[go: up one dir, main page]

JP2010202729A - Polyimide precursor resin composition for flexible device substrates and method for producing flexible device using the same, and flexible device - Google Patents

Polyimide precursor resin composition for flexible device substrates and method for producing flexible device using the same, and flexible device Download PDF

Info

Publication number
JP2010202729A
JP2010202729A JP2009047876A JP2009047876A JP2010202729A JP 2010202729 A JP2010202729 A JP 2010202729A JP 2009047876 A JP2009047876 A JP 2009047876A JP 2009047876 A JP2009047876 A JP 2009047876A JP 2010202729 A JP2010202729 A JP 2010202729A
Authority
JP
Japan
Prior art keywords
flexible device
polyimide precursor
resin film
resin composition
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009047876A
Other languages
Japanese (ja)
Inventor
Yumiko Arakawa
由美子 荒川
Atsushi Ueda
篤 上田
Yoshiko Futagawa
佳子 二川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HD MicroSystems Ltd
Original Assignee
Hitachi Chemical DuPont Microsystems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical DuPont Microsystems Ltd filed Critical Hitachi Chemical DuPont Microsystems Ltd
Priority to JP2009047876A priority Critical patent/JP2010202729A/en
Publication of JP2010202729A publication Critical patent/JP2010202729A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polyimide precursor resin composition for forming a flexible device substrate such as a display device, a light-receiving device produced by stripping from a carrier substrate; and to provide a flexible device and a method for producing thereof using the same. <P>SOLUTION: This polyimide precursor resin composition for forming a flexible device substrate includes a polyimide precursor having a structure represented by the general formula (1) and an organic solvent, where in formula (1), Rs represent each independently a hydrogen atom or a monovalent organic group; R<SB>1</SB>is a bivalent organic group (R's are each independently an alkyl group) selected from groups of formulae (2); R<SB>2</SB>is a tetravalent organic group selected from groups of formulae (3); and n is a positive interger denoting a number of repetition. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、低熱膨張、高耐熱性、靭性に優れる、各種フレキシブルデバイスにおいて、液晶ディスプレイ用基板、有機ELディスプレイ用基板、電子ペーパー用基板等の表示デバイスとしてのフレキシブルデバイス基板、薄膜太陽電池等の受光デバイスとしてのフレキシブルデバイス基板等のフレキシブルデバイス基板用であるポリイミド前駆体樹脂組成物に関し、特にフレキシブルディスプレイ用基板として有用であるポリイミド前駆体樹脂組成物に関する。また、本発明は前記ポリイミド前駆体樹脂組成物を用いるフレキシブルデバイスの製造方法及び前記製造方法により得られるフレキシブルデバイスに関する。   In various flexible devices excellent in low thermal expansion, high heat resistance, and toughness, the present invention includes flexible device substrates, thin film solar cells, and the like as display devices such as liquid crystal display substrates, organic EL display substrates, and electronic paper substrates. The present invention relates to a polyimide precursor resin composition for a flexible device substrate such as a flexible device substrate as a light receiving device, and particularly to a polyimide precursor resin composition useful as a substrate for a flexible display. Moreover, this invention relates to the flexible device obtained by the manufacturing method of the flexible device using the said polyimide precursor resin composition, and the said manufacturing method.

現在、各種ディスプレイにはガラス基板が用いられているが、ガラス基板は軽量化、薄型化すると強度が低下する問題を抱えている。そこでガラス基板の代替品として、軽量かつ成型加工が容易であるゆえに薄型化可能なプラスチック基板の採用が求められている。ガラス基板よりも高い靭性を持つプラスチック基板の採用は、曲げたり丸めたりすることが可能なフレキシブルディスプレイパネルの実現を可能とする。例えば、特許文献1には、硬質キャリア基板の上にプラスチック基板を設け、この上に画素回路及びディスプレイ層を形成した後、前記硬質キャリア基板から剥離するというディスプレイの製造法が記載されている。この方法によれば、予め独立したフィルム状の基板を用いるよりも、薄く軽量な基板を形成できるという利点がある。
この方法は、軽量かつ高靭性であるプラスチック基板となるが、耐熱性において、ガラス基板に劣るという問題がある。たとえば、プラスチック基板上にTFTを形成することを考えたとき、製造工程上、プラスチック基板は200℃以上の高温に耐える必要がある。しかし、プラスチックのガラス転移点は高くても約150℃であるため、耐熱性に劣る。前記特許文献1中には、耐熱性の高いものとして、体積プロセスにより形成されるパリレンが具体的に記載されているが、成膜プロセスが煩雑であるという欠点がある。特許文献1中には、スピンコート等の塗布により、ポリイミド、PEN(ポリエチレンナフタレート樹脂)、PES(ポリエーテルサルフォン樹脂)、BCB(ベンゾシクロブテン樹脂)等いくつかのポリマを用いてプラスチック基板層を形成することも示唆されてはいるが、十分な特性を有する具体的なポリマの開示はされていない。
このように、特許文献1に記載されるフレキシブルディスプレイの製造方法では、塗布によって簡単に薄膜が形成でき、その上に回路を形成した後に剥離する工程を経ることができる、靭性と耐熱性を同時に持つプラスチック基板は、未だ知られていない。
そこで、現在では、工程は煩雑となってしまうが、高耐熱性であるガラス基板にTFTを形成し、高温プロセスを終えてからTFTを一時基板に転写、さらに一時基板からプラスチック基板へ再転写する方法によって、プラスチック基板を用いたフレキシブルディスプレイの製造がなされている。
一方、電子機器の小型軽量化に伴い、リード・オン・チップ(LOC)やテープ・オートメーテッド・ボンディング(TAB)、チップ・オン・フィルム(COF)等の電子部品向けフレキシブル配線基板については、近年盛んに開発がなされている。たとえば、特許文献2、3および4には、ポリイミドフィルムを用いた電子部品向けフレキシブル回路基板の製造法が記載されている。この方法は、一般に、ポリイミドの長尺フィルムを形成し、次いでその表面に、接着剤層の形成やアッシングなどの表面処理を施したうえで、銅箔などの導電体層を形成するものである。そして、さらに導電体層をエッチング処理することでポリイミド上に回路を形成することができ、これを金属積層体やフレキシブル回路基板となす。これらには芳香族ジアミン類と芳香族テトラカルボン酸類から得られる芳香族ポリイミドフィルムが優れた耐熱性やフレキシブル性を有することが記載されている。
Currently, glass substrates are used for various displays, but the glass substrates have a problem that the strength decreases when the weight and thickness are reduced. Therefore, as a substitute for the glass substrate, it is required to adopt a plastic substrate that can be thinned because it is lightweight and easy to mold. The use of a plastic substrate having higher toughness than a glass substrate enables a flexible display panel that can be bent and rolled. For example, Patent Document 1 describes a display manufacturing method in which a plastic substrate is provided on a hard carrier substrate, a pixel circuit and a display layer are formed thereon, and then peeled off from the hard carrier substrate. According to this method, there is an advantage that a thin and lightweight substrate can be formed rather than using an independent film-like substrate in advance.
This method results in a lightweight and tough plastic substrate, but has a problem that it is inferior to a glass substrate in heat resistance. For example, when it is considered to form a TFT on a plastic substrate, the plastic substrate needs to withstand a high temperature of 200 ° C. or higher in the manufacturing process. However, since the glass transition point of plastic is about 150 ° C. at the highest, it is inferior in heat resistance. In Patent Document 1, parylene formed by a volume process is specifically described as having high heat resistance, but there is a drawback that the film forming process is complicated. In Patent Document 1, a plastic substrate using several polymers such as polyimide, PEN (polyethylene naphthalate resin), PES (polyethersulfone resin), and BCB (benzocyclobutene resin) is applied by spin coating or the like. Although it has been suggested to form a layer, no specific polymer with sufficient properties has been disclosed.
Thus, in the manufacturing method of the flexible display described in Patent Document 1, a thin film can be easily formed by coating, and after a circuit is formed thereon, a peeling process can be performed. The plastic substrate is still unknown.
Therefore, at present, the process becomes complicated, but the TFT is formed on a glass substrate having high heat resistance, the TFT is transferred to the temporary substrate after finishing the high temperature process, and further transferred from the temporary substrate to the plastic substrate again. According to this method, a flexible display using a plastic substrate is manufactured.
On the other hand, with the downsizing of electronic equipment, flexible wiring boards for electronic components such as lead-on-chip (LOC), tape automated bonding (TAB), and chip-on-film (COF) It is being actively developed. For example, Patent Documents 2, 3 and 4 describe a method for producing a flexible circuit board for electronic components using a polyimide film. In this method, generally, a polyimide long film is formed, and then a surface treatment such as formation of an adhesive layer or ashing is performed on the surface, and then a conductor layer such as a copper foil is formed. . Further, by etching the conductor layer, a circuit can be formed on the polyimide, which is used as a metal laminate or a flexible circuit board. They describe that aromatic polyimide films obtained from aromatic diamines and aromatic tetracarboxylic acids have excellent heat resistance and flexibility.

特表2007−512568号公報Special table 2007-512568 gazette 特開平11−4055号公報Japanese Patent Laid-Open No. 11-4055 特開2006−291165号公報JP 2006-291165 A 特開2006−225667号公報JP 2006-225667 A

しかしながら、液晶ディスプレイ用基板、有機ELディスプレイ用基板、電子ペーパー用基板等の表示デバイスとしてのフレキシブルデバイス基板、薄膜太陽電池等の受光デバイスとしてのフレキシブルデバイス基板等のフレキシブルデバイス基板用としては、簡易な工程に適用でき、かつ、要求特性を高度に満足するものは知られていない。即ち、前記フレキシブルデバイス基板用としては、さらなる薄膜化の要求がなされ、また、工程上一旦キャリア基板上に薄膜を形成した状態でその上に各種回路を形成し、その後に剥離することができる液状樹脂組成物が要求されるが、このような工程に用いることができ、かつ、高度な要求特性を有する液状樹脂組成物は知られていない。
本発明は、液晶ディスプレイ、有機ELディスプレイ、電子ペーパー等の表示デバイス、太陽電池の受光デバイスであるフレキシブルデバイスにおいて、ガラス基板等のキャリア基板上に塗布することで簡単にかつ所望の膜厚の薄膜を形成し、その樹脂薄膜上に回路やディスプレイ層等を形成できるとともに、耐熱性に優れ、熱膨張係数の低いポリイミド膜となって、回路等の形成過程でキャリア基板層からのはがれやキャリア基板層のそりを生じさせず、回路等のはがれなどの欠陥も生じず、そしてその後、キャリア基板から欠陥を生じずに剥離ができる、液状のフレキシブルデバイス基板形成用ポリイミド前駆体樹脂組成物、これを用いたフレキシブルデバイス及びその製造方法を提供するものである。
However, as a flexible device substrate such as a flexible device substrate as a display device such as a liquid crystal display substrate, an organic EL display substrate or an electronic paper substrate, or a light receiving device such as a thin film solar cell, it is simple. There is no known one that can be applied to the process and that satisfies the required characteristics to a high degree. That is, for the flexible device substrate, there is a demand for further thinning, and in the process, once the thin film is formed on the carrier substrate, various circuits are formed thereon, and then the liquid can be peeled off. Although a resin composition is required, there is no known liquid resin composition that can be used in such a process and has high required characteristics.
The present invention is a liquid crystal display, organic EL display, display device such as electronic paper, and a flexible device that is a light-receiving device of a solar cell. A thin film having a desired film thickness can be easily applied to a carrier substrate such as a glass substrate. Can be formed on the resin thin film, and a polyimide film having excellent heat resistance and a low coefficient of thermal expansion can be formed. A liquid polyimide precursor resin composition for forming a flexible device substrate, which does not cause layer warpage, does not cause defects such as circuit peeling, and thereafter can be peeled off from a carrier substrate without causing defects. The flexible device used and a method for manufacturing the same are provided.

本発明は次の各項に関する。
(1) 液状の樹脂組成物をキャリア基板上に塗布成膜して固体状の樹脂膜を形成する工程、前記樹脂膜上に回路を形成する工程、前記回路が表面に形成された固体状の樹脂膜を前記キャリア基板から剥離する工程、の各工程を含む、表示デバイス又は受光デバイスであるフレキシブルデバイスの製造法に用いられる、フレキシブルデバイス基板となる前記液状の樹脂組成物であって、一般式(1)
The present invention relates to the following items.
(1) A step of coating a liquid resin composition on a carrier substrate to form a solid resin film, a step of forming a circuit on the resin film, and a solid state with the circuit formed on the surface The liquid resin composition to be a flexible device substrate, which is used in a method for producing a flexible device that is a display device or a light receiving device, including each step of peeling a resin film from the carrier substrate, (1)

Figure 2010202729

(一般式(1)中、Rは各々独立に水素原子又は一価の有機基を示し、R
Figure 2010202729

(In the general formula (1), each R independently represents a hydrogen atom or a monovalent organic group, and R 1 is

Figure 2010202729

から選択される2価の有機基であり(但しR’は各々独立にアルキル基であり、アルキル基の水素原子はハロゲンで置換されても良い)、R
Figure 2010202729

(Wherein R ′ is each independently an alkyl group, the hydrogen atom of the alkyl group may be substituted with a halogen), and R 2 is

Figure 2010202729
から選択される四価の有機基であり、nは繰り返し数を表す正の整数である)で表される構造を有するポリイミド前駆体と有機溶媒とを含有してなるフレキシブルデバイス基板用ポリイミド前駆体樹脂組成物。
(2) ポリイミド前駆体の重量平均分子量が、15,000から200,000である前記(1)に記載のフレキシブルデバイス基板形成用ポリイミド前駆体樹脂組成物。
(3) 前記(1)又は(2)に記載のフレキシブルデバイス基板形成用ポリイミド前駆体樹脂組成物をキャリア基板上に塗布成膜して固体状のポリイミド樹脂膜を形成する工程、前記樹脂膜上に回路を形成する工程、前記回路が表面に形成された固体状の樹脂膜を前記キャリア基板から剥離する工程の各工程を含む、表示デバイス又は受光デバイスであるフレキシブルデバイスの製造方法。
(4) ポリイミド樹脂膜の厚さが、1〜20μmである前記(3)に記載のフレキシブルデバイスの製造方法。
(5) ポリイミド樹脂膜のガラス転移温度が、300℃以上である前記(3)又は(4)に記載のフレキシブルデバイスの製造方法。
(6) ポリイミド樹脂膜の100℃〜200℃の範囲における熱膨張係数が、20ppm/K以下である前記(3)から(5)のいずれかに記載のフレキシブルデバイスの製造方法。
(7) 前記(3)から(6)のいずれかに記載されたフレキシブルデバイスの製造方法により製造された表示デバイス又は受光デバイスであるフレキシブルデバイス。
(8) フレキシブルデバイスが、電子ペーパー、ディスプレイ又は太陽電池の受光素子である前記(7)に記載のフレキシブルデバイス。
Figure 2010202729
A polyimide precursor for a flexible device substrate comprising a polyimide precursor having a structure represented by the following formula: n is a positive integer representing the number of repetitions, and an organic solvent Resin composition.
(2) The polyimide precursor resin composition for flexible device board | substrate formation as described in said (1) whose weight average molecular weights of a polyimide precursor are 15,000 to 200,000.
(3) A step of applying a polyimide precursor resin composition for forming a flexible device substrate according to (1) or (2) above onto a carrier substrate to form a solid polyimide resin film, on the resin film A method for manufacturing a flexible device, which is a display device or a light receiving device, comprising: a step of forming a circuit on the substrate; and a step of peeling a solid resin film having the circuit formed on the surface thereof from the carrier substrate.
(4) The method for producing a flexible device according to (3), wherein the polyimide resin film has a thickness of 1 to 20 μm.
(5) The manufacturing method of the flexible device as described in said (3) or (4) whose glass transition temperature of a polyimide resin film is 300 degreeC or more.
(6) The method for producing a flexible device according to any one of (3) to (5), wherein the thermal expansion coefficient of the polyimide resin film in the range of 100 ° C. to 200 ° C. is 20 ppm / K or less.
(7) A flexible device which is a display device or a light receiving device manufactured by the method for manufacturing a flexible device according to any one of (3) to (6).
(8) The flexible device according to (7), wherein the flexible device is a light receiving element of electronic paper, a display, or a solar cell.

本発明における液状のフレキシブルデバイス基板形成用ポリイミド前駆体樹脂組成物は、低熱膨張、高耐熱性、高靭性に優れ、表示デバイス又は受光デバイスの基板として適したポリイミド薄膜を形成できる。
また、現在の主流である、ベースフィルムとしてすでにフィルムとして成型されている、厚さの決まったものを用いるのではなく、デバイスの製造に即して塗布成膜する液状の組成物を使用するため、スピンコートやスクリーン印刷などによりガラス基板などのキャリア基板上に塗布できる。この時、塗布膜厚を変化させることにより、樹脂膜(ベースフィルム)の厚さを所望の厚さ、特に薄膜に調整することも可能となり、したがってフレキシブルデバイスのさらなる薄型化も可能となる。これにより、最終製品の小型化、軽量化も可能となる。
また、ガラス基板等のキャリア基板上に薄く塗布することで簡単にかつ所望の膜厚の薄膜として成膜でき、その上に回路やディスプレイ層等を形成できるとともに、耐熱性に優れ、熱膨張係数の低いポリイミド膜となって、回路等の形成過程でキャリア基板層からのはがれやキャリア基板層のそりを生じさせず、回路等のはがれなどの欠陥も生じない上、その後キャリア基板から剥がす際には、ポリイミド膜自体にも、その上に形成された回路等にも欠陥を生じることがなく、きれいに剥がせるものである。従って、これを用いた表示デバイス又は受光デバイスとなるフレキシブルデバイスの製造方法は、キャリア基板上に形成されたベースフィルムに直接回路を形成し、その後剥離することが可能となるため、再転写の製造工程を省略することができる。そして得られるフレキシブルデバイスは、薄くても靱性が高く、耐熱性にも優れるものとなる。
The liquid polyimide precursor resin composition for forming a flexible device substrate in the present invention is excellent in low thermal expansion, high heat resistance, and high toughness, and can form a polyimide thin film suitable as a substrate for a display device or a light receiving device.
In addition, because it uses a liquid composition that is applied to form a film in accordance with the manufacture of the device, rather than using a film with a fixed thickness that is already molded as a base film, which is the current mainstream. It can be applied on a carrier substrate such as a glass substrate by spin coating or screen printing. At this time, by changing the coating film thickness, the thickness of the resin film (base film) can be adjusted to a desired thickness, particularly a thin film, and thus the flexible device can be further reduced in thickness. As a result, the final product can be reduced in size and weight.
In addition, by thinly coating on a carrier substrate such as a glass substrate, it can be easily formed as a thin film with a desired film thickness, and a circuit, a display layer, etc. can be formed thereon, and it has excellent heat resistance and a thermal expansion coefficient. When it is peeled off from the carrier substrate, it becomes a low polyimide film, does not cause peeling from the carrier substrate layer or warpage of the carrier substrate layer in the formation process of the circuit, etc., and does not cause defects such as circuit peeling. Can be removed cleanly without causing any defects in the polyimide film itself or the circuit formed thereon. Therefore, the manufacturing method of the flexible device which becomes a display device or a light receiving device using this makes it possible to form a circuit directly on the base film formed on the carrier substrate and then peel it off. The process can be omitted. And even if the obtained flexible device is thin, it has high toughness and excellent heat resistance.

ディスプレイデバイスの製造例を示し、ガラス基板上に液状ポリイミド前駆体樹脂組成物を塗布成膜して固体状のポリイミド樹脂膜を形成する工程を示す模式図である。It is a schematic diagram which shows the manufacture example of a display device, shows the process of apply | coating film-forming a liquid polyimide precursor resin composition on a glass substrate, and forming a solid polyimide resin film. ディスプレイデバイスの製造例を示し、ポリイミド樹脂膜上にTFT電極を形成した状態を示す模式図である。It is a schematic diagram which shows the manufacture example of a display device and shows the state which formed the TFT electrode on the polyimide resin film. ディスプレイデバイスの製造例を示し、図2のTFT電極上に液晶表示素子、カバーフィルムの層を形成した状態を示す模式図である。It is a schematic diagram which shows the manufacture example of a display device, and shows the state which formed the layer of the liquid crystal display element and the cover film on the TFT electrode of FIG. ディスプレイデバイスの製造例を示し、ガラス基板からディスプレイデバイスを剥離する工程を示す模式図である。It is a schematic diagram which shows the manufacture example of a display device and shows the process of peeling a display device from a glass substrate.

本発明の液状のフレキシブルデバイス基板用ポリイミド前駆体樹脂組成物は、キャリア基板上に塗布、乾燥、成膜し、次いで、好ましくは加熱等の手段により、脱水閉環させて、固体状のポリイミド樹脂膜を形成する工程、その上に回路を形成する工程、前記回路が表面に形成された固体状の樹脂膜を前記キャリア基板から剥離する工程、の各工程を含む、フレキシブルデバイスの製造方法に用いられるものである。この方法によれば、前述のように直接固体状のポリイミド樹脂膜(ベースフィルム)へ回路を形成することが可能となり、再転写の製造工程を省略することができる。
本発明における液状のポリイミド前駆体樹脂組成物は、以下の一般式(1)で表される構造を有するポリイミド前駆体と有機溶媒を含む。
一般式(1)
The liquid polyimide precursor resin composition for a flexible device substrate of the present invention is coated on a carrier substrate, dried, formed into a film, and then preferably dehydrated and closed by means of heating or the like to form a solid polyimide resin film. , A step of forming a circuit thereon, and a step of peeling a solid resin film having the circuit formed on the surface thereof from the carrier substrate. Is. According to this method, a circuit can be directly formed on a solid polyimide resin film (base film) as described above, and the retransfer manufacturing process can be omitted.
The liquid polyimide precursor resin composition in the present invention includes a polyimide precursor having a structure represented by the following general formula (1) and an organic solvent.
General formula (1)

Figure 2010202729

(一般式(1)中、Rは各々独立に水素原子又は一価の有機基を示し、R
Figure 2010202729

(In the general formula (1), each R independently represents a hydrogen atom or a monovalent organic group, and R 1 is

Figure 2010202729

(但しR’は各々独立にアルキル基であり、アルキル基の水素原子はハロゲンで置換されても良い)から選択される2価の有機基であり、R
Figure 2010202729

(Wherein R ′ each independently represents an alkyl group, and a hydrogen atom of the alkyl group may be substituted with a halogen), and R 2 represents

Figure 2010202729

から選択される四価の有機基であり、nは繰り返し数を表す正の整数である)
一般式(1)において、Rは、各々独立に水素又は1価の有機基を示し、1価の有機基として、炭素原子数1〜20のものが好ましく、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基などが挙げられる。RにおけるR’としては、炭素原子数1〜3のアルキル基等の炭化水素基が挙げられ、そのアルキル基の水素原子の一部または全部がハロゲン原子(フッ素、塩素、臭素、ヨウ素)で置換されていても良い。
ポリイミド前駆体は、一般に1つのテトラカルボン酸残基と1つのジアミン残基から形成される構造単位(括弧でくくられた構造単位)が繰り返し単位となって形成されるが、本発明においては一般式(1)で示される括弧でくくられた構造単位が、全構造単位中40%以上であることが好ましく、60%以上であることがより好ましく、80〜100%であることが特に好ましい。
ポリイミド前駆体は、一般にテトラカルボン酸二無水物とジアミンとを重合することにより得られる。この重合は両者を有機溶媒中で混合することにより行うことができる。
Figure 2010202729

And n is a positive integer representing the number of repetitions)
In the general formula (1), each R independently represents hydrogen or a monovalent organic group, and the monovalent organic group preferably has 1 to 20 carbon atoms, for example, methyl group, ethyl group, propyl Group, isopropyl group, butyl group and the like. R ′ in R 1 includes a hydrocarbon group such as an alkyl group having 1 to 3 carbon atoms, and part or all of the hydrogen atoms of the alkyl group are halogen atoms (fluorine, chlorine, bromine, iodine). It may be replaced.
A polyimide precursor is generally formed by repeating a structural unit (a structural unit enclosed in parentheses) formed from one tetracarboxylic acid residue and one diamine residue. The structural unit in parentheses represented by the formula (1) is preferably 40% or more, more preferably 60% or more, and particularly preferably 80 to 100% in all the structural units.
The polyimide precursor is generally obtained by polymerizing tetracarboxylic dianhydride and diamine. This polymerization can be performed by mixing both in an organic solvent.

前記一般式(1)で示される構造を形成するために用いられるテトラカルボン酸二無水物としては、ピロメリット酸二無水物、シクロヘキシルテトラカルボン酸二無水物、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、3,3’,4,4’−ビシクロヘキシルテトラカルボン酸二無水物が挙げられる。その他のテトラカルボン酸二無水物を併用することもでき、その例としては、4,4’−オキシジフタル酸二無水物、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物、1,2,5,6−ナフタレンテトラカルボン酸二無水物、1,4,5,8−ナフタレンテトラカルボン酸二無水物、4,4’−スルフォニルジフタル酸二無水物、2,2−ビス(3,4−ジカルボキシフェニル)プロパン二無水物などが挙げられる。一般式(1)で示される構造を形成するテトラカルボン酸二無水物の使用量は、テトラカルボン酸二無水物の総量に対して、40%以上であることが好ましく、60%以上であることがより好ましく、80〜100%であることが特に好ましい。   Examples of the tetracarboxylic dianhydride used to form the structure represented by the general formula (1) include pyromellitic dianhydride, cyclohexyltetracarboxylic dianhydride, 3,3 ′, 4,4 ′. -Biphenyltetracarboxylic dianhydride and 3,3 ', 4,4'-bicyclohexyltetracarboxylic dianhydride are mentioned. Other tetracarboxylic dianhydrides can be used in combination, and examples thereof include 4,4′-oxydiphthalic dianhydride, 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride, 1 , 2,5,6-naphthalenetetracarboxylic dianhydride, 1,4,5,8-naphthalenetetracarboxylic dianhydride, 4,4′-sulfonyldiphthalic dianhydride, 2,2-bis ( 3,4-dicarboxyphenyl) propane dianhydride and the like. The amount of tetracarboxylic dianhydride used to form the structure represented by the general formula (1) is preferably 40% or more, more preferably 60% or more based on the total amount of tetracarboxylic dianhydride. Is more preferable, and 80 to 100% is particularly preferable.

また、前記一般式(1)で示される構造単位を形成するために用いられるジアミンとしては、p−フェニレンジアミン、m−フェニレンジアミン、ベンジジン、3,3’−ジメチル−4,4’−ジアミノビフェニル、2,2’−ジメチル−4,4’−ジアミノビフェニル、3,3’−ジエチル−4,4’−ジアミノビフェニル、2,2’−ジエチル−4,4’−ジアミノビフェニル等が挙げられる。その他のジアミンを併用することもでき、そのジアミンとしては、p−キシリレンジアミン、m−キシリレンジアミン、1,5−ジアミノナフタレン、3,3’−ジメトキシベンジジン、4,4’−(又は3,4’−、3,3’−、2,4’−)ジアミノジフェニルメタン、4,4’−(又は3,4’−、3,3’−、2,4’−)ジアミノジフェニルエーテル、4,4’−(又は3,4’−、3,3’−、2,4’−)ジアミノジフェニルスルフォン、4,4’−(又は3,4’−、3,3’−、2,4’−)ジアミノジフェニルスルフィド、4,4’−ベンゾフェノンジアミン、3,3’−ベンゾフェノンジアミン、4,4’−ジ(4−アミノフェノキシ)フェニルスルフォン、4,4’−ビス(4−アミノフェノキシ)ビフェニル、1,4−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(4−アミノフェノキシ)ベンゼン、1,1,1,3,3,3−ヘキサフルオロ−2,2−ビス(4−アミノフェニル)プロパン、2,2’−ビス(トリフルオロメチル)ベンジジン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン、3,3−ジメチル−4,4’−ジアミノジフェニルメタン、3,3’,5,5’−テトラメチル−4,4’−ジアミノジフェニルメタン、4,4’−ジ(3−アミノフェノキシ)フェニルスルホン、3,3’−ジアミノジフェニルスルホン、2,2’−ビス(4−アミノフェニル)プロパン、5,5’−メチレン−ビス−(アントラニル酸)、3,5−ジアミノ安息香酸、3,3’−ジヒドロキシ−4,4’−ジアミノビフェニル、3,3’−ジメチル−4,4’−ジアミノビフェニル−6,6’−ジスルホン酸等の芳香族ジアミン、2,6−ジアミノピリジン、2,4−ジアミノピリジン、2,4−ジアミノ−s−トリアジン、2,7−ジアミノベンゾフラン、2,7−ジアミノカルバゾール、3,7−ジアミノフェノチアジン、2,5−ジアミノ−1,3,4−チアジアゾール、2,4−ジアミノ−6−フェニル−s−トリアジン等の複素環式ジアミン、トリメチレンジアミン、テトラメチレンジアミン、ヘキサメチレンジアミン、2,2−ジメチルプロピレンジアミン、1,4−シクロヘキサンジアミンなどが挙げられる、ジアミンであるならば、この限りでなく併用できる。一般式(1)で示される構造を形成するジアミンの使用量は、ジアミンの総量に対して、40%以上であることが好ましく、60%以上であることがより好ましく、80%以上であることが特に好ましい。   Examples of the diamine used to form the structural unit represented by the general formula (1) include p-phenylenediamine, m-phenylenediamine, benzidine, and 3,3′-dimethyl-4,4′-diaminobiphenyl. 2,2′-dimethyl-4,4′-diaminobiphenyl, 3,3′-diethyl-4,4′-diaminobiphenyl, 2,2′-diethyl-4,4′-diaminobiphenyl, and the like. Other diamines can also be used in combination. Examples of the diamine include p-xylylenediamine, m-xylylenediamine, 1,5-diaminonaphthalene, 3,3′-dimethoxybenzidine, 4,4 ′-(or 3 , 4'-, 3,3'-, 2,4 '-) diaminodiphenylmethane, 4,4'- (or 3,4'-, 3,3'-, 2,4'-) diaminodiphenyl ether, 4, 4 '-(or 3,4'-, 3,3'-, 2,4'-) diaminodiphenyl sulfone, 4,4 '-(or 3,4'-, 3,3'-, 2,4' -) Diaminodiphenyl sulfide, 4,4'-benzophenone diamine, 3,3'-benzophenone diamine, 4,4'-di (4-aminophenoxy) phenyl sulfone, 4,4'-bis (4-aminophenoxy) biphenyl 1 4-bis (4-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,1,1,3,3,3-hexafluoro-2,2-bis (4-aminophenyl) Propane, 2,2′-bis (trifluoromethyl) benzidine, 2,2-bis [4- (4-aminophenoxy) phenyl] propane, 3,3-dimethyl-4,4′-diaminodiphenylmethane, 3,3 ', 5,5'-tetramethyl-4,4'-diaminodiphenylmethane, 4,4'-di (3-aminophenoxy) phenylsulfone, 3,3'-diaminodiphenylsulfone, 2,2'-bis (4 -Aminophenyl) propane, 5,5'-methylene-bis- (anthranilic acid), 3,5-diaminobenzoic acid, 3,3'-dihydroxy-4,4'-diaminobiphe , Aromatic diamines such as 3,3′-dimethyl-4,4′-diaminobiphenyl-6,6′-disulfonic acid, 2,6-diaminopyridine, 2,4-diaminopyridine, 2,4-diamino- s-triazine, 2,7-diaminobenzofuran, 2,7-diaminocarbazole, 3,7-diaminophenothiazine, 2,5-diamino-1,3,4-thiadiazole, 2,4-diamino-6-phenyl-s -Heterocyclic diamines such as triazine, trimethylenediamine, tetramethylenediamine, hexamethylenediamine, 2,2-dimethylpropylenediamine, 1,4-cyclohexanediamine, etc. Can be used together. The amount of the diamine that forms the structure represented by the general formula (1) is preferably 40% or more, more preferably 60% or more, and 80% or more with respect to the total amount of diamine. Is particularly preferred.

重合に使用する有機溶媒は、例えば、N−メチル−2−ピロリドン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、γ−ブチロラクトン、ε−カプロラクトン、γ−カプロラクトン、γ−バレロラクトン、ジメチルスルホキシド、1,4−ジオキサン、シクロヘキサノンなどが挙げられ、また、これらは2種以上を併用してもよい。ポリイミド前駆体樹脂組成物を生成後、粘度を調整するために、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノメチルアセテート、プロピレングリコールモノエチルアセテート、エチルセロソルブ、ブチルセロソルブ、トルエン、キシレン、エタノール、イソプロピルアルコール、n−ブタノールなどを用いても良く、これらは2種以上を併用してもよい。ポリイミド前駆体樹脂組成物におけるポリイミド前駆体/有機溶媒の質量割合としては、良好な薄膜を形成できる塗布性等の観点から、ポリイミド前駆体/有機溶媒で、5/95〜95/5が好ましい。
製造されるポリイミド前駆体の分子量としては、硬化膜の伸び及び溶媒への溶解性の観点から、重量平均分子量で、5000〜300000が好ましく、10000〜300000がより好ましく、15,000〜200,000が特に好ましい。重量平均分子量は、ゲルパーミエ-ションクロマトグラフィー法により測定し、標準ポリスチレン検量線により換算して算出することができる。
Examples of the organic solvent used for polymerization include N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, γ-butyrolactone, ε-caprolactone, γ-caprolactone, γ-valerolactone, and dimethyl. Examples thereof include sulfoxide, 1,4-dioxane and cyclohexanone, and these may be used in combination of two or more. In order to adjust the viscosity after producing the polyimide precursor resin composition, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monomethyl acetate, propylene glycol monoethyl acetate, ethyl cellosolve, butyl cellosolve, toluene, xylene, ethanol, Isopropyl alcohol, n-butanol or the like may be used, and these may be used in combination of two or more. The mass ratio of polyimide precursor / organic solvent in the polyimide precursor resin composition is preferably 5/95 to 95/5 in terms of applicability and the like that can form a good thin film, with polyimide precursor / organic solvent.
The molecular weight of the polyimide precursor to be produced is preferably 5000 to 300,000, more preferably 10,000 to 300,000, and more preferably 15,000 to 200,000 in terms of weight average molecular weight from the viewpoint of elongation of the cured film and solubility in a solvent. Is particularly preferred. The weight average molecular weight can be calculated by measuring with a gel permeation chromatography method and converting with a standard polystyrene calibration curve.

また、本発明のフレキシブルデバイス基板形成用ポリイミド前駆体樹脂組成物は、必要に応じて感光性を付与することが可能である。例えば、ネガ型の感光性を付与する場合、ポリイミド前駆体としてポリアミド酸(一般式(1)においてRが水素原子であるもの)にアクリロイル基又はメタクリロイル基を有するアミンを配合して感光性を付与することができる。このようなアミンとしては、例えば、N,N−ジエチルアミノプロピルメタクリレート、N,N−ジメチルアミノプロピルメタクリレート、N,N−ジエチルアミノプロピルアクリレート、N,N−ジエチルアミノエチルメタクリレートなどが挙げられるがこの範囲には限られない。また、ポリイミド前駆体としてポリアミド酸エステル(一般式(1)においてRが一価の有機基であるもの)を用い、このときのRとして、アクリロキシアルキル基やメタクリロキシアルキル基等のアクリロイル基やメタクリロイル基を含む構造のものを用いて、感光性を付与することも可能である。これらのように、ネガ型の感光性を付与する場合、一般的にはさらに、ラジカル重合開始剤等の光重合開始剤を、樹脂組成物総量に対して0.01〜10質量%用いることが好ましい。   Moreover, the polyimide precursor resin composition for flexible device board | substrate formation of this invention can provide photosensitivity as needed. For example, when negative-type photosensitivity is imparted, the photosensitivity is imparted by blending an amine having an acryloyl group or a methacryloyl group with polyamic acid (in which R is a hydrogen atom in the general formula (1)) as a polyimide precursor. can do. Examples of such amines include N, N-diethylaminopropyl methacrylate, N, N-dimethylaminopropyl methacrylate, N, N-diethylaminopropyl acrylate, N, N-diethylaminoethyl methacrylate, and the like. Not limited. Further, a polyamic acid ester (in which R is a monovalent organic group in the general formula (1)) is used as a polyimide precursor, and as R at this time, an acryloyl group such as an acryloxyalkyl group or a methacryloxyalkyl group, Photosensitivity can be imparted using a structure containing a methacryloyl group. When imparting negative photosensitivity as described above, generally, a photopolymerization initiator such as a radical polymerization initiator is used in an amount of 0.01 to 10% by mass based on the total amount of the resin composition. preferable.

さらに、本発明のフレキシブルデバイス基板用ポリイミド前駆体樹脂組成物には、被塗布体との接着性向上のため、シランカップリング剤、チタンカップリング剤等のカップリング剤を添加することができる。上記カップリング剤としては、例えば、γ−アミノプロピルトリエトキシシラン、γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルトリプロポキシシラン、γ−アミノプロピルトリブトキシシラン、γ−アミノエチルトリエトキシシラン、γ−アミノエチルトリメトキシシラン、γ−アミノエチルトリプロポキシシラン、γ−アミノエチルトリブトキシシラン、γ−アミノブチルトリエトキシシラン、γ−アミノブチルトリメトキシシラン、γ−アミノブチルトリプロポキシシラン、γ−アミノブチルトリブトキシシラン、などが挙げられ、また上記チタンカップリング剤としては、例えば、γ−アミノプロピルトリエトキシチタン、γ−アミノプロピルトリメトキシチタン、γ−アミノプロピルトリプロポキシチタン、γ−アミノプロピルトリブトキシチタン、γ−アミノエチルトリエトキシチタン、γ−アミノエチルトリメトキシチタン、γ−アミノエチルトリプロポキシチタン、γ−アミノエチルトリブトキシチタン、γ−アミノブチルトリエトキシチタン、γ−アミノブチルトリメトキシチタン、γ−アミノブチルトリプロポキシチタン、γ−アミノブチルトリブトキシチタン、などが挙げられる。これらは2種以上を併用してもよい。このときの使用量は、ポリイミド前駆体(樹脂分)に対して、0.1質量%以上、3質量%以下が好ましい。
その他、必要に応じて、各種添加剤を配合することも可能である。
Furthermore, a coupling agent such as a silane coupling agent or a titanium coupling agent can be added to the polyimide precursor resin composition for a flexible device substrate of the present invention in order to improve the adhesion to the coated body. Examples of the coupling agent include γ-aminopropyltriethoxysilane, γ-aminopropyltrimethoxysilane, γ-aminopropyltripropoxysilane, γ-aminopropyltributoxysilane, γ-aminoethyltriethoxysilane, γ -Aminoethyltrimethoxysilane, γ-aminoethyltripropoxysilane, γ-aminoethyltributoxysilane, γ-aminobutyltriethoxysilane, γ-aminobutyltrimethoxysilane, γ-aminobutyltripropoxysilane, γ-amino Examples of the titanium coupling agent include γ-aminopropyltriethoxytitanium, γ-aminopropyltrimethoxytitanium, γ-aminopropyltripropoxytitanium, and γ-aminopropylene. Tributoxytitanium, γ-aminoethyltriethoxytitanium, γ-aminoethyltrimethoxytitanium, γ-aminoethyltripropoxytitanium, γ-aminoethyltributoxytitanium, γ-aminobutyltriethoxytitanium, γ-aminobutyltrimethoxy Examples thereof include titanium, γ-aminobutyl tripropoxy titanium, γ-aminobutyl tributoxy titanium, and the like. Two or more of these may be used in combination. The amount used at this time is preferably 0.1% by mass or more and 3% by mass or less with respect to the polyimide precursor (resin component).
In addition, it is also possible to mix | blend various additives as needed.

本発明の液状のポリイミド前駆体樹脂組成物の塗布は、キャリア基板(支持体)に均一な厚みを形成できる方法であれば、種類を問わず適用できる。例として、ダイコーティングやスピンコーティング、スクリーン印刷による塗布が可能である。
本発明における液状ポリイミド前駆体樹脂組成物を塗布、乾燥、イミド閉環して得られるポリイミド樹脂膜の厚さは、1〜20μmであることが望ましい。これは、厚さが1μmに満たない場合にポリイミドフィルムが十分な耐性を保持できず、フレキシブルデバイスとして使用したとき応力に耐え切れず破壊されるためである。また、20μmを超えて厚くなると、フレキシブルデバイスの薄型化が困難となってしまう。したがって、フレキシブルデバイスとして十分な耐性を保持しながらより薄膜化するには、2〜10μmの厚みであることが最も望ましい。
The liquid polyimide precursor resin composition of the present invention can be applied regardless of the type as long as it can form a uniform thickness on the carrier substrate (support). For example, application by die coating, spin coating, or screen printing is possible.
As for the thickness of the polyimide resin film obtained by apply | coating, drying, and imide ring closure of the liquid polyimide precursor resin composition in this invention, it is desirable that it is 1-20 micrometers. This is because when the thickness is less than 1 μm, the polyimide film cannot maintain sufficient resistance, and when used as a flexible device, it cannot withstand stress and is destroyed. On the other hand, if the thickness exceeds 20 μm, it is difficult to reduce the thickness of the flexible device. Therefore, in order to reduce the film thickness while maintaining sufficient resistance as a flexible device, the thickness is most desirably 2 to 10 μm.

本発明のフレキシブルデバイスの製造方法において、ポリイミド前駆体樹脂組成物を塗布するキャリア基板(支持体)は、自立性を持つ硬質なものであって、耐熱性があれば良い。つまり製造工程上必要とされる高温にさらされても変形しない素材を用いていれば良い。具体的には、一般に200℃以上、好ましくは250℃以上のガラス転移温度を持つ素材を用いるのが望ましく、このようなものとしてはガラスが挙げられる。キャリア基板の厚さは、0.3mmから5.0mmが好ましく、0.5mmから3.0mmがより好ましく、0.7mmから1.5mmであるものがさらに好ましい。
塗布した本発明のポリイミド前駆体樹脂組成物は、一般に、加熱乾燥した後、脱水閉環してポリイミド樹脂膜を形成する。その加熱温度としては通常100〜500℃、好ましくは150〜450℃、さらに好ましくは200〜400℃の範囲を任意に選択することができる。また加熱時間は、通常1分〜6時間、好ましくは分〜時間、さらに好ましくは15分〜2時間とされる。
こうして形成されるポリイミド樹脂のフィルムの熱膨張率は、100〜200℃の範囲において20ppm/K以下であることが好ましく、15ppm/K以下であることがより好ましく、10ppm/K以下であることがさらに好ましく、被塗布体であるキャリア基板(例えばガラス基板)と同程度の熱膨張であることが最も好ましい。熱膨張率は、乾燥後のポリイミドフィルムを5mm×15mmに切り出したものを用い、サーマルメカニカルアナライザー(例えば、株式会社リガク製)によって25℃から450℃まで、毎分5℃ずつ昇温することで測定することができる。
さらに、形成されるポリイミド樹脂は、破断伸びが、5%以上が好ましく(25℃)、10%以上がより好ましく、15%以上であることがさらに好ましい。破断伸びは、乾燥後のポリイミドフィルムを10mm×60mmに切り出したサンプルを用い、オートグラフ(例えば株式会社島津製作所製)により測定することができる。
また、形成されるポリイミド樹脂の弾性率は、1GPa以上であることが好ましく(25℃)、1.5GPa以上であることがより好ましく、2GPa以上であることがさらに好ましい。破断伸びは乾燥後のポリイミドフィルムを10mm×60mmに切り出したサンプルを用い、オートグラフ(例えば株式会社島津製作所製)により測定することができる。
In the method for manufacturing a flexible device of the present invention, the carrier substrate (support) to which the polyimide precursor resin composition is applied is a hard substrate having self-supporting properties and may have heat resistance. That is, it is only necessary to use a material that does not deform even when exposed to high temperatures required in the manufacturing process. Specifically, it is generally desirable to use a material having a glass transition temperature of 200 ° C. or higher, preferably 250 ° C. or higher, and examples thereof include glass. The thickness of the carrier substrate is preferably from 0.3 mm to 5.0 mm, more preferably from 0.5 mm to 3.0 mm, and even more preferably from 0.7 mm to 1.5 mm.
The applied polyimide precursor resin composition of the present invention is generally heat-dried and then dehydrated and closed to form a polyimide resin film. The heating temperature can be arbitrarily selected from the range of usually 100 to 500 ° C, preferably 150 to 450 ° C, more preferably 200 to 400 ° C. The heating time is usually 1 minute to 6 hours, preferably 3 minutes to 4 hours, and more preferably 15 minutes to 2 hours.
The thermal expansion coefficient of the polyimide resin film thus formed is preferably 20 ppm / K or less, more preferably 15 ppm / K or less, more preferably 10 ppm / K or less in the range of 100 to 200 ° C. More preferably, the thermal expansion is almost the same as that of a carrier substrate (for example, a glass substrate) that is an object to be coated. The coefficient of thermal expansion is obtained by increasing the temperature by 5 ° C. per minute from 25 ° C. to 450 ° C. using a thermal mechanical analyzer (for example, manufactured by Rigaku Corporation) using a polyimide film that has been dried and cut to 5 mm × 15 mm. Can be measured.
Furthermore, the polyimide resin to be formed preferably has a breaking elongation of 5% or more (25 ° C.), more preferably 10% or more, and further preferably 15% or more. The elongation at break can be measured by an autograph (for example, manufactured by Shimadzu Corporation) using a sample obtained by cutting a polyimide film after drying into 10 mm × 60 mm.
The elastic modulus of the formed polyimide resin is preferably 1 GPa or more (25 ° C.), more preferably 1.5 GPa or more, and further preferably 2 GPa or more. The elongation at break can be measured by an autograph (for example, manufactured by Shimadzu Corporation) using a sample obtained by cutting a polyimide film after drying into 10 mm × 60 mm.

本発明のフレキシブルデバイスの製造方法においては、以上のようにして形成したポリイミド膜の上に、表示デバイス、受光デバイスに必要な回路を形成する工程を含む。この工程はフレキシブルデバイスの種類により異なる。例えば、TFT液晶ディスプレイデバイスを製造する場合には、この上に例えばアモルファスシリコンのTFTを形成することが出来る。TFTは、ゲート金属層、窒化ケイ素ゲート誘電体層、ITI画素電極を含む。さらにこの上に液晶ディスプレイに必要な構造を、公知の方法によって形成することも出来る。本発明において得られるポリイミド樹脂膜は耐熱性、靱性等各種特性に優れるので、回路等を形成する手法は特に制限されない。
以上のようにして、回路等が表面に形成された固体状のポリイミド樹脂膜を前記キャリア基板から剥離する。剥離方法に特に制限はなく、例えばキャリア基板側からレーザー等を照射することで剥離を行っても良い。本発明により得られるポリイミド樹脂膜は、高い靭性を有するので、キャリア基板(支持体)と単に物理的に剥離することも可能である。
本発明における、フレキシブルデバイスとしては、液晶ディスプレイ、有機ELディスプレイ、電子ペーパーといった表示デバイス、太陽電池、CMOSなどの受光デバイスを挙げることが出来る。特に、薄型化かつフレキシブル性を付与したいデバイスへの適用に最適である。
The method for manufacturing a flexible device of the present invention includes a step of forming circuits necessary for the display device and the light receiving device on the polyimide film formed as described above. This process differs depending on the type of flexible device. For example, when a TFT liquid crystal display device is manufactured, an amorphous silicon TFT, for example, can be formed thereon. The TFT includes a gate metal layer, a silicon nitride gate dielectric layer, and an ITI pixel electrode. Further, a structure necessary for the liquid crystal display can be formed thereon by a known method. Since the polyimide resin film obtained in the present invention is excellent in various properties such as heat resistance and toughness, the method for forming a circuit or the like is not particularly limited.
As described above, the solid polyimide resin film having a circuit or the like formed on the surface is peeled from the carrier substrate. There is no restriction | limiting in particular in the peeling method, For example, you may peel by irradiating a laser etc. from the carrier substrate side. Since the polyimide resin film obtained by the present invention has high toughness, it can be simply physically peeled off from the carrier substrate (support).
Examples of the flexible device in the present invention include display devices such as liquid crystal displays, organic EL displays, and electronic paper, and light receiving devices such as solar cells and CMOS. In particular, it is optimal for application to a device that is desired to be thin and flexible.

(実施例1)
窒素雰囲気下の200mlフラスコに、p-フェニレンジアミン5.41gとN-メチルピロリドン181.03gを仕込み、15分間、40℃で加熱攪拌しモノマーを溶解させた。その後s-ビフェニルテトラカルボン酸二無水物14.71gを加え、さらに30分間攪拌し、粘度1100mPa・s(25℃)の液状ポリイミド前駆体樹脂組成物を得た。このポリイミド前駆体の重量平均分子量は70000であった。
得られた液状ポリイミド前駆体樹脂組成物を厚さ625μmの6インチシリコン基板上にスピンコートで塗布した後、130℃のホットプレートで2分間ベークし、厚さ5μmになるように製膜した。次いで、硬化炉を用い200℃で30分間、さらに350℃で60分間加熱硬化してイミド化し、ポリイミド樹脂フィルムからなる樹脂膜を得た。イミド化後の膜厚は3μmであった。この樹脂フィルムをシリコン基板より剥離し、熱特性、機械特性を測定し、その結果を纏めて表1に示した。
Example 1
A 200 ml flask under nitrogen atmosphere was charged with 5.41 g of p-phenylenediamine and 181.03 g of N-methylpyrrolidone, and heated and stirred at 40 ° C. for 15 minutes to dissolve the monomer. Thereafter, 14.71 g of s-biphenyltetracarboxylic dianhydride was added, and the mixture was further stirred for 30 minutes to obtain a liquid polyimide precursor resin composition having a viscosity of 1100 mPa · s (25 ° C.). The weight average molecular weight of this polyimide precursor was 70000.
The obtained liquid polyimide precursor resin composition was applied onto a 6-inch silicon substrate having a thickness of 625 μm by spin coating, and then baked on a hot plate at 130 ° C. for 2 minutes to form a film having a thickness of 5 μm. Subsequently, it was heated and cured at 200 ° C. for 30 minutes and further at 350 ° C. for 60 minutes using a curing furnace to obtain an imidized resin film obtained from a polyimide resin film. The film thickness after imidization was 3 μm. The resin film was peeled from the silicon substrate, and the thermal characteristics and mechanical characteristics were measured. The results are summarized in Table 1.

測定条件は、次の通り。
ガラス転移温度:サーマルメカニカルアナライザー(株式会社リガク製、測定温度範囲25〜450℃、試料サイズ5mm×15mm)
熱分解温度:サーマルメカニカルアナライザー(株式会社リガク製、測定温度範囲25〜450℃、試料サイズ5mm×15mm)
熱膨張率:サーマルメカニカルアナライザー(株式会社リガク製、測定温度範囲25〜450℃、試料サイズ5mm×15mm)
破断点応力:オートグラフ(株式会社島津製作所製、試料サイズ10mm×60mm)
弾性率:オートグラフ(株式会社島津製作所製、試料サイズ10mm×60mm)
伸び:オートグラフ(株式会社島津製作所製、試料サイズ10mm×60mm)
重量平均分子量:ゲルパーミエーションクロマトグラフ(株式会社島津製作所製)
The measurement conditions are as follows.
Glass transition temperature: Thermal mechanical analyzer (manufactured by Rigaku Corporation, measurement temperature range 25 to 450 ° C., sample size 5 mm × 15 mm)
Thermal decomposition temperature: Thermal mechanical analyzer (manufactured by Rigaku Corporation, measurement temperature range 25 to 450 ° C., sample size 5 mm × 15 mm)
Thermal expansion coefficient: Thermal mechanical analyzer (manufactured by Rigaku Corporation, measurement temperature range 25 to 450 ° C., sample size 5 mm × 15 mm)
Stress at break: Autograph (manufactured by Shimadzu Corporation, sample size 10 mm x 60 mm)
Elastic modulus: Autograph (manufactured by Shimadzu Corporation, sample size 10 mm x 60 mm)
Elongation: Autograph (manufactured by Shimadzu Corporation, sample size 10 mm x 60 mm)
Weight average molecular weight: Gel permeation chromatograph (manufactured by Shimadzu Corporation)

(実施例2)
窒素雰囲気下の200mlフラスコに、p-フェニレンジアミン3.86gと1,3-ビス(3-アミノプロピル)-1,1,3,3-テトラメチルジシロキサン0.18g、N-メチルピロリドン85gを仕込み、15分間、40℃で加熱攪拌しモノマーを溶解させた。その後s-ビフェニルテトラカルボン酸無水物10.19gと1,3-ビス(3,4-ジカルボキシフェニル酸無水物)-1,1,3,3-テトラメチルジシロキサンを0.78g加え、さらに30分間攪拌し、粘度2000mPa・s(25℃)の液状ポリイミド前駆体樹脂組成物を得た。このポリイミド前駆体樹脂の重量平均分子量は80000であった。
得られた液状ポリイミド前駆体樹脂組成物を厚さ625μmの6インチシリコン基板上にスピンコートで塗布した後、130℃のホットプレートで45秒間、次いで160℃のホットプレートで45秒間ベークし、厚さ8μmになるように製膜した。次いで、実施例1に記載の条件で加熱硬化してイミド化し、ポリイミド樹脂フィルムからなる樹脂膜を得た。この膜厚は5μmであった。この樹脂フィルムをシリコン基板より剥離し、熱特性、機械特性を測定し、その結果を纏めて表1に示した。測定条件は実施例1に記載の条件に従った。
(Example 2)
In a 200 ml flask under nitrogen atmosphere, 3.86 g of p-phenylenediamine, 0.18 g of 1,3-bis (3-aminopropyl) -1,1,3,3-tetramethyldisiloxane, and 85 g of N-methylpyrrolidone. The monomer was dissolved by heating and stirring at 40 ° C. for 15 minutes. Then, 10.19 g of s-biphenyltetracarboxylic anhydride and 0.78 g of 1,3-bis (3,4-dicarboxyphenyl anhydride) -1,1,3,3-tetramethyldisiloxane were added, and The mixture was stirred for 30 minutes to obtain a liquid polyimide precursor resin composition having a viscosity of 2000 mPa · s (25 ° C.). The weight average molecular weight of this polyimide precursor resin was 80000.
The obtained liquid polyimide precursor resin composition was applied onto a 6-inch silicon substrate having a thickness of 625 μm by spin coating, and then baked on a 130 ° C. hot plate for 45 seconds and then on a 160 ° C. hot plate for 45 seconds. A film was formed to a thickness of 8 μm. Subsequently, it heat-cured on the conditions as described in Example 1, and imidized, and the resin film which consists of a polyimide resin film was obtained. This film thickness was 5 μm. The resin film was peeled from the silicon substrate, and the thermal characteristics and mechanical characteristics were measured. The results are summarized in Table 1. The measurement conditions followed the conditions described in Example 1.

(実施例3)
窒素雰囲気下の200mlフラスコに2,2’-ビス(トリフルオロメチル)ベンジジン11.99gとN-メチルピロリドン77gを仕込み、室温(25℃)で15分間攪拌しモノマーを溶解した。その後s-ビフェニルテトラカルボン酸二無水物11.01gを加えさらに室温で30分間攪拌し、粘度7200mPa・s(25℃)の液状ポリイミド前駆体樹脂組成物を得た。このポリイミド前駆体樹脂の重量平均分子量は72400であった。
得られた液状ポリイミド前駆体樹脂組成物を厚さ625μmの6インチシリコン基板上にスピンコートで塗布した後、100℃のホットプレートで2分間、次いで130℃のホットプレートで2分間ベークし、厚さ13μmになるように製膜した。次いで、実施例1に記載の条件で加熱硬化してイミド化し、ポリイミド樹脂フィルムからなる樹脂膜を得た。この膜厚は9μmであった。この樹脂フィルムをシリコン基板より剥離し、熱特性、機械特性を測定し、その結果を纏めて表1に示した。測定条件は実施例1に記載の条件に従った。
(Example 3)
In a 200 ml flask under a nitrogen atmosphere, 11.99 g of 2,2′-bis (trifluoromethyl) benzidine and 77 g of N-methylpyrrolidone were charged and stirred at room temperature (25 ° C.) for 15 minutes to dissolve the monomer. Thereafter, 11.01 g of s-biphenyltetracarboxylic dianhydride was added and further stirred at room temperature for 30 minutes to obtain a liquid polyimide precursor resin composition having a viscosity of 7200 mPa · s (25 ° C.). The weight average molecular weight of this polyimide precursor resin was 72400.
The obtained liquid polyimide precursor resin composition was applied onto a 6-inch silicon substrate having a thickness of 625 μm by spin coating, and then baked on a hot plate at 100 ° C. for 2 minutes and then on a hot plate at 130 ° C. for 2 minutes. A film was formed to a thickness of 13 μm. Subsequently, it heat-cured on the conditions as described in Example 1, and imidized, and the resin film which consists of a polyimide resin film was obtained. This film thickness was 9 μm. The resin film was peeled from the silicon substrate, and the thermal characteristics and mechanical characteristics were measured. The results are summarized in Table 1. The measurement conditions followed the conditions described in Example 1.

(実施例4)
窒素雰囲気下の200mlフラスコに、1,4-ジアミノシクロヘキサン5.59gをN-メチルピロリドン80gを仕込み、70℃で15分間加熱攪拌しモノマーを溶解した。その後s-ビフェニルテトラカルボン酸二無水物14.41gを加え80℃で30分間攪拌後、自然冷却し粘度9200mPa・s(25℃)の液状ポリイミド前駆体樹脂組成物を得た。このポリイミド前駆体樹脂の重量平均分子量は53000であった。
得られた液状ポリイミド前駆体樹脂組成物を厚さ625μmの6インチシリコン基板上にスピンコートで塗布した後、100℃のホットプレートで2分間、次いで130℃のホットプレートで2分間ベークし、厚さ15μmになるように製膜した。次いで、実施例1に記載の条件で加熱硬化してイミド化し、ポリイミド樹脂フィルムからなる樹脂膜を得た。この膜厚は10μmであった。この樹脂フィルムをシリコン基板より剥離し、熱特性、機械特性を測定し、その結果を纏めて表1に示した。測定条件は実施例1に記載の条件に従った。
Example 4
A 200 ml flask under a nitrogen atmosphere was charged with 5.59 g of 1,4-diaminocyclohexane and 80 g of N-methylpyrrolidone, and heated and stirred at 70 ° C. for 15 minutes to dissolve the monomer. Thereafter, 14.41 g of s-biphenyltetracarboxylic dianhydride was added and stirred at 80 ° C. for 30 minutes, and then naturally cooled to obtain a liquid polyimide precursor resin composition having a viscosity of 9200 mPa · s (25 ° C.). The weight average molecular weight of this polyimide precursor resin was 53000.
The obtained liquid polyimide precursor resin composition was applied onto a 6-inch silicon substrate having a thickness of 625 μm by spin coating, and then baked on a hot plate at 100 ° C. for 2 minutes and then on a hot plate at 130 ° C. for 2 minutes. A film was formed to a thickness of 15 μm. Subsequently, it heat-cured on the conditions as described in Example 1, and imidized, and the resin film which consists of a polyimide resin film was obtained. This film thickness was 10 μm. The resin film was peeled from the silicon substrate, and the thermal characteristics and mechanical characteristics were measured. The results are summarized in Table 1. The measurement conditions followed the conditions described in Example 1.

(実施例5)
窒素雰囲気下の200mlフラスコに、2,2’-ビス(トリフルオロメチル)ベンジジン1.49gと1,4-ジアミノシクロヘキサン4.78g、N-メチルピロリドン80gを仕込み、70℃で15分間加熱攪拌しモノマーを溶解した。その後s-ビフェニルテトラカルボン酸二無水物13.01gと3,3’,4,4’-ビシクロヘキシルテトラカルボン酸二無水物0.71gを加え80℃で30分間加熱攪拌後、自然冷却し液状ポリイミド前駆体樹脂組成物を得た。このポリイミド前駆体樹脂の重量平均分子量は87900であった。
得られた液状ポリイミド前駆体樹脂組成物を厚さ625μmの6インチシリコン基板上にスピンコートで塗布した後、100℃のホットプレートで2分間、次いで130℃のホットプレートで2分間ベークし、厚さ15μmになるように製膜した。次いで、実施例1に記載の条件で加熱硬化してイミド化し、ポリイミド樹脂フィルムからなる樹脂膜を得た。この膜厚は10μmであった。この樹脂フィルムをシリコン基板より剥離し、熱特性、機械特性を測定し、その結果を纏めて表1に示した。測定条件は実施例1に記載の条件に従った。
(Example 5)
A 200 ml flask under a nitrogen atmosphere was charged with 1.49 g of 2,2′-bis (trifluoromethyl) benzidine, 4.78 g of 1,4-diaminocyclohexane, and 80 g of N-methylpyrrolidone, and the mixture was heated and stirred at 70 ° C. for 15 minutes. The monomer was dissolved. After that, 13.01 g of s-biphenyltetracarboxylic dianhydride and 0.71 g of 3,3 ', 4,4'-bicyclohexyltetracarboxylic dianhydride were added and heated and stirred at 80 ° C for 30 minutes. A polyimide precursor resin composition was obtained. The weight average molecular weight of this polyimide precursor resin was 87900.
The obtained liquid polyimide precursor resin composition was applied onto a 6-inch silicon substrate having a thickness of 625 μm by spin coating, and then baked on a hot plate at 100 ° C. for 2 minutes and then on a hot plate at 130 ° C. for 2 minutes. A film was formed to a thickness of 15 μm. Subsequently, it heat-cured on the conditions as described in Example 1, and imidized, and the resin film which consists of a polyimide resin film was obtained. This film thickness was 10 μm. The resin film was peeled from the silicon substrate, and the thermal characteristics and mechanical characteristics were measured. The results are summarized in Table 1. The measurement conditions followed the conditions described in Example 1.

(比較例1)
窒素雰囲気下の200mlフラスコに、4,4’-ジアミノジフェニルエーテル6.03gと1,3-ビス(3-アミノプロピル)-1,1,3,3-テトラメチルジシロキサン0.39g、N-メチルピロリドン85gを仕込み、室温で15分間攪拌しモノマーを溶解させた。その後ピロメリット酸二無水物3.46gと3,3',4,4'-ベンゾフェノンテトラカルボン酸二無水物5.11gを加え、さらに24時間攪拌した。その後80℃の加熱攪拌で粘度調整を行い、粘度1100mPa・s(25℃)の液状ポリイミド前駆体樹脂組成物を得た。このポリイミド前駆体樹脂の重量平均分子量は76000であった。
得られた液状ポリイミド前駆体樹脂組成物をガラス基板上にスピンコートで塗布した後、140℃のホットプレートで1分間ベークし、厚さ8μmになるように製膜した。次いで、実施例1に記載の条件で加熱硬化してイミド化し、ポリイミド樹脂フィルムからなる樹脂膜を得た。この膜厚は4μmであった。この樹脂フィルムをシリコン基板より剥離し、熱特性、機械特性を測定し、その結果を纏めて表1に示した。測定条件は実施例1に記載の条件に従った。
(Comparative Example 1)
In a 200 ml flask under nitrogen atmosphere, 6.03 g of 4,4′-diaminodiphenyl ether, 0.39 g of 1,3-bis (3-aminopropyl) -1,1,3,3-tetramethyldisiloxane, N-methyl Pyrrolidone 85g was charged and stirred at room temperature for 15 minutes to dissolve the monomer. Thereafter, 3.46 g of pyromellitic dianhydride and 5.11 g of 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride were added, and the mixture was further stirred for 24 hours. Thereafter, the viscosity was adjusted by heating and stirring at 80 ° C. to obtain a liquid polyimide precursor resin composition having a viscosity of 1100 mPa · s (25 ° C.). The weight average molecular weight of this polyimide precursor resin was 76000.
The obtained liquid polyimide precursor resin composition was applied onto a glass substrate by spin coating, and then baked on a hot plate at 140 ° C. for 1 minute to form a film having a thickness of 8 μm. Subsequently, it heat-cured on the conditions as described in Example 1, and imidized, and the resin film which consists of a polyimide resin film was obtained. This film thickness was 4 μm. The resin film was peeled from the silicon substrate, and the thermal characteristics and mechanical characteristics were measured. The results are summarized in Table 1. The measurement conditions followed the conditions described in Example 1.

(比較例2)
窒素雰囲気下の200mlフラスコに、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン8.07gと1,3-ビス(3-アミノプロピル)-1,1,3,3-テトラメチルジシロキサン0.26g、N-メチルピロリドン68g、ジイソブチルケトン17gを仕込み、15分間攪拌した。その後3,3',4,4'-ベンゾフェノンテトラカルボン酸二無水物6.67gを加えさらに30分間攪拌し、粘度1100mPa・s(25℃)の液状ポリイミド前駆体樹脂組成物を得た。このポリイミド前駆体樹脂の重量平均分子量は81000であった。
得られた液状ポリイミド前駆体樹脂組成物を厚さ625μmの6インチシリコン基板上にスピンコートで塗布した後、120℃のホットプレートで3分間ベークし、厚さ14μmになるように製膜した。次いで、実施例1に記載の条件で加熱硬化してイミド化し、ポリイミド樹脂フィルムからなる樹脂膜を得た。この膜厚は8μmであった。この樹脂フィルムをシリコン基板より剥離し、熱特性、機械特性を測定し、その結果を纏めて表1に示した。測定条件は実施例1に記載の条件に従った。
(Comparative Example 2)
In a 200 ml flask under nitrogen atmosphere, 8.07 g of 2,2-bis [4- (4-aminophenoxy) phenyl] propane and 1,3-bis (3-aminopropyl) -1,1,3,3-tetra 0.26 g of methyldisiloxane, 68 g of N-methylpyrrolidone and 17 g of diisobutyl ketone were charged and stirred for 15 minutes. Thereafter, 6.67 g of 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride was added and further stirred for 30 minutes to obtain a liquid polyimide precursor resin composition having a viscosity of 1100 mPa · s (25 ° C.). The weight average molecular weight of this polyimide precursor resin was 81000.
The obtained liquid polyimide precursor resin composition was applied on a 6-inch silicon substrate having a thickness of 625 μm by spin coating, and then baked on a hot plate at 120 ° C. for 3 minutes to form a film having a thickness of 14 μm. Subsequently, it heat-cured on the conditions as described in Example 1, and imidized, and the resin film which consists of a polyimide resin film was obtained. This film thickness was 8 μm. The resin film was peeled from the silicon substrate, and the thermal characteristics and mechanical characteristics were measured. The results are summarized in Table 1. The measurement conditions followed the conditions described in Example 1.

(比較例3)
窒素雰囲気下の200mlフラスコに、ビス[4-(3-アミノフェノキシ)フェニル]スルホン8.93gとN-メチルピロリドン85gを仕込み、室温で15分間攪拌しモノマーを溶解した。その後s-ビフェニルテトラカルボン酸二無水物6.07gを加えさらに30分間攪拌し、粘度500mPa・s(25℃)の液状ポリイミド前駆体樹脂組成物を得た。このポリイミド前駆体樹脂の重量平均分子量は78100であった。
得られた液状ポリイミド前駆体樹脂組成物を厚さ625μmの6インチシリコン基板上にスピンコートで塗布した後、80℃のホットプレートで2分間、次いで120℃のホットプレートで2分間ベークし、厚さ7μmになるように製膜した。次いで、実施例1に記載の条件で加熱硬化してイミド化し、ポリイミド樹脂フィルムからなる樹脂膜を得た。この膜厚は3μmであった。この樹脂フィルムをシリコン基板より剥離し、熱特性、機械特性を測定し、その結果を纏めて表1に示した。測定条件は実施例1に記載の条件に従った。
(Comparative Example 3)
A 200 ml flask under a nitrogen atmosphere was charged with 8.93 g of bis [4- (3-aminophenoxy) phenyl] sulfone and 85 g of N-methylpyrrolidone, and stirred at room temperature for 15 minutes to dissolve the monomer. Thereafter, 6.07 g of s-biphenyltetracarboxylic dianhydride was added and stirred for another 30 minutes to obtain a liquid polyimide precursor resin composition having a viscosity of 500 mPa · s (25 ° C.). The weight average molecular weight of this polyimide precursor resin was 78100.
The obtained liquid polyimide precursor resin composition was applied onto a 6-inch silicon substrate having a thickness of 625 μm by spin coating, and then baked on an 80 ° C. hot plate for 2 minutes and then on a 120 ° C. hot plate for 2 minutes. A film was formed to a thickness of 7 μm. Subsequently, it heat-cured on the conditions as described in Example 1, and imidized, and the resin film which consists of a polyimide resin film was obtained. This film thickness was 3 μm. The resin film was peeled from the silicon substrate, and the thermal characteristics and mechanical characteristics were measured. The results are summarized in Table 1. The measurement conditions followed the conditions described in Example 1.

ディスプレイデバイスの製造例
上記実施例1〜5及び比較例1〜3で得られた液状ポリイミド前駆体樹脂組成物を用いたフレキシブル液晶ディスプレイの製造例を示す。
図1に示すようにキャリア基板としてガラス基板を用い、ガラス基板上に各液状ポリイミド前駆体樹脂組成物を、スピンコートで塗布した後、130℃のホットプレートで2分間ベークし、厚さ約5μmになるように製膜した。次いで、硬化炉を用い200℃で30分間、さらに350℃で60分間加熱硬化してイミド化し、固体状の樹脂膜であるポリイミド樹脂フィルムを形成した。この膜厚は3μmである。このポリイミド膜上に、既知の方法に従って図2に示すようにTFT電極を形成することができる、さらにその上に既知の方法に従って、図3に示すように液晶表示素子、カバーフィルムの層を形成することができる。その後、図4に示すようにガラス基板から、フレキシブルデバイスを剥離することができる。
このようにして得られる、実施例のフレキシブル液晶ディスプレイは良好な性能を示すが、比較例のものはポリイミド膜物性が劣るため、信頼性に優れるフレキシブル液晶ディスプレイは得られない。
Production Example of Display Device A production example of a flexible liquid crystal display using the liquid polyimide precursor resin composition obtained in Examples 1 to 5 and Comparative Examples 1 to 3 will be described.
As shown in FIG. 1, a glass substrate is used as a carrier substrate, and each liquid polyimide precursor resin composition is applied onto the glass substrate by spin coating, then baked on a hot plate at 130 ° C. for 2 minutes, and a thickness of about 5 μm. The film was formed to be Subsequently, using a curing furnace, it was cured by heating at 200 ° C. for 30 minutes and further at 350 ° C. for 60 minutes to imidize, thereby forming a polyimide resin film which was a solid resin film. This film thickness is 3 μm. A TFT electrode can be formed on this polyimide film according to a known method as shown in FIG. 2, and a liquid crystal display element and a cover film layer are formed thereon as shown in FIG. 3 according to a known method. can do. Thereafter, the flexible device can be peeled from the glass substrate as shown in FIG.
The flexible liquid crystal display of the example obtained in this way shows good performance, but the comparative liquid crystal display is inferior in polyimide film properties, so that a flexible liquid crystal display excellent in reliability cannot be obtained.

Figure 2010202729
表1に示したように、本発明の一般式(1)で表される構成単位を有するポリイミド前駆体を用いた樹脂膜は、ガラス転移温度、熱分解温度、熱膨張率などの熱特性、破断点応力、弾性率、伸びなどの機械特性に優れる。これに対し、一般式(1)で表される構成単位を有さない比較例1〜3は、熱特性、機械特性に劣る。また、実施例のポリイミド前駆体は、薄膜の樹脂膜にもかかわらず、その上に形成した各種回路(TFT電極、液晶表示素子)にはがれなどの欠陥を生じさせることなくキャリア基板からの剥離性に優れる。
Figure 2010202729
As shown in Table 1, the resin film using the polyimide precursor having the structural unit represented by the general formula (1) of the present invention has thermal characteristics such as a glass transition temperature, a thermal decomposition temperature, and a thermal expansion coefficient, Excellent mechanical properties such as stress at break, elastic modulus and elongation. On the other hand, Comparative Examples 1 to 3 having no structural unit represented by the general formula (1) are inferior in thermal characteristics and mechanical characteristics. In addition, the polyimide precursors of the examples were peelable from the carrier substrate without causing defects such as peeling on the various circuits (TFT electrodes, liquid crystal display elements) formed on the resin film despite the thin resin film. Excellent.

Claims (8)

液状の樹脂組成物をキャリア基板上に塗布成膜して固体状の樹脂膜を形成する工程、前記樹脂膜上に回路を形成する工程、前記回路が表面に形成された固体状の樹脂膜を前記キャリア基板から剥離する工程、の各工程を含む、表示デバイス又は受光デバイスであるフレキシブルデバイスの製造法に用いられる、フレキシブルデバイス基板となる前記液状の樹脂組成物であって、一般式(1)
Figure 2010202729
(一般式(1)中、Rは各々独立に水素原子又は一価の有機基を示し、R
Figure 2010202729
から選択される2価の有機基であり(但しR’は各々独立にアルキル基であり、アルキル基の水素原子はハロゲン原子で置換されても良い)、R
Figure 2010202729
から選択される四価の有機基であり、nは繰り返し数を表す正の整数である)で表される構造を有するポリイミド前駆体と有機溶媒とを含有してなるフレキシブルデバイス基板用ポリイミド前駆体樹脂組成物。
Applying a liquid resin composition on a carrier substrate to form a solid resin film; forming a circuit on the resin film; and forming a solid resin film on the surface of the circuit. The liquid resin composition to be a flexible device substrate, which is used in a method for producing a flexible device that is a display device or a light receiving device, including each step of peeling from the carrier substrate, and having the general formula (1)
Figure 2010202729
In (formula (1), R represents each independently a hydrogen atom or a monovalent organic group, R 1 is
Figure 2010202729
(Wherein R ′ is each independently an alkyl group, the hydrogen atom of the alkyl group may be substituted with a halogen atom), and R 2 is
Figure 2010202729
A polyimide precursor for a flexible device substrate comprising a polyimide precursor having a structure represented by the following formula: n is a positive integer representing the number of repetitions, and an organic solvent Resin composition.
ポリイミド前駆体の重量平均分子量が、15,000から200,000である請求項1に記載のフレキシブルデバイス基板形成用ポリイミド前駆体樹脂組成物。   2. The polyimide precursor resin composition for forming a flexible device substrate according to claim 1, wherein the polyimide precursor has a weight average molecular weight of 15,000 to 200,000. 請求項1又は2に記載のフレキシブルデバイス基板形成用ポリイミド前駆体樹脂組成物をキャリア基板上に塗布成膜して固体状のポリイミド樹脂膜を形成する工程、前記樹脂膜上に回路を形成する工程、前記回路が表面に形成された固体状の樹脂膜を前記キャリア基板から剥離する工程の各工程を含む、表示デバイス又は受光デバイスであるフレキシブルデバイスの製造方法。   A step of forming a solid polyimide resin film by coating the polyimide precursor resin composition for forming a flexible device substrate according to claim 1 or 2 on a carrier substrate, and a step of forming a circuit on the resin film The manufacturing method of the flexible device which is a display device or a light receiving device including each process of the process of peeling the solid resin film in which the said circuit was formed in the surface from the said carrier substrate. ポリイミド樹脂膜の厚さが、1〜20μmである請求項3に記載のフレキシブルデバイスの製造方法。   The method for manufacturing a flexible device according to claim 3, wherein the polyimide resin film has a thickness of 1 to 20 μm. ポリイミド樹脂膜のガラス転移温度が、300℃以上である請求項3又は4に記載のフレキシブルデバイスの製造方法。   The method for producing a flexible device according to claim 3 or 4, wherein the glass transition temperature of the polyimide resin film is 300 ° C or higher. ポリイミド樹脂膜の100℃〜200℃の範囲における熱膨張係数が、20ppm/K以下である請求項3から5のいずれかに記載のフレキシブルデバイスの製造方法。   The method for producing a flexible device according to any one of claims 3 to 5, wherein a thermal expansion coefficient of the polyimide resin film in a range of 100 ° C to 200 ° C is 20 ppm / K or less. 請求項3から6のいずれかに記載されたフレキシブルデバイスの製造方法により製造された表示デバイス又は受光デバイスであるフレキシブルデバイス。   A flexible device which is a display device or a light-receiving device manufactured by the method for manufacturing a flexible device according to claim 3. フレキシブルデバイスが、電子ペーパー、ディスプレイ又は太陽電池の受光素子である請求項7に記載のフレキシブルデバイス。   The flexible device according to claim 7, wherein the flexible device is a light receiving element of electronic paper, a display, or a solar cell.
JP2009047876A 2009-03-02 2009-03-02 Polyimide precursor resin composition for flexible device substrates and method for producing flexible device using the same, and flexible device Pending JP2010202729A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009047876A JP2010202729A (en) 2009-03-02 2009-03-02 Polyimide precursor resin composition for flexible device substrates and method for producing flexible device using the same, and flexible device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009047876A JP2010202729A (en) 2009-03-02 2009-03-02 Polyimide precursor resin composition for flexible device substrates and method for producing flexible device using the same, and flexible device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2015106345A Division JP6206446B2 (en) 2015-05-26 2015-05-26 Polyimide precursor resin composition for forming flexible device substrate, method for producing flexible device using the same, flexible device

Publications (1)

Publication Number Publication Date
JP2010202729A true JP2010202729A (en) 2010-09-16

Family

ID=42964544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009047876A Pending JP2010202729A (en) 2009-03-02 2009-03-02 Polyimide precursor resin composition for flexible device substrates and method for producing flexible device using the same, and flexible device

Country Status (1)

Country Link
JP (1) JP2010202729A (en)

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012008543A1 (en) 2010-07-14 2012-01-19 宇部興産株式会社 Aqueous polyimide precursor solution composition and method for producing aqueous polyimide precursor solution composition
JP2012233083A (en) * 2011-04-28 2012-11-29 Mitsubishi Chemicals Corp Device manufacturing method
WO2013035806A1 (en) 2011-09-09 2013-03-14 宇部興産株式会社 Composition of aqueous polyimide precursor solution and method for producing composition of aqueous polyimide precursor solution
WO2013105610A1 (en) 2012-01-13 2013-07-18 宇部興産株式会社 Polyimide precursor solution composition and method for producing polyimide precursor solution composition
JP2013256125A (en) * 2011-12-26 2013-12-26 Mitsui Chemicals Inc Multilayer molded body, its manufacturing method and heat dissipating member
JP2014501301A (en) * 2010-12-31 2014-01-20 コーロン インダストリーズ インク Transparent polyimide film and method for producing the same
JP2014166722A (en) * 2013-02-28 2014-09-11 Nippon Steel & Sumikin Chemical Co Ltd Method of producing laminate member
JP2014218056A (en) * 2013-05-10 2014-11-20 ユニチカ株式会社 Laminate for flexible device
WO2015002273A1 (en) * 2013-07-05 2015-01-08 三菱瓦斯化学株式会社 Polyimide resin
JPWO2013125194A1 (en) * 2012-02-23 2015-07-30 日立化成デュポンマイクロシステムズ株式会社 Display substrate manufacturing method
JP2015522451A (en) * 2013-04-09 2015-08-06 エルジー・ケム・リミテッド Laminate, laminate production method, device substrate production method, device production method, device, and polyimide film
WO2015129780A1 (en) * 2014-02-28 2015-09-03 日産化学工業株式会社 Resin composition for display substrate, resin thin film for display substrate, and method for producing resin thin film for display substrate
JP2015165015A (en) * 2014-02-06 2015-09-17 三菱化学株式会社 Polyimide resin composition, polyimide film and device film using the resin composition
KR20150106852A (en) 2014-03-12 2015-09-22 신닛테츠 수미킨 가가쿠 가부시키가이샤 Display device and method for manufacturing the same, and polyimide film for display device
WO2015147106A1 (en) * 2014-03-25 2015-10-01 株式会社カネカ Method for manufacturing compound semiconductor solar cell
KR20150113926A (en) 2014-03-31 2015-10-08 신닛테츠 수미킨 가가쿠 가부시키가이샤 Method of manufacturing a flexible device, a flexible device, a flexible device manufacturing apparatus and a resin solution for forming a flexible substrate
JP2015179260A (en) * 2014-02-28 2015-10-08 新日鉄住金化学株式会社 Manufacturing method of display device and resin solution for display device
KR20160019466A (en) 2013-06-10 2016-02-19 닛산 가가쿠 고교 가부시키 가이샤 Resin composition for display substrates, resin thin film for display substrates, and method for producing resin thin film for display substrates
JP2016029126A (en) * 2014-07-25 2016-03-03 Jsr株式会社 Resin composition, film forming method using the same, and substrate
JP2016062965A (en) * 2014-09-16 2016-04-25 宇部興産株式会社 Manufacturing method of flexible device
US9323291B2 (en) 2013-04-03 2016-04-26 Samsung Display Co., Ltd. Flexible display device
JP2016225638A (en) * 2012-11-08 2016-12-28 旭化成株式会社 Flexible device substrate and flexible device
KR20170038720A (en) 2015-09-30 2017-04-07 신닛테츠 수미킨 가가쿠 가부시키가이샤 Method for producing polyimide film with functional layer
JPWO2016010003A1 (en) * 2014-07-17 2017-04-27 旭化成株式会社 Resin precursor and resin composition containing the same, polyimide resin film, resin film and method for producing the same
JP2017094328A (en) * 2016-12-21 2017-06-01 新日鉄住金化学株式会社 Manufacturing method of base film
KR20170066531A (en) 2014-10-10 2017-06-14 닛산 가가쿠 고교 가부시키 가이샤 Composition for forming thin resin film, and thin resin film
JP2017207749A (en) * 2016-05-16 2017-11-24 株式会社半導体エネルギー研究所 Method of manufacturing display device and method of manufacturing electronic device
KR20180018392A (en) 2016-08-10 2018-02-21 신닛테츠 수미킨 가가쿠 가부시키가이샤 Polyimide precursor, polyimide and manufacturing method of transparent polyimide film
KR20180018373A (en) 2016-08-10 2018-02-21 신닛테츠 수미킨 가가쿠 가부시키가이샤 Polyimide precursor and polyimide made therefrom
JP2018027660A (en) * 2016-08-19 2018-02-22 コニカミノルタ株式会社 Functional laminate and method for production thereof
JP2018048344A (en) * 2014-06-25 2018-03-29 旭化成株式会社 Polyimide film having cavity and method for producing the same
CN109417058A (en) * 2016-08-18 2019-03-01 富士胶片株式会社 The manufacturing method and laminated body of chip
JP2019061962A (en) * 2013-12-02 2019-04-18 株式会社半導体エネルギー研究所 Method of manufacturing display device
JP2019172970A (en) * 2018-03-26 2019-10-10 東レ株式会社 Resin composition for substrate of display device or light-receiving device, substrate of display device or light-receiving device using the same, display device, light-receiving device, and method for manufacturing display device or light-receiving device
JPWO2018124006A1 (en) * 2016-12-27 2019-10-31 日産化学株式会社 Composition for forming substrate protective layer
JP2019196500A (en) * 2019-08-09 2019-11-14 ユニチカ株式会社 Solution for coating
JP2020200387A (en) * 2019-06-10 2020-12-17 リンテック株式会社 Adhesive sheet and laminate
CN112805337A (en) * 2018-10-03 2021-05-14 柯尼卡美能达株式会社 Resin composition and electronic device
KR20210098376A (en) 2020-01-31 2021-08-10 우베 고산 가부시키가이샤 Polyimide precursor composition and polyimide film/substrate laminate
KR20220066319A (en) 2019-09-20 2022-05-24 우베 고산 가부시키가이샤 Polyimide precursor composition and method of manufacturing flexible electronic device
CN114555676A (en) * 2019-10-15 2022-05-27 住友化学株式会社 Polyimide resin
KR20220158783A (en) 2020-03-27 2022-12-01 유비이 가부시키가이샤 Polyimide precursor composition and polyimide film/substrate laminate
KR20230106702A (en) 2020-11-27 2023-07-13 유비이 가부시키가이샤 Polyimide precursor composition, polyimide film and polyimide film/substrate laminate
WO2023238530A1 (en) * 2022-06-09 2023-12-14 Jsr株式会社 Method for producing electroconductive film, touch panel, display panel
KR20240055121A (en) 2022-07-29 2024-04-26 유비이 가부시키가이샤 Polyimide precursor composition, polyimide film and polyimide film/substrate laminate
KR20240167856A (en) 2022-03-28 2024-11-28 유비이 가부시키가이샤 Polyimide precursor composition, polyimide film and polyimide film/substrate laminate

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61264028A (en) * 1985-05-17 1986-11-21 Ube Ind Ltd Polyimide film having high dimensional stability and production thereof
JPH0249475A (en) * 1988-05-19 1990-02-19 Nitto Denko Corp Manufacture of amorphous silicon solar cell
JPH03246515A (en) * 1990-02-26 1991-11-01 Nippon Telegr & Teleph Corp <Ntt> Liquid crystal display element
JPH0559173A (en) * 1991-08-28 1993-03-09 Kanegafuchi Chem Ind Co Ltd Polyamic acid copolymer, polyimide copolymer comprising the same copolymer, polyimide film and their production
JP2002037886A (en) * 2000-07-27 2002-02-06 Hitachi Chemical Dupont Microsystems Ltd Polyimide, precursor thereof, photosensitive resin composition, method of forming pattern and electronic parts
JP2002167433A (en) * 2000-11-30 2002-06-11 Central Glass Co Ltd Polyimide and method for producing the same
JP2002338710A (en) * 2001-03-16 2002-11-27 Sumitomo Bakelite Co Ltd Plastic base plate for indication element
JP2003231753A (en) * 2001-10-30 2003-08-19 Mitsui Chemicals Inc Novel polyimide, heat-resistant adhesive comprising polyimide, polyimide film, adhesive insulating tape, and metal laminate
JP2005163012A (en) * 2003-11-13 2005-06-23 New Japan Chem Co Ltd Polyimide precursor, polyimide and process for producing them
WO2005084948A1 (en) * 2004-03-04 2005-09-15 Toray Industries, Inc. Heat-resistant resin laminated film, multilayer film with metal layer including same, and semiconductor device
JP2005314630A (en) * 2004-03-30 2005-11-10 Nippon Steel Chem Co Ltd Aromatic polyamic acid and polyimide
WO2006126454A1 (en) * 2005-05-25 2006-11-30 Nippon Kayaku Kabushiki Kaisha Polybenzoxazole substrate material and film thereof
JP2007162005A (en) * 2005-11-16 2007-06-28 Du Pont Toray Co Ltd Polyimide film and method for producing the same
JP2007169304A (en) * 2005-11-24 2007-07-05 New Japan Chem Co Ltd Polyimide precursor, polyimide, polyimide-based plastic substrate plate and method for producing the same
JP2007231224A (en) * 2006-03-03 2007-09-13 Sumitomo Chemical Co Ltd Polyimide film for display.
WO2008050300A1 (en) * 2006-10-27 2008-05-02 Koninklijke Philips Electronics N.V. Electronic device having a plastic substrate
JP2008231327A (en) * 2007-03-22 2008-10-02 Ihara Chem Ind Co Ltd Highly transparent polyimide and method for producing the same

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61264028A (en) * 1985-05-17 1986-11-21 Ube Ind Ltd Polyimide film having high dimensional stability and production thereof
JPH0249475A (en) * 1988-05-19 1990-02-19 Nitto Denko Corp Manufacture of amorphous silicon solar cell
JPH03246515A (en) * 1990-02-26 1991-11-01 Nippon Telegr & Teleph Corp <Ntt> Liquid crystal display element
JPH0559173A (en) * 1991-08-28 1993-03-09 Kanegafuchi Chem Ind Co Ltd Polyamic acid copolymer, polyimide copolymer comprising the same copolymer, polyimide film and their production
JP2002037886A (en) * 2000-07-27 2002-02-06 Hitachi Chemical Dupont Microsystems Ltd Polyimide, precursor thereof, photosensitive resin composition, method of forming pattern and electronic parts
JP2002167433A (en) * 2000-11-30 2002-06-11 Central Glass Co Ltd Polyimide and method for producing the same
JP2002338710A (en) * 2001-03-16 2002-11-27 Sumitomo Bakelite Co Ltd Plastic base plate for indication element
JP2003231753A (en) * 2001-10-30 2003-08-19 Mitsui Chemicals Inc Novel polyimide, heat-resistant adhesive comprising polyimide, polyimide film, adhesive insulating tape, and metal laminate
JP2005163012A (en) * 2003-11-13 2005-06-23 New Japan Chem Co Ltd Polyimide precursor, polyimide and process for producing them
WO2005084948A1 (en) * 2004-03-04 2005-09-15 Toray Industries, Inc. Heat-resistant resin laminated film, multilayer film with metal layer including same, and semiconductor device
JP2005314630A (en) * 2004-03-30 2005-11-10 Nippon Steel Chem Co Ltd Aromatic polyamic acid and polyimide
WO2006126454A1 (en) * 2005-05-25 2006-11-30 Nippon Kayaku Kabushiki Kaisha Polybenzoxazole substrate material and film thereof
JP2007162005A (en) * 2005-11-16 2007-06-28 Du Pont Toray Co Ltd Polyimide film and method for producing the same
JP2007169304A (en) * 2005-11-24 2007-07-05 New Japan Chem Co Ltd Polyimide precursor, polyimide, polyimide-based plastic substrate plate and method for producing the same
JP2007231224A (en) * 2006-03-03 2007-09-13 Sumitomo Chemical Co Ltd Polyimide film for display.
WO2008050300A1 (en) * 2006-10-27 2008-05-02 Koninklijke Philips Electronics N.V. Electronic device having a plastic substrate
JP2010507829A (en) * 2006-10-27 2010-03-11 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Electronic device having plastic substrate
JP2008231327A (en) * 2007-03-22 2008-10-02 Ihara Chem Ind Co Ltd Highly transparent polyimide and method for producing the same

Cited By (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012008543A1 (en) 2010-07-14 2012-01-19 宇部興産株式会社 Aqueous polyimide precursor solution composition and method for producing aqueous polyimide precursor solution composition
US11401418B2 (en) 2010-07-14 2022-08-02 Ube Industries, Ltd. Method for producing aqueous polyimide precursor solution composition
JP2014501301A (en) * 2010-12-31 2014-01-20 コーロン インダストリーズ インク Transparent polyimide film and method for producing the same
JP2012233083A (en) * 2011-04-28 2012-11-29 Mitsubishi Chemicals Corp Device manufacturing method
WO2013035806A1 (en) 2011-09-09 2013-03-14 宇部興産株式会社 Composition of aqueous polyimide precursor solution and method for producing composition of aqueous polyimide precursor solution
US11407857B2 (en) 2011-09-09 2022-08-09 Ube Industries, Ltd. Method for producing aqueous polyimide precursor solution composition
JP2013256125A (en) * 2011-12-26 2013-12-26 Mitsui Chemicals Inc Multilayer molded body, its manufacturing method and heat dissipating member
US11407868B2 (en) 2012-01-13 2022-08-09 Ube Industries, Ltd. Method for producing aqueous polyimide precursor solution composition
KR20140112062A (en) 2012-01-13 2014-09-22 우베 고산 가부시키가이샤 Polyimide precursor solution composition and method for producing polyimide precursor solution composition
WO2013105610A1 (en) 2012-01-13 2013-07-18 宇部興産株式会社 Polyimide precursor solution composition and method for producing polyimide precursor solution composition
JPWO2013125194A1 (en) * 2012-02-23 2015-07-30 日立化成デュポンマイクロシステムズ株式会社 Display substrate manufacturing method
TWI648312B (en) * 2012-02-23 2019-01-21 日立化成杜邦微系統股份有限公司 Resin composition and polyimide resin film using the same, display substrate and manufacturing method thereof
JP2016225638A (en) * 2012-11-08 2016-12-28 旭化成株式会社 Flexible device substrate and flexible device
JP2014166722A (en) * 2013-02-28 2014-09-11 Nippon Steel & Sumikin Chemical Co Ltd Method of producing laminate member
US9323291B2 (en) 2013-04-03 2016-04-26 Samsung Display Co., Ltd. Flexible display device
JP2015522451A (en) * 2013-04-09 2015-08-06 エルジー・ケム・リミテッド Laminate, laminate production method, device substrate production method, device production method, device, and polyimide film
US9611358B2 (en) 2013-04-09 2017-04-04 Lg Chem, Ltd. Laminate, and element comprising substrate manufactured using same
JP2014218056A (en) * 2013-05-10 2014-11-20 ユニチカ株式会社 Laminate for flexible device
KR20160019466A (en) 2013-06-10 2016-02-19 닛산 가가쿠 고교 가부시키 가이샤 Resin composition for display substrates, resin thin film for display substrates, and method for producing resin thin film for display substrates
US10066058B2 (en) 2013-07-05 2018-09-04 Mitsubishi Gas Chemical Company, Inc. Polyimide resin
CN105283487B (en) * 2013-07-05 2017-12-19 三菱瓦斯化学株式会社 Polyimide resin
WO2015002273A1 (en) * 2013-07-05 2015-01-08 三菱瓦斯化学株式会社 Polyimide resin
JPWO2015002273A1 (en) * 2013-07-05 2017-02-23 三菱瓦斯化学株式会社 Polyimide resin
CN105283487A (en) * 2013-07-05 2016-01-27 三菱瓦斯化学株式会社 Polyimide resin
US10854697B2 (en) 2013-12-02 2020-12-01 Semiconductor Energy Laboratory Co., Ltd. Display device and method for manufacturing the same
US10872947B2 (en) 2013-12-02 2020-12-22 Semiconductor Energy Laboratory Co., Ltd. Display device and method for manufacturing the same
US10763322B2 (en) 2013-12-02 2020-09-01 Semiconductor Energy Laboratory Co., Ltd. Display device and method for manufacturing the same
US11004925B2 (en) 2013-12-02 2021-05-11 Semiconductor Energy Laboratory Co., Ltd. Display device and method for manufacturing the same
US10879331B2 (en) 2013-12-02 2020-12-29 Semiconductor Energy Laboratory Co., Ltd. Display device and method for manufacturing the same
US11672148B2 (en) 2013-12-02 2023-06-06 Semiconductor Energy Laboratory Co., Ltd. Display device and method for manufacturing the same
JP2019061962A (en) * 2013-12-02 2019-04-18 株式会社半導体エネルギー研究所 Method of manufacturing display device
US12048207B2 (en) 2013-12-02 2024-07-23 Semiconductor Energy Laboratory Co., Ltd. Display device and method for manufacturing the same
JP2015165015A (en) * 2014-02-06 2015-09-17 三菱化学株式会社 Polyimide resin composition, polyimide film and device film using the resin composition
JPWO2015129780A1 (en) * 2014-02-28 2017-03-30 日産化学工業株式会社 Resin composition for display substrate, resin thin film for display substrate, and method for producing resin thin film for display substrate
WO2015129780A1 (en) * 2014-02-28 2015-09-03 日産化学工業株式会社 Resin composition for display substrate, resin thin film for display substrate, and method for producing resin thin film for display substrate
JP2017201405A (en) * 2014-02-28 2017-11-09 新日鉄住金化学株式会社 Manufacturing method of display device
KR20160127756A (en) 2014-02-28 2016-11-04 닛산 가가쿠 고교 가부시키 가이샤 Resin composition for display substrate, resin thin film for display substrate, and method for producing resin thin film for display substrate
JP2015179260A (en) * 2014-02-28 2015-10-08 新日鉄住金化学株式会社 Manufacturing method of display device and resin solution for display device
KR20150106852A (en) 2014-03-12 2015-09-22 신닛테츠 수미킨 가가쿠 가부시키가이샤 Display device and method for manufacturing the same, and polyimide film for display device
US9893228B2 (en) 2014-03-25 2018-02-13 Kaneka Corporation Method for manufacturing compound semiconductor solar cell
WO2015147106A1 (en) * 2014-03-25 2015-10-01 株式会社カネカ Method for manufacturing compound semiconductor solar cell
JPWO2015147106A1 (en) * 2014-03-25 2017-04-13 株式会社カネカ Method for producing compound semiconductor solar cell
JP2015199349A (en) * 2014-03-31 2015-11-12 新日鉄住金化学株式会社 Method of producing flexible device and flexible device, and production apparatus for flexible device
KR20150113926A (en) 2014-03-31 2015-10-08 신닛테츠 수미킨 가가쿠 가부시키가이샤 Method of manufacturing a flexible device, a flexible device, a flexible device manufacturing apparatus and a resin solution for forming a flexible substrate
JP2020128522A (en) * 2014-06-25 2020-08-27 旭化成株式会社 Polyimide film having voids and method for producing the same
JP7037534B2 (en) 2014-06-25 2022-03-16 旭化成株式会社 Polyimide film with voids and its manufacturing method
JP2018048344A (en) * 2014-06-25 2018-03-29 旭化成株式会社 Polyimide film having cavity and method for producing the same
JP2020183539A (en) * 2014-06-25 2020-11-12 旭化成株式会社 Polyimide film with voids and its manufacturing method
JP7033171B2 (en) 2014-06-25 2022-03-09 旭化成株式会社 Polyimide film with voids and its manufacturing method
JPWO2016010003A1 (en) * 2014-07-17 2017-04-27 旭化成株式会社 Resin precursor and resin composition containing the same, polyimide resin film, resin film and method for producing the same
JP2016029126A (en) * 2014-07-25 2016-03-03 Jsr株式会社 Resin composition, film forming method using the same, and substrate
JP2016062965A (en) * 2014-09-16 2016-04-25 宇部興産株式会社 Manufacturing method of flexible device
KR20170066531A (en) 2014-10-10 2017-06-14 닛산 가가쿠 고교 가부시키 가이샤 Composition for forming thin resin film, and thin resin film
KR20170038720A (en) 2015-09-30 2017-04-07 신닛테츠 수미킨 가가쿠 가부시키가이샤 Method for producing polyimide film with functional layer
JP2022084716A (en) * 2016-05-16 2022-06-07 株式会社半導体エネルギー研究所 How to make a display device
JP2017207749A (en) * 2016-05-16 2017-11-24 株式会社半導体エネルギー研究所 Method of manufacturing display device and method of manufacturing electronic device
KR20180018392A (en) 2016-08-10 2018-02-21 신닛테츠 수미킨 가가쿠 가부시키가이샤 Polyimide precursor, polyimide and manufacturing method of transparent polyimide film
KR20180018373A (en) 2016-08-10 2018-02-21 신닛테츠 수미킨 가가쿠 가부시키가이샤 Polyimide precursor and polyimide made therefrom
CN109417058A (en) * 2016-08-18 2019-03-01 富士胶片株式会社 The manufacturing method and laminated body of chip
JP2018027660A (en) * 2016-08-19 2018-02-22 コニカミノルタ株式会社 Functional laminate and method for production thereof
JP2017094328A (en) * 2016-12-21 2017-06-01 新日鉄住金化学株式会社 Manufacturing method of base film
JP7063273B2 (en) 2016-12-27 2022-05-09 日産化学株式会社 Composition for forming a substrate protective layer
JPWO2018124006A1 (en) * 2016-12-27 2019-10-31 日産化学株式会社 Composition for forming substrate protective layer
JP2019172970A (en) * 2018-03-26 2019-10-10 東レ株式会社 Resin composition for substrate of display device or light-receiving device, substrate of display device or light-receiving device using the same, display device, light-receiving device, and method for manufacturing display device or light-receiving device
CN112805337A (en) * 2018-10-03 2021-05-14 柯尼卡美能达株式会社 Resin composition and electronic device
JP2020200387A (en) * 2019-06-10 2020-12-17 リンテック株式会社 Adhesive sheet and laminate
JP2019196500A (en) * 2019-08-09 2019-11-14 ユニチカ株式会社 Solution for coating
KR20220066319A (en) 2019-09-20 2022-05-24 우베 고산 가부시키가이샤 Polyimide precursor composition and method of manufacturing flexible electronic device
CN114555676A (en) * 2019-10-15 2022-05-27 住友化学株式会社 Polyimide resin
KR20210098376A (en) 2020-01-31 2021-08-10 우베 고산 가부시키가이샤 Polyimide precursor composition and polyimide film/substrate laminate
KR20220158783A (en) 2020-03-27 2022-12-01 유비이 가부시키가이샤 Polyimide precursor composition and polyimide film/substrate laminate
KR20230106702A (en) 2020-11-27 2023-07-13 유비이 가부시키가이샤 Polyimide precursor composition, polyimide film and polyimide film/substrate laminate
KR20240167856A (en) 2022-03-28 2024-11-28 유비이 가부시키가이샤 Polyimide precursor composition, polyimide film and polyimide film/substrate laminate
WO2023238530A1 (en) * 2022-06-09 2023-12-14 Jsr株式会社 Method for producing electroconductive film, touch panel, display panel
KR20240055121A (en) 2022-07-29 2024-04-26 유비이 가부시키가이샤 Polyimide precursor composition, polyimide film and polyimide film/substrate laminate
KR20240123430A (en) 2022-07-29 2024-08-13 유비이 가부시키가이샤 Polyimide precursor composition, polyimide film, and polyimide film/substrate layered-product

Similar Documents

Publication Publication Date Title
JP2010202729A (en) Polyimide precursor resin composition for flexible device substrates and method for producing flexible device using the same, and flexible device
JP6024738B2 (en) Display substrate manufacturing method
TWI667313B (en) Temporary bonding adhesive, adhesive layer, wafer processed product, method for manufacturing semiconductor device, polyimide copolymer, polyimide mixed resin, and resin composition
US20040010062A1 (en) Polyimide copolymer and methods for preparing the same
JP2017524040A (en) Composition for polyimide film for flexible substrate of photoelectric device
TW201900392A (en) Roll of laminated film, method for producing the same, and manufacturing method of flexible device
KR20130003358A (en) Polyamic acid and polyamic acid solution, polyimide protecive layer, polyimide film
JP6288227B2 (en) Polyimide precursor resin composition for forming flexible device substrate, method for producing flexible device using the same, flexible device
TW201946949A (en) Polyimide film for flexible display device substrate with excellent heat dissipation characteristics, preparation method thereof, and flexible display element including the same
WO2018163884A1 (en) Transparent electrode substrate film and method for producing same
JP6206446B2 (en) Polyimide precursor resin composition for forming flexible device substrate, method for producing flexible device using the same, flexible device
JP6221252B2 (en) Polyimide resin, resin composition containing the same, laminated film and laminate using the same
TW201912678A (en) Polyimide film for substrate of flexible display device, method of manufacturing the same, and flexible display device comprising the same
JP6754607B2 (en) Alkoxysilane-modified polyimide precursor solution, laminate and flexible device manufacturing method
KR102080004B1 (en) Polyimidesiloxane Copolymer and Film Made Therefrom
JP7052384B2 (en) A resin composition for a temporary protective film, and a method for manufacturing a semiconductor electronic component using the resin composition.
JP2023054680A (en) Polyimide precursor resin composition, flexible display device using the same, and manufacturing method thereof
JP6733220B2 (en) Resin composition and polyimide resin film
CN116568736A (en) Polyamic acid composition and polyimide containing same
JP7700237B2 (en) Polyamic acid composition and polyimide containing same
TWI750497B (en) Polyimide film, flexible device using same and preparation process thereof
JP2019214642A (en) Polyimide film for coverlay film, and manufacturing method therefor
JP2007099842A (en) Novel polyimide resin
JP6926393B2 (en) Resin composition and polyimide resin film
JP2024159658A (en) Resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130926

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140821

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150226