[go: up one dir, main page]

JP2010245413A - Semiconductor integrated circuit device - Google Patents

Semiconductor integrated circuit device Download PDF

Info

Publication number
JP2010245413A
JP2010245413A JP2009094532A JP2009094532A JP2010245413A JP 2010245413 A JP2010245413 A JP 2010245413A JP 2009094532 A JP2009094532 A JP 2009094532A JP 2009094532 A JP2009094532 A JP 2009094532A JP 2010245413 A JP2010245413 A JP 2010245413A
Authority
JP
Japan
Prior art keywords
circuit
semiconductor integrated
circuit block
integrated circuit
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009094532A
Other languages
Japanese (ja)
Inventor
Osamu Fujii
治 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2009094532A priority Critical patent/JP2010245413A/en
Publication of JP2010245413A publication Critical patent/JP2010245413A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16135Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/16145Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor integrated circuit device that is capable of controlling power consumption while suppressing expansion of SOC chip area. <P>SOLUTION: The semiconductor integrated circuit device includes first and second circuit blocks in which power supply wires are separated from each other, an SOC chip 12 wherein the first and second circuit blocks are formed, and SW chips 16a to 16c, in each of which a regulator circuit is formed for controlling supply of power source to the second circuit block based on the control signal from the first circuit block. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、半導体集積回路装置に係り、特に、大規模なSOC(System On Chip)に関する。   The present invention relates to a semiconductor integrated circuit device, and more particularly to a large-scale SOC (System On Chip).

近年、半導体製造プロセスの微細化の進展に伴って、半導体集積回路装置はより大規模化し、システム全体を1つの半導体チップに集積したSOCが開発されている。しかし、微細化プロセスを使用した半導体チップでは回路素子の耐圧が低下する傾向にあり、このため、降圧型レギュレータ回路を別チップに形成し、これをSOCチップと同じパッケージに封入する方法(例えば、「特許文献1」を参照。)が考えられている。   In recent years, with the progress of miniaturization of semiconductor manufacturing processes, semiconductor integrated circuit devices have become larger in scale, and SOCs in which the entire system is integrated on one semiconductor chip have been developed. However, in a semiconductor chip using a miniaturization process, the withstand voltage of the circuit element tends to decrease. Therefore, a method of forming a step-down regulator circuit in another chip and encapsulating it in the same package as the SOC chip (for example, "See Patent Document 1").

一方、微細化の進展、SOCの大規模化とトレードオフの関係でスタンバイ電力(待機電力)の増加が顕著と成ってきている。このスタンバイ電力を抑制するため、回路全体をいくつかの回路ブロックに分割し、SOCの動作状況に応じて不要な回路ブロックへの電源供給を遮断する方法が考えられる。   On the other hand, an increase in standby power (standby power) has become conspicuous due to the trade-off between the progress of miniaturization and the increase in the scale of SOC. In order to suppress this standby power, a method is considered in which the entire circuit is divided into several circuit blocks, and power supply to unnecessary circuit blocks is cut off according to the operating state of the SOC.

しかしながら、従来の半導体集積回路装置でこのような分割を行うためには、SOCチップ内に回路ブロックごとに制御可能な専用電源回路を形成しなければならず、各専用電源回路の分だけSOCチップの面積が増加し、コストが増加してしまうという問題があった。また、最先端の微細化プロセスを使用したSOCチップの面積を抑制するためにこれら専用電源をパッケージ外部から供給する場合には、回路ブロックごとに専用電源端子が必要となり、パッケージの総端子数が増加し結果的にコストの増大につながるという問題があった。   However, in order to perform such division in the conventional semiconductor integrated circuit device, it is necessary to form a dedicated power supply circuit that can be controlled for each circuit block in the SOC chip, and the SOC chip for each dedicated power supply circuit. There is a problem that the area of the device increases and the cost increases. In addition, when these dedicated power supplies are supplied from the outside of the package in order to reduce the area of the SOC chip using the most advanced miniaturization process, a dedicated power supply terminal is required for each circuit block, and the total number of terminals of the package is There is a problem that the cost increases as a result.

特開2006−261603号公報JP 2006-261603 A

本発明は、SOCチップの面積増加を抑えつつ消費電力を抑制することができる半導体集積回路装置を提供する。   The present invention provides a semiconductor integrated circuit device capable of suppressing power consumption while suppressing an increase in the area of an SOC chip.

本発明の一態様によれば、互いに電源配線が分離された第1および第2の回路ブロックと、前記第1および第2の回路ブロックが形成されている第1の半導体チップと、前記第1の回路ブロックからの制御信号に基づいて、前記第2の回路ブロックへの電源供給を制御するレギュレータ回路が形成されている第2の半導体チップを有することを特徴とする半導体集積回路装置が提供される。   According to one aspect of the present invention, the first and second circuit blocks in which the power supply wirings are separated from each other, the first semiconductor chip on which the first and second circuit blocks are formed, and the first There is provided a semiconductor integrated circuit device comprising a second semiconductor chip on which a regulator circuit for controlling power supply to the second circuit block is formed based on a control signal from the circuit block. The

本発明によれば、SOCチップの面積増加を抑えつつ消費電力を抑制することができるので、製造コストを抑えつつ高品質の半導体集積回路装置を実現することができる。   According to the present invention, power consumption can be suppressed while suppressing an increase in the area of the SOC chip, so that a high-quality semiconductor integrated circuit device can be realized while suppressing manufacturing costs.

本発明の実施例に係る半導体集積回路装置におけるMCP(Multi Chip Package)の構造を示す断面図。Sectional drawing which shows the structure of MCP (Multi Chip Package) in the semiconductor integrated circuit device based on the Example of this invention. 本発明の実施例に係る半導体集積回路装置の一例を示す回路ブロック図。1 is a circuit block diagram showing an example of a semiconductor integrated circuit device according to an embodiment of the present invention. 本発明の実施例に係る半導体集積回路装置におけるレギュレータ回路の一例を示す回路図。1 is a circuit diagram showing an example of a regulator circuit in a semiconductor integrated circuit device according to an embodiment of the present invention. 本発明の実施例に係る半導体集積回路装置におけるレギュレータ回路の別の一例を示す回路図。FIG. 5 is a circuit diagram showing another example of a regulator circuit in the semiconductor integrated circuit device according to the embodiment of the present invention.

以下、図面を参照しながら、本発明の実施の形態を説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の実施例に係る半導体集積回路装置におけるMCP(Multi Chip Package)の構造を示す断面図である。ここでは、一例として、レギュレータ回路が搭載された3つの半導体チップ(以下、「SWチップ」という。)をSOCチップ上に表面実装したBGA(Ball Grid Array)パッケージを示した。   FIG. 1 is a cross-sectional view showing the structure of an MCP (Multi Chip Package) in a semiconductor integrated circuit device according to an embodiment of the present invention. Here, as an example, a BGA (Ball Grid Array) package in which three semiconductor chips (hereinafter referred to as “SW chips”) mounted with a regulator circuit are mounted on an SOC chip is shown.

本発明の実施例に係る半導体集積回路装置は、プリント基板11、SOCチップ12、およびSWチップ16a〜16cを備えている。   The semiconductor integrated circuit device according to the embodiment of the present invention includes a printed circuit board 11, an SOC chip 12, and SW chips 16a to 16c.

プリント基板11の片面には外部との接続に用いる複数の半田ボール13が接着され、プリント基板11を挟んで半田ボール13と対向する面にはSOCチップ12が接着され、半田ボール13とSOCチップ12はボンディングワイヤ14とプリント基板11中に形成されたスルー配線とで電気的に接続され、SWチップ16a〜16cはSOCチップ12上にナノボール15を挟んで対向して接着され、SWチップ16a〜16cとSOCチップ12はそれぞれ複数のナノボール15を介して電気的に接続され、SOCチップ12、SWチップ16a〜16c、ボンディングワイヤ14、およびナノボール15はモールド樹脂17に封入されている。   A plurality of solder balls 13 used for connection to the outside are bonded to one side of the printed circuit board 11, and an SOC chip 12 is bonded to a surface facing the solder balls 13 with the printed circuit board 11 interposed therebetween. The solder ball 13 and the SOC chip 12 is electrically connected by a bonding wire 14 and through wiring formed in the printed circuit board 11, and the SW chips 16a to 16c are bonded to the SOC chip 12 so as to face each other with the nanoball 15 interposed therebetween. 16c and the SOC chip 12 are electrically connected to each other via a plurality of nanoballs 15, and the SOC chip 12, SW chips 16a to 16c, the bonding wire 14, and the nanoball 15 are sealed in a mold resin 17.

SOCチップ12には電源配線が互いに分離された複数の回路ブロックが形成され、それぞれの回路ブロックには、SWチップ16a〜16cのレギュレータ回路から供給される電源、または、外部から供給される電源が接続されている。   The SOC chip 12 is formed with a plurality of circuit blocks in which power supply lines are separated from each other. Each circuit block is supplied with power supplied from a regulator circuit of the SW chips 16a to 16c or power supplied from the outside. It is connected.

SWチップ16a〜16cは、それぞれ、SOCチップ12上の対応する回路ブロックに合わせて必要な定電圧を供給するレギュレータ回路を搭載し、制御信号に基づいて対応する回路ブロックに対して電源の供給を停止したり複数の異なる電源電圧を切り替えて供給したりすることができる。   Each of the SW chips 16a to 16c includes a regulator circuit that supplies a necessary constant voltage in accordance with the corresponding circuit block on the SOC chip 12, and supplies power to the corresponding circuit block based on the control signal. It can be stopped or supplied with a plurality of different power supply voltages.

また、SWチップ16a〜16cには、SOCチップ12より緩いデザインルールが用いられている。これにより、動作時の消費電流が大きくかつ比較的高耐圧が要求されるSWチップ16a〜16cを安価に製造することができる。   Further, looser design rules than the SOC chip 12 are used for the SW chips 16a to 16c. As a result, the SW chips 16a to 16c that consume a large amount of current during operation and require a relatively high breakdown voltage can be manufactured at low cost.

図2は、本発明の実施例に係る半導体集積回路装置を示す回路ブロック図である。ここでは、一例として、互いに電源配線が分離された3つの回路ブロックとそれらにかかわる2つのレギュレータ回路を示した。   FIG. 2 is a circuit block diagram showing a semiconductor integrated circuit device according to an embodiment of the present invention. Here, as an example, three circuit blocks in which power supply lines are separated from each other and two regulator circuits related to them are shown.

本発明の実施例に係る半導体集積回路装置は、SOCチップ12上に回路ブロック21〜23、およびアイソレーション回路24a〜24dを備え、SWチップ上にレギュレータ回路25、26を備えている。   The semiconductor integrated circuit device according to the embodiment of the present invention includes circuit blocks 21 to 23 and isolation circuits 24a to 24d on the SOC chip 12, and regulator circuits 25 and 26 on the SW chip.

回路ブロック21の出力OUTはアイソレーション回路24aの入力に接続され、回路ブロック21の入力INにはアイソレーション回路24bの出力が接続され、回路ブロック21の電源入力PSには半田ボール13からなる電源端子27が接続され、回路ブロック21の制御出力/CE2はレギュレータ回路25の制御入力に接続され、回路ブロック21の制御出力/CE3はレギュレータ回路26の第1の制御入力に接続され、回路ブロック21の制御出力SELはレギュレータ回路26の第2の制御入力に接続され、レギュレータ回路25および26の入力には電源端子27が接続されている。   The output OUT of the circuit block 21 is connected to the input of the isolation circuit 24 a, the output of the isolation circuit 24 b is connected to the input IN of the circuit block 21, and the power supply input PS of the circuit block 21 is a power supply composed of the solder balls 13. The terminal 27 is connected, the control output / CE2 of the circuit block 21 is connected to the control input of the regulator circuit 25, the control output / CE3 of the circuit block 21 is connected to the first control input of the regulator circuit 26, and the circuit block 21 The control output SEL is connected to the second control input of the regulator circuit 26, and the power supply terminal 27 is connected to the inputs of the regulator circuits 25 and 26.

回路ブロック22の出力OUT1はアイソレーション回路24bの入力に接続され、回路ブロック22の入力IN1にはアイソレーション回路24aの出力が接続され、回路ブロック22の出力OUT2はアイソレーション回路24cの入力に接続され、回路ブロック22の入力IN2にはアイソレーション回路24dの出力が接続され、回路ブロック22の電源入力PSにはレギュレータ回路25の出力が接続されている。   The output OUT1 of the circuit block 22 is connected to the input of the isolation circuit 24b, the output of the isolation circuit 24a is connected to the input IN1 of the circuit block 22, and the output OUT2 of the circuit block 22 is connected to the input of the isolation circuit 24c. The output of the isolation circuit 24d is connected to the input IN2 of the circuit block 22, and the output of the regulator circuit 25 is connected to the power input PS of the circuit block 22.

回路ブロック23の出力OUTはアイソレーション回路24dの入力に接続され、回路ブロック23の入力INにはアイソレーション回路24cの出力が接続され、回路ブロック23の電源入力PSにはレギュレータ回路26の出力が接続されている。   The output OUT of the circuit block 23 is connected to the input of the isolation circuit 24d, the output of the isolation circuit 24c is connected to the input IN of the circuit block 23, and the output of the regulator circuit 26 is connected to the power input PS of the circuit block 23. It is connected.

回路ブロック21は、電源端子27から供給される外部電源電圧(例えば、1.2V。以下、「Vdd」という。)で動作し、SOCの動作状態に応じてレギュレータ回路25および26を制御する機能を備えている。   The circuit block 21 operates with an external power supply voltage (for example, 1.2 V, hereinafter referred to as “Vdd”) supplied from the power supply terminal 27, and controls the regulator circuits 25 and 26 according to the operating state of the SOC. It has.

すなわち、回路ブロック21は、必要に応じて回路ブロック22または23への電源供給をオン/オフする制御信号(/CE2、/CE3)を生成する。また、回路ブロック21は、回路ブロック23の動作状態に応じて高い電圧(例えば、1.2V。:高速動作モード)、または、低い電圧(例えば、0.8V。:低速動作モードもしくは待機モード)を選択する制御信号SELを生成する。   That is, the circuit block 21 generates control signals (/ CE2, / CE3) for turning on / off the power supply to the circuit block 22 or 23 as necessary. The circuit block 21 has a high voltage (for example, 1.2 V .: high-speed operation mode) or a low voltage (for example, 0.8 V .: low-speed operation mode or standby mode) according to the operation state of the circuit block 23. A control signal SEL for selecting is generated.

レギュレータ回路25〔以下、「SW_TypeA」ともいう。〕は、回路ブロック21からの/CE2に基づいて、回路ブロック22への電源供給をオン/オフする。   Regulator circuit 25 [hereinafter also referred to as “SW_Type A”. ] Turns on / off the power supply to the circuit block 22 based on / CE2 from the circuit block 21.

レギュレータ回路26〔以下、「SW_TypeB」ともいう。〕は、回路ブロック21からの/CE3に基づいて回路ブロック23への電源供給をオン/オフし、さらに、回路ブロック21からのSELに基づいて回路ブロック23への電源電圧〔例えば、1.2V/0.8V。)を選択して供給する。   Regulator circuit 26 [hereinafter also referred to as “SW_Type B”. ] Turns on / off the power supply to the circuit block 23 based on / CE3 from the circuit block 21, and further supplies the power supply voltage [for example, 1.2V to the circuit block 23 based on SEL from the circuit block 21]. /0.8V. ) Select and supply.

アイソレーション回路24a〜24dは、回路ブロック22または23に電源が供給されていない時に入力INを固定する機能を備えている。例えば、回路ブロック22と回路ブロック21との間にあるアイソレーション回路24bは、回路ブロック22に電源が供給されていない時に回路ブロック22から回路ブロック21へ出力される信号が不定となるため、回路ブロック21の入力INを固定する。   The isolation circuits 24a to 24d have a function of fixing the input IN when power is not supplied to the circuit block 22 or 23. For example, the isolation circuit 24b between the circuit block 22 and the circuit block 21 is configured so that a signal output from the circuit block 22 to the circuit block 21 becomes undefined when power is not supplied to the circuit block 22. The input IN of the block 21 is fixed.

図3は、本発明の実施例に係る半導体集積回路装置におけるレギュレータ回路25(SW_TypeA)の一例を示す回路図である。
本発明の実施例に係る半導体集積回路装置は、定電流源31、抵抗32(Vref)、制御入力付きのOPアンプ33、およびp型MOSFETの出力トランジスタ34を備えている。
FIG. 3 is a circuit diagram showing an example of the regulator circuit 25 (SW_TypeA) in the semiconductor integrated circuit device according to the embodiment of the present invention.
The semiconductor integrated circuit device according to the embodiment of the present invention includes a constant current source 31, a resistor 32 (Vref), an OP amplifier 33 with a control input, and an output transistor 34 of a p-type MOSFET.

定電流源31の一端はVddに接続され、定電流源31の他端は抵抗32の一端およびOPアンプ33の(−)入力に接続され、抵抗32の他端は接地電位(以下、「GND」という。)に接続され、OPアンプ33の制御入力には回路ブロック21からの/CE2が接続され、OPアンプ33の出力は出力トランジスタ34のゲートに接続され、出力トランジスタ34のソースおよびバックゲートはVddに接続され、出力トランジスタ34のドレインはOPアンプ33の(+)入力に接続されるとともにレギュレータ回路25の出力Voutとして回路ブロック22の電源入力PSに接続されている。   One end of the constant current source 31 is connected to Vdd, the other end of the constant current source 31 is connected to one end of the resistor 32 and the (−) input of the OP amplifier 33, and the other end of the resistor 32 is connected to the ground potential (hereinafter referred to as “GND”). The control input of the OP amplifier 33 is connected to / CE2 from the circuit block 21, the output of the OP amplifier 33 is connected to the gate of the output transistor 34, and the source and back gate of the output transistor 34 are connected. Is connected to Vdd, the drain of the output transistor 34 is connected to the (+) input of the OP amplifier 33 and the output Vout of the regulator circuit 25 is connected to the power supply input PS of the circuit block 22.

レギュレータ回路25は、図3の表に示したように、/CE2が“Low”である時にVref基準電圧に応じた電圧をVoutに出力し、/CE2が“High”である時にVout出力をオフする。   As shown in the table of FIG. 3, the regulator circuit 25 outputs a voltage corresponding to the Vref reference voltage to Vout when / CE2 is “Low”, and turns off the Vout output when / CE2 is “High”. To do.

図4は、本発明の実施例に係る半導体集積回路装置におけるレギュレータ回路26(SW_TypeB)の一例を示す回路図である。
本発明の実施例に係る半導体集積回路装置は、定電流源41、抵抗42a(Vref1)および抵抗42b(Vref2)、制御入力付きのOPアンプ43、p型MOSFETの出力トランジスタ44、および選択スイッチ45を備えている。
FIG. 4 is a circuit diagram showing an example of the regulator circuit 26 (SW_TypeB) in the semiconductor integrated circuit device according to the embodiment of the present invention.
A semiconductor integrated circuit device according to an embodiment of the present invention includes a constant current source 41, a resistor 42a (Vref1) and a resistor 42b (Vref2), an OP amplifier 43 with a control input, an output transistor 44 of a p-type MOSFET, and a selection switch 45. It has.

定電流源41の一端はVddに接続され、定電流源41の他端は選択スイッチ45の入力およびOPアンプ43の(−)入力に接続され、選択スイッチ45の制御入力には回路ブロック21からのSELが接続され、選択スイッチ45の一方の出力は抵抗42aの一端に接続され、選択スイッチ45の他方の出力は抵抗42bの一端に接続され、抵抗42aの他端および抵抗42bの他端はGNDに接続され、OPアンプ43の制御入力には回路ブロック21からの/CE3が接続され、OPアンプ43の出力は出力トランジスタ44のゲートに接続され、出力トランジスタ44のソースおよびバックゲートはVddに接続され、出力トランジスタ44のドレインはOPアンプ43の(+)入力に接続されるとともにレギュレータ回路26の出力Voutとして回路ブロック23の電源入力PSに接続されている。   One end of the constant current source 41 is connected to Vdd, the other end of the constant current source 41 is connected to the input of the selection switch 45 and the (−) input of the OP amplifier 43, and the control input of the selection switch 45 is supplied from the circuit block 21. SEL, one output of the selection switch 45 is connected to one end of the resistor 42a, the other output of the selection switch 45 is connected to one end of the resistor 42b, and the other end of the resistor 42a and the other end of the resistor 42b are connected to each other. Connected to GND, / CE3 from the circuit block 21 is connected to the control input of the OP amplifier 43, the output of the OP amplifier 43 is connected to the gate of the output transistor 44, and the source and back gate of the output transistor 44 are set to Vdd. The drain of the output transistor 44 is connected to the (+) input of the OP amplifier 43 and the output V of the regulator circuit 26. It is connected to the power input PS of the circuit block 23 as ut.

レギュレータ回路26は、図4の表に示したように、/CE3が“Low”である時にVref1またはVref2基準電圧に応じた電圧をVoutに出力し、/CE3が“High”である時にVout出力をオフする。   As shown in the table of FIG. 4, the regulator circuit 26 outputs a voltage corresponding to the Vref1 or Vref2 reference voltage to Vout when / CE3 is “Low”, and outputs Vout when / CE3 is “High”. Turn off.

また、レギュレータ回路26は、/CE3が“Low”でかつSELが“Low”である時にVref1基準電圧に応じた電圧をVoutに出力し、/CE3が“Low”でかつSELが“High”である時にVref2基準電圧に応じた電圧をVoutに出力する。   The regulator circuit 26 outputs a voltage corresponding to the Vref1 reference voltage to Vout when / CE3 is “Low” and SEL is “Low”, and / CE3 is “Low” and SEL is “High”. At a certain time, a voltage corresponding to the Vref2 reference voltage is output to Vout.

上記実施例によれば、SOCチップ12の表面にレギュレータ回路内蔵のSWチップ16a〜16cを表面実装(MCP)しているので、SOCチップ面積およびパッケージ面積を増加させずに各回路ブロック単位で必要に応じて電源をオン/オフすることができ、半導体集積回路装置の低消費電力を実現することができる。   According to the embodiment described above, the regulator chip built-in SW chips 16a to 16c are surface-mounted (MCP) on the surface of the SOC chip 12, so that it is necessary for each circuit block unit without increasing the SOC chip area and the package area. Accordingly, the power supply can be turned on / off in accordance with the power consumption of the semiconductor integrated circuit device.

また、上記実施例によれば、SWチップ16a〜16cはレギュレータ機能を有しているので、単に電源供給のオン/オフだけでなく動作状態に応じて各回路ブロックで必要とする最低限の電圧を制御しながら供給することができ、半導体集積回路装置の低消費電力と高性能を同時に達成することができる。   In addition, according to the above embodiment, since the SW chips 16a to 16c have a regulator function, the minimum voltage required for each circuit block according to the operating state as well as on / off of power supply. Thus, the low power consumption and high performance of the semiconductor integrated circuit device can be achieved at the same time.

さらに、上記実施例によれば、SWチップ16a〜16cの制御はSOCチップ12の内部で行われるため、パッケージに回路ブロック単位での専用電源端子や専用制御端子が不要となり、端子数を削減することができるので、より小型で安価なパッケージを使用することができる。   Furthermore, according to the above-described embodiment, the SW chips 16a to 16c are controlled inside the SOC chip 12, so that dedicated power supply terminals and dedicated control terminals for each circuit block are not required in the package, and the number of terminals is reduced. Therefore, a smaller and cheaper package can be used.

さらに、上記実施例によれば、付加するSWチップ16a〜16cは、SOCチップ12と同一の微細プロセスを使う必要が無いので、安価なプロセスでSWチップ16a〜16cを製造でき、半導体集積回路装置のコストを抑えることが可能となる。   Furthermore, according to the above embodiment, since the added SW chips 16a to 16c do not need to use the same fine process as the SOC chip 12, the SW chips 16a to 16c can be manufactured by an inexpensive process, and the semiconductor integrated circuit device It becomes possible to hold down the cost.

さらに、上記実施例によれば、SOCチップ12の面積増加を抑えつつ消費電力を抑制することができるので、製造コストを抑えつつ高品質の半導体集積回路装置を実現することができる。   Furthermore, according to the above embodiment, power consumption can be suppressed while suppressing an increase in the area of the SOC chip 12, so that a high-quality semiconductor integrated circuit device can be realized while suppressing manufacturing costs.

上述の実施例では、レギュレータ回路26(SW_TypeB)は、2つの異なる電源電圧を選択的に出力するとしたが、本発明はこれに限られるものではなく、原理的には3以上の電源電圧に対しても適用可能である。   In the above-described embodiment, the regulator circuit 26 (SW_TypeB) selectively outputs two different power supply voltages. However, the present invention is not limited to this, and in principle, for three or more power supply voltages. Is applicable.

また、上述の実施例では、3つのSWチップ16a〜16cを用いるとしたが、本発明はこれに限られるものではなく、原理的には1つ以上のSWチップに対して適用可能である。   In the above-described embodiment, the three SW chips 16a to 16c are used. However, the present invention is not limited to this, and can be applied to one or more SW chips in principle.

さらに、上述の実施例では、SWチップ16a〜16cはSOCチップ12上に表面実装するとしたが、本発明はこれに限られるものではなく、一般的なマルチチップパッケージの実装方法に適用することが可能である。   Furthermore, in the above-described embodiment, the SW chips 16a to 16c are surface-mounted on the SOC chip 12, but the present invention is not limited to this, and can be applied to a general multi-chip package mounting method. Is possible.

11 プリント基板
12 SOCチップ
13 半田ボール
14 ボンディングワイヤ
15 ナノボール
16a〜16c SWチップ
17 モールド樹脂
21〜23 回路ブロック
24a〜24d アイソレーション回路
25、26 レギュレータ回路
/CE2、/CE3、SEL 制御信号
11 Printed circuit board 12 SOC chip 13 Solder ball 14 Bonding wire 15 Nano ball 16a to 16c SW chip 17 Mold resin 21 to 23 Circuit blocks 24a to 24d Isolation circuits 25 and 26 Regulator circuit
/ CE2, / CE3, SEL control signal

Claims (5)

互いに電源配線が分離された第1および第2の回路ブロックと、
前記第1および第2の回路ブロックが形成されている第1の半導体チップと、
前記第1の回路ブロックからの制御信号に基づいて、前記第2の回路ブロックへの電源供給を制御するレギュレータ回路が形成されている第2の半導体チップを有することを特徴とする半導体集積回路装置。
First and second circuit blocks in which power supply lines are separated from each other;
A first semiconductor chip in which the first and second circuit blocks are formed;
A semiconductor integrated circuit device having a second semiconductor chip in which a regulator circuit for controlling power supply to the second circuit block is formed based on a control signal from the first circuit block .
前記レギュレータ回路は、前記制御信号に基づいて前記第2の回路ブロックへの電源供給をオン/オフすることを特徴とする請求項1に記載の半導体集積回路装置。   2. The semiconductor integrated circuit device according to claim 1, wherein the regulator circuit turns on / off power supply to the second circuit block based on the control signal. 前記レギュレータ回路は、前記制御信号に基づいて複数の電源電圧の中から1つを選択し前記第2の回路ブロックへ供給することを特徴とする請求項1に記載の半導体集積回路装置。   2. The semiconductor integrated circuit device according to claim 1, wherein the regulator circuit selects one of a plurality of power supply voltages based on the control signal and supplies the selected one to the second circuit block. 前記第2の半導体チップは、前記第1の半導体チップのデザインルールより緩いデザインルールが用いられていることを特徴とする請求項1に記載の半導体集積回路装置。   2. The semiconductor integrated circuit device according to claim 1, wherein a design rule that is looser than a design rule of the first semiconductor chip is used for the second semiconductor chip. 前記第1および第2の半導体チップがモールド樹脂に封入されていることを特徴とする請求項1に記載の半導体集積回路装置。   2. The semiconductor integrated circuit device according to claim 1, wherein the first and second semiconductor chips are sealed in a mold resin.
JP2009094532A 2009-04-09 2009-04-09 Semiconductor integrated circuit device Pending JP2010245413A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009094532A JP2010245413A (en) 2009-04-09 2009-04-09 Semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009094532A JP2010245413A (en) 2009-04-09 2009-04-09 Semiconductor integrated circuit device

Publications (1)

Publication Number Publication Date
JP2010245413A true JP2010245413A (en) 2010-10-28

Family

ID=43098072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009094532A Pending JP2010245413A (en) 2009-04-09 2009-04-09 Semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JP2010245413A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023228811A1 (en) * 2022-05-25 2023-11-30 ヌヴォトンテクノロジージャパン株式会社 Semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023228811A1 (en) * 2022-05-25 2023-11-30 ヌヴォトンテクノロジージャパン株式会社 Semiconductor device

Similar Documents

Publication Publication Date Title
JP5374120B2 (en) Semiconductor integrated circuit device
JP4969934B2 (en) Semiconductor device
US20060285418A1 (en) Semiconductor integrated circuit device, electronic component mounting board and layout designing method for the semiconductor integrated circuit device
JP2008053319A (en) Semiconductor device
JP4929857B2 (en) Semiconductor device
JP2003324158A (en) Semiconductor integrated circuit device
JP2008159736A (en) Semiconductor device and its power supplying method
JP2005084849A (en) Multiple output type power supply unit and portable equipment using the same
JP5884854B2 (en) Semiconductor device and semiconductor module
CN102484098B (en) Semiconductor device, and method for supplying electric power to same
JP2016086085A (en) Semiconductor device
JP2010245413A (en) Semiconductor integrated circuit device
KR20050055390A (en) Low power semiconductor chip having separated power ring and the manufacturing/controlling method
US20090284287A1 (en) Output buffer circuit and integrated circuit
US8410738B2 (en) Semiconductor device
JP2007242705A (en) Multi-chip package
US20110304380A1 (en) Semiconductor device
US8674756B2 (en) Power cut-off technique for semiconductor device
KR101057750B1 (en) How to configure input / output pad of system on chip
JP2018060899A (en) Semiconductor device and display device
JP6530199B2 (en) Semiconductor device
KR101211683B1 (en) Semiconductor integrated circuit
JP4591241B2 (en) Multi-chip module
JP2012243810A (en) Semiconductor integrated circuit device
JP6546790B2 (en) Interface circuit and method for a hearing aid

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111125

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20111205