類の試薬を用いて乳酸菌を染色した後、予め定められた波長域で励起光を照射する光源と、前記励起光によって照射されて発光する予め定めたれた波長域の光を前記採取フィルタの設定した一定面積を受光する受光手段と、前記光源によって照射されて発光した光を設定した一定の時間内に受光し撮影した画像を、その受光した光量が設定したしきい値の範囲で、かつ設定した面積の範囲であるものを乳酸菌と判断する乳酸菌判断手段と、乳酸菌判断手段によって乳酸菌と判断した発光点1個の大きさから、単体の菌と乳酸菌の塊りを判断して、塊りの大きさにおける乳酸菌の数量を算出し、順次積算することで乳酸菌の数量を算出する、前記採取フィルタの1部あるいは全面積の発光点を確認するために、前記採取フィルタあるいは受光手段を移動させる移動手段で、乳酸菌の数量を順次積算する手段を有するものであり、発光した物質と乳酸菌を差別化し計測するという作用を有する。   In addition, the lactic acid bacteria are filtered and extracted with a collection filter, and the lactic acid bacteria are removed using one or more of the first reagent, the second reagent, the third reagent, and the fourth reagent. A light source that emits excitation light in a predetermined wavelength range after dyeing, and a light receiving means that receives light in a predetermined wavelength range that is irradiated with the excitation light and emits light in a predetermined area set by the sampling filter And an image obtained by receiving and photographing the light emitted and emitted by the light source within a set time, the received light amount being within a set threshold range and a set area range Lactic acid bacteria judging means to judge lactic acid bacteria, and from the size of one luminescent point judged to be lactic acid bacteria by lactic acid bacteria judging means, the mass of single bacteria and lactic acid bacteria is judged, and the quantity of lactic acid bacteria in the size of the lump is calculated Sequential integration A means for sequentially accumulating the quantity of lactic acid bacteria by a moving means for moving the collection filter or the light receiving means in order to confirm the light emission point of a part or the entire area of the collection filter. It has the effect of differentiating and measuring luminescent substances and lactic acid bacteria.

また、前記フィルタが表面形状の変形しないフィルタである乳酸菌数計測方法としたものであり、フィルタ表面の平面性を高め、乳酸菌の検出位置を明確にし、検出・計測時の装置構成を簡略にすることができるという作用を有する。   In addition, the filter is a method for measuring the number of lactic acid bacteria, which is a filter whose surface shape is not deformed. The flatness of the filter surface is improved, the detection position of lactic acid bacteria is clarified, and the apparatus configuration during detection and measurement is simplified. It has the effect of being able to.

また、前記フィルタが、色落ちしない暗色のフィルタとした乳酸菌数計測方法であり、蛍光検出時バックグランドの輝度を抑え、感度を高くするという作用を有する。   The filter is a method for measuring the number of lactic acid bacteria, which is a dark filter that does not lose color, and has the effect of suppressing the luminance of the background when detecting fluorescence and increasing the sensitivity.

また、前記フィルタ上に、金、銅、クロム、白金、パラジウムから選ばれる少なくとも1種類の金属成分を含む薄膜が形成されたものである乳酸菌数計測方法であり、乳酸菌検出時に励起光を照射した際の光の反射を防止することができ、乳酸菌の検出および計測を妨害することなく、正確に乳酸菌の検出および計測するという作用を有する。   Further, the present invention is a method for measuring the number of lactic acid bacteria in which a thin film containing at least one metal component selected from gold, copper, chromium, platinum, and palladium is formed on the filter, and irradiated with excitation light when detecting the lactic acid bacteria. It is possible to prevent the reflection of light at the time, and to accurately detect and measure lactic acid bacteria without interfering with the detection and measurement of lactic acid bacteria.

また、光源を1種類あるいは複数種類であり、予め定められた波長域を1種類あるいは複数種類であり、その1種類あるいは複数種類の波長域で照射された発光する光を予め定められた、複数種類の波長域の光を各々受光する受光手段と、各々の波長域での光量の比から発光した点あるいは面積を乳酸菌と判断し検知するという作用を有する。   Further, the light source is of one type or a plurality of types, the predetermined wavelength range is one type or a plurality of types, and the light to be emitted emitted in the one type or a plurality of types of wavelength ranges is determined in advance. It has a function of detecting and detecting a light emitting point or area as a lactic acid bacterium based on the ratio of the light quantity in each wavelength range and the light receiving means for receiving light of various wavelength ranges.

また、複数種類の光源と複数の波長域を受光する受光手段を1種類あるいは設定した種類の前記光源および受光手段を切替て、設定した種類のみ波長域の光源と受光手段で乳酸菌を検知するという作用を有する。   In addition, the light source and the light receiving means of one kind or a set kind of light receiving means for receiving a plurality of types of light sources and a plurality of wavelength ranges are switched, and lactic acid bacteria are detected by the light source and the light receiving means of only the set types. Has an effect.

また、乳酸菌判断手段によって、設定した面積以上のため乳酸菌以外と認識された発光点の面積を順次積算あるいは、その面積を1つと認識して順次個数を積算し、その総面積あるいは総個数が、設定した面積あるいは個数以上のときに検知し、注意を表わす手段を有する。   In addition, by the lactic acid bacteria determination means, the area of the light emitting points recognized as other than the lactic acid bacteria for the area larger than the set area is sequentially integrated, or the area is recognized as one and the number is sequentially integrated, and the total area or the total number is There is a means for detecting when the area or number exceeds the set value and indicating attention.

以下、本発明の実施の形態について図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(実施の形態1)
例えば乳酸菌やまた、それを含む各種食品があるが、乳酸菌の検出もしくは計測する場合、従来の検査法である培養法は、検査の結果が得られるまでに24〜48時間またはそれ以上の培養時間が必要となり、製造あるいは製品出荷の段階で検査結果待ちを要し、時間的、経済的に大きなデメリットとなっており、場合によっては検査結果が判る前に出荷せざるをえないということもあるため、迅速な乳酸菌の計測が必要となっている。
(Embodiment 1)
For example, there are lactic acid bacteria and various foods containing them. When lactic acid bacteria are detected or measured, the conventional culture method is a culture time of 24 to 48 hours or more until the result of the test is obtained. It is necessary to wait for the inspection result at the stage of manufacture or product shipment, which is a great disadvantage in terms of time and economy, and in some cases, it may be necessary to ship before the inspection result is known. Therefore, quick measurement of lactic acid bacteria is necessary.

また、乳製品の成分には、染色試薬や蛍光染色試薬と反応しやすい成分も含まれており、顕微鏡などで観察する場合、非常に難しく、熟練を要する。   In addition, components of dairy products include components that easily react with staining reagents and fluorescent staining reagents, and are very difficult and require skill when observed with a microscope or the like.

通常、微生物をメンブレンフィルタ法で測定するためには、0.2〜0.4μmのフィルタでろ過を行い、フィルタ上に捕集された微生物を顕微鏡で観察、あるいは、そのフィルタを培地上に載せて培養する。また、食品分野においては、目的とする微生物を捕集でき、且つ、ろ過に影響が少ない0.4μmの孔径を持つフィルタを用いられることが多い。   Usually, in order to measure microorganisms by the membrane filter method, filtration is performed with a 0.2 to 0.4 μm filter, and the microorganisms collected on the filter are observed with a microscope, or the filter is placed on a medium. Culture. In the food field, a filter having a pore size of 0.4 μm that can collect target microorganisms and has little influence on filtration is often used.

また、フィルタの種類はPP(Polypropylene)、PVC(Polyvinyl chloride) PC(Polycarbonate)、PTFE(Polytetrafluoroethylene)、PVDF(Polyvinylidiene fluoride)、MCE(Mixed cellulose esters)、PES(Polyether sulfone)、NYL(Nylon)などがある。   Filter types are PP (Polypropylene), PVC (Polyvinyl Chloride), PC (Polycarbon), PTFE (Polytetrafluorethylene), PVDF (Polyvinylidene fluoride, PE) There is.

例えばPCの材質のように表面がフラット(±2μm以下、好ましくは±1μ以下)で、しかも、放射線を用いて穴をあけており、非常に均一な細孔があいているために、微生物がフィルタ上の表面に埋まることなく捕集されるため、通常用いられている。このようなフィルタは、細孔の柔軟性も悪く、かつ開口率も低いために、細孔以上の粒径の粒子があると、ろ過が困難である。但し、微生物以外の物質や成分がなければ、表面の凹凸も少なく細孔に微生物が埋まることが無い為、その後の顕微鏡観察や特に自動化して機械的に測定する場合においても望ましい。   For example, since the surface is flat (± 2 μm or less, preferably ± 1 μm or less) as in the case of a PC material, and holes are made using radiation, and very uniform pores are formed, Since it is collected without being buried in the surface on the filter, it is usually used. Such a filter is poor in flexibility of pores and has a low aperture ratio, so that if there are particles having a particle size larger than the pores, it is difficult to filter. However, if there are no substances or components other than microorganisms, surface irregularities are small and microorganisms are not buried in the pores. Therefore, it is desirable for subsequent microscopic observations and particularly when automated and mechanically measured.

ろ過した後、染色あるいは蛍光染色した乳酸菌を顕微鏡で観察、自動化した装置で測定する場合、色落ちしない暗色のフィルタを用いることで、精度良く測定することが可能である。暗色とは、黒色あるいはそれに近い色であるが、顕微鏡で観察するときに白色光あるいは紫外光など試薬の特性に応じた特定の波長の光を照射した際に照射した光を吸収しない色であることを示している。上記に示したフィルタの材質は、白または白に近いものが多く、特に紫外線を照射したときに反射あるいは自家蛍光して測定が困難になることがある。フィルタは、水に濡れることで、反射は起こしにくくなるが、水に濡れた状態で反射が防止できていることが、フィルタの色としては重要である。通常フィルタの材料は、暗色であることが少ないため、黒または黒に近い灰色で着色が必要で、その方法としては、色落ちがしにくい顔料や墨汁などが望ましい。   When the lactic acid bacteria dyed or fluorescently stained are measured with a microscope after filtration and measured with an automated apparatus, it is possible to measure with high accuracy by using a dark filter that does not lose color. A dark color is black or a color close to it, but is a color that does not absorb light emitted when irradiating light of a specific wavelength according to the characteristics of the reagent, such as white light or ultraviolet light, when observing with a microscope. It is shown that. Many of the materials of the filter shown above are white or close to white, and particularly when irradiated with ultraviolet rays, reflection or autofluorescence may cause the measurement to be difficult. When the filter gets wet with water, reflection hardly occurs, but it is important as a color of the filter that the reflection is prevented when wet with water. Usually, since the material of the filter is rarely dark, it needs to be colored in black or gray that is close to black, and as its method, a pigment or ink that does not easily lose color is desirable.

金、銅、クロム、白金、パラジウムなどから選ばれた金属の薄膜をフィルタ表面に蒸着などで被覆することで、反射を防止することができる。特に金は紫外線の反射率が低い。つまり、暗色とは、黒に近い色を示すとともに光の反射が少ないことを示す。   Reflection can be prevented by coating the filter surface with a metal thin film selected from gold, copper, chromium, platinum, palladium and the like by vapor deposition or the like. Gold, in particular, has a low ultraviolet reflectance. In other words, the dark color indicates a color close to black and has little light reflection.

微生物を染色する方法としては、細胞若しくは微生物が付着した検体に第1の試薬である4´,6−ジアミジノ−2−フェニルインドール二塩酸塩と第2の試薬であるプロピュームイオダイドと第3の試薬である6−カルボキシフルオレセインジアセテートと第4の試薬である4−メチルウンベリフェリル−β−D−ガラクトシドをそれぞれ混合した試薬を接触させる。生死細胞の核酸と結合した4´,6−ジアミジノ−2−フェニルインドール二塩酸塩は、励起波長359nmの時に励起波長を吸収して461nmの蛍光波長を発し生死細胞の発色させる。また死細胞の核酸と結合したプロピデュームイオダイドは、励起波長535nmの時、励起波長の光量を吸収して617nmの蛍光波長に変え死細胞のみを発色させる。   As a method for staining microorganisms, 4 ′, 6-diamidino-2-phenylindole dihydrochloride as a first reagent and propium iodide as a second reagent and a second reagent on a sample to which cells or microorganisms are attached are used. The reagent which mixed 6-carboxyfluorescein diacetate which is the reagent 3 and 4-methylumbelliferyl-β-D-galactoside which is the fourth reagent is brought into contact. The 4 ′, 6-diamidino-2-phenylindole dihydrochloride bound to the nucleic acid of the living and dead cells absorbs the excitation wavelength when the excitation wavelength is 359 nm and emits a fluorescence wavelength of 461 nm to cause the living and dead cells to develop color. Propidium iodide combined with dead cell nucleic acid absorbs the amount of light at the excitation wavelength when the excitation wavelength is 535 nm and changes the fluorescence wavelength to 617 nm to cause only dead cells to develop color.

また、他の蛍光試薬として生死細胞用蛍光発光試薬では、例えばYTO11〜SYTO16、SYTO20〜SYTO25、SYTO40〜SYTO45、SYTO17、SYTO59〜SYTO64、SYTO80〜SYTO85、DAPI、SYBRGreen、Hoechst33342、Hoechst33258、SYTO9とがある。また、死細胞用蛍光発光試薬では例えばPropidium Iodide、SYTOXGreen、BOBO−1、YOYO−1、YO−PRO−1、TOTO−1、POPO−3、TO−PRO3、SYTOXBlue、SYTOXOrangeとがある。蛍光試薬によって、それぞれ励起光の波長を設定することで、試薬と反応した生死細胞、死細胞を蛍光発光することができる。   Other fluorescent reagents for live and dead cells include YTO11 to SYTO16, SYTO20 to SYTO25, SYTO40 to SYTO45, SYTO17, SYTO59 to SYTO64, SYTO80 to SYTO85, DAPI, SYBRGreen, Hoechst33342, HoechY33TO, 58 . Examples of the fluorescent reagent for dead cells include Propium Iodide, SYTOXGreen, BOBO-1, YOYO-1, YO-PRO-1, TOTO-1, POPO-3, TO-PRO3, SYTOXBlue, and SYTOXOrange. By setting the wavelength of the excitation light with the fluorescent reagent, the living and dead cells and dead cells that have reacted with the reagent can emit fluorescence.

また、生菌だけが有しているエステラーゼと反応するものや呼吸活性を検知できる試薬を用いて生菌だけを染色するもの、細胞膜を透過しないために細胞膜が損傷を受けて死んだ場合に、そこから透過してDNAなどの核酸と結合して染色することで死菌だけを染色するもの、同様にDNAなどの核酸と結合するもので、細胞膜を透過する性質であるため、生菌と死菌の両方を染色するもの、特定の微生物だけが代謝する特定微生物由来物質と反応することや特定の微生物とのみ反応する蛍光ラベルを有した抗体やマイクロファージで特定の微生物のみを染色するものなどがある。   In addition, those that react with esterase that only live bacteria have, those that stain only live bacteria using a reagent that can detect respiratory activity, and those that die because the cell membrane is damaged because it does not penetrate the cell membrane, Permeated from there and stained with nucleic acid such as DNA to stain only dead bacteria. Similarly, it binds to nucleic acid such as DNA and has the property of permeating the cell membrane. Those that stain both bacteria, those that react with specific microorganism-derived substances that only specific microorganisms metabolize, antibodies that have fluorescent labels that react only with specific microorganisms, or those that stain only specific microorganisms with microphages, etc. There is.

また、微生物検査を行う場合、サンプル量は多いほど良い。従来の培養法では、0.1mlが最大であるため、ろ過ができることでサンプル量を0.1mlあるいは1ml以上が可能になり、菌濃度は1ml当たりの個数として測定するため、サンプル量が多ければ多いほど感度、精度が向上する。   In addition, when performing a microbial test, the larger the sample amount, the better. In the conventional culture method, 0.1 ml is the maximum, so that the sample volume can be 0.1 ml or 1 ml or more by filtration, and the bacterial concentration is measured as the number per 1 ml. The greater the number, the better the sensitivity and accuracy.

(実施の形態2)
図1は乳酸菌数計測装置の一態様を示す構成図である。この乳酸菌数計測装置は、光源集光手段としてのレンズ1、受光部2を含む。光源3から発せられた励起光から目的の波長を取り出すために励起光分光フィルタ4で分光する。分光された励起光はプリズム5を経て、光路を変化させられる。光路を変化させられた励起光はレンズ1を経て検査台6に設置された乳酸菌の採取フィルタ7を含む部位、即ち、採取フィルタ7と台座8からなる組合せ体の採取フィルタ7の表面に集光される。そこで励起光によって励起された乳酸菌が有する蛍光は、再びプリズム5を透過し、受光部2に到達する。受光部2に到達した蛍光は、目的の蛍光のみを取り出すために蛍光分光フィルタ9を経て、受光部に内蔵された光電変換素子10に到達し、信号化され、認識される。また、図に示していないが、この乳酸菌数計測装置は検査台6を移動する手段を備えており、採取フィルタ7の表面の蛍光発光を全て、若しくは一部を受光することができる。
(Embodiment 2)
FIG. 1 is a block diagram showing an embodiment of a lactic acid bacteria count measuring apparatus. This lactic acid bacteria count measuring apparatus includes a lens 1 as a light source condensing unit and a light receiving unit 2. In order to extract a target wavelength from the excitation light emitted from the light source 3, the light is spectrally separated by the excitation light spectral filter 4. The split excitation light passes through the prism 5 and the optical path is changed. The excitation light whose optical path has been changed is condensed on the surface of the collection filter 7 of the combined body composed of the collection filter 7 and the pedestal 8 through the lens 1 and including the collection filter 7 of lactic acid bacteria installed on the examination table 6. Is done. Therefore, the fluorescence of the lactic acid bacteria excited by the excitation light passes through the prism 5 again and reaches the light receiving unit 2. The fluorescence that reaches the light receiving unit 2 reaches the photoelectric conversion element 10 built in the light receiving unit through the fluorescence spectral filter 9 in order to extract only the target fluorescence, and is converted into a signal and recognized. Although not shown in the figure, this lactic acid bacteria count measuring device is provided with means for moving the examination table 6 and can receive all or part of the fluorescence emitted from the surface of the collection filter 7.

光電変換素子10に到達した461nmと617nmの蛍光において、生菌と死菌は461nmの蛍光発光しており、更に死菌は617nmでも蛍光発光しているので、乳酸菌判断手段11により、乳酸菌若しくは異物と光の波長の違いを蛍光分光フィルタ9で分光後目的の蛍光波長のみが取り出され光電変換素子10に到達し、励起波長359nmを吸収し励起されて461nmで蛍光発光しているものは生菌と死菌を含む乳酸菌と判断され、励起波長535nmを吸収し励起され617nmで蛍光発光しているものは死菌と判断され、461nmと617nmの両方で蛍光発光してないものは異物と判断され、乳酸菌と判断された蛍光は積算されて、その数量が計測される。乳酸菌判断手段11としては、上記判断手順をプログラミングされたマイコン等がある。   In the fluorescence of 461 nm and 617 nm that reached the photoelectric conversion element 10, viable bacteria and dead bacteria emitted fluorescence of 461 nm, and dead bacteria emitted fluorescence even at 617 nm. The difference in the wavelength of light and the light wavelength is separated by the fluorescence spectral filter 9 and only the target fluorescence wavelength is extracted and reaches the photoelectric conversion element 10, which absorbs the excitation wavelength 359nm and is excited to emit fluorescence at 461nm. Are considered to be dead bacteria, and those that are excited and absorb fluorescence at 617 nm are considered dead bacteria, and those that do not emit fluorescence at both 461 nm and 617 nm are judged to be foreign substances. The fluorescence determined to be lactic acid bacteria is integrated and the quantity is measured. As the lactic acid bacteria judging means 11, there is a microcomputer programmed with the judging procedure.

光源3より発生した励起光は、レンズ1によって集光されるが、その際レンズ1によって励起光を照射する範囲は微小な一定面積に集光される。この場合、微小な一定面積とは微生物の大きさに基づいて設定した場合、一辺0.2μm乃至7.0μm程度の範囲を指し示す。また、現在最も利用されている微生物検出手段の一つである寒天培地拡散法との比較に基づいた場合、寒天培地拡散法によって培養、増殖した微生物の集団によって形成されるコロニーは、その距離が近接している場合、コロニー同士が重なり合う場合があり、最終的に目視で確認した場合、一つのコロニーとして認識してしまう事例が生ずる場合がある。そこで、この場合の微小な一定面積とは、コロニー同士が重なり合わない距離に基づいた場合、一辺100μm乃至500μm程度の範囲を指し示す。つまり微小な一定面積とは、乳酸菌判断手段11にて大きさで乳酸菌と認識できる大きさである。受光部2は、複数の光電変換素子10でフィルタ全体を一度で画像として撮影しても良いし、微小(一辺が10μm以下)で1個の光電変換素子10で撮影後、ひとつひとつの画像を組合わせて、最終的に乳酸菌の大きさを認識しても良い。   The excitation light generated from the light source 3 is condensed by the lens 1, and at this time, the range irradiated with the excitation light by the lens 1 is condensed on a small fixed area. In this case, the small fixed area indicates a range of about 0.2 μm to 7.0 μm on a side when set based on the size of the microorganism. In addition, when based on a comparison with the agar medium diffusion method, which is one of the most utilized microorganism detection means, colonies formed by a population of microorganisms cultured and grown by the agar medium diffusion method have a distance of When they are close to each other, colonies may overlap with each other, and when they are finally visually confirmed, there may be cases where the colonies are recognized as one colony. Therefore, the minute fixed area in this case indicates a range of about 100 μm to 500 μm on a side when based on a distance where colonies do not overlap each other. That is, the small fixed area is a size that can be recognized as lactic acid bacteria by the lactic acid bacteria determination means 11. The light receiving unit 2 may shoot the entire filter as a single image with a plurality of photoelectric conversion elements 10, or after shooting with a small photoelectric conversion element 10 (one side is 10 μm or less), each image is assembled. In addition, the size of lactic acid bacteria may be finally recognized.

レンズ1によって集光された励起光の照射時間は、蛍光を発する試薬の消光時間と励起光強度に依存する。試薬の種類によっては、自然界に存在する紫外光によっても分解する場合があり、2秒乃至300秒前後の範囲内で励起光を照射することが望ましい。   The irradiation time of the excitation light collected by the lens 1 depends on the quenching time and the excitation light intensity of the reagent that emits fluorescence. Depending on the type of reagent, it may be decomposed by ultraviolet light existing in nature, and it is desirable to irradiate excitation light within a range of about 2 to 300 seconds.

発光を検出する際、光源3の波長の幅が広いものである場合は、励起光分光フィルタ4によって励起波長を調整、分光することが可能となる。励起光分光フィルタ4は、目的の検出対象に応じて変えられるため、様々な蛍光を発する試薬に対応できる。   When light emission is detected, if the wavelength range of the light source 3 is wide, the excitation wavelength can be adjusted and dispersed by the excitation light spectral filter 4. Since the excitation light spectral filter 4 can be changed according to the target detection target, it can cope with various fluorescent reagents.

また、同時に、発光した蛍光波長の幅が広いものである場合は、目的の発光を検出するために蛍光分光フィルタ9を目的の検出対象に応じて変えることで様々な蛍光を発する試薬に対応できる。   At the same time, when the emitted fluorescence wavelength has a wide range, it is possible to cope with various fluorescent reagents by changing the fluorescence spectral filter 9 according to the target detection target in order to detect the target emission. .

光源3としては、各種ダイオード、ハロゲンランプ、キセノンランプ、冷陰極管、レーザー、ブラックライト、水銀ランプなどが挙げられる。これらの光源のうち、最大励起波長が比較的限定されているダイオード、冷陰極管、ブラックライトなどは、前記励起光分光フィルタ4および蛍光分光フィルタ9を使用することなく実施できる場合がある。また、ハロゲンランプ、水銀ランプなどについては、励起光分光フィルタ4および蛍光分光フィルタ9を使用する必要がある場合がある。   Examples of the light source 3 include various diodes, halogen lamps, xenon lamps, cold cathode tubes, lasers, black lights, mercury lamps, and the like. Among these light sources, a diode, a cold cathode tube, a black light, or the like whose maximum excitation wavelength is relatively limited may be implemented without using the excitation light spectral filter 4 and the fluorescence spectral filter 9. For halogen lamps, mercury lamps, and the like, it may be necessary to use the excitation light spectral filter 4 and the fluorescent spectral filter 9.

プリズム5およびレンズ1は、必要に応じてそれぞれ紫外光を透過する性質を有する。紫外光を透過する性質を有するものとしては石英ガラスなどが挙げられる。これにより紫外光で励起される試薬などにも対応できる。微生物の採取フィルタ7を含む部位を設置する検査台6は回転能を有する。レンズ1により集光された励起光は、微生物の採取フィルタ7の外周部より中心部へ、若しくは、中心部より外周部へ、半径分の距離を移動する。その際、レンズ1により集光された励起光の位置が外周部に存在するときと中心部に存在するときで検査台6の回転速度を変化させることによって、レンズ1により集光された励起光が外周部に存在するときと中心部に存在するときで励起された試薬が発した蛍光のずれ、残像および残光の発生を防止することができる。   The prism 5 and the lens 1 each have a property of transmitting ultraviolet light as necessary. Quartz glass etc. are mentioned as what has the property which permeate | transmits ultraviolet light. Thereby, it can respond also to the reagent etc. which are excited by ultraviolet light. The inspection table 6 on which the site including the microorganism collection filter 7 is installed has a rotating ability. The excitation light collected by the lens 1 moves a distance corresponding to the radius from the outer peripheral portion of the microorganism collection filter 7 to the central portion or from the central portion to the outer peripheral portion. At that time, the excitation light condensed by the lens 1 is changed by changing the rotation speed of the examination table 6 when the position of the excitation light collected by the lens 1 is present at the outer peripheral portion and at the central portion. It is possible to prevent the occurrence of deviation in fluorescence, afterimage and afterglow generated by the excited reagent when the is present at the outer periphery and at the center.

図1に示したように検査台6は採取フィルタ7を含む部位を嵌合させるための陥没部分(装置溝)を有し、ここに採取フィルタ7を含む部位をそのまま組み込むことができる形状としてある。なお、この際、例えば、検査台6に、採取フィルタ7がその上に位置するように金属平板を設け、採取フィルタ7が金属平板に押し付けられるような状態で組み込まれるようにすることで、検査台6上で採取フィルタ7が凹凸なく平滑に保持されるようにすれば、採取フィルタ7に捕集された乳酸菌の定量をより確実なものにすることができる。   As shown in FIG. 1, the inspection table 6 has a depressed portion (device groove) for fitting a portion including the sampling filter 7, and has a shape in which the portion including the sampling filter 7 can be incorporated as it is. . At this time, for example, the inspection table 6 is provided with a metal flat plate so that the sampling filter 7 is positioned on the inspection table 6, and the sampling filter 7 is incorporated in a state of being pressed against the metal flat plate, If the collection filter 7 is held smoothly on the table 6 without unevenness, the quantification of lactic acid bacteria collected on the collection filter 7 can be made more reliable.

なお、集光した位置を認識する手段を設けることでレンズ1によって集光された励起光の位置を認識し、集光が軌道から逸れないように、また、逸れた場合は再び軌道に戻すように設定されるものである。   It should be noted that by providing means for recognizing the condensed position, the position of the excitation light collected by the lens 1 is recognized, so that the condensed light does not deviate from the orbit, and when it deviates, it returns to the orbit again. Is set to

なお、励起光を照射する微小な一定面積は、正方形を含む多角形に限らず、円形、楕円形などでも可能であり、検体を照射できるものであればよい。   Note that the minute fixed area to which the excitation light is irradiated is not limited to a polygon including a square, but may be a circle, an ellipse, or the like as long as the sample can be irradiated.

なお、励起光もしくは蛍光を分光する手段として回折格子などを利用することも可能である。   It is also possible to use a diffraction grating or the like as means for separating excitation light or fluorescence.

なお、検査台6の回転速度を調整することで蛍光の残像および残光を防ぐこととしたが、励起光を照射するレンズ1の移動速度を調整することで残像および残光を防ぐことも可能である。   Although the fluorescence afterimage and afterglow are prevented by adjusting the rotation speed of the inspection table 6, it is also possible to prevent afterimage and afterglow by adjusting the moving speed of the lens 1 that irradiates the excitation light. It is.

なお、集光した位置を認識する手段は、必ずしも励起光の集光位置を直接認識する必要は無く、採取フィルタ7上の軌道を把握するものであればよい。   The means for recognizing the condensed position is not necessarily required to directly recognize the condensing position of the excitation light, and may be any means as long as it can grasp the trajectory on the collection filter 7.

図2は、本発明の乳酸菌含有検体において、乳酸菌検出方法および乳酸菌数計測装置の計測フローチャート図である。   FIG. 2 is a measurement flowchart of the lactic acid bacteria detection method and the lactic acid bacteria count measuring device in the lactic acid bacteria-containing specimen of the present invention.

検体染色においては、ステップ1にて採取フィルタ7で乳酸菌含有検体を1mlろ過する。ステップ2にて採取フィルタ7表面の乳酸菌以外の残留成分およびpH調整を生理食塩水3mlにて洗浄除去とpH調整を行なう。ステップ3にて、採取フィルタ7にて捕集された乳酸菌を染色する蛍光染色試薬を0.1ml滴下し採取フィルタ7全面に広げて2分間染色を行う。染色試薬は乳酸菌のDNAに結合し染色される試薬を用いた。ステップ4にて染色試薬の余剰試薬を生理食塩水にて0.1ml洗浄を行い検体染色完了となる。   In specimen staining, 1 ml of lactic acid bacteria-containing specimen is filtered through the collection filter 7 in Step 1. In step 2, residual components other than lactic acid bacteria on the surface of the collection filter 7 and pH adjustment are washed away with 3 ml of physiological saline and pH adjustment is performed. In step 3, 0.1 ml of a fluorescent staining reagent that stains the lactic acid bacteria collected by the collection filter 7 is dropped and spread over the entire surface of the collection filter 7 for 2 minutes. As the staining reagent, a reagent that binds to and stains DNA of lactic acid bacteria was used. In step 4, 0.1 ml of the excess reagent of the staining reagent is washed with physiological saline to complete the specimen staining.

測定においては、ステップ5で微生物の採取フィルタ7を乳酸菌数計測装置の台にセットする。この台については、微生物の採取フィルタ7を計測面にセットすることで平面になる状態に構成されており、それにより安定した計測が可能とすることができる。ステップ6にて計測装置により、採取された乳酸菌の計測が行われ計測完了となる。   In the measurement, in step 5, the microorganism collection filter 7 is set on the base of the lactic acid bacteria count measuring device. About this stand, it is comprised in the state which becomes a plane by setting the collection filter 7 of microorganisms on a measurement surface, and can thereby perform the stable measurement. In step 6, the collected lactic acid bacteria are measured by the measuring device, and the measurement is completed.

蛍光染色して蛍光発光した画像を図4に示す。図に示すように、蛍光発光点の大きさは様々あり、微小な大きさは、顕微鏡にて観察した結果、菌体が1つのものであることが確認できた。微小な発光物以外の大きさの蛍光発光点は、菌体の固まった連鎖菌であることも確認できた。   FIG. 4 shows an image of fluorescence staining and fluorescence emission. As shown in the figure, the fluorescence emission point has various sizes, and the minute size was observed with a microscope, and as a result, it was confirmed that the number of cells was one. It was also confirmed that the fluorescence emission points having a size other than the minute light-emitting substance were streptococcus with solid bacterial cells.

図3に図1の乳酸菌数計測装置で撮影した1視野の画像について、乳酸菌を計測するフロー図を示す。多数の視野を計測する場合には、このフローを繰り返し、フィルタ全体の面積と測定した面積(視野面積×視野数)の比に計測した乳酸菌数を乗じることでフィルタ全体の乳酸菌数を算出することができる。   FIG. 3 shows a flow chart for measuring lactic acid bacteria with respect to an image of one visual field taken by the lactic acid bacteria number measuring apparatus of FIG. When measuring a large number of fields, repeat this flow and calculate the number of lactic acid bacteria in the entire filter by multiplying the ratio of the total area of the filter and the measured area (field area x number of fields) by the number of lactic acid bacteria measured. Can do.

なお、実施例では、蛍光色素として、単一の染色を実施したが、二重染色することもできる。   In addition, although the single dyeing | staining was implemented as a fluorescent dye in the Example, double dyeing | staining can also be carried out.

なお、実施例では、余剰試薬の洗浄工程を記載したが、計測時のバックグランドに影響がなければ、余剰試薬を洗浄する工程を除くことができる。   In addition, although the washing | cleaning process of the excess reagent was described in the Example, the process of washing | cleaning an excess reagent can be excluded if there is no influence on the background at the time of a measurement.

本発明の、乳酸菌を含みうる検体において、励起光を照射し撮影した後、形状と面積および発光輝度を面積解析手段で認識させることで乳酸菌の検出を行う、乳酸菌数計測方法および計測装置は、熟練した技能の必要がなく、誰でも容易に計測ができるため、より生産現場に近い所での品質管理に適用できる。また、近年、食品の品質レベルが向上しており、より迅速・高精度・簡単に乳酸菌数を計量できる装置が求められており、従来の検査にかわる方法としても適用できる。   In the specimen of the present invention, which can contain lactic acid bacteria, after irradiating with excitation light and photographing, the lactic acid bacteria number measuring method and measuring apparatus for detecting lactic acid bacteria by recognizing the shape, area and emission luminance by means of area analysis means Since no skill is required and anyone can easily measure, it can be applied to quality control nearer to the production site. In recent years, the quality level of food has been improved, and an apparatus capable of measuring the number of lactic acid bacteria more quickly, accurately, and simply has been demanded, and can be applied as a method replacing conventional inspection.

1 レンズ
2 受光部
3 光源
4 励起光分光フィルタ
5 プリズム
6 検査台
7 採取フィルタ
8 台座
9 蛍光分光フィルタ
10 光電変換素子
11 乳酸菌判断手段
DESCRIPTION OF SYMBOLS 1 Lens 2 Light-receiving part 3 Light source 4 Excitation light spectral filter 5 Prism 6 Inspection table 7 Sampling filter 8 Base 9 Fluorescence spectral filter 10 Photoelectric conversion element 11 Lactic acid bacteria judgment means

Claims (17)

ろ過抽出した乳酸菌含有検体に励起光を照射し発光点を光電変換素子で撮影した画像を面積解析して乳酸菌数を計測する乳酸菌数計測方法。 A method for measuring the number of lactic acid bacteria by irradiating an excitation light to a filtered lactic acid bacteria-containing specimen and measuring the number of lactic acid bacteria by analyzing the area of an image obtained by photographing a light emitting point with a photoelectric conversion element. 面積解析は、発光点の面積および発光輝度から単体の菌と乳酸菌の塊、異物を区別する請求項1記載の乳酸菌数計測方法。 2. The method for measuring the number of lactic acid bacteria according to claim 1, wherein the area analysis distinguishes a single bacterium, a lump of lactic acid bacteria, and a foreign substance from the area of the luminescent spot and the luminescence brightness. 乳酸菌と判断した発光点の面積および発光輝度から、乳酸菌の塊りと判断したものを発光面積の大きさにおける乳酸菌数を算出する請求項1または2記載の乳酸菌数計測方法。 The method for measuring the number of lactic acid bacteria according to claim 1 or 2, wherein the number of lactic acid bacteria in the size of the luminescent area is calculated from the area of the luminescent point determined to be lactic acid bacteria and the luminance of the luminescent bacteria. 順次撮影した画像から、乳酸菌の数量を積算する手段を有する請求項1乃至3のいずれかに記載の乳酸菌数計測方法。 The method for measuring the number of lactic acid bacteria according to any one of claims 1 to 3, further comprising means for accumulating the number of lactic acid bacteria from sequentially photographed images. ろ過抽出した乳酸菌含有検体に染色法を用いる、請求項1乃至4のいずれかに記載の乳酸菌数計測方法。 The method for measuring the number of lactic acid bacteria according to any one of claims 1 to 4, wherein a staining method is used for the lactic acid bacteria-containing specimen extracted by filtration. ろ過抽出した乳酸菌含有検体のpHを調整する請求項1乃至5のいずれかに記載の乳酸菌数計測方法。 The method for measuring the number of lactic acid bacteria according to any one of claims 1 to 5, wherein the pH of the lactic acid bacteria-containing specimen extracted by filtration is adjusted. 染色法が蛍光染色法である請求項5または6記載の乳酸菌数計測方法。 The method for measuring the number of lactic acid bacteria according to claim 5 or 6, wherein the staining method is a fluorescent staining method. 採取フィルタで乳酸菌をろ過抽出し、第1の試薬と、第2の試薬と、第3の試薬と、第4の試薬の中でいずれか1種類あるいは複数種類の試薬を用いて乳酸菌を染色した後、予め定められた波長域で励起光を照射する光源と、前記励起光によって照射されて発光する予め定めたれた波長域の光を前記採取フィルタの設定した一定面積を受光する受光手段と、前記光源によって照射されて発光した光を設定した一定の時間内に受光し撮影した画像を、その受光した光量が設定したしきい値の範囲で、かつ設定した面積の範囲であるものを乳酸菌と判断する乳酸菌判断手段と、乳酸菌判断手段によって乳酸菌と判断した発光点1個の大きさから、単体の菌と乳酸菌の塊りを判断して、塊りの大きさにおける乳酸菌の数量を算出し、順次積算することで乳酸菌の数量を算出する、前記採取フィルタの1部あるいは全面積の発光点を確認するために、前記採取フィルタあるいは受光手段を移動させる移動手段で、乳酸菌の数量を順次積算する手段を有する乳酸菌数測定方法を行なうための乳酸菌数計測装置。 Lactic acid bacteria were filtered and extracted with a collection filter, and lactic acid bacteria were stained with one or more of the first, second, third, and fourth reagents. Then, a light source that emits excitation light in a predetermined wavelength range, and a light receiving means that receives light in a predetermined wavelength range that is emitted by the excitation light and emits light in a predetermined area set by the sampling filter, An image obtained by receiving and photographing the light emitted and emitted from the light source within a set time period is a threshold range in which the received light quantity is set and a set area range is defined as lactic acid bacteria. From the size of one luminescent point judged to be lactic acid bacteria by the lactic acid bacteria judging means to judge and the lactic acid bacteria judging means, the mass of the single bacteria and lactic acid bacteria is judged, the quantity of lactic acid bacteria in the size of the mass is calculated, Accumulate sequentially The lactic acid bacteria having means for sequentially accumulating the quantity of lactic acid bacteria by moving means for moving the collection filter or the light receiving means in order to confirm the light emission point of one part or the entire area of the sampling filter An apparatus for measuring the number of lactic acid bacteria for performing a number measurement method. 前記採取フィルタが表面形状の変形しないフィルタである請求項8記載の乳酸菌数計測装置。 The lactic acid bacteria count measuring apparatus according to claim 8, wherein the collection filter is a filter whose surface shape is not deformed. 前記採取フィルタが色落ちしないフィルタである請求項8または9記載の乳酸菌数計測装置。 The lactic acid bacteria count measuring apparatus according to claim 8 or 9, wherein the sampling filter is a filter that does not lose color. 前記フィルタ上に顔料を担持した請求項8乃至10のいずれかに記載の乳酸菌数計測装置。 The apparatus for measuring the number of lactic acid bacteria according to any one of claims 8 to 10, wherein a pigment is supported on the filter. 前記採取フィルタが暗色のフィルタである請求項8乃至11のいずれかに記載の乳酸菌数計測装置。 The lactic acid bacteria count measuring apparatus according to claim 8, wherein the collection filter is a dark filter. 前記採取フィルタ上に金、銅、クロム、白金、パラジウムから選ばれる少なくとも1種類の金属成分を含む薄膜が形成された請求項8乃至12のいずれかに記載の乳酸菌数計測装置。 The lactic acid bacteria count measuring apparatus according to any one of claims 8 to 12, wherein a thin film containing at least one metal component selected from gold, copper, chromium, platinum, and palladium is formed on the collection filter. 受光手段が、少なくとも乳酸菌の大きさが認識できる面積を有した複数個の光電変換素子である8乃至13のいずれかに記載の乳酸菌数計測装置。 The apparatus for measuring the number of lactic acid bacteria according to any one of 8 to 13, wherein the light receiving means is a plurality of photoelectric conversion elements having an area where at least the size of the lactic acid bacteria can be recognized. 光源は少なくとも1種類以上であり、光源の波長域を少なくとも1種類以上とし、受光手段は各々の波長域で照射された発光する光を各々の波長域別に各々受光し、各々の波長域での光量の比から発光した点あるいは面積を乳酸菌と判断する請求項8乃至14のいずれかに記載の乳酸菌数計測装置。 There are at least one type of light source, and at least one type of wavelength range of the light source. The light receiving means receives the emitted light emitted in each wavelength range for each wavelength range, and The apparatus for measuring the number of lactic acid bacteria according to any one of claims 8 to 14, wherein a point or area of light emission is determined as a lactic acid bacterium from a ratio of light amounts. 複数種類の光源と複数の波長域を受光する受光手段を1種類あるいは設定した種類の前記光源および受光手段を切替て、設定した波長域の光源と受光手段で乳酸菌を検知する請求項8乃至15のいずれかに記載の乳酸菌数計測装置。 16. A lactic acid bacterium is detected with a light source and a light receiving means of a set wavelength range by switching a light source and a light receiving means of one type or a set type of light receiving means for receiving a plurality of types of light sources and a plurality of wavelength ranges. The lactic acid bacteria count measuring apparatus in any one of. 乳酸菌判断手段によって、設定した面積以上のため微生物以外と認識された発光点の面積を順次積算あるいはその面積を1つと認識して順次個数を積算し、その総面積あるいは総個数が、設定した面積あるいは個数以上のときに注意を表わす注意手段を有した請求項15乃至16のいずれかに記載の乳酸菌数計測装置。 By the lactic acid bacteria judgment means, the area of the luminescent spots recognized as other than microorganisms because it is larger than the set area is sequentially integrated or the area is recognized as one and the number is sequentially integrated, and the total area or total number is the set area The lactic acid bacteria count measuring apparatus according to any one of claims 15 to 16, further comprising a caution means for indicating a caution when the number is more than the number.
JP2009097847A 2009-04-14 2009-04-14 Lactic acid bacteria count measuring method and lactic acid bacteria count measuring apparatus Pending JP2010246442A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009097847A JP2010246442A (en) 2009-04-14 2009-04-14 Lactic acid bacteria count measuring method and lactic acid bacteria count measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009097847A JP2010246442A (en) 2009-04-14 2009-04-14 Lactic acid bacteria count measuring method and lactic acid bacteria count measuring apparatus

Publications (1)

Publication Number Publication Date
JP2010246442A true JP2010246442A (en) 2010-11-04

Family

ID=43309567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009097847A Pending JP2010246442A (en) 2009-04-14 2009-04-14 Lactic acid bacteria count measuring method and lactic acid bacteria count measuring apparatus

Country Status (1)

Country Link
JP (1) JP2010246442A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10385300B2 (en) 2015-01-29 2019-08-20 Olympus Corporation Cell analysis apparatus and method
WO2023190864A1 (en) * 2022-03-31 2023-10-05 日本新薬株式会社 Method for estimating microbial growth rate in food, method for evaluating shelf life of food, and system for estimating microbial growth rate in food

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10385300B2 (en) 2015-01-29 2019-08-20 Olympus Corporation Cell analysis apparatus and method
WO2023190864A1 (en) * 2022-03-31 2023-10-05 日本新薬株式会社 Method for estimating microbial growth rate in food, method for evaluating shelf life of food, and system for estimating microbial growth rate in food

Similar Documents

Publication Publication Date Title
JP3907508B2 (en) Microorganism collection chip, microorganism collection kit, microorganism measurement method, and microorganism measurement apparatus
CN104502317B (en) Method for characterizing microorganism on solid or semi-solid medium
WO2002056023A1 (en) Optical sensor and sensor array
RU2517618C2 (en) Method and system for determining quality of cultivated cells
EP1846569B1 (en) Method for identifying germs
JP4118927B2 (en) Specimens for normality confirmation test of microorganism weighing device
JP4487985B2 (en) Microorganism weighing device
JP4590902B2 (en) Filamentous fungus measurement method
JP2006284604A5 (en)
JP3740019B2 (en) Microorganism weighing device
JP2007097582A (en) Microbe counting device
WO2007029821A1 (en) Apparatus for counting the number of microorganisms
JP2010246442A (en) Lactic acid bacteria count measuring method and lactic acid bacteria count measuring apparatus
JP2006238779A (en) Microbial cell detection method
JP2007071742A (en) Fluorescence reader and microorganism counting device
JP2005065570A (en) Viable bacteria detection method and viable bacteria counting device
JP5140956B2 (en) Microbe counting device
JP4118930B2 (en) Microorganism weighing method
JP4810871B2 (en) Microorganism detection method
JP2007060945A (en) Microbe counting device
JP2009247331A (en) Method for detecting microorganism and apparatus for measuring the same
JP2006174751A (en) Method for measuring spore bacteria
JP4792880B2 (en) Microorganism counting method and microorganism counting apparatus
JP2006166861A (en) Microorganism detection method and microorganism weighing device
JP2021093951A (en) Microbe determination system