[go: up one dir, main page]

JP2010245459A - Dust core, and method of manufacturing the same - Google Patents

Dust core, and method of manufacturing the same Download PDF

Info

Publication number
JP2010245459A
JP2010245459A JP2009095369A JP2009095369A JP2010245459A JP 2010245459 A JP2010245459 A JP 2010245459A JP 2009095369 A JP2009095369 A JP 2009095369A JP 2009095369 A JP2009095369 A JP 2009095369A JP 2010245459 A JP2010245459 A JP 2010245459A
Authority
JP
Japan
Prior art keywords
powder
inorganic insulating
soft magnetic
magnetic powder
dust core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009095369A
Other languages
Japanese (ja)
Other versions
JP4995222B2 (en
Inventor
Yasuo Oshima
泰雄 大島
Susumu Shigeta
進 繁田
Yujiro Meshiro
裕次郎 目代
Hiroshi Uematsu
宏 植松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tamura Corp
Original Assignee
Tamura Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tamura Corp filed Critical Tamura Corp
Priority to JP2009095369A priority Critical patent/JP4995222B2/en
Publication of JP2010245459A publication Critical patent/JP2010245459A/en
Application granted granted Critical
Publication of JP4995222B2 publication Critical patent/JP4995222B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dust core having excellent press-molded ring strength and magnetic characteristics even if low-pressure molding is performed at the room temperature. <P>SOLUTION: In a first mixing step, soft magnetic powder consisting principally of iron and inorganic insulating powder are mixed for six hours using a mixing machine. The mixture obtained in the first mixing step is subjected to a heat treatment in a non-oxidizing atmosphere of 1,000°C to a temperature equal to or lower than the temperature at which the soft magnetic powder begins to be sintered. The mixture obtained in the mixing step and a 0.2 to 3.0 wt.% binding resin for the soft magnetic powder are mixed, and heated to be dried. In a second mixing step wherein a lubricating resin is mixed with the mixture after a coating step, the lubricating resin is mixed with the mixture coated with the binding resin. In a molding step, the soft magnetic powder coated with the binder is pressed to form a molding. In an annealing step, the molding is annealed in the non-oxidizing atmosphere. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、軟磁性粉末からなる圧粉磁心及びその製造方法に関する。   The present invention relates to a dust core made of soft magnetic powder and a method for producing the same.

OA機器、太陽光発電システム、自動車、無停電電源などの制御用電源には電子機器としてチョークコイルが用いられており、そのコアとして、フェライト磁心や圧粉磁心が使用されている。これらの中で、フェライト磁心は飽和磁束密度が小さいと言う欠点を有している。これに対して、金属粉末を成形して作製される圧粉磁心は、軟磁性フェライトに比べて高い飽和磁束密度を持つため、直流重畳特性に優れている。   A choke coil is used as an electronic device for a control power source such as an OA device, a solar power generation system, an automobile, or an uninterruptible power supply, and a ferrite magnetic core or a dust core is used as its core. Among these, the ferrite core has a defect that the saturation magnetic flux density is small. On the other hand, a dust core produced by molding metal powder has a higher saturation magnetic flux density than soft magnetic ferrite, and thus has excellent DC superposition characteristics.

圧粉磁心は、エネルギー交換効率の向上や低発熱などの要求から、小さな印加磁界で、大きな磁束密度を得ることが出来る磁気特性と、磁束密度変化におけるエネルギー損失が小さいという磁気特性が求められる。エネルギー損失には、圧粉磁心を交流磁場で使用した場合に生じる鉄損と呼ばれるものがある。この鉄損は、ヒステリシス損失、渦電流損失、異常渦電流損失の和で表される。特に問題となるのは、ヒステリシス損失と渦電流損失である。ヒステリシス損失は動作周波数に比例し、渦電流損失は動作周波数の2乗に比例する。そのため、ヒステリシス損失は低周波領域で支配的になり、渦電流損失は高周波領域で支配的になる。圧粉磁心は、この鉄損の発生を小さくする磁気特性が求められている。   The powder magnetic core is required to have a magnetic characteristic capable of obtaining a large magnetic flux density with a small applied magnetic field and a magnetic characteristic that an energy loss due to a change in the magnetic flux density is small due to demands such as improvement of energy exchange efficiency and low heat generation. The energy loss includes what is called iron loss that occurs when a dust core is used in an alternating magnetic field. This iron loss is represented by the sum of hysteresis loss, eddy current loss, and abnormal eddy current loss. Particularly problematic are hysteresis loss and eddy current loss. Hysteresis loss is proportional to the operating frequency, and eddy current loss is proportional to the square of the operating frequency. Therefore, the hysteresis loss is dominant in the low frequency region, and the eddy current loss is dominant in the high frequency region. The dust core is required to have magnetic characteristics that reduce the occurrence of this iron loss.

圧粉磁心のヒステリシス損失を低減するためには、磁壁の移動を容易にすればよく、そのためには軟磁性粉末粒子の保磁力を低下させればよい。そこで、軟磁性粉末粒子として、保磁力の小さい純鉄が従来から広く用いられている。例えば、軟磁性粉末として純鉄を用いて、軟磁性粉末に対する不純物の質量割合を120ppm以下にすることでヒステリシス損失を低減する方法や(例えば、特許文献1参照)、軟磁性粉末として純鉄を用いて、軟磁性粉末に含まれるマンガンの量を0.013質量%以下にすることでヒステリシス損失を低減する方法が知られている(例えば、特許文献2参照)。その他に絶縁被膜を形成する前の軟磁性粉末を加熱処理する方法が知られている。   In order to reduce the hysteresis loss of the dust core, the domain wall can be easily moved. To that end, the coercive force of the soft magnetic powder particles can be reduced. Therefore, pure iron having a small coercive force has been widely used as soft magnetic powder particles. For example, using pure iron as the soft magnetic powder and reducing the mass loss ratio of impurities to the soft magnetic powder to 120 ppm or less (see, for example, Patent Document 1), pure iron as the soft magnetic powder. A method of reducing hysteresis loss by using the amount of manganese contained in the soft magnetic powder to 0.013% by mass or less is known (for example, see Patent Document 2). In addition, a method for heat-treating soft magnetic powder before forming an insulating coating is known.

また、絶縁被膜を形成する前の軟磁性粉末に対して、加熱処理を行うことによりヒステリシス損失を低減する方法も知られている。この方法によれば、軟磁性粒子中に存在する歪みの除去、結晶粒界などの欠陥の除去、軟磁性粉末粒子中の結晶粒子の成長(拡大)によって、磁壁移動が容易となり、保磁力を低下することができる。例えば、鉄を主成分として、Siが2〜5質量%含有、平均粒子経が30〜70μmで、平均アスペクト比が1〜3である軟磁性粉末に対して、不活性雰囲気中で800℃以上の加熱処理を行うことで、粉末粒子中の結晶粒子を大きくして、保磁力を小さくし、ヒステリシス損失を低減する方法(例えば、特許文献3参照)や、金属粒子とスペーサー粒子とを混合して、金属粒子同士を互いに分離することで、金属粒子が焼結して固まることを防止する方法(例えば、特許文献4参照)が知られている。   Also known is a method of reducing hysteresis loss by performing a heat treatment on the soft magnetic powder before forming the insulating coating. According to this method, domain wall movement is facilitated by removing strain existing in soft magnetic particles, removing defects such as crystal grain boundaries, and growing (expanding) crystal particles in soft magnetic powder particles, thereby reducing coercive force. Can be lowered. For example, a soft magnetic powder containing iron as a main component, containing 2 to 5% by mass of Si, having an average particle size of 30 to 70 μm, and an average aspect ratio of 1 to 3 is 800 ° C. or higher in an inert atmosphere. The heat treatment is performed to increase the crystal particles in the powder particles, reduce the coercive force, and reduce hysteresis loss (for example, see Patent Document 3), or mix metal particles and spacer particles. In addition, a method of preventing metal particles from being sintered and solidified by separating the metal particles from each other is known (see, for example, Patent Document 4).

特開2005−15914号公報JP 2005-15914 A 特開2007−59656号公報JP 2007-59656 A 特開2004−288983号公報JP 2004-288893 A 特開2005−336513号公報JP 2005-336513 A

しかしながら、特許文献1,2の発明では、加圧成形後の成形体の焼鈍において、軟磁性粉末の表面の絶縁被膜が熱分解しない程度の低い温度で熱処理する必要があり、ヒステリシス損失を効果的に低減することが出来ない問題がある。   However, in the inventions of Patent Documents 1 and 2, it is necessary to perform heat treatment at a low temperature so that the insulating coating on the surface of the soft magnetic powder is not thermally decomposed in the annealing of the molded body after pressure molding, which effectively reduces hysteresis loss. There is a problem that cannot be reduced.

また、特許文献3の発明では、軟磁性粒子が純鉄の場合には、焼結して固まってしまうため、軟磁性粒子を機械的に粉砕する必要があり、その際に軟磁性粒子の内部に新たな歪みが発生するという問題点がある。特許文献4の発明では、熱処理後に金属粒子とスペーサー粒子を分離する必要があり利便性に欠ける。また、分離の際に、磁石を使用するため金属粒子の磁化などの問題点がある。   Further, in the invention of Patent Document 3, when the soft magnetic particles are pure iron, the soft magnetic particles are sintered and solidified. Therefore, the soft magnetic particles need to be mechanically pulverized. There is a problem that new distortion occurs. In the invention of Patent Document 4, it is necessary to separate the metal particles and the spacer particles after the heat treatment, which is not convenient. Further, since magnets are used for separation, there are problems such as magnetization of metal particles.

本発明は、上述した課題を解決するためになされたものであり、その目的は、利便性の良い方法で、軟磁性粉末の熱処理時に焼結して固まることがなく、ヒステリシス損失を効果的に低減することのできる圧粉磁心及びその製造方法を提供することである。   The present invention has been made in order to solve the above-described problems, and its purpose is to provide a convenient method that effectively suppresses hysteresis loss without being sintered and hardened during heat treatment of the soft magnetic powder. It is to provide a dust core that can be reduced and a method for manufacturing the same.

前記の目的を達成するために、本発明の圧粉磁心は、軟磁性粉末と無機絶縁粉末を混合し、その混合物に対して熱処理を施し、熱処理を施した軟磁性粉末と無機絶縁粉末とを結着性絶縁樹脂で被覆し、その混合物に対して、潤滑性樹脂を混合し、その混合物を、加圧成形処理して成形体を作製し、その成形体を焼鈍処理していることを特徴とする。特に、前記無機絶縁粉末の融点が1500℃以上の粉末であり、熱処理温度が1000℃以上且つ軟磁性粉末が焼結を開始する温度以下での非酸化性雰囲気で熱処理を行うことにより作製されたことを特徴とする。   In order to achieve the above object, the dust core of the present invention comprises a mixture of soft magnetic powder and inorganic insulating powder, heat treatment of the mixture, and heat treated soft magnetic powder and inorganic insulating powder. Covered with a binder insulating resin, mixed with a lubricating resin, and the mixture is pressure-molded to produce a molded product, and the molded product is annealed. And In particular, the inorganic insulating powder is a powder having a melting point of 1500 ° C. or higher, a heat treatment temperature of 1000 ° C. or higher, and a heat treatment in a non-oxidizing atmosphere at a temperature lower than the temperature at which the soft magnetic powder starts sintering. It is characterized by that.

なお、無機絶縁粉末として、Al(融点2046度)、MgO(融点2800度)などを使用したり、非酸化雰囲気として、水素雰囲気等の還元雰囲気、不活性雰囲気または真空雰囲気中で熱処理を行う圧粉磁心及びその製造方法も本発明の一形態である。 Note that Al 2 O 3 (melting point: 2046 ° C.), MgO (melting point: 2800 ° C.) or the like is used as the inorganic insulating powder, or heat treatment is performed in a reducing atmosphere such as a hydrogen atmosphere, an inert atmosphere, or a vacuum atmosphere as a non-oxidizing atmosphere. The powder magnetic core and the manufacturing method thereof are also an embodiment of the present invention.

本発明によれば、融点が1500℃以上の無機絶縁微粉末を均一に分散すると、粉末の熱処理の際に、軟磁性粉末粒子同士を互いに分離することが出来て、軟磁性粉末粒子が焼結して固まることを抑止することが出来る。   According to the present invention, when the inorganic insulating fine powder having a melting point of 1500 ° C. or more is uniformly dispersed, the soft magnetic powder particles can be separated from each other during the heat treatment of the powder, and the soft magnetic powder particles are sintered. And can be prevented from solidifying.

実施例の圧粉磁心の製造方法を示すフローチャート。The flowchart which shows the manufacturing method of the powder magnetic core of an Example. 比透磁率μ/μ0と印加磁界(kA/m)との関係を示したグラフ。The graph which showed the relationship between relative permeability (micro | micron | mu) / micro 0 and an applied magnetic field (kA / m).

[1.製造工程]
本発明の圧粉磁心の製造方法は、図1に示すような次のような各工程を有する。
(1)軟磁性粉末に無機絶縁粉末を混合する第1混合工程(ステップ1)。
(2)第1混合工程を経た混合物に対して熱処理を施す熱処理工程(ステップ2)。
(3)熱処理工程を経た軟磁性粉末と無機絶縁粉末とに結着性絶縁樹脂で被覆する被覆工程(ステップ3)。
(4)結着性絶縁樹脂で被覆した軟磁性粉末に無機絶縁粉末に対して、潤滑性樹脂を混合する第2混合工程(ステップ4)。
(5)第2混合工程を経た混合物を、加圧成形処理して成形体を作製する成形工程(ステップ5)。
(6)成形工程を経た成形体を焼鈍処理する焼鈍工程(ステップ6)。
以下、各工程を具体的に説明する。
[1. Manufacturing process]
The method for manufacturing a dust core according to the present invention includes the following steps as shown in FIG.
(1) A first mixing step (step 1) in which an inorganic insulating powder is mixed with a soft magnetic powder.
(2) A heat treatment step (step 2) in which heat treatment is performed on the mixture that has undergone the first mixing step.
(3) A coating process (step 3) in which the soft magnetic powder and the inorganic insulating powder that have undergone the heat treatment process are coated with a binding insulating resin.
(4) A second mixing step (step 4) in which the soft magnetic powder coated with the binding insulating resin is mixed with the lubricating resin with respect to the inorganic insulating powder.
(5) A molding step (step 5) in which the mixture that has undergone the second mixing step is pressure-molded to produce a molded body.
(6) An annealing process (step 6) of annealing the molded body that has undergone the molding process.
Hereafter, each process is demonstrated concretely.

(1)第1混合工程
第1混合工程では、鉄を主とする軟磁性粉末と無機絶縁粉末とを混合機(V型混合機)を使用して6時間混合する。この軟磁性粉末は、ガスアトマイズ法、水ガスアトマイズ法及び水アトマイズ法で作製した珪素成分が、この軟磁性粉末に対して0.0〜1.0wt%の軟磁性粉末及び1.0〜6.5wt%の軟磁性粉末を使用する。軟磁性粉末の珪素成分は、前記軟磁性粉末に対して6.5wt%以下が良く、これより多いと成形性が悪く、圧粉磁心の密度が低下して磁気特性が低下するという問題が発生する。
(1) First mixing step In the first mixing step, soft magnetic powder mainly composed of iron and inorganic insulating powder are mixed for 6 hours using a mixer (V-type mixer). In this soft magnetic powder, the silicon component produced by the gas atomization method, the water gas atomization method, and the water atomization method is 0.0 to 1.0 wt% of the soft magnetic powder and 1.0 to 6.5 wt% with respect to the soft magnetic powder. % Soft magnetic powder. The silicon component of the soft magnetic powder is preferably 6.5 wt% or less with respect to the soft magnetic powder, and if it exceeds this, the moldability is poor, and the density of the powder magnetic core is lowered and the magnetic properties are lowered. To do.

また、無機絶縁粉末の添加量は、珪素成分が0.0〜1.0wt%の軟磁性粉末の場合は、前記軟磁性粉末に対して0.25〜1.0wt%とする。また、珪素成分が1.0〜6.8wt%の軟磁性粉末の場合は、前記軟磁性粉末に対して0.05〜0.5wt%とする。これらよりも少なければ、十分な効果を得ることができず、多くなると密度低下によるヒステリシス損失の増加や、最大磁束密度の低下や、透磁率低下の要因となる。一方、無機絶縁粉末の平均粒径は、珪素成分が0.0〜1.0wt%の軟磁性粉末の場合は、7〜400nmとする。また、また、珪素成分が1.0〜6.8wt%の軟磁性粉末の場合は、7〜760nmとする。これらよりも小さい粒径の無機絶縁粉末は、製造が困難であり、これよりも大きいと軟磁性粉末同士に隙間が生じて、密度が低下して透磁率、コアロス及び直流重畳特性が劣化する。   Moreover, the addition amount of the inorganic insulating powder is 0.25 to 1.0 wt% with respect to the soft magnetic powder in the case of soft magnetic powder having a silicon component of 0.0 to 1.0 wt%. In the case of a soft magnetic powder having a silicon component of 1.0 to 6.8 wt%, the content is 0.05 to 0.5 wt% with respect to the soft magnetic powder. If it is less than these, sufficient effects cannot be obtained, and if it is increased, it causes an increase in hysteresis loss due to a decrease in density, a decrease in maximum magnetic flux density, and a decrease in magnetic permeability. On the other hand, the average particle diameter of the inorganic insulating powder is 7 to 400 nm in the case of soft magnetic powder having a silicon component of 0.0 to 1.0 wt%. In addition, in the case of a soft magnetic powder having a silicon component of 1.0 to 6.8 wt%, the thickness is set to 7 to 760 nm. Production of inorganic insulating powders having a particle size smaller than these is difficult, and if it is larger than this, gaps are formed between the soft magnetic powders, the density is lowered, and the magnetic permeability, core loss, and direct current superposition characteristics are deteriorated.

さらに、無機絶縁粉末の比表面積は、34〜300m/gとする。これよりも小さい比表面積の無機絶縁粉末は、製造が困難であり、これよりも大きいと軟磁性粉末同士に隙間が生じて、密度が低下して透磁率、コアロス及び直流重畳特性が劣化する。また、無機絶縁物質としては、融点が1500℃以上の粉末であるAl、MgO、酸化ジルコニア及びチタニア粉末を利用することができる。 Furthermore, the specific surface area of the inorganic insulating powder is 34 to 300 m 2 / g. An inorganic insulating powder having a specific surface area smaller than this is difficult to produce, and if it is larger than this, a gap is generated between the soft magnetic powders, the density is lowered, and the magnetic permeability, core loss, and direct current superposition characteristics are deteriorated. In addition, as the inorganic insulating material, Al 2 O 3 , MgO, zirconia oxide, and titania powder, which are powders having a melting point of 1500 ° C. or more, can be used.

(2)熱処理工程
前記第1の混合工程を経た混合物を1000℃以上且つ軟磁性粉末が焼結を開始する温度以下の非酸化性雰囲気中で熱処理を行う。非酸化性雰囲気は、水素雰囲気等の還元雰囲気でも、不活性雰囲気でも、真空雰囲気でもよい。つまり、酸化雰囲気でないことが好ましい。
(2) Heat treatment process The mixture which passed through the said 1st mixing process is heat-processed in 1000 degreeC or more and the temperature below the temperature which a soft magnetic powder starts sintering. The non-oxidizing atmosphere may be a reducing atmosphere such as a hydrogen atmosphere, an inert atmosphere, or a vacuum atmosphere. That is, it is preferably not an oxidizing atmosphere.

また、1000℃以上の温度で熱処理を行うことで、軟磁性粉末内に存在する歪みの除去、結晶粒界などの欠陥の除去、軟磁性粉末粒子中の結晶粒子の成長(拡大)によって、磁壁移動が容易となり、保磁力を小さくし、ヒステリシス損失を低減することができる。また、軟磁性粉末が焼結してしまう温度で熱処理を行うと、軟磁性粉末が焼結し固まってしまい、圧粉磁心の材料として使用できなくなるという問題点がある。   In addition, by performing heat treatment at a temperature of 1000 ° C. or higher, the domain wall can be obtained by removing strain existing in the soft magnetic powder, removing defects such as crystal grain boundaries, and growing (enlarging) crystal grains in the soft magnetic powder particles. The movement becomes easy, the coercive force can be reduced, and the hysteresis loss can be reduced. Further, when heat treatment is performed at a temperature at which the soft magnetic powder sinters, the soft magnetic powder sinters and hardens, which makes it impossible to use as a material for the dust core.

(3)被覆工程
前記混合工程を経た混合物を結着性絶縁樹脂で被覆する被覆工程は、混合工程を経た混合物と、前記軟磁性粉末に対して0.2〜3.0wt%の結着性樹脂とを混合し、加熱乾燥を行う。すなわち、前記混合工程を経た混合物に対して、結着性樹脂により、軟磁性粉末の表面に耐熱性絶縁皮膜を形成するためである。ここで、結着性樹脂としては、メチルフェニル系シリコーン粘着剤を使用することができる。メチルフェニル系シリコーン樹脂の添加量は、前記軟磁性粉末に対して0.2〜2.0wt%が適量である。適量よりも少なければ、成形体の強度が不足して、割れが発生する。また、適量より多いと、密度低下による最大磁束密度の低下、ヒステリシス損失の増加による磁気特性が低下する問題が発生する。
(3) Coating process The coating process in which the mixture that has undergone the mixing process is coated with a binding insulating resin has a binding property of 0.2 to 3.0 wt% with respect to the mixture that has undergone the mixing process and the soft magnetic powder. The resin is mixed and heat-dried. That is, the heat-resistant insulating film is formed on the surface of the soft magnetic powder by the binding resin with respect to the mixture that has undergone the mixing step. Here, a methylphenyl silicone adhesive can be used as the binder resin. The appropriate amount of methylphenyl silicone resin added is 0.2 to 2.0 wt% with respect to the soft magnetic powder. If it is less than the appropriate amount, the strength of the molded body is insufficient and cracks occur. On the other hand, if the amount is larger than the appropriate amount, there arises a problem that the maximum magnetic flux density is decreased due to the decrease in density and the magnetic characteristics are decreased due to an increase in hysteresis loss.

さらに、軟磁性金属粉末を、前記軟磁性粉末に対して0.1〜1.0wt%の有機金属カップリング剤(シランカップリング剤など)で処理をしてもよい。この有機金属カップリング剤は、結着性樹脂の分量を少なくするために使用する。ここで添加された結着性樹脂は、成形時のバインダーとして作用する。   Further, the soft magnetic metal powder may be treated with 0.1 to 1.0 wt% of an organometallic coupling agent (such as a silane coupling agent) with respect to the soft magnetic powder. This organometallic coupling agent is used to reduce the amount of the binder resin. The binder resin added here acts as a binder during molding.

(4)第2混合工程
前記被覆工程を経た混合物に潤滑性樹脂を混合する第2混合工程では、結着性樹脂を被覆した第1混合物に潤滑性樹脂を混合する。ここで潤滑剤としては、ステアリン酸、ステアリン酸塩、ステアリン酸石鹸、エチレンビスステアラマイドなどのワックスが使用できる。これらを添加することにより、造粒粉同士の滑りを良くすることができるので、混合時の密度を向上することができ成形密度を高くすることができる。さらに、粉末が金型への焼き付きくことも防止することが可能である。混合する潤滑樹脂の量は、前記軟磁性粉末に対して0.1〜0.8wt%とする。これよりも少なければ、十分な効果を得ることができず、これより多いと、密度低下による最大磁束密度の低下、ヒステリシス損失の増加による磁気特性が低下する問題が発生する。
(4) Second mixing step In the second mixing step of mixing the lubricating resin with the mixture that has undergone the coating step, the lubricating resin is mixed with the first mixture coated with the binder resin. Here, as the lubricant, a wax such as stearic acid, stearate, stearic acid soap, or ethylene bisstearamide can be used. By adding these, it is possible to improve the slippage between the granulated powders, so that the density during mixing can be improved and the molding density can be increased. Furthermore, it is possible to prevent the powder from sticking to the mold. The amount of the lubricating resin to be mixed is 0.1 to 0.8 wt% with respect to the soft magnetic powder. If it is less than this, a sufficient effect cannot be obtained, and if it is more than this, there arises a problem that the maximum magnetic flux density is reduced due to density reduction and the magnetic characteristics are lowered due to increase in hysteresis loss.

(5)成形工程
成形工程では、前記のようにして結着剤により被覆した軟磁性を加圧成形することにより、成形体を形成する。この時、加圧乾燥された結着性絶縁樹脂は、成形時のバインダーとして作用する。成形時の圧力は従来の発明と同様で良く、本発明においては1600MPa程度が好ましい。
(5) Molding step In the molding step, a molded body is formed by pressure molding the soft magnetism coated with the binder as described above. At this time, the pressure-dried binding insulating resin acts as a binder during molding. The pressure at the time of molding may be the same as that of the conventional invention. In the present invention, about 1600 MPa is preferable.

(6)焼鈍工程
焼鈍工程では、前記成形体に対して、Nガス中やN+Hガス非酸化性雰囲気中にて、焼鈍処理(600〜800℃が好ましい)を行うことで圧粉磁心が作製される。焼鈍温度を上げ過ぎると絶縁性能の劣化から磁気特性が劣化するため、特に渦電流損失が大きく増加してしまうことにより、鉄損が増加するのを抑制するためである。
(6) In the annealing step annealing process, dust by performing relative to said shaped body at a N 2 gas or N 2 + H 2 gas non-oxidizing atmosphere, an annealing treatment (600 to 800 ° C. are preferred) A magnetic core is produced. This is because if the annealing temperature is raised too much, the magnetic characteristics deteriorate due to the deterioration of the insulation performance, and in particular, the eddy current loss greatly increases, thereby suppressing the iron loss from increasing.

また、このとき結着性絶縁樹脂は、焼鈍処理中に一定温度に達すると熱分解する。圧粉磁心の熱処理が窒素雰囲気中で行われることで、結着性絶縁樹脂は軟磁性粉末の表面を覆う膜となる。そのため高温で熱処理を行っても絶縁性が劣化せず、酸化などによるヒステリシス損失が増加しない。また、機械的強度を改善する役目も果たす。   At this time, the binding insulating resin is thermally decomposed when it reaches a certain temperature during the annealing process. By performing the heat treatment of the dust core in a nitrogen atmosphere, the binding insulating resin becomes a film covering the surface of the soft magnetic powder. Therefore, even if heat treatment is performed at a high temperature, the insulation does not deteriorate and hysteresis loss due to oxidation does not increase. It also serves to improve mechanical strength.

[2.測定項目]
測定項目として、透磁率と最大磁束密度と直流重畳性を次のような手法により測定する。透磁率は、作製された圧粉磁心に1次巻線(20ターン)を施し、インピーダンスアナライザー(アジレントテクノロジー:4294A)を使用することで、20kHz、0.5Vにおけるインダクタンスから算出した。
[2. Measurement item]
As measurement items, permeability, maximum magnetic flux density, and direct current superimposition are measured by the following method. The magnetic permeability was calculated from the inductance at 20 kHz and 0.5 V by applying a primary winding (20 turns) to the produced dust core and using an impedance analyzer (Agilent Technology: 4294A).

コアロスは、圧粉磁心に1次巻線(20ターン)及び2次巻線(3ターン)を施し、磁気計測機器であるBHアナライザ(岩通計測株式会社:SY−8232)を用いて、周波数20kHz、最大磁束密度Bm=0.15Tの条件下で鉄損(コアロス)を測定した。この算出は、下記[数1]の3式により、鉄損の周波数を次の式で最小2乗法により、ヒステリシス損失系数、渦電流系数を算出することで行った。   The core loss is obtained by applying a primary winding (20 turns) and a secondary winding (3 turns) to the dust core, and using a BH analyzer (Iwatori Measurement Co., Ltd .: SY-8232), which is a magnetic measurement instrument, Iron loss (core loss) was measured under the conditions of 20 kHz and maximum magnetic flux density Bm = 0.15T. This calculation was performed by calculating the number of hysteresis loss systems and the number of eddy current systems by the following equation, using the following three formulas, and the frequency of iron loss by the least square method.

[数1]
Pc=Kh×f+Ke×f
Ph=Kh×f
Pe=Ke×f
Pc:鉄損
Kh:ヒステリシス損係数
Ke:渦電流損係数
f:周波数
Ph:ヒステリシス損失
Pe:渦電流損失
[Equation 1]
Pc = Kh × f + Ke × f 2
Ph = Kh × f
Pe = Ke × f 2
Pc: Iron loss Kh: Hysteresis loss coefficient Ke: Eddy current loss coefficient f: Frequency Ph: Hysteresis loss Pe: Eddy current loss

[3.珪素成分が1.0〜6.8wt%の軟磁性粉末を使用した場合の実施例]
本発明の実施例1〜33を、表1〜7を参照して、以下に説明する。これらの実施例1〜33は、いずれも珪素成分が1.0〜6.8wt%の軟磁性粉末を使用した場合の実施例である。
[3. Example in which soft magnetic powder having silicon component of 1.0 to 6.8 wt% is used]
Examples 1 to 33 of the present invention will be described below with reference to Tables 1 to 7. These Examples 1 to 33 are examples in which soft magnetic powder having a silicon component of 1.0 to 6.8 wt% is used.

[3−1.第1の特性比較(無機絶縁粉末と熱処理工程の温度の比較)]
第1の特性比較では、軟磁性粉末に添加する無機絶縁粉末と熱処理工程時の温度の比較を行った。表1〜4は、比較例及び実施例として軟磁性粉末に添加した無機絶縁物質の種類と熱処理工程の温度を示した表である。各無機絶縁物質の平均粒径は、SiOが7nm(比表面積300m/g),Alが13nm(比表面積100m/g),MgOが50nm(比表面積34m/g)である。
[3-1. First characteristic comparison (comparison of temperature of inorganic insulating powder and heat treatment process)]
In the first characteristic comparison, the inorganic insulating powder added to the soft magnetic powder was compared with the temperature during the heat treatment step. Tables 1 to 4 are tables showing the types of inorganic insulating substances added to the soft magnetic powder and the temperatures of the heat treatment process as comparative examples and examples. The average particle size of each inorganic insulating material is 7 nm for SiO 2 (specific surface area 300 m 2 / g), 13 nm for Al 2 O 3 (specific surface area 100 m 2 / g), and 50 nm for MgO (specific surface area 34 m 2 / g). is there.

実施例1〜3では、ガスアトマイズ法で作製した粒度63μm以下の珪素成分1.0wt%のFe−Si合金粉末に、無機絶縁粉末として、Alを0.05〜0.25wt%添加する。
実施例4では、ガスアトマイズ法で作製した粒度63μm以下の珪素成分1.0wt%のFe−Si合金粉末に、無機絶縁粉末として、MgOを0.1wt%添加する。
比較例1では、ガスアトマイズ法で作製した粒度63μm以下の珪素成分1.0wt%のFe−Si合金粉末に、無機絶縁粉末を添加しない。
比較例2〜4では、ガスアトマイズ法で作製した粒度63μm以下の珪素成分1.0wt%のFe−Si合金粉末に、無機絶縁粉末として、SiOを0.05〜0.25wt%添加する。
その後、これらの試料に対して、950℃〜1150℃の水素25%(残り75%は、窒素)の還元雰囲気で熱処理を行う。
In Examples 1 to 3 , 0.05 to 0.25 wt% of Al 2 O 3 is added as an inorganic insulating powder to an Fe—Si alloy powder having a particle size of 63 μm or less and having a particle size of 63 μm or less and manufactured using a gas atomization method. .
In Example 4, 0.1 wt% of MgO is added as an inorganic insulating powder to an Fe—Si alloy powder having a particle size of 63 μm or less and having a particle size of 63 μm or less and having a particle size of 63 μm or less.
In Comparative Example 1, the inorganic insulating powder is not added to the Fe—Si alloy powder having a particle size of 63 μm or less and having a silicon component of 1.0 wt% produced by the gas atomization method.
In Comparative Examples 2 to 4, 0.05 to 0.25 wt% of SiO 2 is added as an inorganic insulating powder to an Fe—Si alloy powder having a particle size of 63 μm or less and having a particle size of 63 μm or less, which is produced by a gas atomization method.
Thereafter, these samples are heat-treated in a reducing atmosphere of 25% hydrogen (the remaining 75% is nitrogen) at 950 ° C. to 1150 ° C.

表1は、実施例1〜4と比較例1〜4について、軟磁性粉末、無機絶縁粉末の種類と添加量、第1熱処理温度及び無機絶縁粉末が焼結するかどうかの関係について示した表である。表の中の○は無機絶縁粉末が焼結せずそのままで使用可能、△は使用には再粉砕が必要、×は粉砕不可能を示している。

Figure 2010245459
Table 1 shows the relationship between soft magnetic powder, inorganic insulating powder type and addition amount, first heat treatment temperature, and whether or not the inorganic insulating powder is sintered for Examples 1 to 4 and Comparative Examples 1 to 4. It is. In the table, ○ indicates that the inorganic insulating powder can be used as it is without sintering, Δ indicates that re-pulverization is necessary, and × indicates that pulverization is impossible.
Figure 2010245459

実施例5〜8では、水ガスアトマイズ法で作製した粒度75μm以下の珪素成分2.8wt%のFe−Si合金粉末に、無機絶縁粉末として、Alを0.01〜0.1wt%添加する。
比較例5では、水ガスアトマイズ法で作製した粒度75μm以下の珪素成分2.8wt%のFe−Si合金粉末に、無機絶縁粉末を添加しない。
比較例6〜8では、水ガスアトマイズ法で作製した粒度75μm以下の珪素成分2.8wt%のFe−Si合金粉末に、無機絶縁粉末として、SiOを0.05〜0.2wt%添加する。
その後、これらの試料に対して、950℃〜1150℃の水素25%(残り75%は、窒素)の還元雰囲気で熱処理を行う。
In Examples 5 to 8, 0.01 to 0.1 wt% of Al 2 O 3 was added as an inorganic insulating powder to an Fe—Si alloy powder having a particle size of 75 μm or less produced by a water gas atomizing method and having a particle size of 2.8 wt%. To do.
In Comparative Example 5, the inorganic insulating powder is not added to the Fe—Si alloy powder having a particle size of 75 μm or less and having a particle size of 75 μm or less and produced by the water gas atomization method.
In Comparative Examples 6 to 8, 0.05 to 0.2 wt% of SiO 2 is added as an inorganic insulating powder to an Fe—Si alloy powder having a particle size of 75 μm or less and having a particle size of 75 μm or less manufactured by a water gas atomizing method.
Thereafter, these samples are heat-treated in a reducing atmosphere of 25% hydrogen (the remaining 75% is nitrogen) at 950 ° C. to 1150 ° C.

表2は、実施例5〜8と比較例5〜8について、軟磁性粉末、無機絶縁粉末の種類と添加量、第1熱処理温度及び無機絶縁粉末が焼結するかどうかの関係について示した表である。表の中の○,△,×は、表1と同様である。

Figure 2010245459
Table 2 shows the relationship between the soft magnetic powder and the types and addition amounts of the inorganic insulating powder, the first heat treatment temperature, and whether the inorganic insulating powder is sintered for Examples 5 to 8 and Comparative Examples 5 to 8. It is. O, Δ, and X in the table are the same as those in Table 1.
Figure 2010245459

実施例9〜12では、水アトマイズ法で作製した粒度75μm以下の珪素成分3.0wt%のFe−Si合金粉末に、無機絶縁粉末として、Alを0.01〜0.1wt%添加する。
比較例9では、水アトマイズ法で作製した粒度75μm以下の珪素成分3.0wt%のFe−Si合金粉末に、無機絶縁粉末を添加しない。
比較例10,11では、水アトマイズ法で作製した粒度75μm以下の珪素成分3.0wt%のFe−Si合金粉末に、無機絶縁粉末として、SiOを0.05〜0.1wt%添加する。
その後、これらの試料に対して、950℃〜1150℃の水素25%(残り75%は、窒素)の還元雰囲気で熱処理を行う。
In Examples 9 to 12, 0.01 to 0.1 wt% of Al 2 O 3 was added as an inorganic insulating powder to an Fe—Si alloy powder having a particle size of 75 μm or less prepared by a water atomization method and having a particle size of 75 μm or less. To do.
In Comparative Example 9, the inorganic insulating powder is not added to the Fe—Si alloy powder having a particle size of 75 μm or less and having a particle size of 75 μm or less and having a particle size of 75 μm or less.
In Comparative Examples 10 and 11, the Fe-Si alloy powder of the following silicon components 3.0 wt% particle size 75μm was prepared by water atomization, as the inorganic insulating powder, adding SiO 2 0.05~0.1wt%.
Thereafter, these samples are heat-treated in a reducing atmosphere of 25% hydrogen (the remaining 75% is nitrogen) at 950 ° C. to 1150 ° C.

表3は、実施例9〜12と比較例9〜11について、軟磁性粉末、無機絶縁粉末の種類と添加量、第1熱処理温度及び無機絶縁粉末が焼結するかどうかの関係について示した表である。表の中の○,△,×は、表1と同様である。

Figure 2010245459
Table 3 shows the relationship between the soft magnetic powder, the type and addition amount of the inorganic insulating powder, the first heat treatment temperature, and whether the inorganic insulating powder is sintered for Examples 9 to 12 and Comparative Examples 9 to 11. It is. O, Δ, and X in the table are the same as those in Table 1.
Figure 2010245459

実施例13〜16では、水アトマイズ法で作製した粒度75μm以下の珪素成分6.5wt%のFe−Si合金粉末に、無機絶縁粉末として、Alを0.01〜0.1wt%添加する。
比較例12では、水アトマイズ法で作製した粒度75μm以下の珪素成分6.5wt%のFe−Si合金粉末に、無機絶縁粉末を添加しない。
比較例13では、水アトマイズ法で作製した粒度75μm以下の珪素成分6.5wt%のFe−Si合金粉末に、無機絶縁粉末として、SiOを0.05wt%添加する。
その後、これらの試料に対して、950℃〜1150℃の水素25%(残り75%は、窒素)の還元雰囲気で熱処理を行う。
In Examples 13 to 16, 0.01 to 0.1 wt% of Al 2 O 3 was added as an inorganic insulating powder to an Fe—Si alloy powder having a particle size of 75 μm or less produced by a water atomization method and having a particle size of 75 μm or less. To do.
In Comparative Example 12, the inorganic insulating powder is not added to the Fe—Si alloy powder having a particle size of 75 μm or less and having a particle size of 75 μm or less, which is prepared by the water atomization method.
In Comparative Example 13, 0.05 wt% of SiO 2 is added as an inorganic insulating powder to an Fe—Si alloy powder having a particle size of 75 μm or less and having a particle size of 75 μm or less prepared by a water atomization method.
Thereafter, these samples are heat-treated in a reducing atmosphere of 25% hydrogen (the remaining 75% is nitrogen) at 950 ° C. to 1150 ° C.

表4は、実施例13〜16と比較例12,13について、軟磁性粉末、無機絶縁粉末の種類と添加量、第1熱処理温度及び無機絶縁粉末が焼結するかどうかの関係について示した表である。表の中の○,△,×は、表1と同様である。

Figure 2010245459
Table 4 is a table showing the relationship between soft magnetic powder, inorganic insulating powder type and addition amount, first heat treatment temperature and whether the inorganic insulating powder is sintered for Examples 13 to 16 and Comparative Examples 12 and 13. It is. O, Δ, and X in the table are the same as those in Table 1.
Figure 2010245459

以上の表1〜4から判るように、比較例1〜13は1000℃を超える熱処理を行った場合には、粉末同士が凝固してしまう。これは、軟磁性粉末として粒度63〜75μm以下の珪素成分1.0〜6.5wt%のFe−Si合金粉末に対して、無機絶縁粉末を添加しない場合や無機絶縁微粉末としてSiO(融点1500℃)を使用した場合、粉末同士が凝固してしまうためである。これに対して、Al(融点2046℃)、MgO(融点2800℃)などの無機絶縁微粉末は、1000℃以上の粉末熱処理において、軟磁性粉末粒子が焼結して固まることを抑止することが出来る。 As can be seen from Tables 1 to 4 above, in Comparative Examples 1 to 13, when heat treatment exceeding 1000 ° C. is performed, the powders are solidified. This is because, when the inorganic insulating powder is not added to the Fe—Si alloy powder having a particle size of 63 to 75 μm or less as the soft magnetic powder and the inorganic insulating fine powder being SiO 2 (melting point). This is because the powders coagulate when using (1500 ° C.). On the other hand, inorganic insulating fine powders such as Al 2 O 3 (melting point 2046 ° C.) and MgO (melting point 2800 ° C.) prevent soft magnetic powder particles from being sintered and hardened in a powder heat treatment at 1000 ° C. or higher. I can do it.

すなわち、融点が高い無機絶縁粉末を使用することにより、ボックス炉やトンネル炉などの従来の熱処理方法において、高温での熱処理が可能となり、炉の選択の自由度が広がる。さらに、粉末同士の凝固を防止するために、粉末を回転させて粉末同士が接する時間を短くし、凝固を防止する方法であるロータリーキルンを使用するとより高温での熱処理が可能となる。   That is, by using an inorganic insulating powder having a high melting point, heat treatment at a high temperature is possible in a conventional heat treatment method such as a box furnace or a tunnel furnace, and the degree of freedom in selecting the furnace is increased. Furthermore, in order to prevent solidification of the powders, heat treatment at a higher temperature becomes possible by using a rotary kiln that is a method of rotating the powders to shorten the time of contact between the powders and preventing solidification.

[3−2.第2の特性比較(無機絶縁物質の添加量の比較)]
第2の特性比較では、軟磁性の粉末に添加する無機絶縁物質の添加量の比較を行った。表5は、比較例及び実施例として軟磁性粉末に添加した無機絶縁物質の種類と成分を示した表である。各無機絶縁物質の平均粒径は、SiOが7nm(比表面積300m/g),Alが13nm(比表面積100m/g)及び640nm,(比表面積130m/g),MgOが49nm(比表面積34m/g)及び230nm(比表面積160m/g)である。
[3-2. Second characteristic comparison (comparison of added amount of inorganic insulating material)]
In the second characteristic comparison, the amount of inorganic insulating material added to the soft magnetic powder was compared. Table 5 is a table showing the types and components of inorganic insulating materials added to the soft magnetic powder as comparative examples and examples. The average particle size of each inorganic insulating material is 7 nm for SiO 2 (specific surface area 300 m 2 / g), 13 nm for Al 2 O 3 (specific surface area 100 m 2 / g) and 640 nm, (specific surface area 130 m 2 / g), MgO Are 49 nm (specific surface area 34 m 2 / g) and 230 nm (specific surface area 160 m 2 / g).

本特性比較で使用する試料は、下記のように作製した。
実施例17〜19では、ガスアトマイズ法で作製した粒度63μm以下の珪素成分1.0wt%のFe−Si合金粉末に、無機絶縁粉末として、13nm(比表面積100m/g)のAlを0.5〜0.25wt%添加する。
実施例20〜22では、ガスアトマイズ法で作製した粒度63μm以下の珪素成分1.0wt%のFe−Si合金粉末に、無機絶縁粉末として、49nm(比表面積34m/g)のMgOを0.1〜0.50wt%添加する。
比較例14では、ガスアトマイズ法で作製した粒度63μm以下の珪素成分1.0wt%のFe−Si合金粉末に、無機絶縁粉末を添加しない。
比較例15では、ガスアトマイズ法で作製した粒度63μm以下の珪素成分1.0wt%のFe−Si合金粉末に、無機絶縁粉末として、7nm(比表面積300m/g)のSiOを0.25wt%添加する。
その後、これらの試料に対して、950℃〜1150℃の水素25%(残り75%は、窒素)の還元雰囲気で熱処理を行う。そして、シランカップリング剤を0.1質量%、シリコーンレジンを0.5重量%の順に混合し加熱乾燥後(180℃_2時間)、潤滑剤としてステアリン酸亜鉛を0.4重量%添加して混合(V型混合機_2時間)した。
The sample used for this characteristic comparison was produced as follows.
In Examples 17 to 19, 13 nm (specific surface area 100 m 2 / g) of Al 2 O 3 was added as an inorganic insulating powder to an Fe—Si alloy powder having a particle size of 63 μm or less and having a particle size of 63 μm or less, produced by a gas atomization method. Add 0.5-0.25 wt%.
In Examples 20 to 22, Fe-Si alloy powder having a particle size of 63 μm or less and having a particle size of 63 μm or less and Fe-Si alloy powder of 49 nm (specific surface area 34 m 2 / g) as MgO of 0.1 nm was used as the inorganic insulating powder. Add ~ 0.50 wt%.
In Comparative Example 14, the inorganic insulating powder is not added to the Fe—Si alloy powder having a particle size of 63 μm or less and having a silicon component of 1.0 wt% produced by the gas atomization method.
In Comparative Example 15, 7 nm (specific surface area: 300 m 2 / g) of SiO 2 as an inorganic insulating powder was added to 0.25 wt% as an inorganic insulating powder with a 1.0 wt% silicon component having a particle size of 63 μm or less produced by a gas atomization method. Added.
Thereafter, these samples are heat-treated in a reducing atmosphere of 25% hydrogen (the remaining 75% is nitrogen) at 950 ° C. to 1150 ° C. Then, 0.1% by mass of the silane coupling agent and 0.5% by weight of the silicone resin were mixed in this order and dried by heating (180 ° C. for 2 hours). Then, 0.4% by weight of zinc stearate was added as a lubricant. Mixed (V-type mixer — 2 hours).

これらの試料を室温にて、1500MPaの圧力で加圧成形し、外径16mm、内径8mm、高さ5mmのリング状をなす圧粉磁心を作製した。そして、これらの圧粉磁心を窒素雰囲気中(N+H)にて、675℃で2時間焼鈍処理を行った。 These samples were pressure-molded at a pressure of 1500 MPa at room temperature to produce a dust core having a ring shape with an outer diameter of 16 mm, an inner diameter of 8 mm, and a height of 5 mm. These powder magnetic cores were annealed at 675 ° C. for 2 hours in a nitrogen atmosphere (N 2 + H 2 ).

実施例23〜26では、水ガスアトマイズ法で作製した粒度75μm以下の珪素成分2.8wt%のFe−Si合金粉末に、無機絶縁粉末として、13nm(比表面積100m/g)のAlを0.01 〜0.50wt%添加する。
比較例16は、水ガスアトマイズ法で作製した粒度75μm以下の珪素成分2.8wt%のFe−Si合金粉末に、無機絶縁粉末を添加しない。
比較例17,18は、水ガスアトマイズ法で作製した粒度75μm以下の珪素成分2.8wt%のFe−Si合金粉末に、無機絶縁粉末として、7nm(比表面積300m/g)のSiOを0.05〜0.10wt%添加する。
その後、これらの試料に対して、950℃〜1150℃の水素25%(残り75%は、窒素)の還元雰囲気で熱処理を行う。そして、シランカップリング剤を0.1質量%、シリコーンレジンを0.2重量%の順に混合し加熱乾燥後(180℃_2時間)、潤滑剤としてステアリン酸亜鉛を0.4重量%添加して混合(V型混合機_2時間)した。
In Examples 23 to 26, a Fe-Si alloy powder having a particle size of 75 µm or less and having a particle size of 75 µm or less prepared by a water gas atomization method was used as an inorganic insulating powder, and 13 nm (specific surface area 100 m 2 / g) of Al 2 O 3. Is added in an amount of 0.01 to 0.50 wt%.
In Comparative Example 16, the inorganic insulating powder is not added to the Fe—Si alloy powder having a particle size of 75 μm or less and having a particle size of 75 μm or less and produced by the water gas atomizing method.
In Comparative Examples 17 and 18, Fe-Si alloy powder having a particle size of 75 μm or less prepared by a water gas atomization method and containing 2.8 wt% of SiO— 2 of 7 nm (specific surface area 300 m 2 / g) as an inorganic insulating powder is 0. Add 0.05 to 0.10 wt%.
Thereafter, these samples are heat-treated in a reducing atmosphere of 25% hydrogen (the remaining 75% is nitrogen) at 950 ° C. to 1150 ° C. Then, 0.1% by mass of the silane coupling agent and 0.2% by weight of the silicone resin were mixed in this order and dried by heating (180 ° C. for 2 hours). Then, 0.4% by weight of zinc stearate was added as a lubricant. Mixed (V-type mixer — 2 hours).

これらの試料を室温にて、1500MPaの圧力で加圧成形し、外径16mm、内径8mm、高さ5mmのリング状をなす圧粉磁心を作製した。そして、これらの圧粉磁心を窒素雰囲気中(N+H)にて、575〜675℃で2時間焼鈍処理を行った。 These samples were pressure-molded at a pressure of 1500 MPa at room temperature to produce a dust core having a ring shape with an outer diameter of 16 mm, an inner diameter of 8 mm, and a height of 5 mm. And these powder magnetic cores were annealed at 575-675 ° C. for 2 hours in a nitrogen atmosphere (N 2 + H 2 ).

表5は、実施例17〜31と比較例14〜19について、軟磁性粉末、無機絶縁粉末の種類と添加量、第1熱処理温度、透磁率及び単位体積あたりの鉄損(コアロス)との関係について示した表である。

Figure 2010245459
Table 5 shows the relationship between soft magnetic powder, inorganic insulating powder type and addition amount, first heat treatment temperature, magnetic permeability, and iron loss per unit volume (core loss) for Examples 17 to 31 and Comparative Examples 14 to 19. It is the table | surface shown about.
Figure 2010245459

表5から判るように、Siが1.0wt%のガスアトマイズ法で作製した軟磁性粉末では、無機絶縁体としてAlとMgOを添加した実施例17〜22の場合、無機絶縁粉末を添加していない比較例14や無機絶縁物質としてSiOを加えた比較例15よりも、20kHzにおけるヒステリシス損失(Ph)が低下している。それにより、全体での磁気特性が向上していることが判る。実施例17〜22では、無機絶縁粉末の添加量が増加すると、添加量が増えるに従って、密度が低下することが判る。また、実施例17〜19では、無機絶縁粉末の添加量を増やすことで、熱処理温度が上げられるので、ヒステリシス損失(Ph)が低下することにより、全体での磁気特性が向上している。逆に、実施例20〜22では、無機絶縁粉末の添加量が増えるに従って、密度が低下してヒステリシス損失(Ph)が増加することにより、全体での磁気特性が低下していることが判る。 As can be seen from Table 5, in the soft magnetic powder produced by the gas atomization method with Si of 1.0 wt%, the inorganic insulating powder was added in Examples 17 to 22 in which Al 2 O 3 and MgO were added as the inorganic insulator. Hysteresis loss (Ph) at 20 kHz is lower than Comparative Example 14 that is not performed and Comparative Example 15 in which SiO 2 is added as an inorganic insulating material. Thereby, it turns out that the magnetic characteristic in the whole is improving. In Examples 17-22, when the addition amount of an inorganic insulating powder increases, it turns out that a density falls as an addition amount increases. Moreover, in Examples 17-19, since the heat processing temperature can be raised by increasing the addition amount of an inorganic insulating powder, the hysteresis loss (Ph) falls and the whole magnetic characteristic is improving. On the other hand, in Examples 20 to 22, it can be seen that as the amount of the inorganic insulating powder added increases, the density decreases and the hysteresis loss (Ph) increases, so that the overall magnetic characteristics are deteriorated.

また、Siが2.8%の水ガスアトマイズ法で作製した軟磁性粉末では、無機絶縁体としてAlを添加した実施例23〜26の場合、無機絶縁粉末を添加していない比較例16よりも、20kHzにおけるヒステリシス損失(Ph)が低下している。それにより全体での磁気特性が向上していることが判る。実施例23〜26では、無機絶縁粉末の添加量が増加すると、添加量が増えるに従って、密度が低下することが判る。比較例17,18と実施例24,25の比較では、無機絶縁物質としてSiOを加えた比較例17,18よりも、無機絶縁物質としてAlを加えた実施例24,25の方が、高温で熱処理できるのでヒステリシス損失(Ph)が低下している。しかし、実施例26では、比較例4,5よりもヒステリシス損失(Ph)が高くなる。これは、無機絶縁物質としてSiOを利用した場合でも、SiOの添加量が一定以上の量であれば、熱処理温度が融点近くになり粉末同士が凝固してしまっても粉砕することにより、圧粉磁心を作製することができるからである(表1〜4参照)。 Moreover, in the soft magnetic powder produced by the water gas atomization method with Si of 2.8%, in Examples 23 to 26 in which Al 2 O 3 was added as an inorganic insulator, Comparative Example 16 in which no inorganic insulating powder was added. The hysteresis loss (Ph) at 20 kHz is lower than that. As a result, it can be seen that the overall magnetic properties are improved. In Examples 23 to 26, it can be seen that as the amount of inorganic insulating powder increases, the density decreases as the amount added increases. In comparison between Comparative Examples 17 and 18 and Examples 24 and 25, Examples 24 and 25 in which Al 2 O 3 was added as an inorganic insulating material were compared to Comparative Examples 17 and 18 in which SiO 2 was added as an inorganic insulating material. However, since the heat treatment can be performed at a high temperature, the hysteresis loss (Ph) is reduced. However, in Example 26, the hysteresis loss (Ph) is higher than in Comparative Examples 4 and 5. This is because even when SiO 2 is used as an inorganic insulating material, if the amount of SiO 2 added is a certain amount or more, the heat treatment temperature is close to the melting point and the powders are solidified to be ground, This is because a dust core can be produced (see Tables 1 to 4).

以上より、軟磁性粉末に無機絶縁粉末を混合して1000℃を超える熱処理を行う場合の無機絶縁粉末の種類は、融点が1500℃を超えるAl及びMgOが適していることが判る。また、無機絶縁粉末の添加量としては、軟磁性粉末に対して、0.05〜0.5wt%であることが良い。これよりも少なければ、十分な効果を得ることができず、0.5wt%より多くなると密度低下によるヒステリシス損失の増加や、最大磁束密度の低下や、透磁率低下の要因となる。 From the above, it can be seen that Al 2 O 3 and MgO having a melting point exceeding 1500 ° C. are suitable for the kind of the inorganic insulating powder in the case where the inorganic insulating powder is mixed with the soft magnetic powder and the heat treatment exceeding 1000 ° C. is performed. The amount of inorganic insulating powder added is preferably 0.05 to 0.5 wt% with respect to the soft magnetic powder. If it is less than this, a sufficient effect cannot be obtained, and if it exceeds 0.5 wt%, it causes an increase in hysteresis loss due to a decrease in density, a decrease in maximum magnetic flux density, and a decrease in magnetic permeability.

[3−3.第3の特性比較(無機絶縁物質の粒径の比較)]
第3の特性比較では、軟磁性粉末に添加する無機絶縁物質の粒径の比較を行った。表6は、比較例及び実施例として軟磁性粉末に添加した無機絶縁物質の種類と成分を示した表である。各無機絶縁物質の平均粒径は、Alが13nm(比表面積100m/g)及び640nm,(比表面積130m/g),MgOが49nm(比表面積34m/g)及び230nm(比表面積160m/g)である。
[3-3. Third characteristic comparison (comparison of particle size of inorganic insulating materials)]
In the third characteristic comparison, the particle sizes of the inorganic insulating materials added to the soft magnetic powder were compared. Table 6 is a table showing the types and components of inorganic insulating materials added to the soft magnetic powder as comparative examples and examples. The average particle diameter of each inorganic insulating material is 13 nm (specific surface area 100 m 2 / g) and 640 nm for Al 2 O 3 (specific surface area 130 m 2 / g), 49 nm (specific surface area 34 m 2 / g) and 230 nm for MgO (specific surface area 130 m 2 / g). Specific surface area of 160 m 2 / g).

本特性比較で使用する試料は、下記のように作製した。
実施例27〜30では、水アトマイズ法で作製した粒度75μm以下の珪素成分3.5wt%のFe−Si合金粉末に、無機絶縁粉末として、13nm(比表面積100m/g)及び640nm,(比表面積130m/g)のAlを0.10〜0.50wt%を添加する。実施例31では、無機絶縁粉末として、230nm(比表面積160m/g)のMgOを添加した。
比較例19では、水アトマイズ法で作製した粒度75μm以下の珪素成分3.5wt%のFe−Si合金粉末に、無機絶縁粉末を添加しない。
その後、これらの試料に対して、1100℃の水素25%(残り75%は、窒素)の還元雰囲気で熱処理を行う。そして、シランカップリング剤を0.1質量%、シリコーンレジンを0.8重量%の順に混合し加熱乾燥後(180℃_2時間)、潤滑剤としてステアリン酸亜鉛を0.4重量%添加して混合(V型混合機_2時間)した。
The sample used for this characteristic comparison was produced as follows.
In Examples 27 to 30, a Fe-Si alloy powder having a particle size of 75 μm or less and having a particle size of 75 μm or less prepared by a water atomization method was used as an inorganic insulating powder at 13 nm (specific surface area 100 m 2 / g) and 640 nm, (ratio 0.10 to 0.50 wt% of Al 2 O 3 having a surface area of 130 m 2 / g) is added. In Example 31, 230 nm (specific surface area 160 m 2 / g) of MgO was added as the inorganic insulating powder.
In Comparative Example 19, the inorganic insulating powder is not added to the Fe—Si alloy powder having a particle size of 75 μm or less and 3.5 wt% silicon component produced by the water atomization method.
Thereafter, heat treatment is performed on these samples in a reducing atmosphere of hydrogen at 1100 ° C. in 25% (the remaining 75% is nitrogen). Then, 0.1% by mass of the silane coupling agent and 0.8% by weight of the silicone resin were mixed in this order and dried by heating (180 ° C. for 2 hours). Then, 0.4% by weight of zinc stearate was added as a lubricant. Mixed (V-type mixer — 2 hours).

これらを室温にて、1500MPaの圧力で加圧成形し、外径16mm、内径8mm、高さ5mmのリング状をなす圧粉磁心を作製した。そして、これらの圧粉磁心を窒素雰囲気中(N+H)にて、675℃で2時間焼鈍処理を行った。 These were pressure-molded at a pressure of 1500 MPa at room temperature to produce a dust core having a ring shape with an outer diameter of 16 mm, an inner diameter of 8 mm, and a height of 5 mm. And these powder magnetic cores were annealed at 675 ° C. for 2 hours in a nitrogen atmosphere (N 2 + H 2 ).

表6は、実施例27〜31と比較例19について、軟磁性粉末、無機絶縁粉末の種類と添加量、第1熱処理温度、透磁率及び単位体積あたりの鉄損(コアロス)との関係について示した表である。

Figure 2010245459
Table 6 shows the relationship between soft magnetic powder, inorganic insulating powder type and addition amount, first heat treatment temperature, magnetic permeability, and iron loss per unit volume (core loss) for Examples 27 to 31 and Comparative Example 19. It is a table.
Figure 2010245459

表6から判るように、Siが3.5wt%のガスアトマイズ法で作製した軟磁性粉末では、無機絶縁体として13nm(比表面積100m/g)及び640nm,(比表面積130m/g)のAlと230nm(比表面積160m/g)のMgOを添加した実施例17〜22の場合、無機絶縁粉末を添加していない比較例19よりも、20kHzにおけるヒステリシス損失(Ph)が低下している。それにより、全体での磁気特性が向上していることが判る。実施例27〜30では、無機絶縁粉末の添加量が増加すると、添加量が増えるに従って、密度が低下することが判る。また、13nm(比表面積100m/g)と640nm,(比表面積130m/g)のAlの無機絶縁粉末を使用した実施例28と29を比較すると、無機絶縁粉末の添加量が同じときには、粒径が小さい実施例28の密度が高くなることが判る。 As can be seen from Table 6, in the soft magnetic powder produced by the gas atomization method with Si of 3.5 wt%, Al of 13 nm (specific surface area 100 m 2 / g) and 640 nm (specific surface area 130 m 2 / g) is used as the inorganic insulator. In Examples 17 to 22 in which 2O 3 and 230 nm (specific surface area 160 m 2 / g) were added, the hysteresis loss (Ph) at 20 kHz was lower than that in Comparative Example 19 in which no inorganic insulating powder was added. ing. Thereby, it turns out that the magnetic characteristic in the whole is improving. In Examples 27-30, when the addition amount of an inorganic insulating powder increases, it turns out that a density falls as an addition amount increases. Further, when Examples 28 and 29 using Al 2 O 3 inorganic insulating powders of 13 nm (specific surface area 100 m 2 / g) and 640 nm (specific surface area 130 m 2 / g) are compared, the amount of inorganic insulating powder added is At the same time, it can be seen that the density of Example 28 having a small particle diameter increases.

以上より、軟磁性粉末に無機絶縁粉末を混合して1000℃を超える熱処理を行う場合の無機絶縁粉末の粒径は、平均粒経が7〜640nmであることが良い。これよりも小さい粒径の無機絶縁粉末は、製造が困難であり、これよりも大きいと軟磁性粉末同士に隙間が生じて、密度が低下して透磁率、単位体積あたりの鉄損(コアロス)及び直流重畳特性が劣化する。さらに、無機絶縁粉末の比表面積は、34〜300m/gとする。これよりも小さい比表面積の無機絶縁粉末は、製造が困難であり、これよりも大きいと軟磁性粉末同士に隙間が生じて、密度が低下して透磁率、単位体積あたりの鉄損(コアロス)及び直流重畳特性が劣化する。 From the above, when the inorganic insulating powder is mixed with the soft magnetic powder and the heat treatment exceeding 1000 ° C. is performed, the average particle diameter of the inorganic insulating powder is preferably 7 to 640 nm. Inorganic insulating powders with particle sizes smaller than this are difficult to produce, and if larger than this, gaps occur between soft magnetic powders, density decreases, magnetic permeability, iron loss per unit volume (core loss) In addition, the DC superimposition characteristic is deteriorated. Furthermore, the specific surface area of the inorganic insulating powder is 34 to 300 m 2 / g. An inorganic insulating powder having a specific surface area smaller than this is difficult to produce, and if it is larger than this, a gap occurs between soft magnetic powders, the density decreases, magnetic permeability, iron loss per unit volume (core loss) In addition, the DC superimposition characteristic is deteriorated.

[3−4.第4の特性比較(軟磁性粉末のSi成分の比較)]
第4の特性比較では、軟磁性の粉末のSi成分の含有量の比較を行った。表7は、比較例及び実施例として使用した軟磁性粉末のSi成分の含有量とを示した表である。各無機絶縁物質の平均粒径は、SiOが7nm(比表面積300m/g),Alが13nm(比表面積100m/g),MgOが50nm(比表面積34m/g)である。
[3-4. Fourth characteristic comparison (comparison of Si component of soft magnetic powder)]
In the fourth characteristic comparison, the content of the Si component in the soft magnetic powder was compared. Table 7 is a table showing the Si component content of the soft magnetic powders used as comparative examples and examples. The average particle size of each inorganic insulating material is 7 nm for SiO 2 (specific surface area 300 m 2 / g), 13 nm for Al 2 O 3 (specific surface area 100 m 2 / g), and 50 nm for MgO (specific surface area 34 m 2 / g). is there.

本特性比較で使用する試料は、下記のように作製した。
実施例32では、水ガスアトマイズ法で作製した粒度75μm以下の珪素成分6.5wt%のFe−Si合金粉末に、無機絶縁粉末として、Alを0.10wt%添加する。
比較例20では、水ガスアトマイズ法で作製した粒度75μm以下の珪素成分6.5wt%のFe−Si合金粉末に、無機絶縁粉末を添加しない。
その後、これらの試料に対して、1100℃の水素25%(残り75%は、窒素)の還元雰囲気で熱処理を行う。そして、シランカップリング剤を0.1質量%、シリコーンレジンを0.8重量%の順に混合し加熱乾燥後(180℃_2時間)、潤滑剤としてステアリン酸亜鉛を0.4重量%添加して混合(V型混合機_2時間)した。
The sample used for this characteristic comparison was produced as follows.
In Example 32, 0.10 wt% of Al 2 O 3 is added as an inorganic insulating powder to an Fe—Si alloy powder having a particle size of 75 μm or less and having a particle size of 75 μm or less produced by a water gas atomizing method.
In Comparative Example 20, the inorganic insulating powder is not added to the Fe—Si alloy powder having a particle size of 75 μm or less and having a particle size of 75 μm or less produced by the water gas atomization method.
Thereafter, heat treatment is performed on these samples in a reducing atmosphere of hydrogen at 1100 ° C. in 25% (the remaining 75% is nitrogen). Then, 0.1% by mass of the silane coupling agent and 0.8% by weight of the silicone resin were mixed in this order and dried by heating (180 ° C. for 2 hours). Then, 0.4% by weight of zinc stearate was added as a lubricant. Mixed (V-type mixer — 2 hours).

実施例33では、水アトマイズ法で作製した粒度75μm以下の珪素成分6.5wt%のFe−Si合金粉末に、無機絶縁粉末として、Alを0.10wt%添加する。その後、1100℃の水素25%(残り75%は、窒素)の還元雰囲気で熱処理を行う。
比較例21では、水アトマイズ法で作製した粒度75μm以下の珪素成分6.5wt%のFe−Si合金粉末に、無機絶縁粉末を添加しない。
その後、これらの試料に対して、1100℃の水素25%(残り75%は、窒素)の還元雰囲気で熱処理を行う。そして、シランカップリング剤を0.1質量%、シリコーンレジンを0.8重量%の順に混合し加熱乾燥後(180℃_2時間)、潤滑剤としてステアリン酸亜鉛を0.4重量%添加して混合(V型混合機_2時間)した。
In Example 33, 0.10 wt% of Al 2 O 3 is added as an inorganic insulating powder to an Fe—Si alloy powder having a particle size of 75 μm or less and having a particle size of 75 μm or less produced by a water atomization method. Thereafter, heat treatment is performed in a reducing atmosphere of 25% hydrogen (the remaining 75% is nitrogen) at 1100 ° C.
In Comparative Example 21, the inorganic insulating powder is not added to the Fe—Si alloy powder having a particle size of 75 μm or less and having a particle size of 75 μm or less, which is produced by the water atomization method.
Thereafter, heat treatment is performed on these samples in a reducing atmosphere of hydrogen at 1100 ° C. in 25% (the remaining 75% is nitrogen). Then, 0.1% by mass of the silane coupling agent and 0.8% by weight of the silicone resin were mixed in this order and dried by heating (180 ° C. for 2 hours). Then, 0.4% by weight of zinc stearate was added as a lubricant. Mixed (V-type mixer — 2 hours).

これらを室温にて、1500MPaの圧力で加圧成形し、外径16mm、内径8mm、高さ5mmのリング状をなす圧粉磁心を作製した。そして、これらの圧粉磁心を窒素雰囲気中(N+H)にて、675℃で2時間焼鈍処理を行った。 These were pressure-molded at a pressure of 1500 MPa at room temperature to produce a dust core having a ring shape with an outer diameter of 16 mm, an inner diameter of 8 mm, and a height of 5 mm. And these powder magnetic cores were annealed at 675 ° C. for 2 hours in a nitrogen atmosphere (N 2 + H 2 ).

表7は、実施例18,27,32,33と比較例14,19〜21について、軟磁性粉末、無機絶縁粉末の種類と添加量、第1熱処理温度、透磁率及び単位体積あたりの鉄損(コアロス)との関係について示した表である。

Figure 2010245459
Table 7 shows Examples 18, 27, 32 and 33 and Comparative Examples 14 and 19 to 21. Types and addition amounts of soft magnetic powder and inorganic insulating powder, first heat treatment temperature, magnetic permeability, and iron loss per unit volume. It is the table | surface shown about the relationship with (core loss).
Figure 2010245459

表7から判るように、軟磁性粉末に対し、無機絶縁体としてAlを0.10wt%添加し、1100℃で熱処理を行った実施例18,27,32,33と軟磁性粉末に対して、無機絶縁粉末を添加していない比較例では、実施例18,27,32,33の方が、20kHzにおけるヒステリシス損失(Ph)が低下していることにより、全体での磁気特性が向上していることが判る。一方で、実施例18,27,32,33を比較すると、Siの割合を増加させていくと、密度が低下することが判る。 As can be seen from Table 7, in Examples 18, 27, 32, and 33, in which 0.10 wt% of Al 2 O 3 was added as an inorganic insulator to the soft magnetic powder, and heat treatment was performed at 1100 ° C. On the other hand, in the comparative example to which no inorganic insulating powder was added, the hysteresis loss (Ph) at 20 kHz was lower in Examples 18, 27, 32, and 33, so that the overall magnetic characteristics were improved. You can see that On the other hand, comparing Examples 18, 27, 32, and 33, it can be seen that the density decreases as the Si ratio is increased.

以上より、無機絶縁微粉末のSiの割合は、1.0〜6.5%とすることが望ましい。すなわち、無機絶縁微粉末のSiの割合が6.5%を超えると成形性が悪く、圧粉磁心の密度が低下して磁気特性が低下する。   From the above, it is desirable that the Si ratio of the inorganic insulating fine powder is 1.0 to 6.5%. That is, when the Si ratio of the inorganic insulating fine powder exceeds 6.5%, the moldability is poor, the density of the dust core is lowered, and the magnetic properties are lowered.

[4.珪素成分が0.0〜1.0wt%の軟磁性粉末を使用した場合の実施例]
本発明の実施例34〜56を、表8〜11を参照して、以下に説明する。これらの実施例34〜56は、珪素成分が0.0〜1.0wt%の軟磁性粉末を使用した場合の実施例である。
[4. Example in which soft magnetic powder having silicon component of 0.0 to 1.0 wt% is used]
Examples 34 to 56 of the present invention will be described below with reference to Tables 8 to 11. In Examples 34 to 56, soft magnetic powder having a silicon component of 0.0 to 1.0 wt% is used.

[4−1.第5の特性比較(無機絶縁粉末と熱処理工程の温度の比較)]
第5の特性比較では、軟磁性の粉末に添加する無機絶縁粉末と熱処理工程時の温度の比較を行った。表8は、比較例及び実施例として軟磁性粉末に添加した無機絶縁物質の種類と成分を示した表である。各無機絶縁物質の平均粒径は、SiOが7nm(比表面積300m/g),Alが13〜1000nm(比表面積3〜100m/g),MgOが50〜2000nm(比表面積1〜34m/g)である。
[4-1. Fifth characteristic comparison (comparison of temperature of inorganic insulating powder and heat treatment process)]
In the fifth characteristic comparison, the inorganic insulating powder added to the soft magnetic powder was compared with the temperature during the heat treatment step. Table 8 is a table showing the types and components of inorganic insulating materials added to the soft magnetic powder as comparative examples and examples. The average particle size of each inorganic insulating material is as follows: SiO 2 is 7 nm (specific surface area 300 m 2 / g), Al 2 O 3 is 13 to 1000 nm (specific surface area 3 to 100 m 2 / g), and MgO is 50 to 2000 nm (specific surface area). 1-34 m < 2 > / g).

実施例34〜38では、水アトマイズ法で作製した粒度63μm以下の珪素成分が0wt%の軟磁性粉末に、無機絶縁粉末として、Alを0.25〜0.75wt%添加する。
実施例37,38では、水アトマイズ法で作製した粒度63μm以下の珪素成分0.0wt%の軟磁性粉末に、無機絶縁粉末として、MgOを0.50〜0.75wt%添加する。
比較例22では、水アトマイズ法で作製した粒度63μm以下の珪素成分0.0wt%の軟磁性粉末に、無機絶縁粉末として、SiOを0.50〜0.75wt%添加する。
In Examples 34 to 38, 0.25 to 0.75 wt% of Al 2 O 3 is added as an inorganic insulating powder to a soft magnetic powder having a particle size of 63 μm or less prepared by a water atomization method and containing 0 wt%.
In Examples 37 and 38, 0.50 to 0.75 wt% of MgO is added as an inorganic insulating powder to a soft magnetic powder having a particle size of 63 μm or less and having a particle size of 63 μm or less produced by a water atomization method.
In Comparative Example 22, 0.52 to 0.75 wt% of SiO 2 is added as an inorganic insulating powder to a soft magnetic powder having a particle size of 63 μm or less and having a particle size of 63 μm or less produced by a water atomization method.

表8は、実施例34〜38と比較例22の粉末を、水素を25%含む還元雰囲気中にて熱処理を行った場合に、第1熱処理温度及び無機絶縁粉末が焼結するかどうかの関係について示した表である。表の中の◎は焼結せずそのままで使用可能、○は軽くほぐすだけで使用可能、△は粉砕が必要、×は粉砕が不可能な状態を示している。

Figure 2010245459
Table 8 shows the relationship between the first heat treatment temperature and whether the inorganic insulating powder is sintered when the powders of Examples 34 to 38 and Comparative Example 22 are heat-treated in a reducing atmosphere containing 25% hydrogen. It is the table | surface shown about. ◎ in the table can be used as it is without being sintered, ◯ can be used just by lightly loosening, △ needs to be crushed, and × shows a state where pulverization is impossible.
Figure 2010245459

表8からは、無機絶縁粉末として、SiOを使用した比較例22では、900℃での熱処理は、無機絶縁粉末が焼結しないが、950℃を超える熱処理を行った場合に、粉末同士が凝固してしまうことが判る。一方、無機絶縁粉末として、AlとMgO粉末を使用した実施例34〜38では、1000℃の熱処理においても、無機絶縁粉末は焼結せずそのままで使用が可能であることが判る。 From Table 8, in Comparative Example 22 using SiO 2 as the inorganic insulating powder, the heat treatment at 900 ° C. does not sinter the inorganic insulating powder, but when the heat treatment exceeding 950 ° C. is performed, the powders are It turns out that it solidifies. On the other hand, in Examples 34 to 38 using Al 2 O 3 and MgO powder as the inorganic insulating powder, it can be seen that the inorganic insulating powder can be used as it is without being sintered even in the heat treatment at 1000 ° C.

実施例39〜41及び比較例23では、水アトマイズ法で作製した粒度106μm以下の珪素成分0.0wt%の軟磁性粉末に対して、平坦化処理を施こした後、無機絶縁粉末として、粒子径が13〜1000nmのAlを0.50〜0.75wt%添加する。
実施例42〜45及び比較例24では、水アトマイズ法で作製した粒度106μm以下の珪素成分0.0wt%の軟磁性粉末に対して、平坦化処理を施こしたあと、無機絶縁粉末として、粒子径が13〜1000nmのMgOを0.50〜0.75wt%添加する。
実施例46〜49及び比較例24では、水アトマイズ法で作製した粒度106μm以下の珪素成分0.0wt%の軟磁性粉末に対して、平坦化処理を施こしたあと、無機絶縁粉末として、粒子径が13〜1000nmのMgOを0.50〜0.75wt%添加する。
In Examples 39 to 41 and Comparative Example 23, after applying a flattening process to a soft magnetic powder having a particle size of 106 μm or less produced by a water atomization method and having a particle size of 106 μm or less, Al 2 O 3 having a diameter of 13 to 1000 nm is added in an amount of 0.50 to 0.75 wt%.
In Examples 42 to 45 and Comparative Example 24, after applying a flattening process to a soft magnetic powder having a particle size of 106 μm or less and having a particle size of 106 μm or less produced by a water atomization method, 0.50 to 0.75 wt% of MgO having a diameter of 13 to 1000 nm is added.
In Examples 46 to 49 and Comparative Example 24, after applying a flattening treatment to a soft magnetic powder having a particle size of 106 μm or less and having a particle size of 106 μm or less produced by a water atomization method, 0.50 to 0.75 wt% of MgO having a diameter of 13 to 1000 nm is added.

表9は、実施例39〜49と比較例23〜25の粉末を、水素を25%含む還元雰囲気中にて熱処理を行った場合に、第1熱処理温度及び無機絶縁粉末が焼結するかどうかの関係について示した表である。表の中の◎は焼結せずそのままで使用可能、○は軽くほぐすだけで使用可能、△は粉砕が必要、×は粉砕が不可能な状態を示している。

Figure 2010245459
Table 9 shows whether or not the first heat treatment temperature and the inorganic insulating powder sinter when the powders of Examples 39 to 49 and Comparative Examples 23 to 25 were heat-treated in a reducing atmosphere containing 25% hydrogen. It is the table | surface shown about the relationship. ◎ in the table can be used as it is without being sintered, ◯ can be used just by lightly loosening, △ needs to be crushed, and × shows a state where pulverization is impossible.
Figure 2010245459

表9からは、無機絶縁粉末として、Alを使用した実施例39〜41及び比較例23からは、粒子径が300nmでは1150℃で熱処理をしても無機絶縁粉末は焼結しないが、粒子径が1000nmでは950℃を超えると、粉末同士が凝固してしまうことが判る。また、無機絶縁粉末として、MgOを使用し無機絶縁粉末の添加量を0.50wt%ととした実施例42〜45及び比較例24からは、粒子径が400nmでは1000℃でで熱処理をしても無機絶縁粉末は焼結しないが、粒子径が1000nmでは、950℃を超えると粉末同士が凝固してしまうことが判る。さらに、無機絶縁粉末として、MgOを使用し無機絶縁粉末の添加量を0.75wt%ととした実施例46〜49及び比較例25からは、粒子径が400nmでは1000℃で熱処理をしても無機絶縁粉末は焼結しないが、粒子径が2000nmでは、粒子径が400nmよりも、粉末同士が凝固してしまう温度が低くなることが判る。 From Table 9, from Examples 39 to 41 and Comparative Example 23 using Al 2 O 3 as the inorganic insulating powder, the inorganic insulating powder is not sintered even if heat treatment is performed at 1150 ° C. when the particle size is 300 nm. It can be seen that when the particle diameter exceeds 1000 ° C. when the particle diameter is 1000 nm, the powders are solidified. Further, from Examples 42 to 45 and Comparative Example 24 in which MgO was used as the inorganic insulating powder and the addition amount of the inorganic insulating powder was 0.50 wt%, heat treatment was performed at 1000 ° C. when the particle diameter was 400 nm. Although the inorganic insulating powder is not sintered, it can be seen that when the particle diameter is 1000 nm, the powder solidifies when the temperature exceeds 950 ° C. Furthermore, from Examples 46 to 49 and Comparative Example 25 in which MgO was used as the inorganic insulating powder and the addition amount of the inorganic insulating powder was 0.75 wt%, even when heat treatment was performed at 1000 ° C. when the particle diameter was 400 nm. Although the inorganic insulating powder is not sintered, it can be seen that when the particle diameter is 2000 nm, the temperature at which the powder solidifies becomes lower than when the particle diameter is 400 nm.

また、無機絶縁粉末として、Al及びMgOを使用した場合、粒子径が50nm以下の場合、最も温度を高くしても無機絶縁粉末が焼結にくくなることが判る。 Further, when Al 2 O 3 and MgO are used as the inorganic insulating powder, it can be seen that when the particle diameter is 50 nm or less, the inorganic insulating powder is hardly sintered even when the temperature is highest.

実施例50,51では、水ガスアトマイズ法で作製した粒度75μm以下の珪素成分0.0wt%の軟磁性粉末に、無機絶縁粉末として、粒子径が13nmのAlを0.25〜0.50wt%添加する。 In Examples 50 and 51, a soft magnetic powder having a particle size of 75 μm or less and having a particle size of 75 μm or less produced by a water gas atomizing method was added with 0.25 to 0.005 Al 2 O 3 having a particle diameter of 13 nm as an inorganic insulating powder. Add 50 wt%.

表10は、実施例50,51の粉末を、水素を25%含む還元雰囲気中にて熱処理を行った場合に、第1熱処理温度及び無機絶縁粉末が焼結するかどうかの関係について示した表である。表の中の◎は焼結せずそのままで使用可能、○は軽くほぐすだけで使用可能、△は粉砕が必要、×は粉砕が不可能な状態を示している。

Figure 2010245459
Table 10 shows the relationship between the first heat treatment temperature and whether the inorganic insulating powder sinters when the powders of Examples 50 and 51 are heat-treated in a reducing atmosphere containing 25% hydrogen. It is. ◎ in the table can be used as it is without being sintered, ◯ can be used just by lightly loosening, △ needs to be crushed, and × shows a state where pulverization is impossible.
Figure 2010245459

表10からは、無機絶縁粉末として、Alを使用し、軟磁性粉末に平坦化処理を行った実施例51では、平坦化処理を行わなかった実施例50よりも、粉末同士が凝固してしまう温度が高くなることが判る。 From Table 10, in Example 51 in which Al 2 O 3 was used as the inorganic insulating powder and the soft magnetic powder was flattened, the powders were solidified compared to Example 50 in which the flattening treatment was not performed. It turns out that the temperature which will do becomes high.

実施例52,53では、水ガスアトマイズ法で作製した粒度63μm以下の珪素成分1.0wt%の軟磁性粉末に、無機絶縁粉末として、粒子径が13nmのAlを0.25〜0.50wt%添加する。
実施例54,55では、水ガスアトマイズ法で作製した粒度63μm以下の珪素成分1.0wt%の軟磁性粉末に、無機絶縁粉末として、粒子径が50nmのMgOを0.25〜0.50wt%添加する。
比較例26では、水アトマイズ法で作製した粒度63μm以下の珪素成分1.0wt%の軟磁性粉末に、無機絶縁粉末として、SiOを0.25wt%添加する。
In Examples 52 and 53, a soft magnetic powder having a particle size of 63 μm or less and having a particle size of 63 μm or less and having a particle size of 63 μm or less of Al 2 O 3 having a particle diameter of 13 nm was added to 0.25 to 0. 5 as an inorganic insulating powder. Add 50 wt%.
In Examples 54 and 55, 0.25 to 0.50 wt% of MgO having a particle diameter of 50 nm was added as an inorganic insulating powder to a soft magnetic powder having a particle size of 63 μm or less and having a particle size of 63 μm or less produced by a water gas atomization method. To do.
In Comparative Example 26, 0.25 wt% of SiO 2 is added as an inorganic insulating powder to a soft magnetic powder having a particle size of 63 μm or less and having a particle size of 63 μm or less and having a silicon component of 1.0 wt%.

表11は、実施例52〜55及び比較例26の粉末を、水素を25%含む還元雰囲気中にて熱処理を行った場合に、第1熱処理温度及び無機絶縁粉末が焼結するかどうかの関係について示した表である。表の中の◎は焼結せずそのままで使用可能、○は軽くほぐすだけで使用可能、△は粉砕が必要、×は粉砕が不可能な状態を示している。

Figure 2010245459
Table 11 shows the relationship between the first heat treatment temperature and whether the inorganic insulating powder is sintered when the powders of Examples 52 to 55 and Comparative Example 26 are heat-treated in a reducing atmosphere containing 25% hydrogen. It is the table | surface shown about. ◎ in the table can be used as it is without being sintered, ◯ can be used just by lightly loosening, △ needs to be crushed, and × shows a state where pulverization is impossible.
Figure 2010245459

表11からは、軟磁性粉末として、水ガスアトマイズ法で作製した粒度63μm以下の珪素成分1.0wt%を使用した実施例52〜55及び比較例26では、無機絶縁粉末として、SiOを使用した比較例26では、900℃での熱処理は無機絶縁粉末が焼結しないが、950℃を超える熱処理を行った場合に、粉末同士が凝固してしまうことが判る。一方、無機絶縁粉末として、AlとMgO粉末を使用した実施例34〜38では、1150℃の熱処理においても、無機絶縁粉末は焼結せずそのままで使用が可能であることが判る。 From Table 11, in Examples 52-55 and Comparative Example 26 using a silicon component of 1.0 wt% having a particle size of 63 μm or less prepared by a water gas atomization method as a soft magnetic powder, SiO 2 was used as an inorganic insulating powder. In Comparative Example 26, it can be seen that the heat treatment at 900 ° C. does not sinter the inorganic insulating powder, but when the heat treatment exceeding 950 ° C. is performed, the powders solidify. On the other hand, in Examples 34 to 38 using Al 2 O 3 and MgO powder as the inorganic insulating powder, it can be seen that the inorganic insulating powder can be used as it is without being sintered even in the heat treatment at 1150 ° C.

以上の表8〜11から判るように、軟磁性粉末の珪素成分が0.0〜1.0の場合においても、無機絶縁粉末としてSiO(融点1500℃)を使用した場合には、1000℃を超える熱処理を行った場合には、粉末同士が凝固してしまう。これに対して、Al(融点2046℃)、MgO(融点2800℃)などの無機絶縁微粉末は、1000℃以上の粉末熱処理において、軟磁性粉末の粒子が焼結して固まることを抑止することが出来る。 As can be seen from Tables 8 to 11 above, even when the silicon component of the soft magnetic powder is 0.0 to 1.0, when SiO 2 (melting point 1500 ° C.) is used as the inorganic insulating powder, 1000 ° C. When the heat treatment exceeding is performed, the powders are solidified. In contrast, inorganic insulating fine powders such as Al 2 O 3 (melting point: 2046 ° C.) and MgO (melting point: 2800 ° C.) have a tendency that the soft magnetic powder particles sinter and harden during powder heat treatment at 1000 ° C. or higher. Can be deterred.

また、無機絶縁粉末として、Al,MgOを使用した場合にでも、粒子径が400nmを超えると、軟磁性粉末の粒子が焼結して固まることを抑止する効果が低くなる。これは、圧粉磁心を作製したときに、無機絶縁粉末の粒子径が400nmを超えていると、軟磁性粉末同士に隙間が生じて、密度が低下してしまうためである。 Even when Al 2 O 3 , MgO is used as the inorganic insulating powder, if the particle diameter exceeds 400 nm, the effect of suppressing the soft magnetic powder particles from being sintered and solidified becomes low. This is because when the powder magnetic core is manufactured, if the particle diameter of the inorganic insulating powder exceeds 400 nm, a gap is generated between the soft magnetic powders, and the density is lowered.

すなわち、融点が高い無機絶縁粉末を使用することにより、ボックス炉やトンネル炉などの従来の熱処理方法において、高温での熱処理が可能となり、炉の選択の自由度が広がる。さらに、粉末同士の凝固を防止するために、粉末を回転させて粉末同士が接する時間を短くし、凝固を防止する方法であるロータリーキルンを使用するとより高温での熱処理が可能となる。   That is, by using an inorganic insulating powder having a high melting point, heat treatment at a high temperature is possible in a conventional heat treatment method such as a box furnace or a tunnel furnace, and the degree of freedom in selecting the furnace is increased. Furthermore, in order to prevent solidification of the powders, heat treatment at a higher temperature becomes possible by using a rotary kiln that is a method of rotating the powders to shorten the time of contact between the powders and preventing solidification.

[5−2.第6の特性比較(無機絶縁粉末の添加量及び種類の比較)]
第6の特性比較では、軟磁性粉末の粉末に添加する無機絶縁粉末の添加量及び種類の比較を行った。表12は、比較例及び実施例として軟磁性粉末に添加した無機絶縁物質の種類と成分を示した表である。各無機絶縁物質の平均粒径は、SiOが7nm(比表面積300m/g),Alが13〜300nm(比表面積100m/g),MgOが50〜400nm(比表面積34m/g)である。
[5-2. Sixth characteristic comparison (comparison of added amount and type of inorganic insulating powder)]
In the sixth characteristic comparison, the amount and type of inorganic insulating powder added to the soft magnetic powder were compared. Table 12 is a table showing the types and components of inorganic insulating materials added to the soft magnetic powder as comparative examples and examples. The average particle size of each inorganic insulating material is as follows: SiO 2 is 7 nm (specific surface area 300 m 2 / g), Al 2 O 3 is 13 to 300 nm (specific surface area 100 m 2 / g), and MgO is 50 to 400 nm (specific surface area 34 m 2 / G).

本特性比較で使用する試料は、下記のように作製した。
実施例56〜59及び比較例27では、水アトマイズ法で作製した粒度63μm以下の珪素成分0.0wt%の軟磁性粉末を使用した。
実施例56,57では、前記軟磁性粉末に、無機絶縁粉末として、13nm(比表面積100m/g)のAlを0.5〜0.75wt%添加する。
実施例58,59では、前記軟磁性粉末に、無機絶縁粉末として、50nm(比表面積34m/g)のMgOを0.75〜1.00wt%添加する。
比較例27では、前記軟磁性粉末に、無機絶縁粉末を添加しない。
その後、実施例56〜59の試料に対して、1050℃〜1100℃の水素25%(残り75%は、窒素)の還元雰囲気で熱処理を行う。
The sample used for this characteristic comparison was produced as follows.
In Examples 56 to 59 and Comparative Example 27, soft magnetic powder having a particle size of 63 μm or less and having a silicon component of 0.0 wt% produced by a water atomization method was used.
In Examples 56 and 57, 0.5 to 0.75 wt% of 13 nm (specific surface area 100 m 2 / g) of Al 2 O 3 is added to the soft magnetic powder as an inorganic insulating powder.
In Examples 58 and 59, 0.75 to 1.00 wt% of 50 nm (specific surface area 34 m 2 / g) MgO is added to the soft magnetic powder as an inorganic insulating powder.
In Comparative Example 27, no inorganic insulating powder is added to the soft magnetic powder.
Thereafter, heat treatment is performed on the samples of Examples 56 to 59 in a reducing atmosphere of 1050 ° C. to 1100 ° C. of hydrogen 25% (the remaining 75% is nitrogen).

実施例60〜65及び比較例28では、水アトマイズ法で作製した粒度106μm以下の珪素成分0.0wt%の軟磁性粉末対して円形度が0.761、凹凸度が0.942、アスペクト比が1.450となるような平坦化処理を行った軟磁性粉末を使用した。
実施例60〜62では、前記軟磁性粉末に、無機絶縁粉末として、13〜300nm(比表面積100m/g)のAlを0.5〜0.75wt%添加する。
実施例63〜65では、前記軟磁性粉末に、無機絶縁粉末として、50〜400nm(比表面積34m/g)のMgOを0.50wt%添加する。
比較例28では、前記軟磁性粉末に、無機絶縁粉末を添加しない。
その後、実施例60〜65の試料に対して、1050℃〜1100℃の水素25%(残り75%は、窒素)の還元雰囲気で熱処理を行う。
In Examples 60 to 65 and Comparative Example 28, the degree of circularity is 0.761, the degree of unevenness is 0.942, and the aspect ratio is 0.061% for the soft magnetic powder having a particle size of 106 μm or less and produced by the water atomization method. The soft magnetic powder which performed the planarization process which will be set to 1.450 was used.
In Examples 60 to 62, 0.5 to 0.75 wt% of Al 2 O 3 having a thickness of 13 to 300 nm (specific surface area of 100 m 2 / g) is added to the soft magnetic powder as an inorganic insulating powder.
In Examples 63 to 65, 0.50 wt% of 50 to 400 nm (specific surface area 34 m 2 / g) of MgO is added to the soft magnetic powder as an inorganic insulating powder.
In Comparative Example 28, no inorganic insulating powder is added to the soft magnetic powder.
Thereafter, heat treatment is performed on the samples of Examples 60 to 65 in a reducing atmosphere of 1050 ° C. to 1100 ° C. of 25% hydrogen (the remaining 75% is nitrogen).

実施例66及び比較例29では、水ガスアトマイズ法で作製した粒度63μm以下の珪素成分0.0wt%の軟磁性粉末を使用した。
実施例66では、前記軟磁性粉末に、無機絶縁粉末として、13nm(比表面積100m/g)のAlを0.50wt%添加する。
比較例29では、前記軟磁性粉末に、無機絶縁粉末を添加しない。
その後、実施例66の試料に対して、1100℃の水素25%(残り75%は、窒素)の還元雰囲気で熱処理を行う。
In Example 66 and Comparative Example 29, soft magnetic powder having a particle size of 63 μm or less and having a silicon component of 0.0 wt% produced by a water gas atomization method was used.
In Example 66, 0.50 wt% of Al 2 O 3 having a thickness of 13 nm (specific surface area 100 m 2 / g) is added to the soft magnetic powder as an inorganic insulating powder.
In Comparative Example 29, no inorganic insulating powder is added to the soft magnetic powder.
Thereafter, the sample of Example 66 is heat-treated in a reducing atmosphere of 1100 ° C. of hydrogen 25% (the remaining 75% is nitrogen).

実施例67〜69及び比較例30,31では、ガスアトマイズ法で作製した粒度63μm以下の珪素成分1.0wt%の軟磁性粉末を使用した。
実施例67では、前記軟磁性粉末に、無機絶縁粉末として、13nm(比表面積100m/g)のAlを0.25wt%添加する。
実施例68,69では、前記軟磁性粉末に、無機絶縁粉末として、50nm(比表面積34m/g)のMgOを0.25〜0.50wt%添加する。
比較例30では、前記軟磁性粉末に、無機絶縁粉末を添加しない。
比較例31では、無機絶縁粉末として、7nm(比表面積300m/g)のSiOを0.25wt%添加する。
その後、実施例56〜59及び比較例31の試料に対して、950℃〜1150℃の水素25%(残り75%は、窒素)の還元雰囲気で熱処理を行う。
In Examples 67 to 69 and Comparative Examples 30 and 31, soft magnetic powder having a particle size of 63 μm or less and having a silicon component of 1.0 wt% produced by a gas atomization method was used.
In Example 67, 0.25 wt% of Al 2 O 3 having a thickness of 13 nm (specific surface area: 100 m 2 / g) is added to the soft magnetic powder as an inorganic insulating powder.
In Examples 68 and 69, 0.25 to 0.50 wt% of 50 nm (specific surface area 34 m 2 / g) of MgO is added to the soft magnetic powder as an inorganic insulating powder.
In Comparative Example 30, no inorganic insulating powder is added to the soft magnetic powder.
In Comparative Example 31, 0.25 wt% of SiO 2 having a thickness of 7 nm (specific surface area 300 m 2 / g) is added as the inorganic insulating powder.
Thereafter, the samples of Examples 56 to 59 and Comparative Example 31 are heat treated in a reducing atmosphere of 25% hydrogen (the remaining 75% is nitrogen) at 950 ° C. to 1150 ° C.

これらの実施例56〜69及び比較例27〜31の試料に対して、シランカップリング剤を0.1〜0.5質量%、シリコーンレジンを0.4〜0.6wt%の順に混合し加熱乾燥後(180℃_2時間)、潤滑剤としてステアリン酸亜鉛を0.4重量%添加して混合(V型混合機_2時間)した。その後、1500MPaの圧力で加圧成形し、外径16mm、内径8mm、高さ5mmのリング状をなす圧粉磁心を作製した。そして、これらの圧粉磁心を675℃で2時間焼鈍処理を行った。   The samples of Examples 56 to 69 and Comparative Examples 27 to 31 were mixed and heated in the order of 0.1 to 0.5 mass% of the silane coupling agent and 0.4 to 0.6 wt% of the silicone resin. After drying (180 ° C. for 2 hours), 0.4% by weight of zinc stearate as a lubricant was added and mixed (V-type mixer—2 hours). Then, it pressure-molded with the pressure of 1500 MPa, and produced the powder magnetic core which makes | forms the ring shape of outer diameter 16mm, internal diameter 8mm, and height 5mm. And these powder magnetic cores were annealed at 675 ° C. for 2 hours.

表12は、実施例56〜69及び比較例27〜31について、軟磁性粉末、無機絶縁粉末の種類と添加量、第1熱処理温度、透磁率及び単位体積あたりの鉄損(コアロス)との関係について示した表である。

Figure 2010245459
Table 12 shows the relationship among soft magnetic powder, inorganic insulating powder type and addition amount, first heat treatment temperature, magnetic permeability, and iron loss per unit volume (core loss) for Examples 56 to 69 and Comparative Examples 27 to 31. It is the table | surface shown about.
Figure 2010245459

表12から判るように、水アトマイズ製法、水アトマイズ製法に加えて平坦化処理、水ガスアトマイズ製法及びガスアトマイズ法で作製した軟磁性粉末と、無機絶縁粉末としてAlとMgOを添加した実施例56〜69の場合、無機絶縁粉末を添加していない比較例27〜30よりも、20kHzにおけるヒステリシス損失(Ph)が大幅に低下する。これにより、鉄損(コアロス)が低下することになり、磁気特性が向上する。また、無機絶縁粉末の添加量が増えるに従って、密度が低下していくことが判る。
また、比較例30と比較例31を比較すると、無機絶縁粉末としてSiOとMgOを添加した。
As can be seen from Table 12, in addition to the water atomizing method and the water atomizing method, a planarization treatment, a soft magnetic powder produced by the water gas atomizing method and the gas atomizing method, and an example in which Al 2 O 3 and MgO were added as inorganic insulating powders In the case of 56 to 69, the hysteresis loss (Ph) at 20 kHz is significantly lower than those of Comparative Examples 27 to 30 in which the inorganic insulating powder is not added. Thereby, an iron loss (core loss) will fall and a magnetic characteristic will improve. Moreover, it turns out that a density falls as the addition amount of an inorganic insulating powder increases.
Further, when Comparative Example 30 and Comparative Example 31 were compared, SiO 2 O 3 and MgO were added as inorganic insulating powders.

以上より、珪素成分が0.0〜1.0wt%の軟磁性粉末に無機絶縁粉末を混合して1000℃を超える熱処理を行う場合の無機絶縁粉末の種類は、融点が1500℃を超えるAl及びMgOが適していることが判る。また、無機絶縁粉末の添加量としては、軟磁性粉末に対して、0.25〜1.0wt%であることが良い。これよりも少なければ、十分な効果を得ることができず、1.0wt%より多くなると密度低下によるヒステリシス損失の増加や、最大磁束密度の低下や、透磁率低下の要因となる。 From the above, when the inorganic insulating powder is mixed with the soft magnetic powder having a silicon component of 0.0 to 1.0 wt% and the heat treatment exceeding 1000 ° C. is performed, the kind of the inorganic insulating powder is Al 2 having a melting point exceeding 1500 ° C. It can be seen that O 3 and MgO are suitable. Further, the amount of the inorganic insulating powder added is preferably 0.25 to 1.0 wt% with respect to the soft magnetic powder. If it is less than this, a sufficient effect cannot be obtained, and if it exceeds 1.0 wt%, it causes an increase in hysteresis loss due to a decrease in density, a decrease in maximum magnetic flux density, and a decrease in permeability.

[5−3.第7の特性比較(直流重畳特性の比較)]
第7の特性比較では、珪素成分が1.0wt%の軟磁性粉末への平坦化処理の有無における直流重畳特性の比較を行った。図2では、直流バイアス磁界がH(A/m)のときの比透磁率であるμと、直流バイアス磁界が0(A/m)のときの比透磁率であるμ0とから規格化した透磁率である比透磁率μ/μ0と印加磁界(kA/m)との関係を示した図である。
[5-3. Seventh characteristic comparison (comparison of DC superposition characteristics)]
In the seventh characteristic comparison, direct current superposition characteristics were compared in the presence or absence of a flattening treatment to a soft magnetic powder having a silicon component of 1.0 wt%. In FIG. 2, μ is a permeability that is normalized when the DC bias magnetic field is H (A / m) and μ 0 that is a relative permeability when the DC bias magnetic field is 0 (A / m). It is the figure which showed the relationship between the relative permeability (micro | micron | mu) 0 which is magnetic permeability, and an applied magnetic field (kA / m).

図2からは、軟磁性合末に対して平坦化処理を行わない比較例に対して、平坦化処理を行った実施例の方が、印加磁界における比透磁率が優れることが判る。これは、軟磁性粉末に対して平坦化処理を行うことで、表面の凹凸を除去し粉末の形状を球に近くすることができる。このため、低い圧力でも密度が高い圧粉磁心を制作することができる。圧粉磁心は、密度が高くなると直流重畳特性が優れるという特性があり、圧粉磁心の密度が高くなることにより直流重畳特性が向上していることがわかる。以上により、平坦化処理を行うことにより、低損失な圧粉磁心を提供できるだけでなく、高密度で直流重畳特性に優れた圧粉磁心を提供することができる。   From FIG. 2, it can be seen that the relative permeability in the applied magnetic field is superior in the example in which the flattening process is performed compared to the comparative example in which the flattening process is not performed on the soft magnetic powder. By performing a planarization process on the soft magnetic powder, it is possible to remove surface irregularities and make the powder shape close to a sphere. For this reason, it is possible to produce a dust core having a high density even at a low pressure. It can be seen that the dust core has a characteristic that the DC superposition characteristic is excellent when the density is high, and the DC superposition characteristic is improved by increasing the density of the dust core. As described above, by performing the flattening process, not only a low-loss dust core can be provided, but also a dust core having high density and excellent direct current superposition characteristics can be provided.

Claims (22)

軟磁性粉末と無機絶縁粉末を混合し、その混合物に対して熱処理を施し、
熱処理を施した軟磁性粉末と無機絶縁粉末とを結着性絶縁樹脂で被覆し、その混合物に対して、潤滑性樹脂を混合し
その混合物を、加圧成形処理して成形体を作製し、その成形体を焼鈍処理してなる圧粉磁心において、
前記無機絶縁粉末の融点が1500℃以上の粉末であり、
前記軟磁性粉末と前記無機絶縁粉末に対する熱処理は、非酸化性雰囲気中において、1000℃以上且つ軟磁性粉末が焼結を開始する温度以下で行うことにより作製されたことを特徴とする圧粉磁心。
Mix soft magnetic powder and inorganic insulating powder, heat-treat the mixture,
The heat-treated soft magnetic powder and the inorganic insulating powder are coated with a binder insulating resin, and the mixture is mixed with a lubricating resin, and the mixture is pressure-molded to produce a molded body. In the dust core formed by annealing the molded body,
The inorganic insulating powder has a melting point of 1500 ° C. or higher,
A dust core produced by performing heat treatment on the soft magnetic powder and the inorganic insulating powder in a non-oxidizing atmosphere at 1000 ° C. or more and below the temperature at which the soft magnetic powder starts sintering. .
前記軟磁性粉末の珪素成分が1〜6.8wt%であることを特徴とする請求項1に記載の圧粉磁心。   2. The dust core according to claim 1, wherein a silicon component of the soft magnetic powder is 1 to 6.8 wt%. 前記無機絶縁粉末が、AlまたはMgO粉末で、添加量が0.05〜0.5wt%であることを特徴とする請求項1または請求項2に記載の圧粉磁心。 3. The dust core according to claim 1, wherein the inorganic insulating powder is Al 2 O 3 or MgO powder, and an addition amount is 0.05 to 0.5 wt%. 前記無機絶縁粉末の平均粒径が7〜640nmであることを特徴とする請求項1〜3のいずれか1項に記載の圧粉磁心。   The powder magnetic core according to claim 1, wherein the inorganic insulating powder has an average particle size of 7 to 640 nm. 前記無機絶縁粉末の比表面積が34〜300m/gであることを特徴とする請求項1〜4のいずれか1項に記載の圧粉磁心。 The powder magnetic core according to claim 1, wherein the inorganic insulating powder has a specific surface area of 34 to 300 m 2 / g. 前記無機絶縁粉末の添加量が0.05〜0.2wt%で、前記第1熱処理温度が1100℃以上且つ軟磁性粉末が焼結を開始する温度以下で、前記軟磁性粉末が2.8〜6.5wt%であることを特徴とする請求項1〜5のいずれか1項に記載の圧粉磁心。   The addition amount of the inorganic insulating powder is 0.05 to 0.2 wt%, the first heat treatment temperature is 1100 ° C. or more and the soft magnetic powder is less than the temperature at which the sintering starts, and the soft magnetic powder is 2.8 to It is 6.5 wt%, The powder magnetic core of any one of Claims 1-5 characterized by the above-mentioned. 前記軟磁性粉末の珪素成分が0〜1.0wt%であることを特徴とする請求項1に記載の圧粉磁心。   2. The dust core according to claim 1, wherein a silicon component of the soft magnetic powder is 0 to 1.0 wt%. 前記無機絶縁粉末が、AlまたはMgO粉末で、添加量が0.25〜1.0wt%であることを特徴とする請求項7に記載の圧粉磁心。 The dust core according to claim 7, wherein the inorganic insulating powder is Al 2 O 3 or MgO powder, and the addition amount is 0.25 to 1.0 wt%. 前記無機絶縁粉末がの平均粒径が7〜400nmであることを特徴とする請求項7または請求項8に記載の圧粉磁心。   The dust core according to claim 7 or 8, wherein the inorganic insulating powder has an average particle size of 7 to 400 nm. 前記軟磁性粉末が水アトマイズ法、ガスアトマイズ法または水ガスアトマイズ法で作製されたことを特徴とする請求項1〜9のいずれか1項に記載の圧粉磁心。   The dust core according to any one of claims 1 to 9, wherein the soft magnetic powder is produced by a water atomizing method, a gas atomizing method, or a water gas atomizing method. 前記軟磁性粉末が水アトマイズ法で作製されたものである場合、水アトマイズ法で作製した粉末を平坦化処理したものであることを特徴とする請求項10に記載の圧粉磁心。   11. The dust core according to claim 10, wherein when the soft magnetic powder is produced by a water atomizing method, the powder produced by the water atomizing method is obtained by performing a flattening process. 軟磁性粉末に無機絶縁粉末を混合する第1混合工程と、
第1混合工程を経た混合物に対して熱処理を施す熱処理工程と、
熱処理工程を経た軟磁性粉末と無機絶縁粉末とに結着性絶縁樹脂で被覆する被覆工程と、
結着性絶縁樹脂で被覆した軟磁性粉末に無機絶縁粉末に対して、潤滑性樹脂を混合する第2混合工程と
第2混合工程を経た混合物を、加圧成形処理して成形体を作製する成形工程と、
成形工程を経た成形体を焼鈍処理する焼鈍工程とを有する圧粉磁心の製造方法において、
無機絶縁粉末の融点が1500℃以上の粉末であり、
前記軟磁性粉末と前記無機絶縁粉末に対する熱処理は、非酸化性雰囲気中において、1000℃以上且つ軟磁性粉末が焼結を開始する温度以下で行うことを特徴とする圧粉磁心の製造方法。
A first mixing step of mixing the inorganic insulating powder with the soft magnetic powder;
A heat treatment step of performing a heat treatment on the mixture that has undergone the first mixing step;
A coating step of covering the soft magnetic powder and the inorganic insulating powder that have undergone the heat treatment step with a binding insulating resin;
A mixture obtained by mixing the soft insulating powder coated with the binding insulating resin with the inorganic insulating powder and the lubricating resin with the inorganic insulating powder is subjected to pressure molding treatment to produce a molded body. Molding process;
In the manufacturing method of the powder magnetic core having an annealing step of annealing the molded body that has undergone the molding step,
The inorganic insulating powder has a melting point of 1500 ° C. or higher,
The method for producing a powder magnetic core, wherein the heat treatment for the soft magnetic powder and the inorganic insulating powder is performed in a non-oxidizing atmosphere at a temperature of 1000 ° C. or higher and a temperature at which the soft magnetic powder starts sintering.
前記軟磁性粉末の珪素成分が1〜6.8wt%であることを特徴とする請求項12に記載の圧粉磁心の製造方法。   The method for producing a dust core according to claim 12, wherein a silicon component of the soft magnetic powder is 1 to 6.8 wt%. 前記無機絶縁粉末が、AlまたはMgO粉末で、添加量が0.05〜0.5wt%であることを特徴とする請求項12または請求項13に記載の圧粉磁心の製造方法。 Wherein the inorganic insulating powder, in Al 2 O 3 or MgO powder, method for producing a dust core according to claim 12 or claim 13, wherein the addition amount is 0.05 to 0.5%. 前記無機絶縁粉末の平均粒径が7〜640nmであることを特徴とする請求項12〜14のいずれか1項に記載の圧粉磁心の製造方法。   The method for producing a dust core according to any one of claims 12 to 14, wherein an average particle size of the inorganic insulating powder is 7 to 640 nm. 前記無機絶縁粉末の比表面積が34〜300m/gであることを特徴とする請求項12〜15のいずれか1項に記載の圧粉磁心の製造方法。 The specific surface area of the said inorganic insulating powder is 34-300 m < 2 > / g, The manufacturing method of the powder magnetic core of any one of Claims 12-15 characterized by the above-mentioned. 前記無機絶縁粉末の添加量が0.05〜0.2wt%で、前記第1熱処理温度が1100℃以上且つ軟磁性粉末が焼結を開始する温度以下で、前記軟磁性粉末が2.8〜6.5wt%であることを特徴とする請求項12〜16のいずれか1項に記載の圧粉磁心の製造方法。   The addition amount of the inorganic insulating powder is 0.05 to 0.2 wt%, the first heat treatment temperature is 1100 ° C. or more and the soft magnetic powder is less than the temperature at which the sintering starts, and the soft magnetic powder is 2.8 to It is 6.5 wt%, The manufacturing method of the powder magnetic core of any one of Claims 12-16 characterized by the above-mentioned. 前記軟磁性粉末の珪素成分が0〜1.0wt%であることを特徴とする請求項12に記載の圧粉磁心の製造方法。   The method for producing a dust core according to claim 12, wherein a silicon component of the soft magnetic powder is 0 to 1.0 wt%. 前記無機絶縁粉末が、AlまたはMgO粉末で、添加量が0.25〜1.0wt%であることを特徴とする請求項18に記載の圧粉磁心の製造方法。 Wherein the inorganic insulating powder, in Al 2 O 3 or MgO powder, method for producing a dust core according to claim 18, the amount of addition is characterized in that it is a 0.25~1.0wt%. 前記無機絶縁粉末の平均粒径が7〜400nmであることを特徴とする請求項18または請求項19に記載の圧粉磁心の製造方法。   20. The method for manufacturing a dust core according to claim 18, wherein the inorganic insulating powder has an average particle size of 7 to 400 nm. 前記軟磁性粉末が水アトマイズ法、ガスアトマイズ法または水ガスアトマイズ法で作製されたことを特徴とする請求項12〜20のいずれか1項に記載の圧粉磁心の製造方法。   The method for producing a dust core according to any one of claims 12 to 20, wherein the soft magnetic powder is produced by a water atomizing method, a gas atomizing method, or a water gas atomizing method. 前記軟磁性粉末が水アトマイズ法で作製されたものである場合、水アトマイズ法で作製した粉末を平坦化処理したものであることを特徴とする請求項21に記載の圧粉磁心の製造方法。   The method for producing a dust core according to claim 21, wherein when the soft magnetic powder is produced by a water atomizing method, the powder produced by the water atomizing method is flattened.
JP2009095369A 2009-04-09 2009-04-09 Powder magnetic core and manufacturing method thereof Active JP4995222B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009095369A JP4995222B2 (en) 2009-04-09 2009-04-09 Powder magnetic core and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009095369A JP4995222B2 (en) 2009-04-09 2009-04-09 Powder magnetic core and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2010245459A true JP2010245459A (en) 2010-10-28
JP4995222B2 JP4995222B2 (en) 2012-08-08

Family

ID=43098107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009095369A Active JP4995222B2 (en) 2009-04-09 2009-04-09 Powder magnetic core and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4995222B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010245460A (en) * 2009-04-09 2010-10-28 Tamura Seisakusho Co Ltd Dust core, and method of manufacturing the same
WO2011077694A1 (en) * 2009-12-25 2011-06-30 株式会社タムラ製作所 Reactor and method for producing same
JP2012190963A (en) * 2011-03-10 2012-10-04 Denso Corp Core for reactor and production method therefor, and reactor
JP2015095570A (en) * 2013-11-12 2015-05-18 株式会社タムラ製作所 Low-noise reactor, powder-compact magnetic core, and manufacturing method thereof
US9583261B2 (en) 2012-08-31 2017-02-28 Kobe Steel, Ltd. Iron powder for powder magnetic core and process for producing powder magnetic core
JP2019195068A (en) * 2019-05-31 2019-11-07 株式会社タムラ製作所 Low noise reactor, dust core and method of manufacturing the same
JP2020088037A (en) * 2018-11-19 2020-06-04 大同特殊鋼株式会社 Soft magnetic metal powder

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05109520A (en) * 1991-08-19 1993-04-30 Tdk Corp Composite soft magnetic material
JP2006089791A (en) * 2004-09-22 2006-04-06 Mitsubishi Materials Corp Method for manufacturing composite soft-magnetic sintered material having high density, high strength, high specific resistance and high magnetic flux density
JP2006302958A (en) * 2005-04-15 2006-11-02 Sumitomo Electric Ind Ltd Soft magnetic material and dust core
JP2007214366A (en) * 2006-02-09 2007-08-23 Toyota Motor Corp Powder for powder magnetic core, powder magnetic core and production method thereof
JP2007324270A (en) * 2006-05-31 2007-12-13 Toyota Motor Corp Magnetic powder manufacturing method and powder core manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05109520A (en) * 1991-08-19 1993-04-30 Tdk Corp Composite soft magnetic material
JP2006089791A (en) * 2004-09-22 2006-04-06 Mitsubishi Materials Corp Method for manufacturing composite soft-magnetic sintered material having high density, high strength, high specific resistance and high magnetic flux density
JP2006302958A (en) * 2005-04-15 2006-11-02 Sumitomo Electric Ind Ltd Soft magnetic material and dust core
JP2007214366A (en) * 2006-02-09 2007-08-23 Toyota Motor Corp Powder for powder magnetic core, powder magnetic core and production method thereof
JP2007324270A (en) * 2006-05-31 2007-12-13 Toyota Motor Corp Magnetic powder manufacturing method and powder core manufacturing method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010245460A (en) * 2009-04-09 2010-10-28 Tamura Seisakusho Co Ltd Dust core, and method of manufacturing the same
WO2011077694A1 (en) * 2009-12-25 2011-06-30 株式会社タムラ製作所 Reactor and method for producing same
CN102667977A (en) * 2009-12-25 2012-09-12 株式会社田村制作所 Reactor and method for producing same
US8810353B2 (en) 2009-12-25 2014-08-19 Tamura Corporation Reactor and method for manufacturing same
JP5739348B2 (en) * 2009-12-25 2015-06-24 株式会社タムラ製作所 Reactor and manufacturing method thereof
JP2012190963A (en) * 2011-03-10 2012-10-04 Denso Corp Core for reactor and production method therefor, and reactor
US9583261B2 (en) 2012-08-31 2017-02-28 Kobe Steel, Ltd. Iron powder for powder magnetic core and process for producing powder magnetic core
JP2015095570A (en) * 2013-11-12 2015-05-18 株式会社タムラ製作所 Low-noise reactor, powder-compact magnetic core, and manufacturing method thereof
JP2020088037A (en) * 2018-11-19 2020-06-04 大同特殊鋼株式会社 Soft magnetic metal powder
JP2019195068A (en) * 2019-05-31 2019-11-07 株式会社タムラ製作所 Low noise reactor, dust core and method of manufacturing the same

Also Published As

Publication number Publication date
JP4995222B2 (en) 2012-08-08

Similar Documents

Publication Publication Date Title
JP5501970B2 (en) Powder magnetic core and manufacturing method thereof
JP5739348B2 (en) Reactor and manufacturing method thereof
CN1914697B (en) Dust core and manufacturing method thereof
CN101213041B (en) Method for manufacturing insulated soft magnetic metal powder formed body
JP4908546B2 (en) Powder magnetic core and manufacturing method thereof
WO2012131872A1 (en) Composite soft magnetic powder, method for producing same, and powder magnetic core using same
JP4995222B2 (en) Powder magnetic core and manufacturing method thereof
CN104103403B (en) Dust core and manufacture method thereof
JP2009302420A (en) Dust core and manufacturing method thereof
JP2008195986A (en) Powder of soft magnetic metal, green compact thereof, and method for manufacturing powder of soft magnetic metal
JPH0974011A (en) Dust core and manufacture thereof
JP2001011563A (en) Manufacturing method of composite magnetic material
JP2009302165A (en) Dust core and manufacturing method thereof
JP5023041B2 (en) Powder magnetic core and manufacturing method thereof
JP2008277775A (en) Dust core and its manufacturing method
JP2015233119A (en) Soft magnetic metal powder, and soft magnetic metal powder compact core arranged by use thereof
JP4847553B2 (en) Powder magnetic core and manufacturing method thereof
JP2008172257A (en) Method for producing insulating soft magnetic metal powder compact
JP2004288983A (en) Dust core and manufacturing method thereof
JP5150535B2 (en) Powder magnetic core and manufacturing method thereof
CN102693826B (en) Powder magnetic core and manufacture method thereof
JP2011243830A (en) Powder magnetic core and method for manufacturing the same
JP5232717B2 (en) Powder magnetic core and manufacturing method thereof
JP5232708B2 (en) Powder magnetic core and manufacturing method thereof
JP2009117484A (en) Method of manufacturing dust core and dust core

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110411

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120313

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120321

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120501

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120509

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4995222

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150