[go: up one dir, main page]

JP2010223862A - Magnetic sensor - Google Patents

Magnetic sensor Download PDF

Info

Publication number
JP2010223862A
JP2010223862A JP2009073484A JP2009073484A JP2010223862A JP 2010223862 A JP2010223862 A JP 2010223862A JP 2009073484 A JP2009073484 A JP 2009073484A JP 2009073484 A JP2009073484 A JP 2009073484A JP 2010223862 A JP2010223862 A JP 2010223862A
Authority
JP
Japan
Prior art keywords
magnetic field
field change
change detection
detection signal
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009073484A
Other languages
Japanese (ja)
Inventor
Tamotsu Minamitani
保 南谷
Masaya Ueda
雅也 植田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2009073484A priority Critical patent/JP2010223862A/en
Publication of JP2010223862A publication Critical patent/JP2010223862A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Hall/Mr Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetic sensor that eliminates the need for setting correction of an offset voltage in accordance with a state during a use, and obtains a detecting signal of a sufficient voltage level. <P>SOLUTION: A magnetic field change detection unit 10 includes a series circuit having a magnetic resistant element MR1 and a resistant element R1 to output a magnetic field change detecting signal Voutψ meeting the change of the passing magnetic flux density of the magnetic resistant element MR1 by carrying a body to be detected. An integrating unit 20 generates an integrating signal VoutI obtained by integrating the magnetic field change detecting signal Voutψ. The magnetic field change detecting signal Voutψ includes an offset component as a constant voltage and an effective variation component meeting the change of a magnetic field. The effective variation component is generated during an extremely short period, so that the integrating signal VoutI corresponds to the offset component of the magnetic field change detecting signal Voutψ. A differential amplification unit 30 differentially amplifies the magnetic change detecting signal Voutψ and the integrating signal VoutI to output a sensor detecting signal Vout with the offset component removed. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

この発明は、被検出体の磁気パターンや磁気情報を検出する磁気センサに関するものである。   The present invention relates to a magnetic sensor for detecting a magnetic pattern and magnetic information of a detection object.

現在、被検出体の磁気パターンや磁気情報を検出する磁気センサが各種利用されている。従来の磁気センサは、特許文献1の図13に示すように、磁気抵抗素子により磁界の変化を検出する磁界変化検出部と、検出信号を増幅する増幅部とを、有する。磁界変化検出部は、磁界の変化に対して高感度な第1磁気抵抗素子と、磁界の変化に対して低感度な第2磁気抵抗素子とが直列接続された回路からなり、この直列回路の一方端に検出用電圧が印加され、他方端がグランドに接続されている。そして、磁界変化検出部は、第1磁気抵抗素子と第2磁気抵抗素子との接続点を検出信号の出力端として、第1磁気抵抗素子と第2磁気抵抗素子との分圧による電圧レベルからなる検出信号を出力する。これにより、検出信号は、磁界が変化していない状態で所定の電圧レベルとなり、被検出体の通過等による磁界の変化に応じて電圧レベルが変化する信号となる。   Currently, various magnetic sensors for detecting a magnetic pattern and magnetic information of an object to be detected are used. As shown in FIG. 13 of Patent Document 1, the conventional magnetic sensor includes a magnetic field change detection unit that detects a change in magnetic field using a magnetoresistive element, and an amplification unit that amplifies a detection signal. The magnetic field change detection unit is composed of a circuit in which a first magnetoresistive element that is highly sensitive to changes in the magnetic field and a second magnetoresistive element that is sensitive to changes in the magnetic field are connected in series. A detection voltage is applied to one end, and the other end is connected to the ground. Then, the magnetic field change detection unit uses a connection point between the first magnetoresistive element and the second magnetoresistive element as an output end of the detection signal, and detects a voltage level due to voltage division between the first magnetoresistive element and the second magnetoresistive element. A detection signal is output. As a result, the detection signal becomes a predetermined voltage level in a state where the magnetic field is not changed, and becomes a signal whose voltage level changes in accordance with a change in the magnetic field due to passage of the detection object.

このような検出信号は振幅レベル(電圧レベル)が低く、上述の磁気パターンや磁気情報の検出に利用するには、振幅レベルを増幅して極力大きくした方が良い。このため、増幅部は、差動増幅器を二段接続してなり、検出信号を増幅する。この際、検出信号は、上述のように分圧を用いた信号であるので、磁界が変化していない状態の電圧レベルに応じたオフセット電圧を含む。しかしながら、検出信号の増幅を行う場合には、オフセット電圧までもが増幅されると後段の磁気パターンや磁気情報を検出する回路の誤検知や破壊に繋がる可能性があり、このようなオフセット電圧は取り除くべきものである。   Such a detection signal has a low amplitude level (voltage level), and it is better to amplify the amplitude level as much as possible in order to use it for the detection of the above-described magnetic pattern and magnetic information. For this reason, the amplifying unit comprises two stages of differential amplifiers, and amplifies the detection signal. At this time, since the detection signal is a signal using the divided voltage as described above, the detection signal includes an offset voltage corresponding to the voltage level in a state where the magnetic field is not changed. However, when amplifying the detection signal, if the offset voltage is amplified, there is a possibility that it may lead to erroneous detection or destruction of the circuit that detects the magnetic pattern and magnetic information in the subsequent stage. It should be removed.

このため、特許文献1では、個別に設けた抵抗直列回路の抵抗分圧によって生成されるオフセット除去用電圧を差動増幅器に与え、検出信号に対して当該オフセット除去用電圧を差分(オフセット補正)しながら増幅処理を行っている。   For this reason, in Patent Document 1, an offset removal voltage generated by resistance voltage division of an individually provided resistor series circuit is applied to a differential amplifier, and the offset removal voltage is differenced (offset correction) with respect to a detection signal. Amplification processing is performed.

特開2005−56950号公報JP 2005-56950 A

しかしながら、磁気抵抗素子や、オフセット除去用電圧を生成する抵抗直列回路の抵抗素子は、それぞれに異なる温度特性を有するので、たとえ、製造当初にオフセット電圧とオフセット除去用電圧との差が略0Vになるように設定できたとしても、実使用時には、オフセット電圧およびオフセット除去用電圧が変動して、差動増幅器の入力段においてオフセット電圧とオフセット除去用電圧とに差が生じる可能性がある。そして、例えば、この差が0.1V生じたとし、二段の差動増幅回路で検出信号を10000倍に増幅したとすると、最終的なオフセット電圧は1000Vとなってしまい、現実的に使用できるものではなくなる。   However, the magnetoresistive element and the resistance element of the resistor series circuit that generates the offset removal voltage have different temperature characteristics, so even if the difference between the offset voltage and the offset removal voltage is about 0 V at the beginning of manufacture. Even if it can be set, the offset voltage and the offset removal voltage may fluctuate during actual use, and there may be a difference between the offset voltage and the offset removal voltage in the input stage of the differential amplifier. For example, if this difference is 0.1 V, and the detection signal is amplified 10,000 times with a two-stage differential amplifier circuit, the final offset voltage is 1000 V, which can be used practically. It is no longer a thing.

このように、上述のような従来の構成では、増幅を行わなければ検出のための信号レベルを稼ぐことができず磁気パターンや磁気情報を検出し難くなり、増幅を行う場合には信号レベルを稼ぐことはできるがオフセット電圧補正が容易でないと、いう課題を有する。   As described above, in the conventional configuration as described above, a signal level for detection cannot be gained unless amplification is performed, and it becomes difficult to detect a magnetic pattern or magnetic information. Although it can earn, it has the subject that offset voltage correction is not easy.

したがって、本発明の目的は、オフセット電圧の補正を使用時の状況に応じて設定する必要が無く、且つ十分な電圧レベルの検出信号を得ることができる磁気センサを実現することにある。   Accordingly, an object of the present invention is to realize a magnetic sensor that does not require the offset voltage correction to be set according to the situation during use and can obtain a detection signal having a sufficient voltage level.

この発明の磁気センサは、磁界変化検出部、積分部、および差動増幅部を備える。磁界変化検出部は、磁束密度の変化により生じる抵抗値変化の特性が異なる磁気抵抗素子の組を少なくとも一組用いて、当該特性の差に基づく磁界変化検出信号を出力する。積分部は、磁界変化検出信号を積分処理することでオフセット成分信号を出力する。差動増幅部は、磁界変化検出信号とオフセット成分信号とを差動増幅処理する。   The magnetic sensor of the present invention includes a magnetic field change detector, an integrator, and a differential amplifier. The magnetic field change detection unit uses at least one set of magnetoresistive elements having different resistance value change characteristics caused by a change in magnetic flux density, and outputs a magnetic field change detection signal based on the difference in the characteristics. The integration unit outputs an offset component signal by integrating the magnetic field change detection signal. The differential amplifying unit differentially amplifies the magnetic field change detection signal and the offset component signal.

この構成では、磁界変化検出信号が、被検出体の磁気パターンや磁気情報による通過磁束の変化に応じて変動する有効変動成分とオフセット成分とからなることを利用し、この有効変動成分が現れないオフセット成分に相当する信号を、積分部で生成する。ここで、被検出体は、磁気センサの近傍(磁気抵抗素子を筐体天面に設置した当該天面上)を所定速度で搬送される等により磁気パターンが検出されるので、磁界変化検出信号の有効変動変動は極短い時間のものとなる。このため、時定数を適宜設定し磁界変化検出信号を積分処理すると、積分部からは、有効変動分に殆ど影響されないオフセット成分のみの信号が出力される。差動増幅部は、磁界変化検出信号と、当該磁界変化検出信号に基づいて生成されたオフセット成分信号を差動増幅するので、磁界変化検出信号のオフセット成分のみが除去され、有効変動成分のみが増幅されて出力される。   In this configuration, the effective variation component does not appear by utilizing the fact that the magnetic field change detection signal is composed of an effective variation component and an offset component that vary in accordance with the change in the passing magnetic flux due to the magnetic pattern or magnetic information of the detected object. A signal corresponding to the offset component is generated by the integration unit. Here, the detected object detects a magnetic pattern by being conveyed at a predetermined speed in the vicinity of the magnetic sensor (on the top surface where the magnetoresistive element is installed on the top surface of the housing). The effective fluctuations of are for extremely short times. For this reason, when the time constant is appropriately set and the magnetic field change detection signal is integrated, a signal having only an offset component that is hardly affected by the effective variation is output from the integrating unit. Since the differential amplification section differentially amplifies the magnetic field change detection signal and the offset component signal generated based on the magnetic field change detection signal, only the offset component of the magnetic field change detection signal is removed and only the effective fluctuation component is present. Amplified and output.

また、この発明の磁気センサは、さらに第2積分部および第2差動増幅部を備える。第2積分部は、差動増幅部から出力される検出信号を、積分処理することで第2オフセット成分信号を出力する。第2差動増幅部は、検出信号と第2オフセット成分信号とを差動増幅処理する。   The magnetic sensor of the present invention further includes a second integration unit and a second differential amplification unit. The second integration unit outputs a second offset component signal by integrating the detection signal output from the differential amplification unit. The second differential amplification unit performs differential amplification processing on the detection signal and the second offset component signal.

この構成では、検出信号をより大きな振幅(電圧)レベルで出力することができる。この際、第2差動増幅部の前段に第2積分部が配置されているので、第2差動増幅部の入力段でオフセット補正が行われる。これにより、2段増幅を行ってもオフセット電圧が殆ど増幅されず、検出信号の有効変動成分のみを効果的に増幅できる。   In this configuration, the detection signal can be output with a larger amplitude (voltage) level. At this time, since the second integration unit is arranged before the second differential amplification unit, offset correction is performed at the input stage of the second differential amplification unit. As a result, even if the two-stage amplification is performed, the offset voltage is hardly amplified, and only the effective fluctuation component of the detection signal can be effectively amplified.

また、この発明の磁気センサは、これら第2積分部と第2差動増幅部とが多段接続されている。   In the magnetic sensor of the present invention, the second integration unit and the second differential amplification unit are connected in multiple stages.

これらの構成では、検出信号をより大きな振幅(電圧)レベルで出力することができる。この際、各第2差動増幅部の前段に第2積分部が配置されているので、それぞれの第2差動増幅部の入力段で常にオフセット補正が行われる。これにより、検出信号の有効変動成分のみを、さらに効果的に増幅できる。   In these configurations, the detection signal can be output with a larger amplitude (voltage) level. At this time, since the second integration unit is disposed in front of each second differential amplification unit, offset correction is always performed at the input stage of each second differential amplification unit. Thereby, only the effective fluctuation component of the detection signal can be amplified more effectively.

また、この発明の磁気センサの磁界変化検出部は、電圧入力端子とグランド端子との間に特性の異なる磁気抵抗素子、または磁気抵抗素子と抵抗素子を直列接続し、該特性の異なる磁気抵抗素子同士の接続位置の電圧レベルを磁界変化検出信号として出力する。   The magnetic field change detection unit of the magnetic sensor according to the present invention includes a magnetoresistive element having different characteristics or a magnetoresistive element and a resistive element connected in series between the voltage input terminal and the ground terminal, and the magnetoresistive element having the different characteristics. The voltage level at the connection position between them is output as a magnetic field change detection signal.

この構成は、上述の磁界変化検出信号を出力する磁界変化検出部の具体的構成を示すものである。そして、このような構成とすることで、特性の異なる最低限二つの磁気抵抗素子の直列回路または磁気抵抗素子と抵抗素子の直列回路が存在すれば、磁界変化検出信号を得ることができる。すなわち、簡素な構造で磁界変化検出部を構成できる。   This configuration shows a specific configuration of the magnetic field change detection unit that outputs the above-described magnetic field change detection signal. With such a configuration, a magnetic field change detection signal can be obtained if there is a series circuit of at least two magnetoresistive elements having different characteristics or a series circuit of a magnetoresistive element and a resistive element. That is, the magnetic field change detection unit can be configured with a simple structure.

また、この発明の磁気センサの磁界変化検出部は、第1直列回路、定電圧出力回路、および前段差動増幅回路を備える。第1直列回路は、電圧入力端子とグランド端子との間に特性の異なる磁気抵抗素子、または磁気抵抗素子と抵抗素子を直列接続し、該特性の異なる磁気抵抗素子同士の接続位置、または磁気抵抗素子と抵抗素子との接続位置の電圧レベルを第1磁界変化検出信号として出力する。定電圧出力回路は、磁束密度の変化によることなく抵抗値が一定な抵抗素子の組からなり、該第1直列回路の磁気抵抗素子の抵抗値が安定な状態における第1直列回路の第1磁界変化検出信号レベルと略同じ電圧レベルからなる定電圧信号を出力する。前段差動増幅回路は、第1磁界変化検出信号と定電圧信号とを差動増幅することで、磁気変化検出部としての磁界変化検出信号を出力する。   The magnetic field change detection unit of the magnetic sensor according to the present invention includes a first series circuit, a constant voltage output circuit, and a previous-stage differential amplifier circuit. In the first series circuit, a magnetoresistive element having different characteristics or a magnetoresistive element and a resistive element are connected in series between a voltage input terminal and a ground terminal, and a connection position between magnetoresistive elements having different characteristics or a magnetoresistive element is connected. The voltage level at the connection position between the element and the resistance element is output as the first magnetic field change detection signal. The constant voltage output circuit is composed of a set of resistance elements having a constant resistance value regardless of a change in magnetic flux density, and the first magnetic field of the first series circuit in a state where the resistance value of the magnetoresistive element of the first series circuit is stable. A constant voltage signal having a voltage level substantially the same as the change detection signal level is output. The pre-stage differential amplifier circuit outputs a magnetic field change detection signal as a magnetic change detector by differentially amplifying the first magnetic field change detection signal and the constant voltage signal.

この構成では、第1直列回路から有効変動成分を含む第1磁界変化検出信号が出力され、定電圧出力回路から磁界変化検出信号のオフセット成分に相当する定電圧信号が出力される。前段差動増幅回路では、これらの信号を差動増幅するので、定電圧信号により第1磁界変化検出信号のオフセット成分が除去された上で増幅される。このため、磁界変化検出部としての磁界変化検出信号はオフセット成分が少なく且つ有効変動成分が大きい信号として得られる。そして、このオフセット成分が少ない磁界変化検出信号に基づいて積分処理および差動増幅処理を行うことで、差動増幅部のゲインを大きく設定でき、オフセット成分の除去を行いながらも、より有効変動成分のみを効果的に高レベルに増幅することができる。   In this configuration, the first magnetic field change detection signal including the effective variation component is output from the first series circuit, and the constant voltage signal corresponding to the offset component of the magnetic field change detection signal is output from the constant voltage output circuit. In the pre-stage differential amplifier circuit, these signals are differentially amplified, so that they are amplified after removing the offset component of the first magnetic field change detection signal by the constant voltage signal. For this reason, the magnetic field change detection signal as the magnetic field change detection unit is obtained as a signal with a small offset component and a large effective fluctuation component. Then, by performing integration processing and differential amplification processing based on the magnetic field change detection signal with a small offset component, the gain of the differential amplification section can be set to a large value, and more effective fluctuation components can be obtained while removing the offset components. Can be effectively amplified to a high level.

また、この発明の磁気センサの磁界変化検出部は、第1直列回路、第2直列回路、および前段差動増幅回路を備える。第1直列回路は、電圧入力端子とグランド端子との間に前記特性の異なる磁気抵抗素子、または磁気抵抗素子と抵抗素子を直列接続し、該特性の異なる磁気抵抗素子同士の接続位置または磁気抵抗素子と抵抗素子との接続位置の電圧レベルを第1磁界変化検出信号として出力する。第2直列回路は、第1直列回路に対して反転する特性を生じるように、特性の異なる磁気抵抗素子または磁気抵抗素子と抵抗素子を直列接続し、該特性の異なる磁気抵抗素子同士の接続位置または磁気抵抗素子と抵抗素子との接続位置の電圧レベルを第2磁界変化検出信号として出力する。前段差動増幅回路は、第1磁界変化検出信号と第2磁界変化検出信号とを差動増幅することで、磁気変化検出部としての磁界変化検出信号を出力する。   The magnetic field change detection unit of the magnetic sensor according to the present invention includes a first series circuit, a second series circuit, and a previous differential amplifier circuit. In the first series circuit, a magnetoresistive element having different characteristics or a magnetoresistive element and a resistance element are connected in series between a voltage input terminal and a ground terminal, and a connection position or a magnetoresistance of magnetoresistive elements having different characteristics is connected. The voltage level at the connection position between the element and the resistance element is output as the first magnetic field change detection signal. In the second series circuit, magnetoresistive elements having different characteristics or magnetoresistive elements and resistance elements are connected in series so as to produce a characteristic that is inverted with respect to the first series circuit, and the connection positions of the magnetoresistive elements having different characteristics are connected. Alternatively, the voltage level at the connection position between the magnetoresistive element and the resistive element is output as the second magnetic field change detection signal. The pre-stage differential amplifier circuit outputs a magnetic field change detection signal as a magnetic change detector by differentially amplifying the first magnetic field change detection signal and the second magnetic field change detection signal.

この構成では、第1直列回路と第2直列回路とで互いに特性が反転する第1磁界変化検出信号と第2磁界変化検出信号が出力される。前段差動増幅回路では、これら第1磁界変化検出信号と第2磁界変化検出信号との差動増幅が行われる。このため、磁界変化検出部としての磁界変化検出信号は、オフセット成分が少なく有効変動成分がさらに大きな信号となる。そして、このオフセット成分が少なく有効変動成分が大きい磁界変化検出信号に基づいて積分処理および差動増幅処理を行うことで、オフセット成分の除去を行いながらも、有効変動成分のみを効果的に高レベルに増幅することができる。   In this configuration, the first magnetic field change detection signal and the second magnetic field change detection signal whose characteristics are inverted between the first series circuit and the second series circuit are output. In the pre-stage differential amplifier circuit, differential amplification of the first magnetic field change detection signal and the second magnetic field change detection signal is performed. For this reason, the magnetic field change detection signal as the magnetic field change detection unit is a signal with a small offset component and a larger effective fluctuation component. Then, integration processing and differential amplification processing are performed based on the magnetic field change detection signal with a small offset component and a large effective variation component, thereby effectively removing only the effective variation component at a high level while removing the offset component. Can be amplified.

この発明によれば、磁界変化検出部からの磁界変化検出信号を基に、当該磁界変化検出信号のオフセット成分に相当するオフセット成分信号を生成し、磁界変化検出信号から差分して増幅することで、オフセット成分に影響されることなく、有効変動成分のみを効果的に増幅することができる。これにより、オフセット調整処理等を行う必要も無く、オフセットの変動の影響を受けることもなく、被検出体の磁気パターンや磁気情報に応じた高レベルの検出信号を得ることができ、確実且つ高精度な磁気パターンや磁気情報の検出が可能になる。   According to the present invention, based on the magnetic field change detection signal from the magnetic field change detection unit, an offset component signal corresponding to the offset component of the magnetic field change detection signal is generated and amplified by being differentially amplified from the magnetic field change detection signal. Only the effective variation component can be effectively amplified without being affected by the offset component. As a result, it is not necessary to perform an offset adjustment process or the like, and it is possible to obtain a detection signal at a high level according to the magnetic pattern and magnetic information of the detection target without being affected by the fluctuation of the offset. Accurate magnetic patterns and magnetic information can be detected.

第1の実施形態に係る磁気センサの等価回路および動作説明を行うための図である。It is a figure for demonstrating the equivalent circuit and operation | movement description of the magnetic sensor which concerns on 1st Embodiment. 第1の実施形態の磁界変化検出部の構成を示す平面図である。It is a top view which shows the structure of the magnetic field change detection part of 1st Embodiment. 第2の実施形態に係る磁気センサの等価回路および動作説明を行うための図である。It is a figure for demonstrating the equivalent circuit and operation | movement description of the magnetic sensor which concerns on 2nd Embodiment. 第2の実施形態の磁界変化検出部の構成を示す平面図である。It is a top view which shows the structure of the magnetic field change detection part of 2nd Embodiment. 第2の実施形態の構成を用いた場合でのオフセット実験結果を示すグラフである。It is a graph which shows the offset experiment result at the time of using the structure of 2nd Embodiment. 第3の実施形態の磁界変化検出部の構成を示す平面図である。It is a top view which shows the structure of the magnetic field change detection part of 3rd Embodiment. 第3の実施形態の構成を用いた場合でのオフセット実験結果を示すグラフである。It is a graph which shows the offset experiment result at the time of using the structure of 3rd Embodiment. 二段接続による磁気センサの等価回路および動作説明を行うための図である。It is a figure for demonstrating the equivalent circuit and operation | movement description of a magnetic sensor by a two-stage connection.

本発明の第1の実施形態に係る磁気センサについて図を参照して説明する。図1は、本実施形態に係る磁気センサの等価回路および動作説明を行うための図である。   A magnetic sensor according to a first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a diagram for explaining an equivalent circuit and operation of the magnetic sensor according to the present embodiment.

本実施形態の磁気センサは、磁界変化検出部10、積分部20、および差動増幅部30を備える。
磁界変化検出部10は、抵抗素子R1と磁気抵抗素子MR1との直列回路を備える。この直列回路の抵抗素子R1側の端部は印加電圧Vinの入力端子であり、直列回路の磁気抵抗素子MR1側の端部はグランドGNDに接続されている。また、抵抗素子R1と磁気抵抗素子MR1との接続点は、磁界変化検出信号Voutψの出力端子である。
The magnetic sensor of this embodiment includes a magnetic field change detection unit 10, an integration unit 20, and a differential amplification unit 30.
The magnetic field change detection unit 10 includes a series circuit of a resistance element R1 and a magnetoresistance element MR1. The end of the series circuit on the side of the resistance element R1 is an input terminal for the applied voltage Vin, and the end of the series circuit on the side of the magnetoresistive element MR1 is connected to the ground GND. The connection point between the resistance element R1 and the magnetoresistance element MR1 is an output terminal of the magnetic field change detection signal Voutψ.

磁気抵抗素子MR1は、磁界の変化に応じて抵抗値が変化する素子であり、例えば、Si基板上に、長さが幅よりも大きい長尺状のパターンでInSbを材質とする半導体膜を形成し、当該半導体膜上の長尺方向に沿って所定間隔で導電体からなる短絡電極を形成することにより実現される。この際、短絡電極の形成パターンにより、磁気抵抗素子MR1は、磁界に対して高感度となるように設定されている。すなわち、磁気抵抗素子MR1は、通過する磁束密度が所定量変化する場合に抵抗値が大きく変化するように設定されている。   The magnetoresistive element MR1 is an element whose resistance value changes in response to a change in magnetic field. For example, a semiconductor film made of InSb is formed on a Si substrate with a long pattern whose length is larger than the width. And it implement | achieves by forming the short circuit electrode which consists of a conductor at predetermined intervals along the elongate direction on the said semiconductor film. At this time, the magnetoresistive element MR1 is set to have high sensitivity to the magnetic field due to the formation pattern of the short-circuit electrode. That is, the magnetoresistive element MR1 is set such that the resistance value changes greatly when the density of the passing magnetic flux changes by a predetermined amount.

抵抗素子R1は、磁界の変化に対応することなく定抵抗値となる素子であり、例えば、Si基板上に、長さが幅よりも大きい長尺状のパターンでInSbを材質とする半導体膜を形成することにより実現される。すなわち、上述の磁気抵抗素子MR1に対して、短絡電極を有さない形状で形成される。これにより、抵抗素子R1は、磁界に対して極低感度に設定することができ、通過する磁束密度が変化しても抵抗値は一定のままとなる。   The resistance element R1 is an element having a constant resistance value without corresponding to a change in the magnetic field. For example, a semiconductor film made of InSb in a long pattern whose length is larger than the width is formed on a Si substrate. Realized by forming. That is, the magnetic resistance element MR1 is formed in a shape having no short-circuit electrode. Thereby, the resistance element R1 can be set to a very low sensitivity to the magnetic field, and the resistance value remains constant even when the density of the passing magnetic flux changes.

磁界変化検出部10は、より具体的には図2に示すような構造からなる。図2は本実施形態の磁界変化検出部10の構成を示す平面図である。   More specifically, the magnetic field change detection unit 10 has a structure as shown in FIG. FIG. 2 is a plan view showing the configuration of the magnetic field change detection unit 10 of the present embodiment.

磁界変化検出部10は、Si基板11上に磁気抵抗素子MR1および抵抗素子R1を構成する半導体膜(感磁部)や電極が形成される。なお、基板としては、Si基板等の絶縁性基板の他に、GaAs:SiO2等の半絶縁性基板を用いることができる。基板11における磁界変化検出部10の形成領域の第一方向(図2における縦方向)に沿った一方端には、印加電圧Vinを与える電圧入力用電極191、グランド接続するためのグランド接続用電極192が形成されている。他方端には、磁界変化検出信号Voutψを出力する電圧出力用電極193が形成されている。これら電圧入力用電極191、グランド接続用電極192、および電圧出力用電極193は導電性材料からなる。 In the magnetic field change detection unit 10, a semiconductor film (magnetic sensing unit) and electrodes that form the magnetoresistive element MR 1 and the resistive element R 1 are formed on the Si substrate 11. As the substrate, a semi-insulating substrate such as GaAs: SiO 2 can be used in addition to an insulating substrate such as a Si substrate. At one end along the first direction (vertical direction in FIG. 2) of the region where the magnetic field change detection unit 10 is formed on the substrate 11, a voltage input electrode 191 for applying the applied voltage Vin, and a ground connection electrode for ground connection 192 is formed. At the other end, a voltage output electrode 193 that outputs a magnetic field change detection signal Voutψ is formed. The voltage input electrode 191, the ground connection electrode 192, and the voltage output electrode 193 are made of a conductive material.

基板11における電圧入力用電極191およびグランド接続用電極192と、電圧出力用電極193との間の領域には、磁気抵抗素子MR1を構成する感磁部121〜124および接続ライン電極141〜145と、抵抗素子R1を構成する感磁部131〜134および接続ライン電極151〜155とが形成されている。磁気抵抗素子MR1を構成する感磁部121〜124には短絡電極が形成され、抵抗素子R1を構成する感磁部131〜134には短絡電極が形成されていない。   In a region between the voltage input electrode 191 and the ground connection electrode 192 and the voltage output electrode 193 on the substrate 11, the magnetic sensing parts 121 to 124 and the connection line electrodes 141 to 145 constituting the magnetoresistive element MR 1 are provided. Magnetic sensing portions 131 to 134 and connection line electrodes 151 to 155 constituting the resistance element R1 are formed. Short-circuit electrodes are formed on the magnetic sensing parts 121 to 124 constituting the magnetoresistive element MR1, and no short-circuit electrodes are formed on the magnetic sensing parts 131 to 134 constituting the resistance element R1.

磁気抵抗素子MR1を構成する感磁部121〜124は、長尺方向が前記第二方向に平行になるように配置されており、前記第一方向に沿って延びる接続ライン電極141〜145により、直列接続されている。そして、これら感磁部121〜124と接続ライン電極141〜145とからなる直列接続部により、磁気抵抗素子MR1はグランド接続用電極192と電圧出力用電極193との接続される構造となる。   The magnetic sensing parts 121 to 124 constituting the magnetoresistive element MR1 are arranged so that the longitudinal direction is parallel to the second direction, and the connection line electrodes 141 to 145 extending along the first direction They are connected in series. The magnetoresistive element MR1 has a structure in which the ground connection electrode 192 and the voltage output electrode 193 are connected to each other by the series connection portion including the magnetic sensing portions 121 to 124 and the connection line electrodes 141 to 145.

抵抗素子R1を構成する感磁部131〜134も、磁気抵抗素子MR1を構成する感磁部121〜124と同様に、長尺方向が前記第二方向に平行になるように配置されており、前記第一方向に沿って延びる接続ライン電極151〜155により、直列接続されている。そして、これら感磁部131〜134と接続ライン電極151〜155とからなる直列接続部により、抵抗素子R1は、電圧入力用電極191と電圧出力用電極193との間に接続される構造となる。   Similarly to the magnetic sensing parts 121 to 124 constituting the magnetoresistive element MR1, the magnetic sensing parts 131 to 134 constituting the resistance element R1 are also arranged so that the longitudinal direction is parallel to the second direction, The connection line electrodes 151 to 155 extending along the first direction are connected in series. The resistance element R1 is connected between the voltage input electrode 191 and the voltage output electrode 193 by a series connection portion including the magnetic sensing portions 131 to 134 and the connection line electrodes 151 to 155. .

このように、磁気抵抗素子MR1と抵抗素子R1とは、所謂ミアンダ形状で形成され、且つ、磁気抵抗素子MR1を構成する感磁部121〜124と抵抗素子R1を構成する感磁部131〜134とは、長尺方向が全て被検出体の搬送方向である第二方向に沿った状態で、且つ第一方向に沿って順に配置された構成となる。   Thus, the magnetoresistive element MR1 and the resistive element R1 are formed in a so-called meander shape, and the magnetic sensitive parts 121 to 124 that constitute the magnetoresistive element MR1 and the magnetic sensitive parts 131 to 134 that constitute the resistive element R1. Is a state in which the longitudinal direction is all along the second direction, which is the conveyance direction of the detection target, and is arranged in order along the first direction.

このような構造の磁界変化検出部10から出力される磁界変化検出信号Voutψは、図1(B)に示すように、
Voutψ=Vin*MR1/(MR1+R1)
で表され、磁気抵抗素子MR1と抵抗素子R1との分圧電圧からなる。
As shown in FIG. 1B, the magnetic field change detection signal Voutψ output from the magnetic field change detection unit 10 having such a structure is
Voutψ = Vin * MR1 / (MR1 + R1)
And is composed of a divided voltage of the magnetoresistive element MR1 and the resistive element R1.

このため、磁界変化検出信号Voutψは、図1(B)に示すように、被検出体が通過していない状態での磁気抵抗素子MR1の抵抗値に応じたオフセット電圧Vdoを含むとともに、被検出体の通過によりオフセット電圧Vdoよりも高い電圧レベルで電圧増加および電圧低下する有効変動成分Vefとを含む波形となる。   Therefore, the magnetic field change detection signal Voutψ includes an offset voltage Vdo corresponding to the resistance value of the magnetoresistive element MR1 in a state where the detection target does not pass as shown in FIG. The waveform includes an effective fluctuation component Vef that increases and decreases at a voltage level higher than the offset voltage Vdo due to the passage of the body.

積分部20は、磁界変化検出部10の出力端子に接続する抵抗素子Rcrを備える。抵抗素子Rcrの磁界変化検出部10への接続端と反対側の端部は、コンデンサ素子Ccrを介してグランドに接続されている。このような回路構成とすることで、抵抗素子Rcrとコンデンサ素子Ccrとの並列回路は積分回路として機能し、抵抗素子Rcrとコンデンサ素子Ccrとの接続端である出力端子からは、磁界変化検出信号Voutψを積分した積分信号VoutIが出力される。   The integration unit 20 includes a resistance element Rcr connected to the output terminal of the magnetic field change detection unit 10. The end of the resistance element Rcr opposite to the connection end to the magnetic field change detection unit 10 is connected to the ground via the capacitor element Ccr. With such a circuit configuration, the parallel circuit of the resistance element Rcr and the capacitor element Ccr functions as an integration circuit, and a magnetic field change detection signal is output from an output terminal that is a connection end of the resistance element Rcr and the capacitor element Ccr. An integrated signal VoutI obtained by integrating Voutψ is output.

ここで、磁界変化検出信号Voutψの有効変動成分Vefは、搬送される被検出体の磁気パターンにより生じるものであるので、時間軸上では極短いものとなる。したがって、積部分部20を構成する抵抗素子Rcrとコンデンサ素子Ccrの素子定数を所定値に設定して時定数を大きく設定すれば、磁界変化検出信号Voutψの有効変動成分Vefの出現に応じた積分信号VoutIの立ち上がりは遅くなり、図1(C)の破線に示すように、オフセット電圧Vdoから略電圧レベルが変化しない積分信号VoutIを生成できる。この積分信号VoutIが本発明の「オフセット成分信号」に相当する。   Here, since the effective variation component Vef of the magnetic field change detection signal Voutψ is generated by the magnetic pattern of the detected object to be conveyed, it is extremely short on the time axis. Therefore, if the element constants of the resistance element Rcr and the capacitor element Ccr constituting the product portion 20 are set to a predetermined value and the time constant is set large, the integration corresponding to the appearance of the effective variation component Vef of the magnetic field change detection signal Voutψ. The rising edge of the signal VoutI is delayed, and as shown by the broken line in FIG. 1C, an integrated signal VoutI whose voltage level does not change can be generated from the offset voltage Vdo. This integrated signal VoutI corresponds to the “offset component signal” of the present invention.

差動増幅部30は、オペアンプOPと抵抗素子Ra,Rb,Rc,Rdを備えた差動増幅回路からなる。   The differential amplifying unit 30 includes a differential amplifying circuit including an operational amplifier OP and resistance elements Ra, Rb, Rc, and Rd.

具体的には、オペアンプOPの非反転入力端子には、抵抗素子Raを介して、磁界変化検出部10の出力端子が接続されており、磁界変化検出信号Voutψが入力される。また、非反転入力端子は、抵抗素子Rcを介してグランドGNDに接続されている。オペアンプOPの反転入力端子には、抵抗素子Rbを介して積分部20の出力端子が接続されており、積分信号VoutIが入力される。また、オペアンプOPの出力端子は抵抗素子Rdを介して、反転入力端子に接続している。このような構成とし、抵抗素子Rb,Rdの抵抗比を適宜設定することで、磁界変化検出信号Voutψから積分信号VoutIを差分して、所定のゲインKで増幅する差動増幅回路が構成される。なお、このオペアンプOPの出力端子が、差動増幅部20および磁気センサとしての出力端子となり、センサ検出信号Voutが出力される。   Specifically, the output terminal of the magnetic field change detection unit 10 is connected to the non-inverting input terminal of the operational amplifier OP through the resistance element Ra, and the magnetic field change detection signal Voutψ is input. The non-inverting input terminal is connected to the ground GND through the resistance element Rc. The output terminal of the integrating unit 20 is connected to the inverting input terminal of the operational amplifier OP through the resistance element Rb, and the integration signal VoutI is input thereto. The output terminal of the operational amplifier OP is connected to the inverting input terminal via the resistance element Rd. By adopting such a configuration and appropriately setting the resistance ratio of the resistance elements Rb and Rd, a differential amplifier circuit is constructed that amplifies the signal with a predetermined gain K by subtracting the integral signal VoutI from the magnetic field change detection signal Voutψ. . Note that the output terminal of the operational amplifier OP serves as an output terminal as the differential amplifier 20 and the magnetic sensor, and the sensor detection signal Vout is output.

そして、このように差動増幅部30では、磁界変化検出信号Voutψから積分信号VoutIが差分された上で増幅されるので、磁界変化検出信号Voutψのオフセット電圧Vdoが積分信号VoutIにより除去される。これにより、磁界変化検出信号Voutψの有効変動成分VefのみがゲインKで増幅されたものと同じになり、図1(D)に示すように、オフセット成分の殆ど無い、有効変動成分のみが高いレベルで現れるセンサ検出信号Voutを得ることができる。   As described above, in the differential amplifier 30, the integrated signal VoutI is amplified after being subtracted from the magnetic field change detection signal Voutψ, and therefore the offset voltage Vdo of the magnetic field change detection signal Voutψ is removed by the integrated signal VoutI. As a result, only the effective fluctuation component Vef of the magnetic field change detection signal Voutψ is the same as that amplified by the gain K, and as shown in FIG. 1D, only the effective fluctuation component having almost no offset component is at a high level. Can be obtained.

以上のように、本実施形態の構成を用いることで、磁界変化検出部の構成上、必然的に発生するオフセット電圧やその変動に影響を受けることなく、有効変動成分Vefを高レベルに検出することができる。これにより、被検出体の磁気パターンや磁気情報を確実且つ高精度に検出することができる。また、本実施形態の構成は、後述する各実施形態の構成と比較して、磁界変化検出部の構成が磁気抵抗素子MR1と抵抗素子R1とからなる簡素な構成であるので、上述のような検出能力を有する磁気センサを簡素な構造で実現することができる。   As described above, by using the configuration of the present embodiment, the effective variation component Vef is detected at a high level without being affected by the inevitably generated offset voltage and its variation due to the configuration of the magnetic field change detection unit. be able to. Thereby, the magnetic pattern and magnetic information of a to-be-detected body can be detected reliably and with high precision. Further, the configuration of the present embodiment is a simple configuration in which the configuration of the magnetic field change detection unit includes the magnetoresistive element MR1 and the resistive element R1 as compared with the configurations of the respective embodiments described later. A magnetic sensor having a detection capability can be realized with a simple structure.

さらに、上述のように、磁気抵抗素子MR1および抵抗素子R1をミアンダ状でかつ被検出体の搬送方向に直交して感磁部を交互に配置する構成を用い、特に第1の方向に沿って磁気抵抗素子MR1の感磁部と抵抗素子R1の感磁部とが隣り合うように配置された一対の配列を複数形成しているので、磁気抵抗素子MR1と抵抗素子R1との間での温度差および時間差を無くすことができる。これにより、絶対磁気量に基づく磁界変化検出信号Voutψが得られ、より正確なセンサ検出信号Voutを得ることができる。   Furthermore, as described above, the magnetoresistive element MR1 and the resistive element R1 are arranged in a meander shape and alternately arranged with the magnetic sensitive portions orthogonal to the transport direction of the detection target, particularly along the first direction. Since a plurality of pairs of arrays in which the magnetosensitive part of the magnetoresistive element MR1 and the magnetosensitive part of the resistive element R1 are adjacent to each other are formed, the temperature between the magnetoresistive element MR1 and the resistive element R1 Differences and time differences can be eliminated. Thereby, the magnetic field change detection signal Voutψ based on the absolute magnetic quantity is obtained, and a more accurate sensor detection signal Vout can be obtained.

次に、第2の実施形態に係る磁気センサについて図を参照して説明する。図3は、本実施形態に係る磁気センサの等価回路および動作説明を行うための図である。
本実施形態の磁気センサは、積分部20および差動増幅部30の構成および基本的な信号処理は、同じであり、積分部20よりも前段の構成が、第1の実施形態の磁気センサと異なる。
Next, a magnetic sensor according to a second embodiment will be described with reference to the drawings. FIG. 3 is a diagram for explaining an equivalent circuit and operation of the magnetic sensor according to the present embodiment.
The magnetic sensor of the present embodiment has the same configuration and basic signal processing of the integrating unit 20 and the differential amplifying unit 30, and the configuration before the integrating unit 20 is the same as that of the magnetic sensor of the first embodiment. Different.

本実施形態の磁気センサは、磁界変化検出部10’、前段差動増幅部40、積分部20、および差動増幅部30を有する。   The magnetic sensor of the present embodiment includes a magnetic field change detection unit 10 ′, a previous-stage differential amplification unit 40, an integration unit 20, and a differential amplification unit 30.

磁界変化検出部10’は、抵抗素子R1と磁気抵抗素子MR1とからなる第1直列回路と、抵抗素子R3および抵抗素子R4を直列接続した定電圧回路とを備える。第1直列回路の抵抗素子R1側の端部は印加電圧Vinの入力端子であり、直列回路の磁気抵抗素子MR1側の端部はグランドGNDに接続されている。抵抗素子R1と磁気抵抗素子MR1との接続点は、磁界変化検出信号Voutψの出力端子である。   The magnetic field change detection unit 10 'includes a first series circuit including a resistance element R1 and a magnetoresistance element MR1, and a constant voltage circuit in which the resistance element R3 and the resistance element R4 are connected in series. The end of the first series circuit on the side of the resistance element R1 is an input terminal for the applied voltage Vin, and the end of the series circuit on the side of the magnetoresistive element MR1 is connected to the ground GND. A connection point between the resistor element R1 and the magnetoresistive element MR1 is an output terminal of the magnetic field change detection signal Voutψ.

また、二つの抵抗素子R3,R4の直列回路からなる定電圧回路の抵抗素子R3側の端部は印加電圧Vinの入力端子に接続され、定電圧回路の抵抗素子R4側の端部はグランドGNDに接続されている。二つの抵抗素子R3,R4の接続点は、定電圧信号VoutRの出力端子である。   Further, the end of the constant voltage circuit composed of a series circuit of the two resistance elements R3 and R4 is connected to the input terminal of the applied voltage Vin, and the end of the constant voltage circuit on the side of the resistance element R4 is connected to the ground GND. It is connected to the. A connection point between the two resistance elements R3 and R4 is an output terminal of the constant voltage signal VoutR.

磁気抵抗素子MR1は、第1の実施形態に示したように、磁界の変化に応じて高感度で抵抗値が変化する素子である。抵抗素子R1、抵抗素子R3および抵抗素子R4は、磁界の変化に対応することなく定抵抗値となる素子である。この際、抵抗素子R1の抵抗値は、磁気抵抗素子MR1が被検出体による通過磁束の変化を受けない状態での抵抗値と略一致するように設定されている。これは、例えば後述の図4に示すように、磁気抵抗素子MR1よりも抵抗素子R1を2/3薄く且つ2/3短く形成することにより実現される。また、抵抗素子R3,R4についても同様に、抵抗素子R4を抵抗素子R3よりも2/3薄く2/3短く形成することにより、これら抵抗素子R3,R4の抵抗値を略一致させることができる。   As shown in the first embodiment, the magnetoresistive element MR1 is an element whose resistance value changes with high sensitivity in accordance with a change in magnetic field. The resistance element R1, the resistance element R3, and the resistance element R4 are elements that have constant resistance values without corresponding to changes in the magnetic field. At this time, the resistance value of the resistance element R1 is set so as to substantially match the resistance value in a state where the magnetoresistance element MR1 is not subjected to the change of the passing magnetic flux by the detection target. For example, as shown in FIG. 4 described later, this is realized by forming the resistance element R1 to be 2/3 thinner and 2/3 shorter than the magnetoresistive element MR1. Similarly, the resistance values of the resistance elements R3 and R4 can be made substantially equal by forming the resistance element R4 to be 2/3 thinner and 2/3 shorter than the resistance element R3. .

磁界変化検出部10’は、より具体的には図4に示すような構造からなる。図4は本実施形態の磁界変化検出部10’の構成を示す平面図である。   More specifically, the magnetic field change detection unit 10 'has a structure as shown in FIG. FIG. 4 is a plan view showing the configuration of the magnetic field change detection unit 10 ′ of this embodiment.

磁界変化検出部10’は、第1の実施形態の磁界変化検出部10と同様に、Si基板31上に、磁気抵抗素子MR1、抵抗素子R1,R3,R4を構成する半導体膜(感磁部)や電極が形成される。基板31における磁界変化検出部10’の形成領域の第二方向(図4における横方向)に沿った一方端には、グランド接続するためのグランド接続用電極3921,3922と、定電圧信号VoutRの出力端子である電圧出力用電極3932が形成されている。他方端には、磁界変化検出信号Voutψを出力する電圧出力用電極3931と、印加電圧Vinを与える電圧入力用電極3911,3912が形成されている。これら電圧入力用電極3911,3912、グランド接続用電極3921,3922、および電圧出力用電極3931,3932は導電性材料からなる。   Similarly to the magnetic field change detection unit 10 of the first embodiment, the magnetic field change detection unit 10 ′ is a semiconductor film (magnetic sensing unit) that forms the magnetoresistive element MR1 and the resistance elements R1, R3, and R4 on the Si substrate 31. ) And electrodes are formed. At one end along the second direction (lateral direction in FIG. 4) of the formation region of the magnetic field change detection unit 10 ′ on the substrate 31, there are ground connection electrodes 3921 and 3922 for ground connection, and the constant voltage signal VoutR. A voltage output electrode 3932 as an output terminal is formed. At the other end, a voltage output electrode 3931 for outputting a magnetic field change detection signal Voutψ and voltage input electrodes 3911 and 3912 for providing an applied voltage Vin are formed. These voltage input electrodes 3911 and 3912, ground connection electrodes 3921 and 3922, and voltage output electrodes 3931 and 3932 are made of a conductive material.

基板31における第二方向の一方端と他方端との間の領域には、磁気抵抗素子MR1を構成する感磁部3211,3221,3231および接続ライン電極3411,3421,3431,3441と、抵抗素子R1を構成する感磁部3311,3321および接続ライン電極3511,3521,3441と、一方の抵抗素子R3を構成する感磁部3312,3322,3332および接続ライン電極3512,3522,3532,3542と、他方の抵抗素子R4を構成する感磁部3212,3222および接続ライン電極3412,3422,3542とが形成されている。磁気抵抗素子MR1を構成する感磁部3211,3221,3231には短絡電極が形成され、抵抗素子R1,R3,R4を構成する他の感磁部には短絡電極が形成されていない。   In a region between one end and the other end of the substrate 31 in the second direction, the magnetosensitive elements 3211, 3221, 3231 and the connection line electrodes 3411, 3421, 3431, 3441 constituting the magnetoresistive element MR1, and the resistive element Magnetic sensing parts 3311, 3321 and connection line electrodes 3511, 3521, 3441 constituting R1, magnetic sensing parts 3312, 3322, 3332 and connection line electrodes 3512, 3522, 3532, 3542 constituting one resistance element R3, Magnetic sensing portions 3212 and 3222 and connection line electrodes 3412, 3422, and 3542 constituting the other resistance element R4 are formed. Short-circuit electrodes are formed on the magnetic sensing portions 3211, 3221, and 3231 constituting the magnetoresistive element MR1, and no short-circuit electrodes are formed on the other magnetic sensitive portions constituting the resistive elements R1, R3, and R4.

磁気抵抗素子MR1を構成する感磁部3211,3221,3231は、接続ライン電極3411,3421,3431,3441により、直列接続されている。そして、これら感磁部および接続ライン電極からなる直列接続部により、磁気抵抗素子MR1は、グランド接続用電極3921と電圧出力用電極3931の間に接続される構造となる。   The magnetic sensitive parts 3211, 3221, 3231 constituting the magnetoresistive element MR1 are connected in series by connection line electrodes 3411, 3421, 3431, 3441. The magnetoresistive element MR1 is connected between the ground connection electrode 3921 and the voltage output electrode 3931 by the series connection portion including the magnetic sensing portion and the connection line electrode.

抵抗素子R1を構成する感磁部3311,3321は接続ライン電極3511,3521,3441により直列接続されている。そして、これら感磁部および接続ライン電極からなる直列接続部により、抵抗素子R1は、電圧入力用電極3911と電圧出力用電極3931との間に接続される構造となる。   The magnetic sensing parts 3311 and 3321 constituting the resistance element R1 are connected in series by connection line electrodes 3511, 3521 and 3441. The resistance element R1 is connected between the voltage input electrode 3911 and the voltage output electrode 3931 by the series connection portion including the magnetic sensing portion and the connection line electrode.

一方の抵抗素子R3を構成する感磁部3312,3322,3332は、接続ライン電極3512,3522,3532,3542により直列接続されている。そして、これら感磁部および接続ライン電極からなる直列接続部により、一方の抵抗素子R3は、電圧入力用電極3912と電圧出力用電極3932との間に接続される構造となる。   The magnetic sensing parts 3312, 3322, 3332 constituting one resistance element R3 are connected in series by connection line electrodes 3512, 3522, 3532, 3542. One resistance element R3 is connected between the voltage input electrode 3912 and the voltage output electrode 3932 by the series connection portion including the magnetic sensing portion and the connection line electrode.

他方の抵抗素子R4を構成する感磁部3212,3222は、接続ライン電極3412,3422,3542により直列接続されている。そして、これら感磁部および接続ライン電極からなる直列接続部により、他方の抵抗素子R4は、グランド接続用電極3922と電圧出力用電極3932との間に接続される構造となる。   The magnetic sensing parts 3212 and 3222 constituting the other resistance element R4 are connected in series by connection line electrodes 3412, 3422, and 3542. The other resistance element R4 is connected between the ground connection electrode 3922 and the voltage output electrode 3932 by the series connection portion including the magnetic sensing portion and the connection line electrode.

このように、磁気抵抗素子MR1と抵抗素子R1,R3,R4とは、所謂ミアンダ形状で形成され、且つ、磁気抵抗素子MR1を構成する全ての感磁部と抵抗素子R1,R3,R4を構成する全ての感磁部とは、長尺方向が被検出体の搬送方向である第二方向に沿った状態で、且つ第一方向に沿って順に配置された構成となる。   As described above, the magnetoresistive element MR1 and the resistive elements R1, R3, and R4 are formed in a so-called meander shape, and constitute all the magnetosensitive parts and the resistive elements R1, R3, and R4 that constitute the magnetoresistive element MR1. All the magnetic sensing parts to be configured have a configuration in which the longitudinal direction is along the second direction, which is the conveyance direction of the detection target, and is sequentially arranged along the first direction.

このような構造の磁界変化検出部10’から出力される磁界変化検出信号Voutψは、図3(B)に示すように、
Voutψ=Vin*MR1/(MR1+R1)
で表され、磁気抵抗素子MR1と抵抗素子R1との分圧電圧からなる。
As shown in FIG. 3B, the magnetic field change detection signal Voutψ output from the magnetic field change detection unit 10 ′ having such a structure is
Voutψ = Vin * MR1 / (MR1 + R1)
And is composed of a divided voltage of the magnetoresistive element MR1 and the resistive element R1.

このため、磁界変化検出信号Voutψは、図3(B)に示すように、被検出体が通過していない状態での磁気抵抗素子MR1の抵抗値に応じたオフセット電圧を含むとともに、被検出体の通過によりオフセット電圧よりも高い電圧レベルで電圧増加および電圧低下する有効変動成分とを含む波形となる。なお、このオフセット電圧は、上述のように非検知時の磁気抵抗素子MR1の抵抗値と、抵抗素子R1の抵抗値とを略一致するように設定しているので、Vinとグランドレベルとの中間電圧に近い値となる。   Therefore, as shown in FIG. 3B, the magnetic field change detection signal Voutψ includes an offset voltage corresponding to the resistance value of the magnetoresistive element MR1 in a state where the detection target does not pass, and the detection target. As a result, the waveform includes an effective fluctuation component that increases and decreases at a voltage level higher than the offset voltage. Since the offset voltage is set so that the resistance value of the magnetoresistive element MR1 at the time of non-detection and the resistance value of the resistance element R1 substantially coincide with each other as described above, the offset voltage is intermediate between Vin and the ground level. The value is close to the voltage.

一方で、定電圧信号VoutRは、抵抗素子R3と抵抗素子R4との抵抗値が一致するように設定されているので、
VoutR=Vin/2
で表され、Vinとグランドレベルとの中間電圧に相当する一定の電圧からなる。
On the other hand, the constant voltage signal VoutR is set so that the resistance values of the resistance element R3 and the resistance element R4 match.
VoutR = Vin / 2
And a constant voltage corresponding to an intermediate voltage between Vin and the ground level.

前段差動増幅部40は、オペアンプOPfと抵抗素子Rfa,Rfb,Rfc,Rfdを備えた差動増幅回路からなる。   The pre-stage differential amplification unit 40 includes a differential amplification circuit including an operational amplifier OPf and resistance elements Rfa, Rfb, Rfc, and Rfd.

具体的には、オペアンプOPfの非反転入力端子には、抵抗素子Rfaを介して、磁界変化検出部10’の磁界変化検出信号Voutψの出力端が接続されており、磁界変化検出信号Voutψが入力される。また、非反転入力端子は、抵抗素子Rfcを介してグランドに接続されている。   Specifically, the output terminal of the magnetic field change detection signal Voutψ of the magnetic field change detection unit 10 ′ is connected to the non-inverting input terminal of the operational amplifier OPf through the resistance element Rfa, and the magnetic field change detection signal Voutψ is input. Is done. The non-inverting input terminal is connected to the ground via the resistance element Rfc.

オペアンプOPfの反転入力端子には、抵抗素子Rfbを介して磁界変化検出部10’の定電圧信号VoutRの出力端が接続されており、定電圧信号VoutRが入力される。また、オペアンプOPfの出力端子は抵抗素子Rfdを介して、反転入力端子に接続している。このような構成とし、抵抗素子Rfb,Rfdの抵抗比を適宜設定することで、磁界変化検出信号Voutψから定電圧信号VoutRを差分して、所定のゲインKfで増幅する差動増幅回路が構成される。   The output terminal of the constant voltage signal VoutR of the magnetic field change detection unit 10 ′ is connected to the inverting input terminal of the operational amplifier OPf through the resistance element Rfb, and the constant voltage signal VoutR is input thereto. The output terminal of the operational amplifier OPf is connected to the inverting input terminal via the resistance element Rfd. By adopting such a configuration and appropriately setting the resistance ratio of the resistance elements Rfb and Rfd, a differential amplifier circuit is configured that subtracts the constant voltage signal VoutR from the magnetic field change detection signal Voutψ and amplifies it with a predetermined gain Kf. The

そして、このように前段差動増幅部40では、磁界変化検出信号Voutψからオフセット分に略相当する定電圧信号VoutRが差分された上で増幅されるので、磁界変化検出信号Voutψのオフセット電圧がほぼ除去される。これにより、磁界変化検出信号Voutψの有効変動成分のみがゲインKfで増幅されたものと同じになり、図3(C)に示すように、オフセット成分が低減され、有効変動成分が増幅された補正後検出信号Voutψ’を得ることができる。   In this way, in the previous-stage differential amplifying unit 40, the constant voltage signal VoutR substantially corresponding to the offset is amplified from the magnetic field change detection signal Voutψ and then amplified, so that the offset voltage of the magnetic field change detection signal Voutψ is almost equal. Removed. As a result, only the effective variation component of the magnetic field change detection signal Voutψ is the same as that amplified by the gain Kf, and the offset component is reduced and the effective variation component is amplified as shown in FIG. A post-detection signal Voutψ ′ can be obtained.

このように生成された補正検出信号Voutψ’は、上述の第1の実施形態と同様に、積分部20へ入力されるとともに、差動増幅部30の抵抗素子Raを介してオペアンプOPの非反転入力端子へ与えられる。   The correction detection signal Voutψ ′ thus generated is input to the integration unit 20 and the non-inversion of the operational amplifier OP via the resistance element Ra of the differential amplification unit 30 as in the first embodiment. It is given to the input terminal.

積分部20は、補正検出信号Voutψ’を積分処理することで、図3(D)に示すような積分信号VoutI’を生成する。積分信号VoutI’は、差動増幅部30の抵抗素子Rbを介してオペアンプOPの反転入力端子へ与えられる。   The integrator 20 integrates the correction detection signal Voutψ ′ to generate an integration signal VoutI ′ as shown in FIG. The integration signal VoutI ′ is given to the inverting input terminal of the operational amplifier OP via the resistance element Rb of the differential amplifier 30.

差動増幅部30は、補正検出信号Voutψ’に対して、積分信号VoutI’を差分した状態で増幅処理を行うので、補正検出信号Voutψ’のオフセット電圧も除去され、補正検出信号Voutψ’の有効変動成分のみがゲインK’で増幅される。これにより、図3(E)に示すように、さらにオフセット成分が除去され、且つより有効変動成分のレベルが高いセンサ検出信号Voutを得ることができる。   The differential amplifying unit 30 performs amplification processing in a state where the integral signal VoutI ′ is subtracted from the correction detection signal Voutψ ′, so that the offset voltage of the correction detection signal Voutψ ′ is also removed, and the correction detection signal Voutψ ′ is effective. Only the fluctuation component is amplified by the gain K ′. Thereby, as shown in FIG. 3E, it is possible to obtain the sensor detection signal Vout in which the offset component is further removed and the level of the effective variation component is higher.

なお、このような構成では、前段差動増幅回路40でオフセット成分が抑圧されているので、最終段である差動増幅部30では、ゲインK’の値を非常に大きく取ることが可能になる。したがって、本実施形態の構成を用いることで、第1の実施形態の構成よりも大きなゲインを設定することができ、センサ検出信号Voutの有効変動成分のレベルを非常に高くすることができる。これにより、より確実且つ高精度に検出可能な磁気センサを実現することができる。   In such a configuration, since the offset component is suppressed by the upstream differential amplifier circuit 40, the differential amplifier 30 which is the final stage can take a very large value of the gain K ′. . Therefore, by using the configuration of the present embodiment, a gain larger than that of the configuration of the first embodiment can be set, and the level of the effective variation component of the sensor detection signal Vout can be made extremely high. Thereby, the magnetic sensor which can be detected more reliably and with high accuracy can be realized.

図5は、本実施形態の構成を用いた場合でのオフセット実験結果を示すグラフである。図5に示すように、本実施形態の構成を用いることで、磁界変化検出信号Voutψと定電圧信号VoutRの差が±0.5V程度になっても、センサ検出信号Voutのオフセット電圧が±1.0V未満に抑圧することができる。これにより、オフセット電圧の殆ど無いセンサ検出信号Voutを得ることができる。さらに、このような信号間の電位差から生じるオフセット電圧の遷移特性は、磁気抵抗素子や抵抗素子の温度特性等によるオフセット電圧の変動にも適用できる。したがって、本実施形態の構成を用いることで、磁気抵抗素子や抵抗素子の温度特性に影響されることなく、確実且つ高精度な磁気検出を行える磁気センサを実現することができる。   FIG. 5 is a graph showing an offset experiment result when the configuration of the present embodiment is used. As shown in FIG. 5, by using the configuration of this embodiment, even if the difference between the magnetic field change detection signal Voutψ and the constant voltage signal VoutR is about ± 0.5 V, the offset voltage of the sensor detection signal Vout is ± 1. It can be suppressed to less than 0.0V. Thereby, the sensor detection signal Vout having almost no offset voltage can be obtained. Further, the offset voltage transition characteristic resulting from the potential difference between the signals can be applied to the fluctuation of the offset voltage due to the temperature characteristic of the magnetoresistive element or the resistive element. Therefore, by using the configuration of the present embodiment, it is possible to realize a magnetic sensor that can perform magnetic detection reliably and highly accurately without being affected by the magnetoresistive element or the temperature characteristics of the resistive element.

このように、前段差動増幅部40で、磁界変化検出信号Voutψのオフセット成分と定電圧信号VoutRとに或程度の差が生じていても、積分部20および差動増幅部30で、これらに起因するオフセットが除去されるので、磁気抵抗素子MR1、抵抗素子R1,R3,R4に要求される精度や温度特性も極端に優れたものにする必要がない。これにより、設計が容易になるとともに、精度や温度特性が若干低下するような安価な素子であっても利用することができる。   As described above, even if there is a certain difference between the offset component of the magnetic field change detection signal Voutψ and the constant voltage signal VoutR in the front-stage differential amplification unit 40, the integration unit 20 and the differential amplification unit 30 Since the resulting offset is removed, the accuracy and temperature characteristics required for the magnetoresistive element MR1 and the resistive elements R1, R3, and R4 do not need to be extremely excellent. As a result, the design is facilitated, and even an inexpensive element whose accuracy and temperature characteristics are slightly lowered can be used.

さらに、上述のように磁気抵抗素子MR1と抵抗素子R1,R3,R4をミアンダ状に形成することで、第1の実施形態と同様に絶対磁気量からなる磁界変化検出信号を得ることができる。   Further, by forming the magnetoresistive element MR1 and the resistive elements R1, R3, and R4 in a meander shape as described above, it is possible to obtain a magnetic field change detection signal made up of an absolute magnetic quantity as in the first embodiment.

次に、第3の実施形態に係る磁気センサについて図を参照して説明する。図6は、本実施形態に係る磁気センサの等価回路および動作説明を行うための図である。   Next, a magnetic sensor according to a third embodiment will be described with reference to the drawings. FIG. 6 is a diagram for explaining an equivalent circuit and operation of the magnetic sensor according to the present embodiment.

本実施形態の磁気センサは、磁界変化検出部10”の構成および前段差動増幅部40’の各抵抗素子の抵抗値が異なるのみで、他の構成は第2の実施形態の磁気センサと同じである。   The magnetic sensor of the present embodiment is the same as the magnetic sensor of the second embodiment except that the configuration of the magnetic field change detection unit 10 ″ and the resistance value of each resistance element of the previous-stage differential amplification unit 40 ′ are different. It is.

磁界変化検出部10”は、抵抗素子R1と磁気抵抗素子MR1とからなる第1直列回路と、磁気抵抗素子MR2と抵抗素子R2を直列接続した第2直列回路とを備える。第1直列回路の抵抗素子R1側の端部は印加電圧Vinの入力端子であり、直列回路の磁気抵抗素子MR1側の端部はグランドに接続されている。抵抗素子R1と磁気抵抗素子MR1との接続点は、第1磁界変化検出信号Voutψ(+)の出力端子である。   The magnetic field change detection unit 10 ″ includes a first series circuit including a resistor element R1 and a magnetoresistive element MR1, and a second series circuit in which the magnetoresistive element MR2 and the resistor element R2 are connected in series. The end portion on the resistance element R1 side is an input terminal for the applied voltage Vin, and the end portion on the magnetoresistive element MR1 side of the series circuit is connected to the ground, and the connection point between the resistance element R1 and the magnetoresistive element MR1 is This is an output terminal for the first magnetic field change detection signal Voutψ (+).

第2直列回路の磁気抵抗素子MR2側の端部は印加電圧Vinの入力端子であり、第2直列回路の抵抗素子R2側の端部はグランドに接続されている。磁気抵抗素子MR2と抵抗素子R2との接続点は、第2磁界変化検出信号Voutψ(−)の出力端子である。   The end of the second series circuit on the side of the magnetoresistive element MR2 is an input terminal for the applied voltage Vin, and the end of the second series circuit on the side of the resistor R2 is connected to the ground. A connection point between the magnetoresistive element MR2 and the resistive element R2 is an output terminal of the second magnetic field change detection signal Voutψ (−).

磁気抵抗素子MR1,MR2は、第1の実施形態に示したように、磁界の変化に応じて高感度で抵抗値が変化する素子である。抵抗素子R1,R2は、磁界の変化に対応することなく定抵抗値となる素子である。この際、抵抗素子R1と被検出体の磁界を受けない状態での磁気抵抗素子MR1との分圧比と、被検出体の磁界を受けない状態での磁気抵抗素子MR2と抵抗素子R2との分圧比とは、略同じになるように設定されている。   As shown in the first embodiment, the magnetoresistive elements MR1 and MR2 are elements whose resistance values change with high sensitivity in accordance with changes in the magnetic field. The resistance elements R1 and R2 are elements that have a constant resistance value without corresponding to a change in the magnetic field. At this time, the voltage dividing ratio between the resistance element R1 and the magnetoresistive element MR1 in a state where the magnetic field of the detection object is not received, and the division ratio of the magnetoresistance element MR2 and the resistance element R2 in the state where the magnetic field of the detection object is not received The pressure ratio is set to be substantially the same.

磁界変化検出部10”は、より具体的には図7に示すような構造からなる。図7は本実施形態の磁界変化検出部10”の構成を示す平面図である。   More specifically, the magnetic field change detection unit 10 ″ has a structure as shown in FIG. 7. FIG. 7 is a plan view showing the configuration of the magnetic field change detection unit 10 ″ of the present embodiment.

磁界変化検出部10”は、第2の実施形態の磁界変化検出部10’と同様の構造からなり、Si基板41上に、磁気抵抗素子MR1,MR2および抵抗素子R1,R2を構成する半導体膜(感磁部)や電極が形成される。基板41における磁界変化検出部10”の形成領域の第二方向(図7における横方向)に沿った一方端には、グランド接続するためのグランド接続用電極4921,4922と、第2磁界変化検出信号Voutψ(−)の出力端子である電圧出力用電極4932が形成されている。他方端には、第1磁界変化検出信号Voutψ(+)を出力する電圧出力用電極4931と、印加電圧Vinを与える電圧入力用電極4911,4912が形成されている。これら電圧入力用電極4911,4912、グランド接続用電極4921,4922、および電圧出力用電極4931,4932は導電性材料からなる。   The magnetic field change detection unit 10 ″ has a structure similar to that of the magnetic field change detection unit 10 ′ of the second embodiment, and a semiconductor film constituting the magnetoresistive elements MR1 and MR2 and the resistance elements R1 and R2 on the Si substrate 41. (Magnetic sensing portion) and electrodes are formed. A ground connection for ground connection is provided at one end along the second direction (lateral direction in FIG. 7) of the formation region of the magnetic field change detection portion 10 ″ in the substrate 41. Electrodes 4921 and 4922 and a voltage output electrode 4932 which is an output terminal of the second magnetic field change detection signal Voutψ (−) are formed. At the other end, a voltage output electrode 4931 for outputting the first magnetic field change detection signal Voutψ (+) and voltage input electrodes 4911 and 4912 for applying the applied voltage Vin are formed. These voltage input electrodes 4911 and 4912, ground connection electrodes 4921 and 4922, and voltage output electrodes 4931 and 4932 are made of a conductive material.

基板41における第二方向の一方端と他方端との間の領域には、磁気抵抗素子MR1を構成する感磁部4211,4221,4231および接続ライン電極4411,4421,4431,4441と、抵抗素子R1を構成する感磁部4311,4321および接続ライン電極4511,4521,4441と、磁気抵抗素子MR2を構成する感磁部4312,4322,4332および接続ライン電極4512,4522,4532,4542と、抵抗素子R2を構成する感磁部4212,4222および接続ライン電極4412,4422,4542とが形成されている。磁気抵抗素子MR1を構成する感磁部4211,4221,4231および磁気抵抗素子MR2を構成する感磁部4312,4322,4332には短絡電極が形成され、抵抗素子R1,R2を構成する他の感磁部には短絡電極が形成されていない。   In a region between one end and the other end of the substrate 41 in the second direction, magnetic sensitive portions 4211, 4221, 4231 and connection line electrodes 4411, 4421, 4431, 4441 constituting the magnetoresistive element MR1, and a resistive element Magnetic sensing parts 4311, 4321 and connection line electrodes 4511, 4521, 4441 constituting R1, magnetic sensing parts 4312, 4322, 4332 and connection line electrodes 4512, 4522, 4532, 4542 constituting a magnetoresistive element MR2, resistance Magnetic sensing portions 4212 and 4222 and connection line electrodes 4412, 4422, and 4542 constituting the element R2 are formed. Short-circuit electrodes are formed on the magnetic sensing parts 4211, 4221, 4231 constituting the magnetoresistive element MR1 and the magnetic sensing parts 4312, 4322, 4332 constituting the magnetoresistive element MR2, and other sensing elements constituting the resistive elements R1, R2. No short-circuit electrode is formed on the magnetic part.

磁気抵抗素子MR1を構成する感磁部4211,4221,4231は、接続ライン電極4411,4421,4431,4441により、直列接続されている。そして、これら感磁部および接続ライン電極からなる直列接続部により、磁気抵抗素子MR1は、グランド接続用電極4921と電圧出力用電極4931の間に接続される構造となる。   The magnetic sensing parts 4211, 4221, 4231 constituting the magnetoresistive element MR1 are connected in series by connection line electrodes 4411, 4421, 4431, 4441. The magnetoresistive element MR1 is connected between the ground connection electrode 4921 and the voltage output electrode 4931 by the series connection portion including the magnetic sensing portion and the connection line electrode.

抵抗素子R1を構成する感磁部4311,3321は接続ライン電極4511,4521,4441により直列接続されている。そして、これら感磁部および接続ライン電極からなる直列接続部により、抵抗素子R1は、電圧入力用電極4911と電圧出力用電極4931との間に接続される構造となる。   The magnetic sensing parts 4311 and 3321 constituting the resistance element R1 are connected in series by connection line electrodes 4511, 4521 and 4441. The resistance element R1 is connected between the voltage input electrode 4911 and the voltage output electrode 4931 by the series connection portion including the magnetic sensing portion and the connection line electrode.

磁気抵抗素子MR2を構成する感磁部4312,4322,4332は、接続ライン電極4512,4522,4532,4542により直列接続されている。そして、これら感磁部および接続ライン電極からなる直列接続部により、磁気抵抗素子MR2は、電圧入力用電極4912と電圧出力用電極4932との間に接続される構造となる。   The magnetic sensing parts 4312, 4322, 4332 constituting the magnetoresistive element MR2 are connected in series by connection line electrodes 4512, 4522, 4532, 4542. The magnetoresistive element MR <b> 2 is connected between the voltage input electrode 4912 and the voltage output electrode 4932 by the series connection portion including the magnetic sensing portion and the connection line electrode.

抵抗素子R2を構成する感磁部4212,4222は、接続ライン電極4412,4422,4542により直列接続されている。そして、これら感磁部および接続ライン電極からなる直列接続部により、抵抗素子R2は、グランド接続用電極4922と電圧出力用電極4932との間に接続される構造となる。   The magnetic sensing parts 4212 and 4222 constituting the resistance element R2 are connected in series by connection line electrodes 4412, 4422, and 4542. The resistance element R2 is connected between the ground connection electrode 4922 and the voltage output electrode 4932 by the series connection portion including the magnetic sensing portion and the connection line electrode.

このように、磁気抵抗素子MR1,MR2と抵抗素子R1,R2とは、所謂ミアンダ形状で形成され、且つ、磁気抵抗素子MR1,MR2を構成する全ての感磁部と抵抗素子R1,R2を構成する全ての感磁部とは、長尺方向が被検出体の搬送方向である第二方向に沿った状態で、且つ第一方向に沿って順に配置された構成となる。   As described above, the magnetoresistive elements MR1 and MR2 and the resistive elements R1 and R2 are formed in a so-called meander shape, and constitute all the magnetosensitive parts and the resistive elements R1 and R2 constituting the magnetoresistive elements MR1 and MR2. All the magnetic sensing parts to be configured have a configuration in which the longitudinal direction is along the second direction, which is the conveyance direction of the detection target, and is sequentially arranged along the first direction.

このような構造の磁界変化検出部10”から出力される第1磁界変化検出信号Voutψ(+)は、磁気抵抗素子MR1が電圧出力端子よりもグランド側にあるので、図6(B)に示すように、
Voutψ(+)=Vin*MR1/(MR1+R1)
で表される。
The first magnetic field change detection signal Voutψ (+) output from the magnetic field change detection unit 10 ″ having such a structure is shown in FIG. 6B because the magnetoresistive element MR1 is on the ground side with respect to the voltage output terminal. like,
Voutψ (+) = Vin * MR1 / (MR1 + R1)
It is represented by

これにより、図6(B)に示すように、被検出体が通過していない状態で磁気抵抗素子MR1の抵抗値に応じたオフセット電圧からなり、被検出体の通過によりオフセット電圧よりも高い電圧レベルで電圧が増加および低下する有効変動成分(+)を含む波形となる。   As a result, as shown in FIG. 6B, an offset voltage corresponding to the resistance value of the magnetoresistive element MR1 in a state in which the detection target does not pass is higher than the offset voltage due to the passage of the detection target. The waveform includes an effective fluctuation component (+) in which the voltage increases and decreases with the level.

一方、第2磁界変化検出信号Voutψ(−)は、磁気抵抗素子MR2が電圧出力端子よりも電圧入力端子側にあるので、図6(B)に示すように、
Voutψ(−)=Vin*R2/(MR2+R2)
で表される。
On the other hand, since the magnetoresistive element MR2 is closer to the voltage input terminal than the voltage output terminal, the second magnetic field change detection signal Voutψ (−) is as shown in FIG.
Voutψ (−) = Vin * R2 / (MR2 + R2)
It is represented by

これにより、図6(B)に示すように、被検出体が通過していない状態で抵抗素子R2の抵抗値に応じたオフセット電圧からなり、被検出体の通過により当該オフセット電圧よりも低い電圧レベルで電圧が低下および増加する有効変動成分(−)を含む波形となる。   As a result, as shown in FIG. 6B, the voltage is composed of an offset voltage corresponding to the resistance value of the resistance element R2 in a state in which the detection target is not passing, and is lower than the offset voltage due to the passage of the detection target. The waveform includes an effective fluctuation component (−) in which the voltage decreases and increases with the level.

この際、上述のように、被検出体の搬送方向に対して直交する方向(図7の第一方向)に沿って磁気抵抗素子MR1,MR2の感磁部と、抵抗素子R1,R2の感磁部とが隣り合うように配置された一対の配列を複数並ばせることで、有効変動成分(+)の極大タイミングと、有効変動成分(−)の極小タイミングとを略同じにすることができる。   At this time, as described above, the magnetic sensing portions of the magnetoresistive elements MR1 and MR2 and the sensitive elements of the resistive elements R1 and R2 along the direction (first direction in FIG. 7) orthogonal to the transport direction of the detection target. By arranging a plurality of pairs of arrays arranged so that the magnetic parts are adjacent to each other, the maximum timing of the effective variation component (+) and the minimum timing of the effective variation component (-) can be made substantially the same. .

前段差動増幅部40’は、オペアンプOPfと抵抗素子Rfa’,Rfb’,Rfc’,Rfd’を備えた差動増幅回路からなり、第2の実施形態の前段差動増幅部40と同じ構成からなる。このオペアンプOPfの反転入力端子には、第2磁界変化検出信号Voutψ(−)が入力され、非反転入力端子には第1磁界変化検出信号Voutψ(+)が入力される。これにより、前段差動増幅部40’は、第1磁界変化検出信号Voutψ(+)に対して第2磁界変化検出信号Voutψ(−)を差動増幅し、すなわち図6(C)に示すように、第1磁界変化検出信号Voutψ(+)と反転した第2磁界変化検出信号Voutψ(−)を加算して、ゲインKf’で増幅した合成検出信号Voutψ”を出力する。この際、第1磁界変化検出信号Voutψ(+)のオフセット電圧と第2磁界変化検出信号Voutψ(−)のオフセット電圧とは、略同じに設定されているので、差動増幅により相殺され、差動増幅後の合成検出信号Voutψ”に含まれるオフセット電圧は、差動増幅前の各信号と比較して低減される。   The front-stage differential amplifying unit 40 ′ includes a differential amplifying circuit including an operational amplifier OPf and resistance elements Rfa ′, Rfb ′, Rfc ′, and Rfd ′, and has the same configuration as that of the front-stage differential amplifying unit 40 of the second embodiment. Consists of. The second magnetic field change detection signal Voutψ (−) is input to the inverting input terminal of the operational amplifier OPf, and the first magnetic field change detection signal Voutψ (+) is input to the non-inverting input terminal. As a result, the previous-stage differential amplification unit 40 ′ differentially amplifies the second magnetic field change detection signal Voutψ (−) with respect to the first magnetic field change detection signal Voutψ (+), that is, as shown in FIG. Is added to the first magnetic field change detection signal Voutψ (+) and the inverted second magnetic field change detection signal Voutψ (−), and a combined detection signal Voutψ ″ amplified by the gain Kf ′ is output. Since the offset voltage of the magnetic field change detection signal Voutψ (+) and the offset voltage of the second magnetic field change detection signal Voutψ (−) are set to be approximately the same, they are canceled out by differential amplification and combined after differential amplification. The offset voltage included in the detection signal Voutψ ″ is reduced as compared with each signal before differential amplification.

積分部20は、合成検出信号Voutψ’を積分処理することで、図6(D)に示すような積分信号VoutI”を生成する。積分信号VoutI”は、差動増幅部30の抵抗素子Rbを介してオペアンプOPの反転入力端子へ与えられる。   The integration unit 20 integrates the combined detection signal Voutψ ′ to generate an integration signal VoutI ″ as shown in FIG. 6D. The integration signal VoutI ″ generates the resistance element Rb of the differential amplification unit 30. Through the inverting input terminal of the operational amplifier OP.

差動増幅部30は、合成検出信号Voutψ”に対して、積分信号VoutI”を差分した状態で増幅処理を行うので、合成検出信号Voutψ”のオフセット電圧も除去され、合成検出信号Voutψ”の有効変動成分のみがゲインK”で増幅される。これにより、図6(E)に示すように、さらにオフセット成分が除去され、且つより有効変動成分のレベルが高いセンサ検出信号Voutを得ることができる。   Since the differential amplifier 30 performs the amplification process with the integrated signal VoutI ″ being different from the combined detection signal Voutψ ″, the offset voltage of the combined detection signal Voutψ ″ is also removed, and the combined detection signal Voutψ ″ is effective. Only the fluctuation component is amplified with the gain K ″. As a result, as shown in FIG. 6E, the offset detection component is further removed and the sensor detection signal Vout having a higher effective fluctuation component level can be obtained. .

なお、このような構成では、前段差動増幅回路40’でオフセット成分が抑圧されているので、最終段である差動増幅部30では、ゲインK”の値を非常に大きく取ることが可能になる。したがって、本実施形態の構成を用いることで、第1の実施形態の構成よりも大きなゲインを設定することができ、センサ検出信号Voutの有効変動成分のレベルを非常に高くすることができる。また、さらに、本実施形態の構成では、オフセット電圧に対して、有効変動成分が反転する二つの信号を差動増幅しているので、合成検出信号Voutψ”の有効変動成分が元々大きなものとなる。したがって、本実施形態の構成を用いることで、さらに有効変動成分のレベルを非常に高くすることができる。これにより、さらに確実且つ高精度に検出可能な磁気センサを実現することができる。   In such a configuration, since the offset component is suppressed by the upstream differential amplifier circuit 40 ′, the differential amplifier 30 which is the final stage can take a very large value of the gain K ″. Therefore, by using the configuration of the present embodiment, a gain larger than that of the configuration of the first embodiment can be set, and the level of the effective variation component of the sensor detection signal Vout can be made extremely high. Furthermore, in the configuration of the present embodiment, since the two signals whose effective variation components are inverted with respect to the offset voltage are differentially amplified, the effective variation component of the combined detection signal Voutψ ″ is originally large. Become. Therefore, the level of the effective variation component can be further increased by using the configuration of the present embodiment. Thereby, the magnetic sensor which can be detected more reliably and with high accuracy can be realized.

また、本実施形態の構成を用いることで、磁気抵抗素子MR1と抵抗素子R1から得られる第1磁界変化検出信号Voutψ(+)、抵抗素子R2と磁気抵抗素子MR2から得られる第2磁界変化検出信号Vout(−)のオフセットを高精度に合わせ込まなくても、前段差動増幅部40、積分部20、および差動増幅部30でオフセットが除去されるので、磁気抵抗素子MR1,MR2、抵抗素子R1,R2を厳密に設定する必要がない。これにより、設計が容易になるとともに、安価な素子を用いるもできる。   Further, by using the configuration of the present embodiment, the first magnetic field change detection signal Voutψ (+) obtained from the magnetoresistive element MR1 and the resistor element R1, and the second magnetic field change detection obtained from the resistor element R2 and the magnetoresistive element MR2. Even if the offset of the signal Vout (−) is not adjusted with high accuracy, the offset is removed by the differential amplifier 40, the integrator 20, and the differential amplifier 30, so that the magnetoresistive elements MR1, MR2, resistance It is not necessary to set the elements R1 and R2 strictly. As a result, design becomes easy and inexpensive elements can be used.

また、さらに、上述のように磁気抵抗素子MR1,MR2と抵抗素子R1,R2をミアンダ状に形成し、磁気抵抗素子MR1,MR2の感磁部と、抵抗素子R1,R2の感磁部とが隣り合うように配置された一対の配列を、感磁部の長手方向に対して垂直な方向に複数設けることで、第1、第2の実施形態と同様に絶対磁気量からなる磁界変化検出信号を得ることができる。   Further, as described above, the magnetoresistive elements MR1 and MR2 and the resistive elements R1 and R2 are formed in a meander shape, and the magnetosensitive parts of the magnetoresistive elements MR1 and MR2 and the magnetosensitive parts of the resistive elements R1 and R2 are provided. By providing a plurality of adjacent arrays arranged in the direction perpendicular to the longitudinal direction of the magnetic sensing part, a magnetic field change detection signal composed of an absolute magnetic quantity as in the first and second embodiments. Can be obtained.

なお、上述の各実施形態では、積分部20と差動増幅部30との組を一段だけ用いた例を示したが、図8に示すように、積分部20と差動増幅部30との組を二段用いてもよく、さらに三段以上の多段接続にしても良い。図8は、二段接続による磁気センサの等価回路および動作説明を行うための図である。   In each of the above-described embodiments, an example in which only one set of the integrating unit 20 and the differential amplifying unit 30 is used has been described. However, as illustrated in FIG. Two sets may be used, and a multi-stage connection of three or more stages may be used. FIG. 8 is a diagram for explaining an equivalent circuit and operation of a magnetic sensor by two-stage connection.

図8に示すような二段接続や多段接続を行う場合において、各差動増幅部30の前に積分部20を設けることで、それぞれの積分部20では、入力される検出信号のオフセットに相当する積分信号を生成することができる。これにより、各差動増幅部でオフセットが除去されるので、各段においてオフセット電圧に影響されることなく、多段増幅を行うことができる。これにより、磁界変化検出部の磁気抵抗素子が検出する有効変動成分のレベルが低くても、オフセットに影響されることなく、非常に高い信号レベルの検出信号を出力することができる。   When two-stage connection or multi-stage connection as shown in FIG. 8 is performed, by providing the integration unit 20 in front of each differential amplification unit 30, each integration unit 20 corresponds to an offset of the input detection signal. An integrated signal can be generated. Thereby, since the offset is removed in each differential amplifier, multistage amplification can be performed without being affected by the offset voltage in each stage. Thereby, even if the level of the effective variation component detected by the magnetoresistive element of the magnetic field change detection unit is low, a detection signal with a very high signal level can be output without being affected by the offset.

10,10’,10”−磁界変化検出部、20−積分部、30−差動増幅部、40,40’−前段差動増幅部   10, 10 ', 10 "-magnetic field change detector, 20-integrator, 30-differential amplifier, 40, 40'-previous differential amplifier

Claims (6)

磁束密度の変化により生じる抵抗値変化の特性が異なる磁気抵抗素子の組または磁気抵抗素子と抵抗素子との組を少なくとも一組用いて、当該特性の差に基づく磁界変化検出信号を出力する磁界変化検出部と、
前記磁界変化検出信号を積分処理することでオフセット成分信号を出力する積分部と、
前記磁界変化検出信号と前記オフセット成分信号とを差動増幅処理する差動増幅部と、を備えた磁気センサ。
Magnetic field change that outputs a magnetic field change detection signal based on a difference in the characteristics of at least one set of magnetoresistive elements or magnetoresistive elements and resistance elements that have different resistance value change characteristics caused by changes in magnetic flux density A detection unit;
An integration unit that outputs an offset component signal by integrating the magnetic field change detection signal;
A magnetic sensor comprising: a differential amplifying unit that differentially amplifies the magnetic field change detection signal and the offset component signal.
前記差動増幅部から出力される検出信号を、積分処理することで第2オフセット成分信号を出力する第2積分部と、
前記検出信号と前記第2オフセット成分信号とを差動増幅処理する第2差動増幅部と、をさらに備えた請求項1に記載の磁気センサ。
A second integrator that outputs a second offset component signal by integrating the detection signal output from the differential amplifier;
The magnetic sensor according to claim 1, further comprising: a second differential amplification unit that performs differential amplification processing on the detection signal and the second offset component signal.
前記第2積分部と前記第2差動増幅部とが多段接続された請求項2に記載の磁気センサ。   The magnetic sensor according to claim 2, wherein the second integration unit and the second differential amplification unit are connected in multiple stages. 前記磁界変化検出部は、電圧入力端子とグランド端子との間に前記特性の異なる磁気抵抗素子または前記磁気抵抗素子と抵抗素子とを直列接続し、該特性の異なる磁気抵抗素子同士の接続位置または前記磁気抵抗素子と抵抗素子との接続位置の電圧レベルを前記磁界変化検出信号として出力する、請求項1〜請求項3のいずれかに記載の磁気センサ。   The magnetic field change detection unit connects the magnetoresistive elements having different characteristics or the magnetoresistive elements and the resistive elements in series between a voltage input terminal and a ground terminal, and the connection positions of the magnetoresistive elements having different characteristics or The magnetic sensor according to claim 1, wherein a voltage level at a connection position between the magnetoresistive element and the resistive element is output as the magnetic field change detection signal. 前記磁界変化検出部は、
電圧入力端子とグランド端子との間に前記特性の異なる磁気抵抗素子または前記磁気抵抗素子と抵抗素子とを直列接続し、該特性の異なる磁気抵抗素子同士の接続位置または前記磁気抵抗素子と抵抗素子との接続位置の電圧レベルを第1磁界変化検出信号として出力する第1直列回路と、
前記磁束密度の変化によることなく抵抗値が一定な抵抗素子の組からなり、該第1直列回路の前記磁気抵抗素子の抵抗値が安定な状態における前記第1直列回路の第1磁界変化検出信号とレベルと略同じ電圧レベルからなる定電圧信号を出力する定電圧出力回路と、
前記第1磁界変化検出信号と前記定電圧信号とを差動増幅することで、前記磁気変化検出部としての前記磁界変化検出信号を出力する前段差動増幅回路と、を備えた、請求項1〜請求項3のいずれかに記載の磁気センサ。
The magnetic field change detection unit
A magnetoresistive element having different characteristics or a magnetoresistive element and a resistive element are connected in series between a voltage input terminal and a ground terminal, and a connection position between magnetoresistive elements having different characteristics or the magnetoresistive element and the resistive element. A first series circuit that outputs a voltage level at a connection position with the first magnetic field change detection signal;
The first magnetic field change detection signal of the first series circuit in a state in which the resistance value of the magnetoresistive element of the first series circuit is stable, the resistance value of the magnetoresistive element of the first series circuit being stable without changing the magnetic flux density. And a constant voltage output circuit that outputs a constant voltage signal having a voltage level substantially the same as the level,
2. A pre-stage differential amplification circuit that outputs the magnetic field change detection signal as the magnetic change detection unit by differentially amplifying the first magnetic field change detection signal and the constant voltage signal. The magnetic sensor according to claim 3.
前記磁界変化検出部は、
電圧入力端子とグランド端子との間に前記特性の異なる磁気抵抗素子または前記磁気抵抗素子と抵抗素子とを直列接続し、該特性の異なる磁気抵抗素子同士の接続位置または前記磁気抵抗素子と抵抗素子との接続位置の電圧レベルを第1磁界変化検出信号として出力する第1直列回路と、
該第1直列回路に対して反転する特性を生じるように、特性の異なる磁気抵抗素子または前記磁気抵抗素子と抵抗素子とを直列接続し、該特性の異なる磁気抵抗素子同士の接続位置または前記磁気抵抗素子と抵抗素子との接続位置の電圧レベルを第2磁界変化検出信号として出力する第2直列回路と、
前記第1磁界変化検出信号と前記第2磁界変化検出信号とを差動増幅することで、前記磁気変化検出部としての前記磁界変化検出信号を出力する前段差動増幅回路と、を備えた、請求項1〜請求項3のいずれかに記載の磁気センサ。
The magnetic field change detection unit
A magnetoresistive element having different characteristics or a magnetoresistive element and a resistive element are connected in series between a voltage input terminal and a ground terminal, and a connection position between magnetoresistive elements having different characteristics or the magnetoresistive element and the resistive element. A first series circuit that outputs a voltage level at a connection position with the first magnetic field change detection signal;
The magnetoresistive elements having different characteristics or the magnetoresistive elements and the resistor elements are connected in series so as to produce a characteristic that is inverted with respect to the first series circuit, and the connection positions of the magnetoresistive elements having different characteristics or the magnetic field A second series circuit that outputs a voltage level at a connection position between the resistance elements as a second magnetic field change detection signal;
A pre-stage differential amplification circuit that outputs the magnetic field change detection signal as the magnetic change detection unit by differentially amplifying the first magnetic field change detection signal and the second magnetic field change detection signal; The magnetic sensor in any one of Claims 1-3.
JP2009073484A 2009-03-25 2009-03-25 Magnetic sensor Pending JP2010223862A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009073484A JP2010223862A (en) 2009-03-25 2009-03-25 Magnetic sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009073484A JP2010223862A (en) 2009-03-25 2009-03-25 Magnetic sensor

Publications (1)

Publication Number Publication Date
JP2010223862A true JP2010223862A (en) 2010-10-07

Family

ID=43041193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009073484A Pending JP2010223862A (en) 2009-03-25 2009-03-25 Magnetic sensor

Country Status (1)

Country Link
JP (1) JP2010223862A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012173112A1 (en) 2011-06-17 2012-12-20 三菱電機株式会社 Amplifier and signal processing device
WO2013150896A1 (en) 2012-04-04 2013-10-10 株式会社村田製作所 Magnetic sensing device and bill validator
WO2015083604A1 (en) * 2013-12-02 2015-06-11 コニカミノルタ株式会社 Signal amplification device and sensor device
CN112433184A (en) * 2019-08-24 2021-03-02 青岛鼎信通讯股份有限公司 Inductor-based constant magnetic field detection circuit
CN115980639A (en) * 2022-12-15 2023-04-18 江苏多维科技有限公司 Magnetic resistance sensor
WO2024122308A1 (en) * 2022-12-06 2024-06-13 三井化学株式会社 Sensor signal processing device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012173112A1 (en) 2011-06-17 2012-12-20 三菱電機株式会社 Amplifier and signal processing device
US9407217B2 (en) 2011-06-17 2016-08-02 Mitsubishi Electric Corporation Amplifier and signal processing device
WO2013150896A1 (en) 2012-04-04 2013-10-10 株式会社村田製作所 Magnetic sensing device and bill validator
CN104169734A (en) * 2012-04-04 2014-11-26 株式会社村田制作所 Magnetic sensing device and bill validator
JPWO2013150896A1 (en) * 2012-04-04 2015-12-17 株式会社村田製作所 Magnetic detection device and bill recognition device
KR101614102B1 (en) * 2012-04-04 2016-04-20 가부시키가이샤 무라타 세이사쿠쇼 Magnetic sensing device and bill validator
WO2015083604A1 (en) * 2013-12-02 2015-06-11 コニカミノルタ株式会社 Signal amplification device and sensor device
CN112433184A (en) * 2019-08-24 2021-03-02 青岛鼎信通讯股份有限公司 Inductor-based constant magnetic field detection circuit
WO2024122308A1 (en) * 2022-12-06 2024-06-13 三井化学株式会社 Sensor signal processing device
CN115980639A (en) * 2022-12-15 2023-04-18 江苏多维科技有限公司 Magnetic resistance sensor
CN115980639B (en) * 2022-12-15 2024-01-23 江苏多维科技有限公司 Magneto-resistance sensor

Similar Documents

Publication Publication Date Title
US9053730B1 (en) Disk drive comprising extended range head proximity sensor
CN110753847B (en) Current sensor
JP2010223862A (en) Magnetic sensor
JP5827759B2 (en) Amplifier circuit and amplifier circuit IC chip
WO2016021500A1 (en) Electric current sensor
US11397225B2 (en) Current sensor, magnetic sensor and circuit
EP2159586B1 (en) Magnetic sensor
JP4798191B2 (en) Magnetic sensor device
JP2018535391A (en) Magnetic image sensor
US9000824B2 (en) Offset cancel circuit
US20170176547A1 (en) Magnetometer with a differential type integrated circuit
JP6339890B2 (en) Current sensor
JP5930024B2 (en) Magnetic detection device and bill recognition device
JP2014052262A (en) Magnetic sensor
JP5417949B2 (en) Magnetic sensor and magnetic detection method
JP5417968B2 (en) Method for detecting the object to be detected
JP7119695B2 (en) magnetic sensor
JP2715997B2 (en) Magnetic sensor
JP2009115688A (en) Amplifying circuit
JP2009121858A (en) Amplification circuit
JP2004241912A (en) High-precision differential amplifier circuit
CN118409131A (en) Current sensor chip and circuit
JP2007033270A (en) Sensor circuit and circuit unit
CN119619588A (en) Closed loop high accuracy hall effect sensor AFE with auto-zeroing switched capacitor analog accumulator
CN116846344A (en) Amplifying circuit and sensor circuit