[go: up one dir, main page]

JP2010226608A - Bending vibrator and oscillator using the same - Google Patents

Bending vibrator and oscillator using the same Download PDF

Info

Publication number
JP2010226608A
JP2010226608A JP2009073738A JP2009073738A JP2010226608A JP 2010226608 A JP2010226608 A JP 2010226608A JP 2009073738 A JP2009073738 A JP 2009073738A JP 2009073738 A JP2009073738 A JP 2009073738A JP 2010226608 A JP2010226608 A JP 2010226608A
Authority
JP
Japan
Prior art keywords
region
vibrating
heat conduction
groove
main surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009073738A
Other languages
Japanese (ja)
Other versions
JP2010226608A5 (en
Inventor
Hiroki Kawai
宏紀 河合
Akinori Yamada
明法 山田
Makoto Furuhata
誠 古畑
裕史 ▲浜▼山
Yuji Hamayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2009073738A priority Critical patent/JP2010226608A/en
Publication of JP2010226608A publication Critical patent/JP2010226608A/en
Publication of JP2010226608A5 publication Critical patent/JP2010226608A5/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

【課題】Q値の低下が抑えられた小型の屈曲振動片、および、それを用いた発振器を提供
する。
【解決手段】音叉型水晶振動片50は、基部52と、この基部52の一端側から延出する
一対の振動腕53,54と、からなる音叉型の外形を有し、各振動腕53,54の一方の
主面側において、各振動腕53,54の基部52との付け根近傍を含む領域には、各振動
腕53,54それぞれの長手方向に沿って設けられた一本の直線状の有底の溝56a,5
7aと、各溝56a,57aに埋設された金などの熱伝導率の高い埋め込み部材56b,
57bとからなる熱伝導路56,57が形成されている。同様に、各振動腕53,54の
他方の主面側において、一方の主面側の溝56a,57aと対向する位置に開口部を有し
て設けられた有底の溝66a,67aと、各溝66a,67aに埋設された金からなる埋
め込み部材66b,67bとからなる熱伝導路66,67が形成されている。
【選択図】図1
Disclosed are a small flexural vibration piece in which a decrease in Q value is suppressed, and an oscillator using the same.
A tuning fork type crystal vibrating piece 50 has a tuning fork type outer shape including a base portion 52 and a pair of vibrating arms 53 and 54 extending from one end side of the base portion 52. On one main surface side of 54, in a region including the vicinity of the base of each vibrating arm 53, 54 with the base 52, one linear shape provided along the longitudinal direction of each vibrating arm 53, 54. Bottomed grooves 56a, 5
7a and embedded members 56b with high thermal conductivity such as gold embedded in the grooves 56a and 57a,
Heat conduction paths 56 and 57 composed of 57b are formed. Similarly, on the other main surface side of each vibrating arm 53, 54, bottomed grooves 66a, 67a provided with openings at positions opposed to the grooves 56a, 57a on the one main surface side; Thermal conduction paths 66 and 67 are formed of embedded members 66b and 67b made of gold embedded in the grooves 66a and 67a.
[Selection] Figure 1

Description

本発明は、屈曲振動モードで振動する屈曲振動片、および、それを用いた発振器に関す
る。
The present invention relates to a flexural vibration piece that vibrates in a flexural vibration mode and an oscillator using the flexural vibration piece.

従来より、屈曲振動モードで振動する屈曲振動片として、例えば圧電材料などの屈曲振
動体用基材からなる基部から1対の振動腕を平行に延出させて、それらの振動腕を水平方
向に互いに接近または離反する向きに振動させる音叉型の屈曲振動片が広く使用されてい
る。この音叉型屈曲振動片の振動腕を励振させたとき、その振動エネルギーに損失が生じ
ると、CI(Crystal Impedance)値の増大やQ値の低下など、振動片の性能を低下させ
る原因となる。そこで、そのような振動エネルギーの損失を防止または低減するために、
従来から様々な工夫がなされている。
Conventionally, as a flexural vibration piece that vibrates in a flexural vibration mode, for example, a pair of vibrating arms are extended in parallel from a base made of a base material for a flexural vibrator such as a piezoelectric material, and the vibrating arms are horizontally oriented. Tuning-fork type bending vibration pieces that vibrate in directions toward or away from each other are widely used. When the vibration arm of the tuning-fork type bending vibration piece is excited, if the vibration energy is lost, it causes a decrease in the performance of the vibration piece, such as an increase in CI (Crystal Impedance) value and a decrease in Q value. Therefore, in order to prevent or reduce such vibration energy loss,
Various ideas have been made conventionally.

例えば、振動腕が延出する基部の両側部に切込み部または所定の深さの切込み溝を形成
した音叉型水晶振動片が知られている(例えば特許文献1、特許文献2を参照)。この音
叉型水晶振動片は、振動腕の振動が垂直方向の成分をも含む場合に、切込み部または切込
み溝により基部から振動が漏れるのを抑制することによって、振動エネルギーの閉じ込め
効果を高めてCl値を制御し、且つ、振動片間でのCI値のばらつきを防止している。
For example, a tuning-fork type crystal vibrating piece in which cut portions or cut grooves having a predetermined depth are formed on both sides of a base portion from which a vibrating arm extends is known (see, for example, Patent Document 1 and Patent Document 2). This tuning fork type crystal vibrating piece improves the confinement effect of vibration energy by suppressing the leakage of vibration from the base portion by the cut portion or the cut groove when the vibration of the vibrating arm also includes a vertical component. The value is controlled, and the variation of the CI value between the resonator elements is prevented.

この機械的な振動エネルギーの損失だけでなく、屈曲振動する振動腕の圧縮応力が作用
する圧縮部と引張応力が作用する伸張部との間で温度差が生じ、この温度差を緩和しよう
として作用する熱伝導によっても振動エネルギーの損失が発生する。この熱伝導によって
発生するQ値の低下は熱弾性損失効果と呼ばれている。
このような熱弾性損失効果によるQ値の低下を防止または抑制するために、矩形断面を
有する振動腕(振動梁)の中心線上に溝、または孔を形成した音叉型の振動片が、例えば
特許文献3に紹介されている。
In addition to this mechanical vibration energy loss, a temperature difference occurs between the compression part where the compressive stress of the vibrating arm that vibrates and the extension part where the tensile stress acts, and acts to alleviate this temperature difference. Loss of vibration energy also occurs due to heat conduction. This decrease in the Q value caused by heat conduction is called a thermoelastic loss effect.
In order to prevent or suppress such a decrease in the Q value due to the thermoelastic loss effect, a tuning-fork type vibrating piece in which a groove or a hole is formed on the center line of a vibrating arm (vibrating beam) having a rectangular cross section is disclosed in, for example, a patent. It is introduced in Reference 3.

特許文献3によれば、一般に温度差を原因として生じる固体の内部摩擦の場合によく知
られた歪と応力との関係式から、熱弾性損失は、屈曲振動モードの振動片において、振動
数が変化したときに、緩和振動数fm=1/(2πτ)(ここで、τは緩和時間)でQ値
が極小となる、と説明されている。このQ値と周波数との関係を一般的に表すと、図8の
曲線Fのようになる(例えば、非特許文献1を参照)。同図において、Q値が極小Q0
なる周波数が熱緩和周波数f0(=1/(2πτ))であり、すなわち、熱緩和周波数f0
は上記緩和振動数fmと同じものである。
According to Patent Document 3, from the relational expression of strain and stress that is well known in the case of solid internal friction that is generally caused by a temperature difference, the thermoelastic loss is the frequency of the vibration piece in the bending vibration mode. It is described that the Q value becomes minimum at a relaxation frequency fm = 1 / (2πτ) (where τ is a relaxation time) when changed. The relationship between the Q value and the frequency is generally expressed as a curve F in FIG. 8 (see, for example, Non-Patent Document 1). In the figure, the frequency at which the Q value becomes the minimum Q 0 is the thermal relaxation frequency f 0 (= 1 / (2πτ)), that is, the thermal relaxation frequency f 0.
Is the same as the relaxation frequency fm.

図面を参照して具体的に説明すると、図7において、特許文献3の音叉型水晶振動片1
は、基部2から延出する2本の平行な振動腕3,4を備え、各振動腕3,4それぞれの中
心線上に直線状の溝または孔6,7が設けられている。この音叉型水晶振動片1の各振動
腕3,4の両主面(溝または孔6,7形成面と同じ面)に設けられた図示しない励振電極
に所定の駆動電圧を印加すると、振動腕3,4は、図中想像線(二点鎖線)および矢印で
示すように、互いに接近または離反する向きに屈曲振動する。
Specifically, referring to the drawings, in FIG.
Comprises two parallel vibrating arms 3, 4 extending from the base 2, and linear grooves or holes 6, 7 are provided on the center lines of the respective vibrating arms 3, 4. When a predetermined drive voltage is applied to excitation electrodes (not shown) provided on both main surfaces (the same surfaces as the grooves or holes 6 and 7 forming surface) of the respective vibrating arms 3 and 4 of the tuning fork type crystal vibrating piece 1, the vibrating arms 3 and 4 bend and vibrate in directions toward or away from each other, as indicated by imaginary lines (two-dot chain lines) and arrows in the figure.

この屈曲振動によって、各振動腕3,4の基部2との付け根部の領域に機械的歪が発生
する。すなわち、振動腕3の基部2との付け根部においては、屈曲振動により圧縮応力ま
たは引張応力が作用する第1の領域10と、この第1の領域10に圧縮応力が作用する場
合は引張応力が作用し、第1の領域10に引張応力が作用する場合は圧縮応力が作用する
関係にある第2の領域11と、が存在し、これら第1の領域10および第2の領域11に
おいては、圧縮応力が作用したときには温度が上昇し、引張応力が作用したときには温度
が下降する。
これと同様に、振動腕4の基部2との付け根部においては、屈曲振動により圧縮応力ま
たは引張応力が作用する第1の領域12と、この第1の領域12に圧縮応力が作用する場
合は引張応力が作用し、第1の領域12に引張応力が作用する場合は圧縮応力が作用する
関係にある第2の領域13と、が存在し、第1の領域12および第2の領域13において
は、圧縮応力が作用したときに温度が上昇し、引張応力が作用したときには温度が下降す
る。
Due to this bending vibration, mechanical strain is generated in the region of the base portion of the vibrating arms 3 and 4 with the base portion 2. That is, at the base portion of the vibrating arm 3 with the base portion 2, a first region 10 where compressive stress or tensile stress acts by bending vibration, and when compressive stress acts on the first region 10, tensile stress is generated. And when there is a tensile stress acting on the first region 10, there is a second region 11 that is in a relationship in which a compressive stress acts. In these first region 10 and second region 11, When compressive stress is applied, the temperature increases, and when tensile stress is applied, the temperature decreases.
Similarly, at the base portion of the vibrating arm 4 with the base portion 2, when the compressive stress acts on the first region 12 where compressive stress or tensile stress acts due to bending vibration, and the first region 12 When the tensile stress acts and the tensile stress acts on the first region 12, there is a second region 13 in which the compressive stress acts, and in the first region 12 and the second region 13 The temperature rises when compressive stress is applied, and decreases when tensile stress is applied.

このようにして発生した温度勾配によって、各振動腕3,4の基部2との付け根部分の
内部には、第1の領域10,12と第2の領域11,13との間で熱伝導が発生する。温
度勾配は、各振動腕3,4の屈曲振動に対応して逆向きに発生し、それに対応して熱伝導
も逆向きとなる。この熱伝導によって、振動腕3,4の振動エネルギーは、その一部が振
動中常に熱弾性損失として失われ、その結果、音叉型水晶振動片1のQ値が低下して振動
特性が不安定になり、所望の性能を実現することが困難になる。
特許文献3の音叉型水晶振動片1では、各振動腕3,4それぞれの中心線上に設けられ
た溝または孔6,7によって圧縮側から引っ張り側への熱移動が阻止されることにより、
熱弾性損失によるQ値の低下を防止または軽減することを可能としている。具体的には、
各振動腕3,4に設けられた溝または孔6,7に沿って屈曲振動体内を迂回することによ
り、熱伝導経路が長くなって熱緩和時間τが延長されるので、1/(2πτ)で求められ
る熱緩和周波数は、図8に示す曲線F1の熱緩和周波数f10に示すように、溝または孔6
,7を設けない従来の音叉型屈曲振動片の曲線Fおよびその熱緩和周波数f0に比して図
中左側にシフトする。
Due to the temperature gradient generated in this way, heat conduction is performed between the first regions 10 and 12 and the second regions 11 and 13 inside the base portion of the vibrating arms 3 and 4 with the base 2. appear. The temperature gradient is generated in the opposite direction corresponding to the bending vibration of each of the vibrating arms 3 and 4, and the heat conduction is also reversed in the corresponding direction. Due to this heat conduction, a part of the vibration energy of the vibrating arms 3 and 4 is always lost as a thermoelastic loss during vibration. As a result, the Q value of the tuning fork type crystal vibrating piece 1 is lowered and the vibration characteristics are unstable. Thus, it becomes difficult to achieve desired performance.
In the tuning-fork type crystal vibrating piece 1 of Patent Document 3, heat transfer from the compression side to the pulling side is prevented by the grooves or holes 6 and 7 provided on the center lines of the respective vibrating arms 3 and 4.
It is possible to prevent or reduce a decrease in Q value due to thermoelastic loss. In particular,
By bypassing the flexural vibration body along the grooves or holes 6 and 7 provided in the vibrating arms 3 and 4, the heat conduction path becomes long and the thermal relaxation time τ is extended, so 1 / (2πτ) Is the groove or hole 6 as shown by the thermal relaxation frequency f 10 of the curve F 1 shown in FIG.
, 7 is shifted to the left side in the figure as compared with the curve F of the conventional tuning-fork type bending vibration piece and its thermal relaxation frequency f 0 .

特開2002−261575号公報JP 2002-261575 A 特開2004−260718号公報Japanese Patent Laid-Open No. 2004-260718 実願昭63−110151号明細書Actual Application No. Sho 63-110151

C.Zener、他2名、「InternalFriction in Solids III.Experimental Demonstration of Thermoelastic InternalFriction」、PHYSICAL REVIEW、1938年1月1日、Volume53、p.10-101C. Zener and two others, “Internal Friction in Solids III. Experimental Demonstration of Thermoelastic Internal Friction”, PHYSICAL REVIEW, January 1, 1938, Volume 53, p.10-101

しかしながら、特許文献3に記載の音叉型水晶振動片1では、小型化が進むに従って、
溝または孔によって熱緩和時間を延長する効果が少なくなり、Q値の低下の抑制効果が十
分に得られなくなるという課題があった。
However, in the tuning fork type crystal vibrating piece 1 described in Patent Document 3, as miniaturization proceeds,
There is a problem that the effect of extending the thermal relaxation time is reduced by the grooves or holes, and the effect of suppressing the decrease in the Q value cannot be obtained sufficiently.

本発明は、上述の課題の少なくとも一部を解決するためになされたものであり、以下の
形態または適用例として実現することが可能である。
SUMMARY An advantage of some aspects of the invention is to solve at least a part of the problems described above, and the invention can be implemented as the following forms or application examples.

〔適用例1〕本適用例にかかる屈曲振動片は、振動により圧縮応力または引張応力が作
用する第1の領域と、前記第1の領域に圧縮応力が作用する場合は引張応力が作用し前記
第1の領域に引張応力が作用する場合は圧縮応力が作用する関係にある第2の領域と、を
有する屈曲振動体からなり、前記第1の領域と前記第2の領域の間に、前記屈曲振動体の
振動方向と平行な両主面のうち少なくともいずれか一方の主面側に開口部を有する溝と、
該溝に埋設された前記屈曲振動体よりも高い熱伝導率を有する埋め込み部材とからなる熱
伝導路を有することを特徴とする。
[Application Example 1] The bending vibration piece according to this application example includes a first region where compressive stress or tensile stress is applied by vibration, and when compressive stress is applied to the first region, the tensile stress is applied. When a tensile stress is applied to the first region, the second region is in a relationship in which a compressive stress is applied, and between the first region and the second region, A groove having an opening on at least one of the principal surfaces parallel to the vibration direction of the flexural vibrator;
It has a heat conduction path comprising an embedded member having a higher thermal conductivity than that of the flexural vibrator embedded in the groove.

上記構成によれば、第1の領域と第2の領域との間の熱伝導が、少なくとも屈曲振動体
よりも高い熱伝導率を有する熱伝導路を介して効率的に行われ、第1の領域と第2の領域
との温度を平衡状態とするのに要する熱緩和時間が短縮されるので、Q値の低下を抑える
ことができる。したがって、Q値の低下が抑えられ振動特性の安定した小型の屈曲振動片
を提供することができる。
According to the above configuration, the heat conduction between the first region and the second region is efficiently performed through the heat conduction path having a thermal conductivity higher than that of at least the flexural vibrator, Since the thermal relaxation time required to bring the temperature of the region and the second region into an equilibrium state is shortened, a decrease in the Q value can be suppressed. Therefore, it is possible to provide a small flexural vibration piece that suppresses a decrease in the Q value and has stable vibration characteristics.

〔適用例2〕上記適用例にかかる屈曲振動片において、前記溝は有底の溝であって、且
つ、前記屈曲振動体の前記一方の主面側に開口部を有する一方の前記溝と、他方の主面側
の前記一方の前記溝の開口部と対向する位置に開口部を有する他方の前記溝と、を有する
ことを特徴とする。
Application Example 2 In the bending vibration piece according to the application example described above, the groove is a bottomed groove, and one groove having an opening on the one main surface side of the bending vibration member; It has the other said groove | channel which has an opening part in the position facing the opening part of said one said groove | channel on the other main surface side, It is characterized by the above-mentioned.

この構成によれば、屈曲振動体の両主面側に開口部をそれぞれ有する一方の溝および他
方の溝が、双方向からエッチングして形成されることにより、エッチング形状の揃った一
方の溝および他方の溝が得られる。したがって、屈曲振動体の第1の領域と第2の領域と
の熱伝導を安定して行うことができる熱伝導路を有し、Q値の安定した屈曲振動片を提供
することができる。
According to this configuration, one groove and the other groove having openings on both principal surface sides of the flexural vibration body are formed by etching from both directions, so that one groove having the same etching shape and The other groove is obtained. Therefore, it is possible to provide a flexural vibration piece having a heat conduction path capable of stably conducting heat conduction between the first region and the second region of the flexural vibrator and having a stable Q value.

〔適用例3〕上記適用例にかかる屈曲振動片において、前記溝は有底の溝であって、且
つ、前記溝が前記第1の領域と前記第2の領域との間に複数並設され、隣接する前記溝の
前記開口部が、前記屈曲振動体の前記一方の主面側と他方の主面側とに交互に配置されて
いることを特徴とする。
Application Example 3 In the bending vibration piece according to the application example described above, the groove is a bottomed groove, and a plurality of the grooves are arranged in parallel between the first region and the second region. The openings of the adjacent grooves are alternately arranged on the one main surface side and the other main surface side of the flexural vibrator.

この構成によれば、屈曲振動片の第1の領域と第2の領域との間の熱伝導経路の全域に
渡って、熱伝導が熱伝導路を直線的に通過して行われる構成とすることができるので、第
1の領域と第2の領域との熱緩和時間をさらに短縮して、Q値の低下をより効果的に抑え
ることができる。
According to this configuration, the heat conduction is performed by linearly passing through the heat conduction path over the entire heat conduction path between the first region and the second region of the bending vibration piece. Therefore, the thermal relaxation time between the first region and the second region can be further shortened, and the decrease in the Q value can be suppressed more effectively.

〔適用例4〕上記適用例にかかる屈曲振動片において、前記埋め込み部材が、金(Au
)の熱伝導率よりも高い熱伝導率を有する材料からなることを特徴とする。
Application Example 4 In the bending vibration piece according to the application example described above, the embedded member is made of gold (Au
It is characterized by being made of a material having a thermal conductivity higher than the thermal conductivity.

この構成によれば、熱伝導路による熱緩和時間が短縮されることによってQ値の低下が
抑制される効果を十分に得ることができることを本願発明者は見出した。
The inventor of the present application has found that according to this configuration, the effect of suppressing the decrease in the Q value can be sufficiently obtained by shortening the thermal relaxation time by the heat conduction path.

〔適用例5〕本適用例にかかる発振器は、上記適用例のいずれかに記載の屈曲振動片と
、該屈曲振動片を駆動させる発振回路とを少なくとも備えることを特徴とする。
Application Example 5 An oscillator according to this application example includes at least the bending vibration piece according to any of the application examples described above and an oscillation circuit that drives the bending vibration piece.

この構成によれば、上記適用例に示すQ値の低下が抑制された屈曲振動片を備えている
ので、安定した発振特性を有する小型の発振器を提供することができる。
According to this configuration, since the bending vibration piece in which the decrease in the Q value shown in the application example is suppressed is provided, a small oscillator having stable oscillation characteristics can be provided.

(a)は、第1の実施形態の屈曲振動片としての音叉型水晶振動片を模式的に説明する一方の主面側の平面図、(b)は、(a)のA−A線断面図。(A) is the top view of one main surface side explaining typically the tuning fork type crystal vibrating piece as a bending vibration piece of 1st Embodiment, (b) is the sectional view on the AA line of (a). Figure. (a)は、動作中の音叉型水晶振動片の基部と各振動腕との連結部を模式的に説明する部分拡大平面図、(b)は、(a)のb−b線における断面図。(A) is the elements on larger scale which explain typically the connection part of the base of a tuning fork type crystal vibrating piece and each vibrating arm in operation, (b) is a sectional view in the bb line of (a). . 音叉型水晶振動片の熱伝導路の埋め込み部材として適用可能な材料の例およびその熱伝導率を表す説明図。An explanatory view showing an example of material applicable as an embedding member of a heat conduction path of a tuning fork type crystal vibrating piece and its thermal conductivity. (a)は、第2の実施形態の音叉型水晶振動片を模式的に説明する一方の主面側の平面図、(b)は、(a)のc−c線断面図。(A) is the top view of one main surface side explaining typically the tuning fork type crystal vibrating piece of 2nd Embodiment, (b) is the cc sectional view taken on the line of (a). (a)は、音叉型水晶振動片の変形例1を模式的に説明する一方の主面側の平面図、(b)は、(a)のd−d線断面図。(A) is the top view of one main surface side explaining the modification 1 of a tuning fork type crystal vibrating piece typically, (b) is the dd sectional view taken on the line of (a). (a)は、音叉型水晶振動片の変形例2を模式的に説明する一方の主面側の平面図、(b)は、(a)のe−e線断面図。(A) is the top view of one main surface side which illustrates typically the modification 2 of a tuning fork type crystal vibrating piece, (b) is the ee sectional view taken on the line of (a). 従来の音叉型水晶振動片の典型例を示す平面図。The top view which shows the typical example of the conventional tuning fork type crystal vibrating piece. 屈曲振動モードの屈曲振動片における緩和周波数とQ値の極小値との関係を表す線図。The diagram showing the relationship between the relaxation frequency and the minimum value of Q value in the bending vibration piece in the bending vibration mode.

以下、本発明の屈曲振動片を音叉型水晶振動片に具体化した一実施形態について図面を
参照しながら説明する。
Hereinafter, an embodiment in which a bending vibration piece of the present invention is embodied as a tuning fork type quartz vibration piece will be described with reference to the drawings.

(第1の実施形態)
図1は、第1の実施形態の屈曲振動片としての音叉型水晶振動片を模式的に説明したも
のであり、(a)は、音叉型水晶振動片50の一方の主面側の平面図、(b)は、(a)
のA−A線断面図である。
図1(a)において、本実施形態の音叉型水晶振動片50は、屈曲振動体材料を加工す
ることにより形成された基部52と、この基部52の一端側(図において上端側)から二
股に別れて互いに平行に延出する一対の振動腕53,54とからなる所謂音叉型の外形を
有して形成されている。屈曲振動体材料としては、本実施形態では従来の音叉型水晶振動
片と同様に、水晶の単結晶から切り出されたものを使用する。例えば、所謂Zカットの水
晶薄板から、水晶結晶軸のY軸を振動腕53,54の長手方向に、X軸をその幅方向に、
Z軸を振動片の表裏主面の垂直方向にそれぞれ配向して形成される。
(First embodiment)
FIG. 1 schematically illustrates a tuning-fork type quartz vibrating piece as a bending vibrating piece according to the first embodiment. FIG. 1A is a plan view of one main surface side of a tuning-fork type quartz vibrating piece 50. , (B) is (a)
It is an AA sectional view taken on the line.
In FIG. 1A, a tuning-fork type crystal vibrating piece 50 according to this embodiment includes a base 52 formed by processing a bending vibrator material, and a fork from one end side (upper end side in the figure) of the base 52. It is formed with a so-called tuning fork-shaped outer shape, which is composed of a pair of vibrating arms 53 and 54 extending separately from each other. As the flexural vibrator material, in the present embodiment, a material cut out from a single crystal of crystal is used as in the case of a conventional tuning fork type crystal vibrating piece. For example, from a so-called Z-cut quartz thin plate, the Y axis of the quartz crystal axis is in the longitudinal direction of the vibrating arms 53 and 54, and the X axis is in the width direction thereof.
The Z axis is formed so as to be oriented in the vertical direction of the front and back main surfaces of the resonator element.

なお、屈曲振動体材料として、上記の水晶以外の圧電基板を用いる構成であってもよい
。例えば、窒化アルミニウム(AlN)、ニオブ酸リチウム(LiNbO3)、タンタル
酸リチウム(LiTaO3)、チタン酸ジルコン酸鉛(PZT)、四ほう酸リチウム(L
247)などの酸化物基板や、ガラス基板上に窒化アルミニウム、五酸化タンタル(
Ta25)などの薄膜圧電材料を積層させて構成された圧電基板を用いることができる。
また、圧電基板以外にも、例えばシリコン半導体材料などにより屈曲振動片を形成するこ
ともできる。
ただし、屈曲振動片の共振周波数は屈曲振動体材料のヤング率を質量密度で除した値の
平方根に比例し、ヤング率を質量密度で除した値が小さい材料ほど、屈曲振動片の小型化
に有利である。よって、本実施形態の音叉型水晶振動片50のように水晶からなる屈曲振
動片は、シリコン半導体材料などに比してヤング率を質量密度で除した値の平方根が小さ
くできるので小型化に有利であるとともに、周波数温度特性に優れているので、本発明の
屈曲振動片としての音叉型水晶振動片50に用いる材料として特に好ましい。
Note that a configuration using a piezoelectric substrate other than the above-described quartz may be used as the bending vibrator material. For example, aluminum nitride (AlN), lithium niobate (LiNbO 3 ), lithium tantalate (LiTaO 3 ), lead zirconate titanate (PZT), lithium tetraborate (L
i 2 B 4 O 7 ) or other oxide substrates, or glass substrates with aluminum nitride or tantalum pentoxide (
A piezoelectric substrate constructed by laminating thin film piezoelectric materials such as Ta 2 O 5 ) can be used.
In addition to the piezoelectric substrate, the bending vibration piece can be formed of, for example, a silicon semiconductor material.
However, the resonance frequency of the bending vibration piece is proportional to the square root of the value obtained by dividing the Young's modulus of the bending vibration material by the mass density, and the smaller the value obtained by dividing the Young's modulus by the mass density, the smaller the bending vibration piece. It is advantageous. Therefore, a flexural vibration piece made of crystal like the tuning fork type crystal vibration piece 50 of the present embodiment can reduce the square root of the value obtained by dividing the Young's modulus by the mass density as compared with a silicon semiconductor material or the like. In addition, since it has excellent frequency-temperature characteristics, it is particularly preferable as a material used for the tuning-fork type crystal vibrating piece 50 as the bending vibrating piece of the present invention.

各振動腕53,54の一方の主面には、励振電極36A,37Aが形成されている。ま
た、基部52の振動腕53,54が延出された一端側と異なる他端側近傍には、外部との
接続に供する外部接続電極76,77が設けられている。これらの外部接続電極76,7
7は、それぞれ励振電極36A,37Aと対応しており、それぞれ対応する電極同士が、
音叉型水晶振動片50の主面や側面に引き回されて設けられた図示しない引き回し配線に
より接続されている。
Excitation electrodes 36A and 37A are formed on one main surface of the vibrating arms 53 and 54, respectively. Further, external connection electrodes 76 and 77 for connection to the outside are provided in the vicinity of the other end side different from the one end side where the vibrating arms 53 and 54 of the base 52 are extended. These external connection electrodes 76 and 7
7 correspond to the excitation electrodes 36A and 37A, respectively, and the corresponding electrodes are respectively
The tuning fork-type crystal vibrating piece 50 is connected to a main surface and a side surface of the tuning-fork type crystal vibrating piece 50 by a routing wiring (not shown) provided.

同様に、各振動腕53,54の他方の主面には、各振動腕53,54において各励振電
極36A,37Aの対向電極としての励振電極36B,37B(図1(b)を参照)がそ
れぞれ設けられている。ここで、振動腕53の励振電極36A,36Bは同電位であり、
振動腕54の励振電極37A,37Bは同電位である。また、各振動腕53,54の励振
電極36A,36Bと励振電極37A,37Bとは電位が異なる。励振電極36B.37
Bは、それぞれ対応する励振電極36A,37Aや外部接続電極76,77などの電極と
、音叉型水晶振動片50の主面や側面に引き回されて設けられた図示しない引き回し配線
により接続されている。
なお、本実施形態の音叉型水晶振動片50の特徴をわかりやすく説明する便宜上図示を
省略したが、各振動腕53,54の励振電極36A,36B,37A,37Bが形成され
た両主面と直交する両側面には、それぞれの振動腕53,54の励振電極36A,36B
または励振電極37A,37Bとそれぞれ同電位の励振電極が形成されている。
Similarly, excitation electrodes 36B and 37B (see FIG. 1B) as opposed electrodes of the excitation electrodes 36A and 37A in the respective vibration arms 53 and 54 are provided on the other main surface of the respective vibration arms 53 and 54. Each is provided. Here, the excitation electrodes 36A and 36B of the vibrating arm 53 are at the same potential,
The excitation electrodes 37A and 37B of the vibrating arm 54 are at the same potential. The excitation electrodes 36A and 36B and the excitation electrodes 37A and 37B of the vibrating arms 53 and 54 have different potentials. Excitation electrode 36B. 37
B is connected to the corresponding excitation electrodes 36A and 37A, external connection electrodes 76 and 77, and the like by lead wires (not shown) provided by being routed to the main surface and side surfaces of the tuning-fork type crystal vibrating piece 50. Yes.
In addition, although illustration was abbreviate | omitted for convenience in explaining the characteristics of the tuning fork type crystal vibrating piece 50 of the present embodiment in an easy-to-understand manner, both main surfaces on which the excitation electrodes 36A, 36B, 37A, and 37B of the vibrating arms 53 and 54 are formed and Exciting electrodes 36A and 36B of the respective vibrating arms 53 and 54 are provided on both side surfaces orthogonal to each other.
Alternatively, excitation electrodes having the same potential as the excitation electrodes 37A and 37B are formed.

上記した電極や配線は、従来、水晶をエッチングして音叉型水晶振動片50の外形を形
成した後で、例えば、ニッケル(Ni)またはクロム(Cr)を下地層として、その上に
、蒸着またはスパッタリングにより例えば金(Au)による電極層を成膜し、その後フォ
トリソグラフィを用いてパターニングすることにより形成することができる。
Conventionally, the above-described electrodes and wirings are formed by etching a quartz crystal to form the outer shape of the tuning-fork type crystal vibrating piece 50, and then depositing, for example, nickel (Ni) or chromium (Cr) on the base layer. An electrode layer made of, for example, gold (Au) can be formed by sputtering and then patterned by photolithography.

また、各振動腕53,54の一方の主面側において、各振動腕53,54の基部52と
の付け根近傍を含む領域には、各振動腕53,54それぞれの長手方向に沿って設けられ
た一本の直線状の有底の溝56a,57aと、各溝56a,57aに埋設された少なくと
も屈曲振動体としての水晶よりも熱伝導率の高い埋め込み部材56b,57bとからなる
熱伝導路56,57が形成されている。本実施形態では、埋め込み部材56b,57bに
金(Au)を用いている。
同様に、図1(b)に示すように、各振動腕53,54の他方の主面側において、一方
の主面側の溝56a,57aと対向する位置に開口部を有して設けられた有底の溝66a
,67aと、各溝66a,67aに埋設された金からなる埋め込み部材66b,67bと
からなる熱伝導路66,67が形成されている。
Further, on one main surface side of each vibrating arm 53, 54, a region including the vicinity of the base of each vibrating arm 53, 54 with the base 52 is provided along the longitudinal direction of each vibrating arm 53, 54. A heat conduction path comprising a single straight bottomed groove 56a, 57a and embedded members 56b, 57b having a higher thermal conductivity than at least a crystal as a flexural vibrator embedded in each of the grooves 56a, 57a. 56 and 57 are formed. In the present embodiment, gold (Au) is used for the embedded members 56b and 57b.
Similarly, as shown in FIG. 1B, on the other main surface side of each vibrating arm 53, 54, an opening is provided at a position facing the grooves 56a, 57a on the one main surface side. Bottomed groove 66a
, 67a and heat conduction paths 66, 67 made of gold embedded members 66b, 67b embedded in the grooves 66a, 67a.

なお、音叉型水晶振動片50の音叉型の外形、および、各振動腕53,54の一方の主
面側に開口部を有する熱伝導路56,57の溝56a,57aと、他方の主面側に開口部
を有する熱伝導路66,67の溝66a,67aとは、例えば水晶ウエハなどの水晶基材
をフッ酸溶液などでウェットエッチングしたり、ドライエッチングすることにより精密に
形成することができる。なお、本実施形態では、各振動腕53,54の両主面側に開口部
を有する各振動腕ごとに一対ずつの熱伝導路56,66または熱伝導路57,67の溝5
6a,66aまたは溝57a,67aは、それぞれ双方向からエッチングして形成される
ので、エッチング形状の揃った溝56a,66aおよび溝57a,67aが得られる。こ
れにより、各振動腕53,54ごとの熱伝導路56,66および熱伝導路57,67によ
る後述する熱伝導を安定して行うことができるので、音叉型水晶振動片50のQ値の安定
化に効果を奏する。
It should be noted that the tuning-fork type crystal resonator element 50 has a tuning-fork type outer shape, grooves 56a and 57a of heat conduction paths 56 and 57 having openings on one main surface side of the vibrating arms 53 and 54, and the other main surface. The grooves 66a and 67a of the heat conduction paths 66 and 67 having openings on the side can be precisely formed by wet etching or dry etching a quartz crystal substrate such as a quartz wafer with a hydrofluoric acid solution or the like. it can. In the present embodiment, a pair of heat conduction paths 56 and 66 or grooves 5 of the heat conduction paths 57 and 67 are provided for each vibration arm having openings on both principal surface sides of the vibration arms 53 and 54.
Since the grooves 6a and 66a or the grooves 57a and 67a are formed by etching from both directions, the grooves 56a and 66a and the grooves 57a and 67a having the same etching shape are obtained. As a result, the heat conduction paths 56 and 66 and the heat conduction paths 57 and 67 for the respective vibrating arms 53 and 54 can be stably conducted as described later, so that the Q value of the tuning-fork type crystal vibrating piece 50 can be stabilized. Has an effect on

音叉型水晶振動片50の構成において特に重要な熱伝導路56,57,66,67の埋
め込み部材56b,57b,66b,67bには、少なくとも屈曲振動体材料としての水
晶よりも高い熱伝導率を有する材料が用いられ、例えば、図3に示す材料を用いることが
好ましい。特に、図3に示す材料のなかでも、埋め込み部材56b,57b,66b,6
7bとして、金の熱伝導率以上の熱伝導率を有する材料を用いた熱伝導路56,57,6
6,67を設けたときに、後述する熱弾性損失が抑えられ、Q値の低下を効果的に抑制で
きることを本願発明者は見出した。すなわち、図3において、熱伝導路56,57,66
,67の埋め込み部材56b,57b,66b,67bに用いる材料としては、金、銅(
Cu)、銀(Ag)、あるいは、非金属ではダイヤモンド(C)が、Q値の改善に特に顕
著に寄与することから望ましい。
The embedded members 56b, 57b, 66b, and 67b of the heat conduction paths 56, 57, 66, and 67, which are particularly important in the configuration of the tuning fork type crystal vibrating piece 50, have a thermal conductivity that is at least higher than that of quartz as a flexural vibrator material. For example, the material shown in FIG. 3 is preferably used. In particular, the embedded members 56b, 57b, 66b, 6 among the materials shown in FIG.
7b, heat conduction paths 56, 57, 6 using a material having a thermal conductivity equal to or higher than that of gold.
The inventors of the present application have found that when 6,67 is provided, thermoelastic loss, which will be described later, is suppressed, and a decrease in Q value can be effectively suppressed. That is, in FIG. 3, the heat conduction paths 56, 57, 66
, 67 embedded materials 56b, 57b, 66b, 67b include gold, copper (
In the case of Cu), silver (Ag), or non-metal, diamond (C) is desirable because it contributes significantly to improving the Q value.

図1において、音叉型水晶振動片50に、外部に接続された励振手段としての発振回路
(図示せず)から励振電極36A,36Bおよび励振電極37A,37Bに駆動電圧を印
加すると、振動腕53,54は水平方向に、図中矢印Gで示すように互いに接近または離
反する向きに屈曲振動する。この屈曲振動によって、基部52と各振動腕53,54との
連結部において、各振動腕53,54の振動方向の付け根部分の領域には、圧縮応力と引
張応力とが発生する。音叉型水晶振動片50動作中の基部52と各振動腕53,54の連
結部における熱的な挙動について、図面を参照して詳細に説明する。図2は、音叉型水晶
振動片50動作中の基部52と各振動腕との連結部を模式的に説明するものであり、(a
)は部分拡大平面図、(b)は(a)のb−b線における断面図である。
In FIG. 1, when a driving voltage is applied to the tuning fork type quartz vibrating piece 50 from the oscillation circuit (not shown) as excitation means connected to the outside to the excitation electrodes 36A and 36B and the excitation electrodes 37A and 37B, the vibrating arm 53 , 54 bend and vibrate in the horizontal direction, as shown by arrows G in the figure, in directions toward or away from each other. Due to this bending vibration, compressive stress and tensile stress are generated in the region of the base portion in the vibration direction of each vibrating arm 53, 54 at the connecting portion between the base 52 and each vibrating arm 53, 54. The thermal behavior of the connecting portion between the base 52 and the vibrating arms 53 and 54 during operation of the tuning fork type crystal vibrating piece 50 will be described in detail with reference to the drawings. FIG. 2 schematically illustrates a connecting portion between the base 52 and each vibrating arm during the operation of the tuning fork type crystal vibrating piece 50.
) Is a partially enlarged plan view, and (b) is a cross-sectional view taken along line bb of (a).

図2(a)に示すように、音叉型水晶振動片動作中の各振動腕53,54の基部52と
の付け根近傍では、振動腕53の図中の第1の領域110および第2の領域111に圧縮
応力と引張応力とが発生し、これと同様に、振動腕54の基部52との連結部分の領域に
も圧縮応力と引張応力とが発生する。すなわち、振動腕53の自由端側が振動腕54に接
近する向きに屈曲振動すると、振動腕53の第1の領域110には引張応力が作用して温
度が下降し、第2の領域111には圧縮応力が作用して温度が上昇する。逆に、振動腕5
3の自由端側が振動腕54から離反する向きに屈曲すると、第1の領域110には圧縮応
力が作用して温度が上昇し、第2の領域111には引張応力が作用して温度が下降する。
As shown in FIG. 2A, in the vicinity of the base of the vibrating arms 53 and 54 and the base 52 of the vibrating fork-type quartz vibrating piece, the first region 110 and the second region in the drawing of the vibrating arm 53 are shown. A compressive stress and a tensile stress are generated in 111, and similarly, a compressive stress and a tensile stress are also generated in the region of the connecting portion with the base 52 of the vibrating arm 54. That is, when the free end of the vibrating arm 53 is bent and vibrated in a direction in which the vibrating arm 53 approaches the vibrating arm 54, a tensile stress acts on the first region 110 of the vibrating arm 53 and the temperature decreases, and the second region 111 has The temperature rises due to the compression stress. Conversely, vibrating arm 5
3 is bent in a direction away from the vibrating arm 54, the first region 110 is subjected to compressive stress to increase the temperature, and the second region 111 is subjected to tensile stress to decrease the temperature. To do.

同様に、振動腕54の自由端側が振動腕53に接近する向きに屈曲振動すると、振動腕
54の第1の領域112には圧縮応力が作用して温度が上昇し、第2の領域113には引
張応力が作用して温度が下降する。逆に、振動腕54の自由端側が振動腕53から離反す
る向きに屈曲すると、第1の領域112には引張応力が作用して温度が下降し、第2の領
域113には圧縮応力が作用して温度が上昇する。
このように、振動腕53,54それぞれの基部52との連結部の内部には、圧縮応力が
作用する部分と引張応力が作用する部分との間で温度勾配が生じ、その傾斜は、各振動腕
53,54の振動の向きによって逆向きになる。
Similarly, when the free end of the vibrating arm 54 is bent and vibrated in a direction in which the vibrating arm 54 approaches the vibrating arm 53, a compressive stress acts on the first region 112 of the vibrating arm 54 and the temperature rises. In the case of tensile stress, the temperature drops. Conversely, when the free end side of the vibrating arm 54 is bent in a direction away from the vibrating arm 53, a tensile stress acts on the first region 112 and the temperature drops, and a compressive stress acts on the second region 113. Temperature rises.
As described above, a temperature gradient is generated between the portion where the compressive stress is applied and the portion where the tensile stress is applied inside the connecting portion of each of the vibrating arms 53 and 54 with the base portion 52. The direction is reversed depending on the direction of vibration of the arms 53 and 54.

この温度勾配によって、熱が、圧縮側の部分から引張(伸張)側の部分へ、すなわち、
高温側からから低温側へと伝達される。本実施形態の音叉型水晶振動片50では、この圧
縮側の部分から伸張側の部分への熱の伝達が、各振動腕53,54の励振電極36A,3
6Bおよび励振電極37A,37Bの一部を熱伝導路として行われる。
Due to this temperature gradient, heat is transferred from the compression part to the tension (elongation) part, that is,
It is transmitted from the high temperature side to the low temperature side. In the tuning fork type crystal vibrating piece 50 of the present embodiment, the heat transfer from the compression side portion to the extension side portion is caused by the excitation electrodes 36A, 3 of the vibrating arms 53, 54.
6B and a part of the excitation electrodes 37A and 37B are used as a heat conduction path.

図2(b)に示す振動腕53側を例として詳細に説明する。図2(b)は、図2(a)
の振動腕53が振動腕54と離反する向きに屈曲したときのb−b線断面をしめしたもの
であり、図2(a)における第1の領域110が圧縮側となり且つ反対側の第2の領域1
11が伸張側となる場合を例示している。図中、温度上昇は+の符号で、温度下降は−の
符号でそれぞれ示す。圧縮側の部分は温度が上昇し、伸張側の部分は温度が下降する。こ
の温度勾配によって、熱が圧縮側(+)の部分から振動腕53の熱伝導路56,66の部
分を通って伸張側(−)へと伝達される。
The vibration arm 53 side shown in FIG. 2B will be described in detail as an example. FIG. 2 (b) is similar to FIG. 2 (a).
2 is a cross-sectional view taken along line bb when the vibrating arm 53 is bent in a direction away from the vibrating arm 54, and the first region 110 in FIG. Region 1
The case where 11 becomes an expansion | extension side is illustrated. In the figure, the temperature rise is indicated by + and the temperature drop is indicated by-. The temperature on the compression side increases and the temperature on the expansion side decreases. Due to this temperature gradient, heat is transferred from the compression side (+) portion to the expansion side (−) through the heat conduction paths 56 and 66 of the vibrating arm 53.

本実施形態では、圧縮側(+)の部分と伸張側(−)間の熱伝達経路に、水晶51より
も格段に高い熱伝導率を有する金を埋め込み部材56b,66bとして用いた熱伝導路5
6,66が設けられている。これにより、圧縮側(+)の部分と伸張側(−)間の熱伝達
が熱伝導路56,66を介して効率的に行われ、圧縮側(+)と伸張側(−)との間で温
度が平衡状態となるまでの緩和時間τ1が、熱伝導路56,66が設けられていない従来
の音叉型水晶振動片の緩和時間τ0よりも短縮される。すなわち、本実施形態の音叉型水
晶振動片50の熱緩和周波数f20=1/(2πτ1)において、τ1<τ0であるから、従
来構造の音叉型水晶振動片の熱緩和周波数f0=1/(2πτ0)よりも本実施形態の熱緩
和周波数f20の方が熱緩和周波数が高くなる。
In the present embodiment, a heat conduction path using gold having a much higher thermal conductivity than the crystal 51 as the embedded members 56b and 66b in the heat transfer path between the compression side (+) portion and the expansion side (−). 5
6,66 are provided. As a result, heat transfer between the compression side (+) portion and the expansion side (−) is efficiently performed via the heat conduction paths 56 and 66, and between the compression side (+) and the expansion side (−). Thus, the relaxation time τ 1 until the temperature reaches an equilibrium state is shorter than the relaxation time τ 0 of the conventional tuning fork type crystal vibrating piece in which the heat conduction paths 56 and 66 are not provided. That is, in the thermal relaxation frequency f 20 = 1 / tuning-fork type crystal vibrating piece 50 of this embodiment (2πτ 1), τ 1 <because it is tau 0, thermal relaxation frequency f 0 of the tuning fork type crystal vibrating piece of the conventional structure The thermal relaxation frequency f 20 of this embodiment is higher than the thermal relaxation frequency of = 1 / (2πτ 0 ).

これを、図8の振動腕の機械的な振動周波数(共振周波数)とQ値との関係でみると、
曲線F自体の形状は変わらないことから、熱緩和周波数の上昇に伴って、曲線Fが曲線F
の位置まで周波数の上昇方向(紙面上右方向)にシフトしたことになる。したがって、
振動腕の機械的な振動周波数(共振周波数)をfrとしたときにfrが熱緩和周波数f0
以下となる範囲、即ち1≧fr/f0を満たす範囲では、曲線FにおけるQ値は常に従来
構造の音叉型水晶振動片の曲線Fよりも高くなる。加えて、曲線Fにおける、曲線Fと
曲線Fの交点の周波数より低い周波数帯、即ち1>fr/(f0+(f20−f0)/3)
を満たす範囲においても、従来構造の音叉型水晶振動片の曲線FにおけるQ値より高くな
る。このように、本実施形態の音叉型水晶振動片50は、各振動腕53,54それぞれの
第1の領域110,112と第2の領域111,113との間に熱伝導路56,66を設
けていることにより、Q値を改善して高性能化を実現することができる。
Looking at the relationship between the mechanical vibration frequency (resonance frequency) and the Q value of the vibrating arm in FIG.
Since the shape of the curve F itself does not change, the curve F changes to the curve F as the thermal relaxation frequency increases.
This means that the frequency has been shifted to the position 2 in the direction of increasing frequency (rightward on the page). Therefore,
When the mechanical vibration frequency (resonance frequency) of the vibrating arm is fr, fr is the thermal relaxation frequency f 0.
In the following range, that is, in the range satisfying 1 ≧ fr / f 0 , the Q value in the curve F 2 is always higher than the curve F of the tuning-fork type crystal vibrating piece having the conventional structure. In addition, in the curve F 2 , a frequency band lower than the frequency of the intersection of the curve F and the curve F 2 , that is, 1> fr / (f 0 + (f 20 −f 0 ) / 3).
Even within the range satisfying the above, the Q value in the curve F of the tuning-fork type crystal vibrating piece having the conventional structure is higher. As described above, the tuning fork type crystal vibrating piece 50 of the present embodiment has the heat conduction paths 56 and 66 between the first regions 110 and 112 and the second regions 111 and 113 of the respective vibrating arms 53 and 54. By providing, it is possible to improve the Q value and realize high performance.

また、本実施形態では、各振動腕53,54の基部52との付け根部近傍において、各
振動腕53,54の屈曲振動方向と平行な両主面側に開口した溝56a,57a,66a
,67aを設け、その溝56a,57a,66a,67aに埋め込み部材56b,57b
,66b,67bを埋設することにより熱伝導路56,57,66,67を形成した。こ
のような各振動腕53,54の基部52との付け根近傍に設けられた溝56a,57a,
66a,67aは、振動腕53,54の振動が垂直方向の成分をも含む場合に、振動が基
部52から漏れるのを緩和することによって、上記熱伝導路56,57,66,67によ
るQ値の改善効果とともに、熱伝導路振動エネルギーの閉込効果を高めてCI値を抑制し
、且つ音叉型水晶振動片間でのCI値のばらつきを防止する効果を奏する。
また、各振動腕53,54の両主面の溝56a,57a,66a,67aの開口部はそ
れぞれ一つずつなので開口部を大きくすることができるため、音叉型水晶振動片50の小
型化が進んでも比較的加工しやすい。
また、本実施形態の熱伝導路56,57,66,67の溝56a,57a,66a,6
7aは有底の溝であるので、例えば、溝56a,57a,66a,67aの金などの埋め
込み部材を溶融させて流し込んでから固化させる方法などにより、熱伝導路56,57,
66,67を比較的容易に形成することができる。
Further, in the present embodiment, grooves 56a, 57a, 66a opened on both principal surface sides parallel to the bending vibration direction of the vibrating arms 53, 54 in the vicinity of the base portion of the vibrating arms 53, 54 with the base 52.
, 67a, and embedded members 56b, 57b in the grooves 56a, 57a, 66a, 67a.
, 66b, 67b are embedded to form heat conduction paths 56, 57, 66, 67. Grooves 56a, 57a provided in the vicinity of the bases of the resonating arms 53, 54 and the base portion 52,
66a and 67a reduce the leakage of vibration from the base 52 when the vibration of the vibrating arms 53 and 54 includes a vertical component, thereby reducing the Q value by the heat conduction paths 56, 57, 66, and 67. In addition to this improvement effect, the confinement effect of the heat conduction path vibration energy is enhanced to suppress the CI value, and the effect of preventing variation in the CI value between the tuning fork type crystal vibrating pieces is achieved.
In addition, since each of the grooves 56a, 57a, 66a, and 67a on each main surface of each vibrating arm 53 and 54 has one opening, the opening can be enlarged, and therefore the tuning-fork type crystal vibrating piece 50 can be downsized. It is relatively easy to process even if it is advanced.
Further, the grooves 56a, 57a, 66a, 6 of the heat conduction paths 56, 57, 66, 67 of the present embodiment.
Since the groove 7a has a bottom, the heat conduction paths 56, 57, and the like can be obtained by, for example, a method in which an embedding member such as gold in the grooves 56a, 57a, 66a, and 67a is melted and poured.
66 and 67 can be formed relatively easily.

(第2の実施形態)
上記第1の実施形態では、各振動腕53,54の両主面にそれぞれ開口した溝56a,
57a,66a,67aと、その溝56a,57a,66a,67aに埋め込み部材56
b,57b,66b,67bとからなる熱伝導路56,57,66,67を形成した。す
なわち、振動腕53の第1の領域110と第2の領域111との間の熱伝導経路には、一
対の熱伝導路56,66、振動腕54の第1の領域112と第2の領域113との間の熱
伝導経路には一対の熱伝導路57,67が介在する構成とした。これに限らず、各振動腕
(屈曲振動体)ごとの第1の領域と第2の領域との間に、複数の熱伝導路を介在させた構
成としてもよい。
図4は、屈曲振動体の第1の領域と第2の領域との間に二つの熱伝導路を設けた音叉型
水晶振動片を模式的に説明するものであり、(a)は一主面側の平面図、(b)は(a)
のc−c線断面図である。なお、図4において、上記第1の実施形態と同じ構成について
は同一符号を付して説明を省略する。
(Second Embodiment)
In the first embodiment, the grooves 56a opened on both main surfaces of the vibrating arms 53 and 54, respectively.
57a, 66a, 67a and the embedded member 56 in the grooves 56a, 57a, 66a, 67a
The heat conduction paths 56, 57, 66, and 67 including b, 57b, 66b, and 67b were formed. That is, the heat conduction path between the first region 110 and the second region 111 of the vibrating arm 53 includes a pair of heat conduction paths 56 and 66 and the first region 112 and the second region of the vibrating arm 54. A pair of heat conduction paths 57 and 67 are interposed in the heat conduction path to 113. The configuration is not limited to this, and a plurality of heat conduction paths may be interposed between the first region and the second region for each vibrating arm (flexural vibrator).
FIG. 4 schematically illustrates a tuning-fork type crystal vibrating piece in which two heat conduction paths are provided between the first region and the second region of the flexural vibration body. Plan view of surface side, (b) is (a)
FIG. In FIG. 4, the same components as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted.

図4(a)に示す本第2の実施形態の音叉型水晶振動片150において、振動腕53の
基部52との付け根近傍を含む領域には、振動腕53の一方の主面側に開口部を有し長手
方向に沿って設けられた直線状の有底の溝156a、および振動腕53の他方の主面側に
開口部を有し前記溝156aと平行に並設された直線状の有底の溝166aと、それら各
溝156a,166aに埋設された金などの熱伝導率の高い材料からなる埋め込み部材1
56b,166bとからなる熱伝導路156,166が形成されている(図4(b)を併
せて参照)。
In the tuning fork type crystal vibrating piece 150 of the second embodiment shown in FIG. 4A, an opening is formed on one main surface side of the vibrating arm 53 in a region including the vicinity of the base of the vibrating arm 53 with the base 52. A straight bottomed groove 156a provided along the longitudinal direction and an opening on the other main surface side of the resonating arm 53, and a linear provided groove arranged in parallel with the groove 156a. The bottom groove 166a and the embedded member 1 made of a material having high thermal conductivity such as gold embedded in each of the grooves 156a and 166a
Thermal conduction paths 156 and 166 including 56b and 166b are formed (see also FIG. 4B).

同様に、振動腕54の基部52との付け根近傍を含む領域には、振動腕54の一方の主
面側に開口部を有し長手方向に沿って設けられた直線状の有底の溝157a、および振動
腕54の他方の主面側に開口部を有し前記溝157aと平行に並設された直線状の有底の
溝167aと、それら各溝157a,167aに埋設された埋め込み部材157b,16
7bとからなる熱伝導路157,167が形成されている。
Similarly, in a region including the vicinity of the base with the base 52 of the vibrating arm 54, a linear bottomed groove 157a having an opening on one main surface side of the vibrating arm 54 and provided along the longitudinal direction. And a straight bottomed groove 167a having an opening on the other main surface side of the vibrating arm 54 and arranged in parallel to the groove 157a, and an embedded member 157b embedded in each of the grooves 157a and 167a , 16
Heat conduction paths 157 and 167 composed of 7b are formed.

この構成によれば、上記第1の実施形態の音叉型水晶振動片50の各振動腕53,54
の第1の領域110,112と第2の領域111,113(図2(a)を参照)との間の
熱伝導経路が、熱伝導路56,66,57,67の他に屈曲振動体材料としての水晶51
(例えば振動腕53について説明する図2(b)を参照)部分を含んでいるのに対して、
各振動腕53,54それぞれの第1の領域と第2の領域との間の熱伝導経路の全域に渡っ
て、熱伝導が熱伝導路156,166,157,167を直線的に通過して行われる構成
とすることができる。したがって、各振動腕の第1の領域と第2の領域との熱緩和に際し
ての熱伝導効率をさらに向上させることができるので、Q値の低下をより効果的に抑える
ことができる。
According to this configuration, the vibrating arms 53 and 54 of the tuning fork type crystal vibrating piece 50 of the first embodiment are used.
In addition to the heat conduction paths 56, 66, 57, and 67, the flexural vibrator is used as a heat conduction path between the first areas 110 and 112 and the second areas 111 and 113 (see FIG. 2A). Crystal 51 as material
(For example, refer to FIG. 2B for explaining the vibrating arm 53)
The heat conduction linearly passes through the heat conduction paths 156, 166, 157, and 167 over the entire heat conduction path between the first region and the second region of each vibrating arm 53 and 54, respectively. It can be set as the structure performed. Therefore, since the heat conduction efficiency at the time of thermal relaxation between the first region and the second region of each vibrating arm can be further improved, the decrease in the Q value can be more effectively suppressed.

上記実施形態で説明した屈曲振動片としての音叉型水晶振動片は、以下の変形例として
実施することも可能である。
The tuning-fork type crystal vibrating piece as the bending vibrating piece described in the above embodiment can also be implemented as the following modifications.

(変形例1)
上記第2の実施形態の音叉型水晶振動片150では、各振動腕53,54ごとに二つず
つの熱伝導路156,166および熱伝導路157,167を設ける構成とした。これに
限らず、熱伝導路は三つ以上を並設する構成としてもよい。
図5は、変形例1の音叉型水晶振動片を模式的に説明するものであり、図5(a)は一
主面側の平面図、(b)は(a)のd−d線断面図である。
(Modification 1)
In the tuning fork type crystal vibrating piece 150 of the second embodiment, two heat conduction paths 156 and 166 and two heat conduction paths 157 and 167 are provided for each vibrating arm 53 and 54. Not limited to this, three or more heat conduction paths may be arranged in parallel.
FIGS. 5A and 5B schematically illustrate a tuning-fork type crystal vibrating piece according to the first modification. FIG. 5A is a plan view of one main surface side, and FIG. 5B is a cross-sectional view taken along the line dd in FIG. FIG.

図5(a)に示す本変形例の音叉型水晶振動片250において、振動腕53の基部52
との付け根近傍を含む領域には、振動腕53の一方の主面側に開口部を有し長手方向に沿
って平行に設けられた二つの直線状の有底の溝256a,276aと、それらの溝256
a,276aに埋設された金などの熱伝導率の高い材料からなる埋め込み部材256b,
276bとからなる熱伝導路256,276が形成されている、また、二つの熱伝導路2
56および257の間には、振動腕53の他方の主面側に開口部を有し前記溝256a,
276aと平行に設けられた直線状の有底の溝266aと、その溝266aに埋設された
埋め込み部材266bとからなる熱伝導路266が形成されている(図5(b)を併せて
参照)。
In the tuning-fork type crystal vibrating piece 250 of this modification shown in FIG. 5A, the base 52 of the vibrating arm 53 is used.
In the region including the vicinity of the root of the groove, there are two linear bottomed grooves 256a and 276a provided in parallel along the longitudinal direction having an opening on one main surface side of the vibrating arm 53, and Groove 256
a, embedded member 256b made of a material having high thermal conductivity such as gold embedded in 276a,
276b are formed, and two heat conduction paths 2 are formed.
56 and 257 have an opening on the other main surface side of the vibrating arm 53 and have the grooves 256a,
A heat conduction path 266 is formed which includes a straight bottomed groove 266a provided in parallel with 276a and an embedded member 266b embedded in the groove 266a (see also FIG. 5B). .

同様に、振動腕54の基部52との付け根近傍を含む領域には、振動腕54の一方の主
面側に開口部を有し長手方向に沿って平行に設けられた二つの直線状の有底の溝257a
,277aと、それらの溝257a,277aに埋設された埋め込み部材257b,27
7bとからなる熱伝導路257,277が形成されている、また、二つの熱伝導路257
および277の間には、振動腕54の他方の主面側に開口部を有し前記溝257a,27
7aと平行に設けられた直線状の有底の溝267aと、その溝267aに埋設された埋め
込み部材267bとからなる熱伝導路267が形成されている。
Similarly, in a region including the vicinity of the base of the vibrating arm 54 with the base 52, there is an opening on one main surface side of the vibrating arm 54 and two linear objects provided in parallel along the longitudinal direction. Bottom groove 257a
, 277a and embedded members 257b, 27 embedded in the grooves 257a, 277a.
7b is formed, and two heat conduction paths 257 are formed.
And 277 have an opening on the other main surface side of the vibrating arm 54 and have the grooves 257a, 27.
A heat conduction path 267 is formed which includes a straight bottomed groove 267a provided in parallel with 7a and an embedded member 267b embedded in the groove 267a.

この構成によれば、各振動腕53,54それぞれの第1の領域と第2の領域との間の熱
伝導経路の全域において、熱伝導が熱伝導路256,266,276または熱伝導路25
7,267,277を直線的通過して行われ、各振動腕の第1の領域と第2の領域との熱
緩和に際しての熱伝導効率がさらに向上するので、Q値の低下をより効果的に抑えること
ができる。
According to this configuration, heat conduction is performed in the heat conduction paths 256, 266, 276, or the heat conduction path 25 over the entire heat conduction path between the first region and the second region of each of the vibrating arms 53 and 54.
7, 267, and 277 are linearly passed, and the heat conduction efficiency at the time of thermal relaxation between the first region and the second region of each vibrating arm is further improved, so that the Q value can be reduced more effectively. Can be suppressed.

(変形例2)
上記実施形態および変形例1では、振動腕53,54の基部52との付け根近傍に設け
る熱伝導路を、有底の溝に埋め込み部材を埋設することにより形成した。これに限らず、
熱伝導路を、貫通孔に埋め込み部材を埋設することにより形成してもよい。
図6は、変形例2の音叉型水晶振動片を模式的に説明するものであり、図6(a)は一
主面側の平面図、(b)は(a)のe−e線断面図である。
(Modification 2)
In the said embodiment and the modification 1, the heat conduction path provided in the base vicinity with the base 52 of the vibrating arms 53 and 54 was formed by embedding an embedding member in the bottomed groove. Not only this,
The heat conduction path may be formed by embedding an embedded member in the through hole.
6A and 6B schematically illustrate a tuning-fork type crystal vibrating piece according to Modification 2. FIG. 6A is a plan view of one main surface side, and FIG. 6B is a cross-sectional view taken along line ee in FIG. FIG.

図6(a)に示す本変形例の音叉型水晶振動片350において、振動腕53の基部52
との付け根近傍を含む領域には、振動腕53の一方の主面から他方の主面に向けて長手方
向に沿って貫設された直線状の貫通孔356aと、その貫通孔356aに埋設された金な
どの熱伝導率の高い材料からなる埋め込み部材356bとからなる熱伝導路356が形成
されている(図6(b)を併せて参照)。
In the tuning-fork type crystal vibrating piece 350 of this modification shown in FIG. 6A, the base 52 of the vibrating arm 53 is provided.
In the region including the vicinity of the base of the vibration arm 53, a linear through-hole 356a penetrating in the longitudinal direction from one main surface to the other main surface of the vibrating arm 53, and embedded in the through-hole 356a. A heat conduction path 356 is formed which includes an embedded member 356b made of a material having high thermal conductivity such as metal (see also FIG. 6B).

同様に、振動腕54の基部52との付け根近傍を含む領域には、振動腕54の一方の主
面から他方の主面に向けて長手方向に沿って貫設された直線状の貫通孔357aと、その
貫通孔357aに埋設された金などの熱伝導率の高い材料からなる埋め込み部材357b
とからなる熱伝導路357が形成されている。
Similarly, in a region including the vicinity of the base with the base 52 of the vibrating arm 54, a linear through hole 357a penetrating in the longitudinal direction from one main surface of the vibrating arm 54 to the other main surface. And an embedded member 357b made of a material having high thermal conductivity such as gold embedded in the through hole 357a.
A heat conduction path 357 is formed.

この構成では、各熱伝導路356,357の貫通孔356a,357aを形成する際に
、両主面側の双方向からウェットエッチングを施す方法や、貫通孔356a,357aの
深さ方向に直線的にエッチングを進める反応性イオンエッチング法などの異方性エッチン
グを行うことなどにより、貫通孔356a,357aの断面形状を対称形状に加工するこ
とができる。この構成によれば、各振動腕53,54の第1の領域と第2の領域との間に
、金などの熱伝導性の高い材料からなる埋め込み部材356b,357bを備えた熱伝導
路356,357を大きく設けることができる。したがって、屈曲振動に伴って生じる各
振動腕53,54の第1の領域と第2の領域との温度差を緩和する熱緩和に際して、熱伝
導効率を向上させることによって、Q値の低下をより効果的に抑えることができる。
In this configuration, when forming the through holes 356a and 357a of the respective heat conduction paths 356 and 357, a method of performing wet etching from both directions on both main surfaces, or linear in the depth direction of the through holes 356a and 357a. The cross-sectional shapes of the through holes 356a and 357a can be processed into symmetrical shapes by performing anisotropic etching such as a reactive ion etching method that advances etching. According to this configuration, the heat conduction path 356 including the embedded members 356b and 357b made of a material having high heat conductivity such as gold between the first region and the second region of the vibrating arms 53 and 54. , 357 can be provided large. Therefore, when the thermal relaxation is performed to reduce the temperature difference between the first region and the second region of the vibrating arms 53 and 54 caused by the bending vibration, the Q value can be further lowered by improving the heat conduction efficiency. It can be effectively suppressed.

〔発振器〕
上記第1の実施形態および変形例で説明した屈曲振動片としての音叉型水晶振動片50
,150,250,350は、圧電デバイスや、圧電デバイス以外の様々な電子部品に適
用することができる。特に、上記パッケージ内に上記の音叉型水晶振動片50,150,
250,350のうちいずれかの屈曲振動片とともに、その屈曲振動片を発振させる発振
回路素子が少なくとも組み込まれて構成された発振器は、Q値が改善されて高性能化が実
現されるとともに小型化を図ることができる。
[Oscillator]
The tuning-fork type crystal vibrating piece 50 as the bending vibrating piece described in the first embodiment and the modification example.
, 150, 250, 350 can be applied to various electronic components other than piezoelectric devices and piezoelectric devices. In particular, the tuning fork type crystal vibrating pieces 50, 150,
An oscillator configured by incorporating at least an oscillation circuit element that oscillates one of the flexural vibration pieces of 250 and 350 with the flexural vibration piece improved in Q value, improved performance, and reduced in size. Can be achieved.

以上、発明者によってなされた本発明の実施の形態について具体的に説明したが、本発
明は上記した実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々の
変更を加えることが可能である。
The embodiment of the present invention made by the inventor has been specifically described above, but the present invention is not limited to the above-described embodiment, and various modifications are made without departing from the scope of the present invention. Is possible.

例えば、上記実施形態および変形例では、屈曲振動片としての音叉型水晶振動片50,
150,250,350について説明した。これに限らず、本発明の屈曲振動片は、短冊
状の所謂ビーム型の屈曲振動片でもよく、また、三つ以上の振動腕を有する屈曲振動片で
あっても、上記した実施形態および変形例と同様な効果を得ることができる。
For example, in the embodiment and the modification, the tuning-fork type crystal vibrating piece 50 as the bending vibrating piece,
150, 250, and 350 have been described. The present invention is not limited to this, and the bending vibration piece of the present invention may be a strip-shaped so-called beam-type bending vibration piece, or may be a bending vibration piece having three or more vibrating arms. The same effect as the example can be obtained.

また、上記実施形態および変形例では、屈曲振動片の一例として、水晶からなる音叉型
水晶振動片50,150,250,350について説明したが、水晶以外の圧電基板から
なる屈曲振動片であってもよい。
また、屈曲振動片の基材は圧電材料からなる圧電基板に限らない。圧電基板を用いた圧
電駆動型のもの以外に、静電気力を用いた静電駆動型や、磁気を用いた磁気駆動型の屈曲
振動片においても、本発明の構成およびその効果を発揮させることができる。
In the embodiment and the modification, the tuning fork type crystal vibrating pieces 50, 150, 250, and 350 made of quartz have been described as an example of the bending vibrating piece. Also good.
The base material of the bending vibration piece is not limited to a piezoelectric substrate made of a piezoelectric material. In addition to the piezoelectric drive type using a piezoelectric substrate, the electrostatic drive type using electrostatic force and the magnetic drive type bending vibration piece using magnetism can also exert the configuration and effects of the present invention. it can.

1,50,150,250,350…屈曲振動片としての音叉型水晶振動片、2,52
…基部、3,4,53,54…振動腕、6,7…孔、10,12,110,112…第1
の領域、11,13,111,113…第2の領域、36A,36B,37A,37B…
励振電極、51…屈曲振動体材料としての水晶、56,57,66,67,156,15
7,166,167,256,257,266,267,276,277,356,35
7…熱伝導路、56a,57a,66a,67a,156a,157a,166a,16
7a,256a,257a,266a,267a,276a,277a…溝、56b,5
7b,66b,67b,156b,157b,166b,167b,256b,257b
,266b,267b,276b,277b,356b,357b…埋め込み部材、35
6a,357a…貫通孔。
1, 50, 150, 250, 350... Tuning fork type crystal vibrating piece as a bending vibrating piece, 2, 52
... Base, 3, 4, 53, 54 ... Vibrating arm, 6, 7 ... Hole, 10, 12, 110, 112 ... First
Area 11, 11, 111, 113 ... second area 36A, 36B, 37A, 37B ...
Excitation electrode, 51... Crystal as bending vibration material, 56, 57, 66, 67, 156, 15
7,166,167,256,257,266,267,276,277,356,35
7 ... heat conduction path, 56a, 57a, 66a, 67a, 156a, 157a, 166a, 16
7a, 256a, 257a, 266a, 267a, 276a, 277a... Groove, 56b, 5
7b, 66b, 67b, 156b, 157b, 166b, 167b, 256b, 257b
, 266b, 267b, 276b, 277b, 356b, 357b ... embedded member, 35
6a, 357a ... through holes.

Claims (5)

振動により圧縮応力または引張応力が作用する第1の領域と、前記第1の領域に圧縮応
力が作用する場合は引張応力が作用し前記第1の領域に引張応力が作用する場合は圧縮応
力が作用する関係にある第2の領域と、を有する屈曲振動体からなり、
前記第1の領域と前記第2の領域の間に、前記屈曲振動体の振動方向と平行な両主面の
うち少なくともいずれか一方の主面側に開口部を有する溝と、該溝に埋設された前記屈曲
振動体よりも高い熱伝導率を有する埋め込み部材とからなる熱伝導路を有することを特徴
とする屈曲振動片。
A first region where compressive stress or tensile stress is applied by vibration, and a compressive stress is applied when compressive stress is applied to the first region, and a compressive stress is applied when tensile stress is applied to the first region. A second region in an acting relationship, and a flexural vibrator having
Between the first region and the second region, a groove having an opening on at least one of the principal surfaces parallel to the vibration direction of the flexural vibrator, and embedded in the groove A bending vibration piece having a heat conduction path comprising an embedded member having a higher thermal conductivity than the bent vibration body.
請求項1に記載の屈曲振動片において、
前記溝は有底の溝であって、且つ、前記屈曲振動体の前記一方の主面側に開口部を有す
る一方の前記溝と、他方の主面側の前記一方の前記溝の開口部と対向する位置に開口部を
有する他方の前記溝と、を有することを特徴とする屈曲振動片。
The bending vibration piece according to claim 1,
The groove is a bottomed groove, and the one groove having an opening on the one main surface side of the flexural vibrator, and the opening of the one groove on the other main surface side, A flexural vibration piece comprising: the other groove having an opening at an opposing position.
請求項1に記載の屈曲振動片において、
前記溝は有底の溝であって、且つ、前記溝が前記第1の領域と前記第2の領域との間に
複数並設され、隣接する前記溝の前記開口部が、前記屈曲振動体の前記一方の主面側と他
方の主面側とに交互に配置されていることを特徴とする屈曲振動片。
The bending vibration piece according to claim 1,
The groove is a bottomed groove, and a plurality of the grooves are arranged in parallel between the first region and the second region, and the opening of the adjacent groove is the bending vibrator. The bending vibration piece is arranged alternately on the one main surface side and the other main surface side.
請求項1〜3のいずれか一項に記載の屈曲振動片において、
前記埋め込み部材が、金(Au)の熱伝導率よりも高い熱伝導率を有する材料からなる
ことを特徴とする屈曲振動片。
In the bending vibration piece according to any one of claims 1 to 3,
The bending vibration piece, wherein the embedded member is made of a material having a thermal conductivity higher than that of gold (Au).
請求項1〜4のいずれか一項に記載の屈曲振動片と、該屈曲振動片を駆動させる発振回
路とを少なくとも備えることを特徴とする発振器。
An oscillator comprising at least the bending vibration piece according to any one of claims 1 to 4 and an oscillation circuit for driving the bending vibration piece.
JP2009073738A 2009-03-25 2009-03-25 Bending vibrator and oscillator using the same Withdrawn JP2010226608A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009073738A JP2010226608A (en) 2009-03-25 2009-03-25 Bending vibrator and oscillator using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009073738A JP2010226608A (en) 2009-03-25 2009-03-25 Bending vibrator and oscillator using the same

Publications (2)

Publication Number Publication Date
JP2010226608A true JP2010226608A (en) 2010-10-07
JP2010226608A5 JP2010226608A5 (en) 2012-03-29

Family

ID=43043280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009073738A Withdrawn JP2010226608A (en) 2009-03-25 2009-03-25 Bending vibrator and oscillator using the same

Country Status (1)

Country Link
JP (1) JP2010226608A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8102103B2 (en) * 2009-10-01 2012-01-24 Seiko Epson Corporation Tuning-fork resonator with grooves on principal surfaces
US8482358B2 (en) 2010-07-09 2013-07-09 Seiko Epson Corporation Flexural resonator element, resonator, oscillator, and electronic device
US8525606B2 (en) 2011-02-02 2013-09-03 Seiko Epson Corporation Vibrator element, vibrator, oscillator, and electronic device
US8581669B2 (en) 2011-02-02 2013-11-12 Seiko Epson Corporation Vibrator element, vibrator, oscillator, and electronic apparatus
US8760235B2 (en) 2010-07-09 2014-06-24 Seiko Epson Corporation Resonator element, resonator, and oscillator
US8816572B2 (en) 2010-04-08 2014-08-26 Seiko Epson Corporation Resonator element and resonator having a tapered arm next to the base
JP2015050540A (en) * 2013-08-30 2015-03-16 京セラクリスタルデバイス株式会社 Piezoelectric oscillator with thermostatic chamber
US9354128B2 (en) 2013-12-27 2016-05-31 Seiko Epson Corporation Resonator element, resonator, oscillator, electronic apparatus, sensor, and mobile object
US9461615B2 (en) 2013-07-19 2016-10-04 Seiko Epson Corporation Vibrator element, vibrator, oscillator, electronic apparatus, and moving object
US9705472B2 (en) 2013-06-24 2017-07-11 Seiko Epson Corporation Resonator element, resonator, electronic device, electronic apparatus, and moving object

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5967713A (en) * 1982-10-01 1984-04-17 Seiko Instr & Electronics Ltd Tuning fork type crystal oscillator
JPS6098710A (en) * 1983-11-04 1985-06-01 Matsushita Electric Ind Co Ltd Piezoelectric porcelain filter
JPS61176821U (en) * 1984-12-10 1986-11-05
JPH02264507A (en) * 1989-04-04 1990-10-29 Matsushita Electric Ind Co Ltd Piezoelectric vibrator device
JP2004088706A (en) * 2002-07-02 2004-03-18 Daishinku Corp Etching method and etching molded article formed by the method
JP2004253579A (en) * 2003-02-20 2004-09-09 Matsushita Electric Ind Co Ltd Semiconductor device
JP2005136499A (en) * 2003-10-28 2005-05-26 Seiko Epson Corp Piezoelectric vibrating piece, piezoelectric device, manufacturing method thereof, mobile phone device using the piezoelectric device, and electronic equipment using the piezoelectric device
JP2005151423A (en) * 2003-11-19 2005-06-09 Seiko Epson Corp Piezoelectric vibrating piece, piezoelectric device, manufacturing method thereof, mobile phone device using the piezoelectric device, and electronic equipment using the piezoelectric device
JP2005292853A (en) * 2001-08-08 2005-10-20 Seiko Epson Corp Optical device and projector
JP2006054221A (en) * 2004-08-09 2006-02-23 Nitto Denko Corp Heat-conducting sheet
JP2006060727A (en) * 2004-08-24 2006-03-02 River Eletec Kk Tuning-fork crystal oscillator and method for manufacturing same
JP2006086996A (en) * 2004-09-17 2006-03-30 Seiko Epson Corp Piezoelectric vibrating piece, piezoelectric device, and method of manufacturing piezoelectric device
JP2007081749A (en) * 2005-09-13 2007-03-29 Nippon Dempa Kogyo Co Ltd Tuning fork crystal unit
JP2007258640A (en) * 2006-03-27 2007-10-04 Victor Co Of Japan Ltd Semiconductor element and its manufacturing method
JP2007279089A (en) * 2006-04-03 2007-10-25 Seiko Epson Corp Electro-optical device and projector
JP2008051999A (en) * 2006-08-24 2008-03-06 Seiko Epson Corp Optical element manufacturing method and projector
JP2008113098A (en) * 2006-10-28 2008-05-15 Nippon Dempa Kogyo Co Ltd Tuning fork type piezoelectric vibrating piece
JP2008227104A (en) * 2007-03-12 2008-09-25 Denso Corp Laser equipment and its manufacturing method
JP2009036917A (en) * 2007-07-31 2009-02-19 Sharp Corp Liquid crystal display device

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5967713A (en) * 1982-10-01 1984-04-17 Seiko Instr & Electronics Ltd Tuning fork type crystal oscillator
JPS6098710A (en) * 1983-11-04 1985-06-01 Matsushita Electric Ind Co Ltd Piezoelectric porcelain filter
JPS61176821U (en) * 1984-12-10 1986-11-05
JPH02264507A (en) * 1989-04-04 1990-10-29 Matsushita Electric Ind Co Ltd Piezoelectric vibrator device
JP2005292853A (en) * 2001-08-08 2005-10-20 Seiko Epson Corp Optical device and projector
JP2004088706A (en) * 2002-07-02 2004-03-18 Daishinku Corp Etching method and etching molded article formed by the method
JP2004253579A (en) * 2003-02-20 2004-09-09 Matsushita Electric Ind Co Ltd Semiconductor device
JP2005136499A (en) * 2003-10-28 2005-05-26 Seiko Epson Corp Piezoelectric vibrating piece, piezoelectric device, manufacturing method thereof, mobile phone device using the piezoelectric device, and electronic equipment using the piezoelectric device
JP2005151423A (en) * 2003-11-19 2005-06-09 Seiko Epson Corp Piezoelectric vibrating piece, piezoelectric device, manufacturing method thereof, mobile phone device using the piezoelectric device, and electronic equipment using the piezoelectric device
JP2006054221A (en) * 2004-08-09 2006-02-23 Nitto Denko Corp Heat-conducting sheet
JP2006060727A (en) * 2004-08-24 2006-03-02 River Eletec Kk Tuning-fork crystal oscillator and method for manufacturing same
JP2006086996A (en) * 2004-09-17 2006-03-30 Seiko Epson Corp Piezoelectric vibrating piece, piezoelectric device, and method of manufacturing piezoelectric device
JP2007081749A (en) * 2005-09-13 2007-03-29 Nippon Dempa Kogyo Co Ltd Tuning fork crystal unit
JP2007258640A (en) * 2006-03-27 2007-10-04 Victor Co Of Japan Ltd Semiconductor element and its manufacturing method
JP2007279089A (en) * 2006-04-03 2007-10-25 Seiko Epson Corp Electro-optical device and projector
JP2008051999A (en) * 2006-08-24 2008-03-06 Seiko Epson Corp Optical element manufacturing method and projector
JP2008113098A (en) * 2006-10-28 2008-05-15 Nippon Dempa Kogyo Co Ltd Tuning fork type piezoelectric vibrating piece
JP2008227104A (en) * 2007-03-12 2008-09-25 Denso Corp Laser equipment and its manufacturing method
JP2009036917A (en) * 2007-07-31 2009-02-19 Sharp Corp Liquid crystal display device

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8288926B2 (en) 2009-10-01 2012-10-16 Seiko Epson Corporation Tuning-fork resonator having juxtaposed grooves
US8102103B2 (en) * 2009-10-01 2012-01-24 Seiko Epson Corporation Tuning-fork resonator with grooves on principal surfaces
US9252741B2 (en) 2010-04-08 2016-02-02 Seiko Epson Corporation Resonator element and resonator having a tapered arm next to the base
US8816572B2 (en) 2010-04-08 2014-08-26 Seiko Epson Corporation Resonator element and resonator having a tapered arm next to the base
US9257961B2 (en) 2010-04-08 2016-02-09 Seiko Epson Corporation Resonator element and resonator having a tapered arm next to the base
US8482358B2 (en) 2010-07-09 2013-07-09 Seiko Epson Corporation Flexural resonator element, resonator, oscillator, and electronic device
US9325278B2 (en) 2010-07-09 2016-04-26 Seiko Epson Corporation Resonator element, resonator, and oscillator
US8760235B2 (en) 2010-07-09 2014-06-24 Seiko Epson Corporation Resonator element, resonator, and oscillator
US9166554B2 (en) 2010-07-09 2015-10-20 Seiko Epson Corporation Flexural resonator element, resonator, oscillator, and electronic device
US8581669B2 (en) 2011-02-02 2013-11-12 Seiko Epson Corporation Vibrator element, vibrator, oscillator, and electronic apparatus
US8525606B2 (en) 2011-02-02 2013-09-03 Seiko Epson Corporation Vibrator element, vibrator, oscillator, and electronic device
US9705472B2 (en) 2013-06-24 2017-07-11 Seiko Epson Corporation Resonator element, resonator, electronic device, electronic apparatus, and moving object
US10659006B2 (en) 2013-06-24 2020-05-19 Seiko Epson Corporation Resonator element, resonator, electronic device, electronic apparatus, and moving object
US9461615B2 (en) 2013-07-19 2016-10-04 Seiko Epson Corporation Vibrator element, vibrator, oscillator, electronic apparatus, and moving object
JP2015050540A (en) * 2013-08-30 2015-03-16 京セラクリスタルデバイス株式会社 Piezoelectric oscillator with thermostatic chamber
US9354128B2 (en) 2013-12-27 2016-05-31 Seiko Epson Corporation Resonator element, resonator, oscillator, electronic apparatus, sensor, and mobile object

Similar Documents

Publication Publication Date Title
CN101847978B (en) Flexural vibration piece and oscillator using the same
JP2010226608A (en) Bending vibrator and oscillator using the same
TWI762832B (en) Surface acoustic wave device
CN102332889B (en) Resonator element, resonator, and oscillator
JP2010252303A (en) Bending vibrator and oscillator using the same
JP5565154B2 (en) Vibrating piece, vibrator, oscillator, and electronic device
JP2004200917A (en) Piezoelectric vibrating reed, piezoelectric device using the piezoelectric vibrating reed, and mobile phone device using the piezoelectric device and electronic equipment using the piezoelectric device
US20110001394A1 (en) Piezoelectric thin-film tuning fork resonator
JP2014003711A (en) Vibration piece, vibrator, sensor and electronic component
KR101074975B1 (en) Flexural vibration piece, flexural vibrator, and electronic device
JP5445114B2 (en) Vibrating piece and oscillator
JP2010226610A (en) Bending vibrator and oscillator using the same
JP2006203304A (en) Piezoelectric thin film resonator, oscillator using the same, and semiconductor integrated circuit incorporating the same
JPWO2010047115A1 (en) Bending vibrator, bending vibrator, and piezoelectric device
JP2008099144A (en) Piezoelectric vibrating piece and piezoelectric device
JP2011199330A (en) Vibration piece, vibrator, and oscillator
JP2011228980A (en) Vibration piece, vibrator, oscillator, and electronic apparatus
JP2010226609A (en) Vibrating piece and vibrator
JP2010130124A (en) Flexural vibrator, method of manufacturing the same and flexural vibration device
JP2016139860A (en) Piezoelectric vibration piece and piezoelectric vibrator
JP5761429B2 (en) Vibrating piece, vibrator, oscillator, and electronic device
JP2015027093A (en) Vibrating piece, vibrator and oscillator
JP6626661B2 (en) Piezoelectric vibrator
JP2001185987A (en) Tuning fork type piezoelectric vibrator
JP2011254352A (en) Resonator chip, resonator, and oscillator

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120214

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130312

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20130416