JP2010202727A - Epoxy resin composition for fiber-reinforced composite material and fiber-reinforced composite material using the same - Google Patents
Epoxy resin composition for fiber-reinforced composite material and fiber-reinforced composite material using the same Download PDFInfo
- Publication number
- JP2010202727A JP2010202727A JP2009047828A JP2009047828A JP2010202727A JP 2010202727 A JP2010202727 A JP 2010202727A JP 2009047828 A JP2009047828 A JP 2009047828A JP 2009047828 A JP2009047828 A JP 2009047828A JP 2010202727 A JP2010202727 A JP 2010202727A
- Authority
- JP
- Japan
- Prior art keywords
- epoxy resin
- resin composition
- fiber
- component
- composite material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003822 epoxy resin Substances 0.000 title claims abstract description 129
- 229920000647 polyepoxide Polymers 0.000 title claims abstract description 129
- 239000000203 mixture Substances 0.000 title claims abstract description 43
- 239000000463 material Substances 0.000 title claims abstract description 29
- 239000003733 fiber-reinforced composite Substances 0.000 title claims abstract description 27
- 239000010419 fine particle Substances 0.000 claims abstract description 26
- 125000000623 heterocyclic group Chemical group 0.000 claims abstract description 9
- 238000001246 colloidal dispersion Methods 0.000 claims abstract description 8
- 125000004122 cyclic group Chemical group 0.000 claims abstract description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 32
- 239000000377 silicon dioxide Substances 0.000 claims description 16
- 230000001588 bifunctional effect Effects 0.000 claims description 12
- 239000003795 chemical substances by application Substances 0.000 claims description 10
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 claims description 8
- 125000001624 naphthyl group Chemical group 0.000 claims description 8
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 8
- LJGHYPLBDBRCRZ-UHFFFAOYSA-N 3-(3-aminophenyl)sulfonylaniline Chemical compound NC1=CC=CC(S(=O)(=O)C=2C=C(N)C=CC=2)=C1 LJGHYPLBDBRCRZ-UHFFFAOYSA-N 0.000 claims description 6
- 239000012783 reinforcing fiber Substances 0.000 claims description 6
- HECLRDQVFMWTQS-RGOKHQFPSA-N 1755-01-7 Chemical group C1[C@H]2[C@@H]3CC=C[C@@H]3[C@@H]1C=C2 HECLRDQVFMWTQS-RGOKHQFPSA-N 0.000 claims description 5
- 125000001834 xanthenyl group Chemical group C1=CC=CC=2OC3=CC=CC=C3C(C12)* 0.000 claims description 4
- 239000000470 constituent Substances 0.000 claims description 2
- 229920005989 resin Polymers 0.000 abstract description 42
- 239000011347 resin Substances 0.000 abstract description 41
- 239000011159 matrix material Substances 0.000 abstract description 15
- 229920000049 Carbon (fiber) Polymers 0.000 abstract description 14
- 239000004917 carbon fiber Substances 0.000 abstract description 14
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 abstract description 8
- 239000000835 fiber Substances 0.000 description 23
- 239000002131 composite material Substances 0.000 description 14
- 238000000465 moulding Methods 0.000 description 10
- 239000011342 resin composition Substances 0.000 description 10
- 229920005992 thermoplastic resin Polymers 0.000 description 9
- CMLFRMDBDNHMRA-UHFFFAOYSA-N 2h-1,2-benzoxazine Chemical compound C1=CC=C2C=CNOC2=C1 CMLFRMDBDNHMRA-UHFFFAOYSA-N 0.000 description 8
- 238000000034 method Methods 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- 238000005259 measurement Methods 0.000 description 7
- MQJKPEGWNLWLTK-UHFFFAOYSA-N Dapsone Chemical compound C1=CC(N)=CC=C1S(=O)(=O)C1=CC=C(N)C=C1 MQJKPEGWNLWLTK-UHFFFAOYSA-N 0.000 description 6
- 238000013329 compounding Methods 0.000 description 6
- -1 glycidyl ester Chemical class 0.000 description 6
- 238000002156 mixing Methods 0.000 description 6
- 150000001412 amines Chemical class 0.000 description 5
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical group C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 4
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 229920001187 thermosetting polymer Polymers 0.000 description 4
- WDGCBNTXZHJTHJ-UHFFFAOYSA-N 2h-1,3-oxazol-2-id-4-one Chemical group O=C1CO[C-]=N1 WDGCBNTXZHJTHJ-UHFFFAOYSA-N 0.000 description 3
- 239000004593 Epoxy Substances 0.000 description 3
- 239000004695 Polyether sulfone Substances 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 230000000996 additive effect Effects 0.000 description 3
- ZWAJLVLEBYIOTI-UHFFFAOYSA-N cyclohexene oxide Chemical group C1CCCC2OC21 ZWAJLVLEBYIOTI-UHFFFAOYSA-N 0.000 description 3
- QGBSISYHAICWAH-UHFFFAOYSA-N dicyandiamide Chemical compound NC(N)=NC#N QGBSISYHAICWAH-UHFFFAOYSA-N 0.000 description 3
- 229920001971 elastomer Polymers 0.000 description 3
- 239000000806 elastomer Substances 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- 229920006393 polyether sulfone Polymers 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 239000011208 reinforced composite material Substances 0.000 description 3
- 229920002725 thermoplastic elastomer Polymers 0.000 description 3
- ZWOULFZCQXICLZ-UHFFFAOYSA-N 1,3-dimethyl-1-phenylurea Chemical compound CNC(=O)N(C)C1=CC=CC=C1 ZWOULFZCQXICLZ-UHFFFAOYSA-N 0.000 description 2
- XMTQQYYKAHVGBJ-UHFFFAOYSA-N 3-(3,4-DICHLOROPHENYL)-1,1-DIMETHYLUREA Chemical compound CN(C)C(=O)NC1=CC=C(Cl)C(Cl)=C1 XMTQQYYKAHVGBJ-UHFFFAOYSA-N 0.000 description 2
- 239000004697 Polyetherimide Substances 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 2
- PXKLMJQFEQBVLD-UHFFFAOYSA-N bisphenol F Chemical compound C1=CC(O)=CC=C1CC1=CC=C(O)C=C1 PXKLMJQFEQBVLD-UHFFFAOYSA-N 0.000 description 2
- 239000004202 carbamide Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 125000006841 cyclic skeleton Chemical group 0.000 description 2
- GYZLOYUZLJXAJU-UHFFFAOYSA-N diglycidyl ether Chemical compound C1OC1COCC1CO1 GYZLOYUZLJXAJU-UHFFFAOYSA-N 0.000 description 2
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical group C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 2
- 125000003700 epoxy group Chemical group 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 125000003983 fluorenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3CC12)* 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 150000002460 imidazoles Chemical class 0.000 description 2
- 229920003986 novolac Polymers 0.000 description 2
- 229920002492 poly(sulfone) Polymers 0.000 description 2
- 229920001601 polyetherimide Polymers 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- KYVBNYUBXIEUFW-UHFFFAOYSA-N 1,1,3,3-tetramethylguanidine Chemical compound CN(C)C(=N)N(C)C KYVBNYUBXIEUFW-UHFFFAOYSA-N 0.000 description 1
- AZQWKYJCGOJGHM-UHFFFAOYSA-N 1,4-benzoquinone Chemical group O=C1C=CC(=O)C=C1 AZQWKYJCGOJGHM-UHFFFAOYSA-N 0.000 description 1
- XQUPVDVFXZDTLT-UHFFFAOYSA-N 1-[4-[[4-(2,5-dioxopyrrol-1-yl)phenyl]methyl]phenyl]pyrrole-2,5-dione Chemical compound O=C1C=CC(=O)N1C(C=C1)=CC=C1CC1=CC=C(N2C(C=CC2=O)=O)C=C1 XQUPVDVFXZDTLT-UHFFFAOYSA-N 0.000 description 1
- JOLVYUIAMRUBRK-UHFFFAOYSA-N 11',12',14',15'-Tetradehydro(Z,Z-)-3-(8-Pentadecenyl)phenol Natural products OC1=CC=CC(CCCCCCCC=CCC=CCC=C)=C1 JOLVYUIAMRUBRK-UHFFFAOYSA-N 0.000 description 1
- DNVXWIINBUTFEP-UHFFFAOYSA-N 2-[(2-phenylphenoxy)methyl]oxirane Chemical compound C1OC1COC1=CC=CC=C1C1=CC=CC=C1 DNVXWIINBUTFEP-UHFFFAOYSA-N 0.000 description 1
- CUFXMPWHOWYNSO-UHFFFAOYSA-N 2-[(4-methylphenoxy)methyl]oxirane Chemical compound C1=CC(C)=CC=C1OCC1OC1 CUFXMPWHOWYNSO-UHFFFAOYSA-N 0.000 description 1
- YLKVIMNNMLKUGJ-UHFFFAOYSA-N 3-Delta8-pentadecenylphenol Natural products CCCCCCC=CCCCCCCCC1=CC=CC(O)=C1 YLKVIMNNMLKUGJ-UHFFFAOYSA-N 0.000 description 1
- KDQTUCKOAOGTLT-UHFFFAOYSA-N 3-[3-(dimethylcarbamoylamino)-4-methylphenyl]-1,1-dimethylurea Chemical compound CN(C)C(=O)NC1=CC=C(C)C(NC(=O)N(C)C)=C1 KDQTUCKOAOGTLT-UHFFFAOYSA-N 0.000 description 1
- CWLKGDAVCFYWJK-UHFFFAOYSA-N 3-aminophenol Chemical compound NC1=CC=CC(O)=C1 CWLKGDAVCFYWJK-UHFFFAOYSA-N 0.000 description 1
- VPWNQTHUCYMVMZ-UHFFFAOYSA-N 4,4'-sulfonyldiphenol Chemical compound C1=CC(O)=CC=C1S(=O)(=O)C1=CC=C(O)C=C1 VPWNQTHUCYMVMZ-UHFFFAOYSA-N 0.000 description 1
- GZPUHNGIERMRFC-UHFFFAOYSA-N 4-(oxiran-2-ylmethyl)isoindole-1,3-dione Chemical compound O=C1NC(=O)C2=C1C=CC=C2CC1CO1 GZPUHNGIERMRFC-UHFFFAOYSA-N 0.000 description 1
- 229930185605 Bisphenol Natural products 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- JOLVYUIAMRUBRK-UTOQUPLUSA-N Cardanol Chemical compound OC1=CC=CC(CCCCCCC\C=C/C\C=C/CC=C)=C1 JOLVYUIAMRUBRK-UTOQUPLUSA-N 0.000 description 1
- FAYVLNWNMNHXGA-UHFFFAOYSA-N Cardanoldiene Natural products CCCC=CCC=CCCCCCCCC1=CC=CC(O)=C1 FAYVLNWNMNHXGA-UHFFFAOYSA-N 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical class S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- 229920002430 Fibre-reinforced plastic Polymers 0.000 description 1
- 239000002841 Lewis acid Substances 0.000 description 1
- 239000004594 Masterbatch (MB) Substances 0.000 description 1
- 239000004640 Melamine resin Substances 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- FQYUMYWMJTYZTK-UHFFFAOYSA-N Phenyl glycidyl ether Chemical compound C1OC1COC1=CC=CC=C1 FQYUMYWMJTYZTK-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004693 Polybenzimidazole Substances 0.000 description 1
- 239000001825 Polyoxyethene (8) stearate Substances 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- AWMVMTVKBNGEAK-UHFFFAOYSA-N Styrene oxide Chemical compound C1OC1C1=CC=CC=C1 AWMVMTVKBNGEAK-UHFFFAOYSA-N 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- 150000008065 acid anhydrides Chemical class 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 125000002723 alicyclic group Chemical group 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 239000001164 aluminium sulphate Substances 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 125000005577 anthracene group Chemical group 0.000 description 1
- 150000004982 aromatic amines Chemical class 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 150000001244 carboxylic acid anhydrides Chemical class 0.000 description 1
- PTFIPECGHSYQNR-UHFFFAOYSA-N cardanol Natural products CCCCCCCCCCCCCCCC1=CC=CC(O)=C1 PTFIPECGHSYQNR-UHFFFAOYSA-N 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000032798 delamination Effects 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- ZZTCPWRAHWXWCH-UHFFFAOYSA-N diphenylmethanediamine Chemical compound C=1C=CC=CC=1C(N)(N)C1=CC=CC=C1 ZZTCPWRAHWXWCH-UHFFFAOYSA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 229920006351 engineering plastic Polymers 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- KLFSCDLQXKYZFJ-UHFFFAOYSA-N ethanamine trihydrofluoride Chemical compound F.F.F.C(C)N KLFSCDLQXKYZFJ-UHFFFAOYSA-N 0.000 description 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- XXOYNJXVWVNOOJ-UHFFFAOYSA-N fenuron Chemical compound CN(C)C(=O)NC1=CC=CC=C1 XXOYNJXVWVNOOJ-UHFFFAOYSA-N 0.000 description 1
- 238000009730 filament winding Methods 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 239000004247 glycine and its sodium salt Substances 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 150000003949 imides Chemical group 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000004245 inosinic acid Substances 0.000 description 1
- 229940079865 intestinal antiinfectives imidazole derivative Drugs 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- VAUOPRZOGIRSMI-UHFFFAOYSA-N n-(oxiran-2-ylmethyl)aniline Chemical compound C1OC1CNC1=CC=CC=C1 VAUOPRZOGIRSMI-UHFFFAOYSA-N 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 239000004843 novolac epoxy resin Substances 0.000 description 1
- 239000001814 pectin Substances 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- IGALFTFNPPBUDN-UHFFFAOYSA-N phenyl-[2,3,4,5-tetrakis(oxiran-2-ylmethyl)phenyl]methanediamine Chemical compound C=1C(CC2OC2)=C(CC2OC2)C(CC2OC2)=C(CC2OC2)C=1C(N)(N)C1=CC=CC=C1 IGALFTFNPPBUDN-UHFFFAOYSA-N 0.000 description 1
- 238000013001 point bending Methods 0.000 description 1
- 229920003192 poly(bis maleimide) Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920002480 polybenzimidazole Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- 230000009974 thixotropic effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- AAAQKTZKLRYKHR-UHFFFAOYSA-N triphenylmethane Chemical compound C1=CC=CC=C1C(C=1C=CC=CC=1)C1=CC=CC=C1 AAAQKTZKLRYKHR-UHFFFAOYSA-N 0.000 description 1
- 229920006337 unsaturated polyester resin Polymers 0.000 description 1
- 150000003672 ureas Chemical class 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
Landscapes
- Reinforced Plastic Materials (AREA)
- Epoxy Resins (AREA)
Abstract
【課題】繊維強化複合材料用のマトリックス樹脂として、高い弾性率と高い耐熱性および高い靭性を示し、かつ、繊維強化複合材料として高い引張り強度および炭素繊維との高い接着性を示すエポキシ樹脂組成物を提供する。
【解決手段】成分(A)コロイド分散型ナノシリカ微粒子、成分(B)複素環式構造、縮合環式構造のうちの少なくとも1種の構造を有するエポキシ樹脂を必須構成要素として含む、繊維強化複合材料用エポキシ樹脂組成物を用いる。
【選択図】なしAn epoxy resin composition having a high elastic modulus, a high heat resistance and a high toughness as a matrix resin for a fiber reinforced composite material, and a high tensile strength and a high adhesion to carbon fiber as a fiber reinforced composite material. I will provide a.
A fiber-reinforced composite material comprising, as an essential component, an epoxy resin having at least one of component (A) colloidal dispersion type nanosilica fine particles, component (B) heterocyclic structure, and condensed cyclic structure. An epoxy resin composition is used.
[Selection figure] None
Description
本発明は、繊維強化複合材料用エポキシ樹脂組成物およびそれを用いた繊維強化複合材料に関する。本発明は、特に、航空機用構造材料をはじめとして、自動車用途、船舶用途、スポーツ用途、その他の一般産業用途に好適な繊維強化複合材料を得るためのエポキシ樹脂組成物、およびそれを用いて得られるプリプレグおよび繊維強化複合材料に関するものである。 The present invention relates to an epoxy resin composition for fiber reinforced composite materials and a fiber reinforced composite material using the same. In particular, the present invention provides an epoxy resin composition for obtaining a fiber-reinforced composite material suitable for use in automotive applications, marine applications, sports applications, and other general industrial applications, including aircraft structural materials, and the use thereof. Prepreg and fiber reinforced composite material.
炭素繊維とマトリックス樹脂硬化物とからなる炭素繊維強化複合材料は、その優れた力学物性などから、航空機、自動車、産業用途に幅広く用いられている。近年、その使用実績を積むに従い、炭素繊維強化複合材料の適用範囲はますます拡がってきている。かかる複合材料を構成するマトリックス樹脂には、含浸性や耐熱性に優れる熱硬化性樹脂が用いられることが多く、熱硬化性樹脂には、成形性に優れること、高温環境にあっても高度の機械強度を発現することが必要とされる。このような熱硬化性樹脂としては、フェノール樹脂、メラミン樹脂、ビスマレイミド樹脂、不飽和ポリエステル樹脂、エポキシ樹脂等が使用されているが、なかでもエポキシ樹脂は、耐熱性、成形性に優れ、炭素繊維複合材料にしたときに高度の機械強度が得られるため、幅広く使用されている。 Carbon fiber reinforced composite materials composed of carbon fibers and matrix resin cured products are widely used in aircraft, automobiles, and industrial applications because of their excellent mechanical properties. In recent years, the application range of carbon fiber reinforced composite materials has been expanded more and more as the use results are accumulated. As the matrix resin constituting such a composite material, a thermosetting resin excellent in impregnation and heat resistance is often used, and the thermosetting resin is excellent in moldability and is highly sophisticated even in a high temperature environment. It is necessary to develop mechanical strength. As such a thermosetting resin, phenol resin, melamine resin, bismaleimide resin, unsaturated polyester resin, epoxy resin, etc. are used, among which epoxy resin is excellent in heat resistance and moldability, carbon Since a high mechanical strength can be obtained when a fiber composite material is used, it is widely used.
従来の炭素繊維強化複合材料においては、繊維方向の引張強度は良好であるが、炭素繊維は繊維状であり繊維径が極めて小さいため、繊維方向に圧縮されると繊維の座屈および/またはせん断により繊維の破壊を起こしやすく、繊維強化複合材料の圧縮強度の向上が強く望まれている。そのため、繊維の座屈および/またはせん断による繊維の破壊を抑制し圧縮強度を向上させるため、マトリックス樹脂の弾性率を向上させる試みが行われている。 In the conventional carbon fiber reinforced composite material, the tensile strength in the fiber direction is good, but the carbon fiber is fibrous and the fiber diameter is extremely small. Therefore, when compressed in the fiber direction, the fiber buckling and / or shearing occurs. Therefore, the fiber is easily broken, and there is a strong demand for improving the compressive strength of the fiber-reinforced composite material. For this reason, attempts have been made to improve the elastic modulus of the matrix resin in order to suppress fiber breakage due to fiber buckling and / or shear and to improve compressive strength.
また、高温環境において繊維強化複合材料に高い機械強度を発現させるためには、マトリックス樹脂の耐熱性を高めることが有効であることが知られている。マトリックス樹脂の耐熱性を高くするためには架橋密度を上げることが必要であるが、架橋密度を高めると、あるレベルまでは樹脂の弾性率も向上するが、架橋密度が高くなりすぎると硬化樹脂中の自由体積が増え樹脂の弾性率が高くなりにくいことが知られている。そのためマトリックス樹脂の高い弾性率と耐熱性を両立させることは、これまで非常に困難であるとされていた。 It is also known that it is effective to increase the heat resistance of the matrix resin in order to develop high mechanical strength in the fiber reinforced composite material in a high temperature environment. In order to increase the heat resistance of the matrix resin, it is necessary to increase the crosslink density. However, if the crosslink density is increased, the elastic modulus of the resin is improved to a certain level, but if the crosslink density is too high, the cured resin is increased. It is known that the free volume inside increases and the elastic modulus of the resin does not easily increase. For this reason, it has been considered that it is very difficult to achieve both the high elastic modulus and heat resistance of the matrix resin.
しかるに、特許文献1には、エポキシ樹脂をマトリクッスとした、圧縮系の機械特性に優れるプリプレグおよび繊維強化複合材料が開示されている。しかし、特許文献1の樹脂組成物では、マトリックス樹脂の弾性率はまだ十分であるとはいえず、また樹脂の靭性が低いため、複合材料に加工した際に引張り強度が低くなるという問題がある。そのため、マトリックス樹脂の更なる弾性率、靭性の向上が望まれている。 However, Patent Document 1 discloses a prepreg and a fiber-reinforced composite material, which are made of an epoxy resin and are excellent in compression system mechanical properties. However, in the resin composition of Patent Document 1, it cannot be said that the elastic modulus of the matrix resin is still sufficient, and the toughness of the resin is low, so that there is a problem that the tensile strength becomes low when processed into a composite material. . Therefore, further improvement in elastic modulus and toughness of the matrix resin is desired.
また、特許文献2には、マトリックスとしてベンゾオキサジン樹脂を主体とする樹脂組成物を用いた、室温乾燥下のみならず、湿熱環境下においても高い機械強度を発現するプリプレグおよび繊維強化複合材料が開示されている。しかしながら、特許文献2の樹脂組成物では、炭素繊維とマトリックス樹脂との接着が弱いことが問題である。 Patent Document 2 discloses a prepreg and a fiber-reinforced composite material that exhibit high mechanical strength not only under room temperature drying but also in a moist heat environment, using a resin composition mainly composed of a benzoxazine resin as a matrix. Has been. However, the resin composition of Patent Document 2 has a problem that the adhesion between the carbon fiber and the matrix resin is weak.
本発明は、繊維強化複合材料用のマトリックス樹脂として、高い弾性率と高い耐熱性および高い靭性を示し、かつ、繊維強化複合材料として高い引張り強度および炭素繊維との高い接着性を示すエポキシ樹脂組成物を提供することを目的とする。 The present invention provides an epoxy resin composition that exhibits high elastic modulus, high heat resistance, and high toughness as a matrix resin for fiber reinforced composite materials, and also exhibits high tensile strength and high adhesion to carbon fibers as a fiber reinforced composite material. The purpose is to provide goods.
本発明者等は、上記課題を解決するため鋭意研究を進めた結果、以下の構成からなるエポキシ樹脂組成物によって課題を解決できることを見出した。よって、本発明は、以下の事項からなる。 As a result of intensive studies to solve the above problems, the present inventors have found that the problems can be solved by an epoxy resin composition having the following configuration. Therefore, this invention consists of the following matters.
1)下記成分(A)、(B)を必須構成要素として含む、繊維強化複合材料用エポキシ樹脂組成物。
成分(A)コロイド分散型ナノシリカ微粒子
成分(B)複素環式構造、縮合環式構造のうちの少なくとも1種の構造を有するエポキシ樹脂
1) An epoxy resin composition for fiber-reinforced composite materials comprising the following components (A) and (B) as essential constituent elements.
Component (A) Colloidal dispersion type nano silica fine particle Component (B) Epoxy resin having at least one of a heterocyclic structure and a condensed cyclic structure
2)複素環式構造としてオキサジゾリドン環、キサンテン骨格から選ばれる少なくとも1種を有するエポキシ樹脂を含む上記1)記載のエポキシ樹脂組成物。 2) The epoxy resin composition according to 1) above, which contains an epoxy resin having at least one selected from an oxadizolidone ring and a xanthene skeleton as a heterocyclic structure.
3)縮合環式構造としてナフタレン骨格、ジシクロペンタジエン骨格から選ばれる少なくとも1種を有するエポキシ樹脂を含む上記1)記載のエポキシ樹脂組成物。 3) The epoxy resin composition as described in 1) above, which contains an epoxy resin having at least one selected from a naphthalene skeleton and a dicyclopentadiene skeleton as a condensed cyclic structure.
4)成分(B)として2官能のナフタレン型エポキシ樹脂を含む上記1)記載のエポキシ樹脂組成物。 4) The epoxy resin composition according to 1) above, which contains a bifunctional naphthalene type epoxy resin as the component (B).
5)エポキシ樹脂成分100質量部に対し、成分(A)を2〜40質量部、成分(B)を5〜90質量部含む上記1)〜4)のいずれかに記載のエポキシ樹脂組成物。 5) The epoxy resin composition according to any one of 1) to 4) above, which comprises 2 to 40 parts by mass of the component (A) and 5 to 90 parts by mass of the component (B) with respect to 100 parts by mass of the epoxy resin component.
6)エポキシ樹脂成分100質量部に対し、成分(C)単官能エポキシ樹脂、または分子中に1つのベンゼン環を持つ2官能以下のエポキシ樹脂を2〜30質量部含む上記1)〜5)のいずれかに記載のエポキシ樹脂組成物。 6) The above-mentioned 1) to 5) containing 2 to 30 parts by mass of a component (C) monofunctional epoxy resin or a bifunctional or lower epoxy resin having one benzene ring in the molecule with respect to 100 parts by mass of the epoxy resin component The epoxy resin composition in any one.
7)硬化剤として3,3’−ジアミノジフェニルスルホンを含む上記1)〜6)のいずれかに記載のエポキシ樹脂組成物。 7) The epoxy resin composition according to any one of 1) to 6) above, which contains 3,3′-diaminodiphenylsulfone as a curing agent.
8)上記1)〜7)のいずれかに記載のエポキシ樹脂組成物と強化繊維からなるプリプレグ。 8) A prepreg comprising the epoxy resin composition according to any one of 1) to 7) and a reinforcing fiber.
9)上記8)記載のプリプレグを硬化させて得られる繊維強化複合材料。 9) A fiber-reinforced composite material obtained by curing the prepreg described in 8) above.
本発明によれば、繊維強化複合材料用のマトリックス樹脂として、高い弾性率と高い耐熱性および高い靭性を示し、かつ、繊維強化複合材料として高い引張り強度及び炭素繊維との高い接着性を示すエポキシ樹脂組成物を得ることができる。 According to the present invention, as a matrix resin for a fiber-reinforced composite material, an epoxy that exhibits a high elastic modulus, high heat resistance, and high toughness, and also exhibits high tensile strength and high adhesion to carbon fibers as a fiber-reinforced composite material. A resin composition can be obtained.
以下に本発明の好ましい実施の形態について説明するが、本発明はこれらの形態のみに限定されるものではなく、本発明の精神と実施の範囲内において様々な変形が可能であることを理解されたい。 Hereinafter, preferred embodiments of the present invention will be described. However, the present invention is not limited to these embodiments, and it is understood that various modifications can be made within the spirit and scope of the present invention. I want.
本発明に用いられる成分(A)はコロイド分散型ナノシリカ微粒子である。コロイド分散型ナノシリカ微粒子とは、表面電荷などの作用により、エポキシ樹脂などの液中でナノシリカ微粒子が凝集することなく分散したシリカ微粒子である。コロイド分散型ナノシリカ微粒子の配合量は、エポキシ樹脂成分100質量部に対して、2〜40質量部であるのが好ましい。コロイド分散型ナノシリカ微粒子の配合量が、エポキシ樹脂成分100質量部に対して、2質量部以上であれば、エポキシ樹脂組成物の弾性率を高めることができる。より好ましくは5質量部以上、さらに好ましくは10質量部以上、よりさらに好ましくは15質量部以上である。一方、コロイド分散型ナノシリカ微粒子の配合量を多くすると、エポキシ樹脂中での良好な分散状態を維持することが難しくなることがある。コロイド分散型ナノシリカ微粒子の配合量をエポキシ樹脂成分100質量部に対して40質量部以下にすることにより、シリカ微粒子のエポキシ樹脂に対する分散性を維持することができる。より好ましくは25質量部以下である。 The component (A) used in the present invention is colloidally dispersed nano silica fine particles. Colloidal dispersion type nano silica fine particles are silica fine particles dispersed without aggregation of nano silica fine particles in a liquid such as epoxy resin by the action of surface charge. The compounding amount of the colloidally dispersed nano silica fine particles is preferably 2 to 40 parts by mass with respect to 100 parts by mass of the epoxy resin component. If the blending amount of the colloidal dispersion-type nanosilica fine particles is 2 parts by mass or more with respect to 100 parts by mass of the epoxy resin component, the elastic modulus of the epoxy resin composition can be increased. More preferably, it is 5 parts by mass or more, more preferably 10 parts by mass or more, and still more preferably 15 parts by mass or more. On the other hand, when the blending amount of the colloidally dispersed nano silica fine particles is increased, it may be difficult to maintain a good dispersion state in the epoxy resin. The dispersibility of the silica fine particles in the epoxy resin can be maintained by setting the amount of the colloidally dispersed nanosilica fine particles to 40 parts by mass or less with respect to 100 parts by mass of the epoxy resin component. More preferably, it is 25 parts by mass or less.
コロイド分散型ナノシリカ微粒子の粒径を100nm以下にすることで、エポキシ樹脂組成物の靭性を高めることができるので好ましい。より好ましくは50nm以下である。コロイド分散型ナノシリカ粒子の粒径は、エポキシ樹脂組成物の硬化物断面をSEM、TEMなどの電子顕微鏡にて観察することにより測定することができる。 It is preferable that the colloidal dispersion type nanosilica fine particles have a particle size of 100 nm or less because the toughness of the epoxy resin composition can be increased. More preferably, it is 50 nm or less. The particle size of the colloidal dispersion-type nanosilica particles can be measured by observing the cross section of the cured product of the epoxy resin composition with an electron microscope such as SEM or TEM.
エポキシ樹脂中にコロイド分散型ナノシリカ微粒子を配合、分散させる方法としては、市販されているコロイド分散型ナノシリカ微粒子が配合されたエポキシ樹脂をエポキシ樹脂組成物中に配合させればよい。このようなコロイド分散型ナノシリカ微粒子が配合されたエポキシ樹脂としては、ナノレジン社製のNanopoxシリーズとして、Nanopox F400、Nanopox F430、Nanopox F440、Nanopox F520、Nanopox F630、Nanopox F640、Nanopox E400、Nanopox E430、Nanopox E440、Nanopox E520、Nanopox E630、Nanopox E640、日産化学工業社製のLENANOCシリーズとしてLENANOC Eなどが挙げられるが、エポキシ樹脂中にコロイド状にナノシリカ微粒子が分散したものであればよく、これらの商品に限られるものではない。 As a method for blending and dispersing colloidal dispersion type nanosilica fine particles in an epoxy resin, an epoxy resin in which commercially available colloidal dispersion type nanosilica fine particles are blended may be blended in the epoxy resin composition. As an epoxy resin in which such colloidal dispersion type nano silica fine particles are blended, Nanopox series manufactured by Nanoresin Co., Nanopox F400, Nanopox F430, Nanopox F440, Nanopox F520, Nanopox F640, Nanopox F640, Nanopox F640, Nanopox F640, Nanopox F640, Nanopox F640, Nanopox F640, Nanopox F640, Nanopox F640, Nanopox F640 Examples include E440, Nanopox E520, Nanopox E630, Nanopox E640, and LENANOC E as a LENANOC series manufactured by Nissan Chemical Industries, but any nano silica fine particles dispersed in an epoxy resin may be used. It is not limited.
本発明で用いられる成分(B)は、複素環式構造、縮合環式構造のうち少なくとも1種の構造を有するエポキシ樹脂である。このような骨格を持つエポキシ樹脂が硬化物の架橋構造に組み込まれることにより、硬化物の靭性を高めることができる。 Component (B) used in the present invention is an epoxy resin having at least one structure out of a heterocyclic structure and a condensed cyclic structure. By incorporating an epoxy resin having such a skeleton into the crosslinked structure of the cured product, the toughness of the cured product can be increased.
成分(B)の配合量は、エポキシ樹脂成分100質量部に対して、5〜90質量部であるのが好ましい。成分(B)の配合量が、エポキシ樹脂成分100質量部に対して、5質量部以上であれば、エポキシ樹脂組成物の靭性を高めることができる。より好ましくは10質量部以上、さらに好ましくは15質量部以上、よりさらに好ましくは20質量部以上である。一方、成分(B)の配合量を多くすると、硬化物の耐熱性や破断伸度が低下することがある。成分(B)の配合量をエポキシ樹脂成分100質量部に対して90質量部以下にすることにより、硬化物の耐熱性や破断伸度が低下しにくくなる。より好ましくは80質量部以下である。 It is preferable that the compounding quantity of a component (B) is 5-90 mass parts with respect to 100 mass parts of epoxy resin components. If the compounding quantity of a component (B) is 5 mass parts or more with respect to 100 mass parts of epoxy resin components, the toughness of an epoxy resin composition can be improved. More preferably, it is 10 mass parts or more, More preferably, it is 15 mass parts or more, More preferably, it is 20 mass parts or more. On the other hand, if the amount of component (B) is increased, the heat resistance and elongation at break of the cured product may be reduced. By making the compounding quantity of a component (B) 90 mass parts or less with respect to 100 mass parts of epoxy resin components, it becomes difficult to reduce the heat resistance and breaking elongation of hardened | cured material. More preferably, it is 80 parts by mass or less.
前記複素環式構造は、オキサゾリドン骨格、キサンテン骨格から選ばれる少なくとも1種であることが好ましい。複素環式構造を有するエポキシ樹脂としては、例えば、オキサゾリドン骨格を有するエポキシ樹脂として旭化成エポキシ(株)製のAER4151、AER4152などが挙げられ、キサンテン骨格を有するエポキシ樹脂としてDIC(株)製のEXA−7335、EXA−7336、EXA−7337などが挙げられるが、これらに限られるものではない。 The heterocyclic structure is preferably at least one selected from an oxazolidone skeleton and a xanthene skeleton. Examples of the epoxy resin having a heterocyclic structure include AER4151 and AER4152 made by Asahi Kasei Epoxy Co., Ltd. as an epoxy resin having an oxazolidone skeleton, and EXA- made by DIC Corporation as an epoxy resin having a xanthene skeleton. 7335, EXA-7336, EXA-7337, and the like, but are not limited thereto.
前記縮合環式構造は、ナフタレン骨格、ジシクロペンタジエン骨格、フルオレン骨格から選ばれる少なくとも1種であることが好ましい。縮合環式構造を有するエポキシ樹脂としては、例えば、ナフタレン骨格を有するエポキシ樹脂としてDIC(株)製のエピクロンHP4032、EXA-4700、東都化成(株)製のEX1257、フルオレン骨格を有するエポキシ樹脂としてSHELL社製のEPON(登録商標)HPT1079などが挙げられるが、これらに限定されるものではない。 The condensed cyclic structure is preferably at least one selected from a naphthalene skeleton, a dicyclopentadiene skeleton, and a fluorene skeleton. Examples of the epoxy resin having a condensed cyclic structure include, for example, Epicron HP4032, EXA-4700 manufactured by DIC Corporation as an epoxy resin having a naphthalene skeleton, EX1257 manufactured by Tohto Kasei Co., and SHELL as an epoxy resin having a fluorene skeleton. Examples thereof include EPON (registered trademark) HPT1079 manufactured by the company, but are not limited thereto.
前記の複素環式構造および縮合環式構造のなかでも、ナフタレン骨格、ジシクロペンタジエン骨格、オキサゾリドン骨格を有するエポキシ樹脂をコロイド分散型ナノシリカ微粒子と組み合わせて用いると積層複合板の引張り強度、圧縮強度、接着強度に優れるため好ましい。ナフタレン骨格を持つエポキシ樹脂としては特に2官能のナフタレン骨格を持つエポキシ樹脂が好ましい。 Among the heterocyclic structures and condensed ring structures described above, when an epoxy resin having a naphthalene skeleton, a dicyclopentadiene skeleton, or an oxazolidone skeleton is used in combination with colloidally dispersed nanosilica fine particles, the tensile strength, compressive strength, It is preferable because of its excellent adhesive strength. As the epoxy resin having a naphthalene skeleton, an epoxy resin having a bifunctional naphthalene skeleton is particularly preferable.
本発明で用いられる成分(C)は、単官能エポキシ樹脂、または分子中に1つのベンゼン環を持つ2官能以下のエポキシ樹脂である。このような骨格を持つエポキシ樹脂が硬化物の架橋構造に組み込まれることにより、硬化物の弾性率を高めることができる。 The component (C) used in the present invention is a monofunctional epoxy resin or a bifunctional or lower epoxy resin having one benzene ring in the molecule. By incorporating an epoxy resin having such a skeleton into the crosslinked structure of the cured product, the elastic modulus of the cured product can be increased.
成分(C)の配合量は、エポキシ樹脂成分100質量部に対して、2〜30質量部であるのが好ましい。単官能エポキシ樹脂、または分子中に1つの環状骨格を持つ2官能以下のエポキシ樹脂の配合量が、エポキシ樹脂成分100質量部に対して、2質量部以上であれば、エポキシ樹脂組成物の弾性率を高めることができる。より好ましくは5質量部以上、さらに好ましくは10質量部以上、よりさらに好ましくは15質量部以上である。一方、単官能エポキシ樹脂、または分子中に1つのベンゼン環を持つ2官能以下のエポキシ樹脂の配合量を多くすると、硬化物の耐熱性や破断伸度、靭性が低下することがある。単官能エポキシ樹脂、または分子中に1つのベンゼン環を持つ2官能以下のエポキシ樹脂の配合量をエポキシ樹脂成分100質量部に対して30質量部以下にすることにより、硬化物の耐熱性や破断伸度、靭性が低下しにくくなる。より好ましくは25質量部以下である。 It is preferable that the compounding quantity of a component (C) is 2-30 mass parts with respect to 100 mass parts of epoxy resin components. If the compounding amount of the monofunctional epoxy resin or the bifunctional or lower epoxy resin having one cyclic skeleton in the molecule is 2 parts by mass or more with respect to 100 parts by mass of the epoxy resin component, the elasticity of the epoxy resin composition The rate can be increased. More preferably, it is 5 parts by mass or more, more preferably 10 parts by mass or more, and still more preferably 15 parts by mass or more. On the other hand, when the amount of the monofunctional epoxy resin or the bifunctional or lower epoxy resin having one benzene ring in the molecule is increased, the heat resistance, elongation at break and toughness of the cured product may be lowered. By setting the blending amount of monofunctional epoxy resin or bifunctional or lower epoxy resin having one benzene ring in the molecule to 30 parts by mass or less with respect to 100 parts by mass of the epoxy resin component, the heat resistance and fracture of the cured product Elongation and toughness are difficult to decrease. More preferably, it is 25 parts by mass or less.
単官能エポキシ樹脂としては、グリシジルエーテル型、グリシジルエステル型、脂環型などのエポキシ樹脂があるが、分子中にシクロヘキセンオキサイド構造を除く1つのエポキシ基をもつエポキシ樹脂であれよく、これらに限られるものではない。特に、分子中にイミド環、ベンゼン環、ナフタレン骨格、ビフェニル骨格、アントラセン骨格、ベンゾキノン骨格などの環状骨格を持つエポキシ樹脂であれば、硬化物の弾性率を上げることができるため好ましく。このような単官能エポキシ樹脂としては、フェニルグリシジルエーテル、クレジルグリシジルエーテル、カルダノールグリシジルエーテル、スチレンオキサイド、フェニルフェニルグリシジルエーテル、グリシジルフタルイミドなどが挙げられる。 分子中に1つのベンゼン環を持つ2官能以下のエポキシ樹脂とは、分子中にベンゼン環構造を1つ持ち、分子中にシクロヘキセンオキサイド構造を除く2つ以下のエポキシ基を持つエポキシ樹脂である。なかでも、下記式1で表されるエポキシ樹脂は、硬化物の弾性率を上げる効果が高く、耐熱性も良好なため特に好ましい。 Monofunctional epoxy resins include glycidyl ether type, glycidyl ester type, and alicyclic type epoxy resins, but may be epoxy resins having one epoxy group in the molecule excluding the cyclohexene oxide structure, and are not limited thereto. It is not a thing. In particular, an epoxy resin having a cyclic skeleton such as an imide ring, a benzene ring, a naphthalene skeleton, a biphenyl skeleton, an anthracene skeleton, or a benzoquinone skeleton in the molecule is preferable because the elastic modulus of the cured product can be increased. Examples of such monofunctional epoxy resins include phenyl glycidyl ether, cresyl glycidyl ether, cardanol glycidyl ether, styrene oxide, phenylphenyl glycidyl ether, and glycidyl phthalimide. The bifunctional or lower epoxy resin having one benzene ring in the molecule is an epoxy resin having one benzene ring structure in the molecule and two or less epoxy groups excluding the cyclohexene oxide structure in the molecule. Especially, the epoxy resin represented by the following formula 1 is particularly preferable because it has a high effect of increasing the elastic modulus of the cured product and has good heat resistance.
(上式中、R1〜R5は、それぞれ独立に、水素原子、ハロゲン原子または炭素数1〜8のアルキル基を表す)
また、下記式2で表されるエポキシ樹脂は、硬化物の弾性率を上げる効果が非常に高く好ましい。
(In the above formula, R 1 to R 5 each independently represents a hydrogen atom, a halogen atom, or an alkyl group having 1 to 8 carbon atoms)
Moreover, the epoxy resin represented by the following formula 2 is preferable because it has a very high effect of increasing the elastic modulus of the cured product.
本発明のエポキシ樹脂組成物の硬化剤としては、アミン、酸無水物、フェノール、メルカプタン、ルイス酸アミン錯体、オニウム塩、イミダゾールなどを用いることができるが、エポキシ樹脂を硬化させうるものであればどのような構造のものでもよい。なかでも、アミン型の硬化剤が好ましい。アミン型の硬化剤としては、例えば、ジアミノジフェニルメタン、ジアミノジフェニルスルホンのような芳香族アミン、脂肪族アミン、イミダゾール誘導体、ジシアンジアミド、テトラメチルグアニジン、チオ尿素付加アミンなど、およびそれらの異性体、変成体を用いることができる。これらのなかでもジシアンジアミドはプリプレグの保存性に優れるため特に好ましい。また、ジアミノジフェニルスルホンの各種異性体は、耐熱性の良好な硬化物を与えるため、本発明には特に適している。例えば、4,4’−ジアミノジフェニルスルホンを用いると、硬化物の耐熱性を高くできる上に、プリプレグのタックライフを長い期間保持することができるため好ましい。3,3’−ジアミノジフェニルスルホンはプリプレグのタックライフや硬化物の耐熱性では4,4’−ジアミノジフェニルスルホンに劣ることがあるものの、硬化物の弾性率を非常に高くすることができるため好ましい。また、4,4’−ジアミノジフェニルスルホン、3,3’−ジアミノジフェニルスルホンを同時に配合すれば、硬化物の耐熱性、弾性率を調整しやすいため好ましい。 As the curing agent for the epoxy resin composition of the present invention, amines, acid anhydrides, phenols, mercaptans, Lewis acid amine complexes, onium salts, imidazoles, and the like can be used as long as they can cure the epoxy resin. Any structure may be used. Of these, amine type curing agents are preferred. Examples of amine-type curing agents include aromatic amines such as diaminodiphenylmethane and diaminodiphenylsulfone, aliphatic amines, imidazole derivatives, dicyandiamide, tetramethylguanidine, thiourea-added amines, and isomers and modified products thereof. Can be used. Among these, dicyandiamide is particularly preferable because it has excellent prepreg storage stability. Further, various isomers of diaminodiphenylsulfone are particularly suitable for the present invention because they give a cured product having good heat resistance. For example, it is preferable to use 4,4'-diaminodiphenylsulfone because the heat resistance of the cured product can be increased and the tack life of the prepreg can be maintained for a long period. Although 3,3′-diaminodiphenylsulfone is inferior to 4,4′-diaminodiphenylsulfone in the prepreg tack life and the heat resistance of the cured product, it is preferable because the elastic modulus of the cured product can be very high. . Further, it is preferable to add 4,4'-diaminodiphenylsulfone and 3,3'-diaminodiphenylsulfone at the same time because the heat resistance and elastic modulus of the cured product can be easily adjusted.
これらの硬化剤には、硬化活性を高めるために、適当な硬化助剤を組み合わせることができる。好ましい例としては、ジシアンジアミドに3−フェニル−1,1−ジメチル尿素、3−(3,4−ジクロロフェニル)−1,1−ジメチル尿素(DCMU)、3−(3−クロロ−4−メチルフェニル)−1,1−ジメチル尿素、2,4−ビス(3,3−ジメチルウレイド)トルエンのような尿素誘導体を硬化助剤として組み合わせる例、カルボン酸無水物やノボラック樹脂に三級アミンを硬化助剤として組み合わせる例、ジアミノジフェニルスルホンにイミダゾール化合物、フェニルジメチルウレア(PDMU)などのウレア化合物、三フッ化モノエチルアミン、三塩化アミン錯体などのアミン錯体を硬化助剤として組み合わせる例がある。 These curing agents can be combined with an appropriate curing aid in order to increase the curing activity. Preferred examples include dicyandiamide and 3-phenyl-1,1-dimethylurea, 3- (3,4-dichlorophenyl) -1,1-dimethylurea (DCMU), 3- (3-chloro-4-methylphenyl). Examples of combining urea derivatives such as -1,1-dimethylurea and 2,4-bis (3,3-dimethylureido) toluene as curing aids, tertiary amines for carboxylic anhydrides and novolak resins As an example, a combination of diaminodiphenylsulfone with an urea complex such as imidazole compound or phenyldimethylurea (PDMU), an amine complex such as monoethylamine trifluoride or an amine trichloride complex as a curing aid.
また、本発明のエポキシ樹脂組成物には、添加剤として、熱可塑性樹脂、熱可塑性エラストマーおよびエラストマーからなる群から選ばれた1種以上の樹脂を添加することができる。この添加剤は、マトリックス樹脂の靭性を向上させ、かつ、粘弾性を変化させて、粘度、貯蔵弾性率およびチキソトロープ性を適正化する役割がある。添加剤として用いられる熱可塑性樹脂、熱可塑性エラストマーまたはエラストマーは、単独で使用してもよいし、2種以上を併用してもよい。また、この熱可塑性樹脂、熱可塑性エラストマーまたはエラストマーは、エポキシ樹脂成分中に溶解して配合されてもよく、微粒子、長繊維、短繊維、織物、不織布、メッシュ、パルプなどの形状でプリプレグの表層に配置されても良い。これにより、繊維強化複合材料の層間剥離を抑制することができる。 Moreover, 1 or more types of resin chosen from the group which consists of a thermoplastic resin, a thermoplastic elastomer, and an elastomer can be added to the epoxy resin composition of this invention as an additive. This additive has the role of improving the toughness of the matrix resin and changing the viscoelasticity to optimize the viscosity, storage elastic modulus and thixotropic properties. The thermoplastic resin, thermoplastic elastomer or elastomer used as the additive may be used alone or in combination of two or more. The thermoplastic resin, thermoplastic elastomer or elastomer may be blended by being dissolved in the epoxy resin component, and the surface layer of the prepreg in the form of fine particles, long fibers, short fibers, woven fabric, nonwoven fabric, mesh, pulp, etc. May be arranged. Thereby, delamination of the fiber reinforced composite material can be suppressed.
熱可塑性樹脂としては、主鎖に、炭素−炭素結合、アミド結合、イミド結合、エステル結合、エーテル結合、カーボネート結合、ウレタン結合、尿素結合、チオエーテル結合、スルホン結合、イミダゾール結合およびカルボニル結合からなる群から選ばれた結合を有する熱可塑性樹脂が好ましく用いられる。 The thermoplastic resin includes a group consisting of a carbon-carbon bond, amide bond, imide bond, ester bond, ether bond, carbonate bond, urethane bond, urea bond, thioether bond, sulfone bond, imidazole bond and carbonyl bond in the main chain. A thermoplastic resin having a bond selected from is preferably used.
熱可塑性樹脂としては、例えば、ポリアクリレート、ポリアミド、ポリアラミド、ポリエステル、ポリカーボネート、ポリフェニレンスルフィド、ポリベンズイミダゾール、ポリイミド、ポリエーテルイミド、ポリスルホンおよびポリエーテルスルホンのようなエンジニアリングプラスチックに属する熱可塑性樹脂の一群がより好ましく用いられる。耐熱性に優れることから、ポリイミド、ポリエーテルイミド、ポリスルホンおよびポリエーテルスルホンなどが特に好ましく使用される。また、これらの熱可塑性樹脂が熱硬化性樹脂との反応性の官能基を有することは、靭性向上および硬化樹脂の耐環境性維持の観点から好ましい。特に好ましい官能基としては、カルボキシル基、アミノ基および水酸基などが挙げられる。 Examples of the thermoplastic resin include a group of thermoplastic resins belonging to engineering plastics such as polyacrylate, polyamide, polyaramid, polyester, polycarbonate, polyphenylene sulfide, polybenzimidazole, polyimide, polyetherimide, polysulfone and polyethersulfone. More preferably used. From the viewpoint of excellent heat resistance, polyimide, polyetherimide, polysulfone, polyethersulfone and the like are particularly preferably used. Moreover, it is preferable that these thermoplastic resins have a functional group reactive with the thermosetting resin from the viewpoint of improving toughness and maintaining the environmental resistance of the cured resin. Particularly preferred functional groups include a carboxyl group, an amino group, and a hydroxyl group.
本発明のエポキシ樹脂組成物を強化繊維に含浸させ、加熱により硬化させることにより繊維強化複合材料を得ることができる。 A fiber-reinforced composite material can be obtained by impregnating a reinforcing fiber with the epoxy resin composition of the present invention and curing it by heating.
本発明のエポキシ樹脂組成物と組み合わせる強化繊維には制限は無く、炭素繊維、黒鉛繊維、ガラス繊維、有機繊維、ボロン繊維、スチール繊維などを、トウ、クロス、チョップドファイバー、マットなどの形態で使用することができる。 There is no restriction on the reinforcing fiber combined with the epoxy resin composition of the present invention, and carbon fiber, graphite fiber, glass fiber, organic fiber, boron fiber, steel fiber, etc. are used in the form of tow, cloth, chopped fiber, mat, etc. can do.
これらの強化繊維のうち、炭素繊維や黒鉛繊維は比弾性率が良好で軽量化に大きな効果が認められるので本発明には好ましい。また、用途に応じてあらゆる種類の炭素繊維または黒鉛繊維を用いることができる。 Among these reinforcing fibers, carbon fibers and graphite fibers are preferable in the present invention because they have good specific elastic modulus and a great effect on weight reduction. Also, any type of carbon fiber or graphite fiber can be used depending on the application.
また、繊維強化複合材料の用途にも制限は無く、テニスラケット、ゴルフシャフトなどの汎用品に使用できるが、本発明のエポキシ樹脂組成物を用いた繊維強化複合材料は繊維方向の圧縮強度に優れることから、特に航空機用部品への使用に最適である。 In addition, there are no restrictions on the use of the fiber reinforced composite material, and it can be used for general-purpose products such as tennis rackets and golf shafts. However, the fiber reinforced composite material using the epoxy resin composition of the present invention has excellent compressive strength in the fiber direction. Therefore, it is most suitable for use in aircraft parts.
繊維強化複合材料の製造方法としては、プリプレグと呼ばれるシート状の成形中間体に加工して、オートクレーブ成形、シートラップ成形、プレス成形などの成形方法や、強化繊維のフィラメントやプリフォームにエポキシ樹脂組成物を直接含浸させて成形物を得るRTM、VaRTM、フィラメントワインディング、RFIなどの成形法を用いることができるが、これらの成形方法に限られるものではない。 Fiber reinforced composite materials can be produced by processing into a sheet-like molding intermediate called prepreg, molding methods such as autoclave molding, sheet wrap molding, and press molding, and epoxy resin composition for reinforcing fiber filaments and preforms. Molding methods such as RTM, VaRTM, filament winding, and RFI that directly impregnate a product to obtain a molded product can be used, but are not limited to these molding methods.
以下、実施例により本発明を具体的に説明するが、本発明はこれらの実施例により何ら限定されるものではない。 EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited at all by these Examples.
樹脂組成物の調製
硬化剤成分および湿式シリカ微粒子を除いた各原料をガラスフラスコに計量し、150℃にて加熱混合することで均一なエポキシ樹脂主剤、ベンゾオキサジン樹脂組成物を得た。次に、得られたエポキシ樹脂主剤を70℃以下に冷却した後に硬化剤成分(および、必要に応じ湿式シリカ微粒子)を計量して添加し、70℃で加熱混合することによって均一に分散させ、エポキシ樹脂組成物を得た。
Preparation of Resin Composition Each raw material excluding the curing agent component and wet silica fine particles was weighed into a glass flask and heated and mixed at 150 ° C. to obtain a uniform epoxy resin main agent and benzoxazine resin composition. Next, after cooling the obtained epoxy resin main agent to 70 ° C. or less, the curing agent component (and wet silica fine particles as required) is weighed and added, and uniformly dispersed by heating and mixing at 70 ° C., An epoxy resin composition was obtained.
加熱硬化樹脂板の作製
得られたエポキシ樹脂組成物、ベンゾオキサジン樹脂組成物を2mm厚のポリテトラフルオロエチレンのスペーサーを挟んだ2枚のガラス板(2mm厚、及び3mm厚)の間に注入し、180℃、2時間の硬化条件で加熱硬化し、樹脂板を得た。
Preparation of heat-cured resin plate The obtained epoxy resin composition and benzoxazine resin composition were injected between two glass plates (2 mm thickness and 3 mm thickness) with a polytetrafluoroethylene spacer sandwiched between 2 mm thickness. And cured at 180 ° C. for 2 hours to obtain a resin plate.
樹脂板の曲げ弾性率の測定
得られた2mm厚の樹脂板を試験片(長さ60mm×幅8mm×厚み2mm)に加工し、3点曲げ冶具(圧子、サポートとも3.2mmR、サポート間距離32mm)を設置したインストロン社製万能試験機を用い、温度23℃、湿度50%RHの環境下にて曲げ特性を測定した。荷重負荷速度を2mm/分とした。
Measurement of flexural modulus of resin plate The obtained 2 mm thick resin plate was processed into a test piece (length 60 mm x width 8 mm x thickness 2 mm), and a three-point bending jig (3.2 mmR for both indenter and support, distance between supports) 32 mm) was used to measure the bending characteristics in an environment of a temperature of 23 ° C. and a humidity of 50% RH. The loading speed was 2 mm / min.
耐熱性の測定
得られた2mm厚の樹脂板を試験片(長さ55mm×幅12.5mm×厚み2mm)に加工し、TAインストルメンツ社製レオメーターARES−RDAを用いて、測定周波数1Hz、昇温速度5℃/分で、logG’を温度に対してプロットし、logG’の平坦領域の近似直線と、G’が転移する領域の近似直線との交点の温度をガラス転移温度(G’Tg)として記録した。
Measurement of heat resistance The obtained resin plate having a thickness of 2 mm was processed into a test piece (length 55 mm × width 12.5 mm × thickness 2 mm), and measured using a rheometer ARES-RDA manufactured by TA Instruments, with a measurement frequency of 1 Hz, Log G ′ is plotted against temperature at a heating rate of 5 ° C./min, and the temperature at the intersection of the approximate straight line of the flat region of log G ′ and the approximate straight line of the region where G ′ transitions is expressed as the glass transition temperature (G ′ Recorded as Tg).
GIcの測定
樹脂靭性の評価指標としてGIc試験を行った。上記で得られた3mm厚の樹脂板を湿式ダイヤモンドカッターにて長さ32mm×幅3mm×厚み7mm、ノッチ3.5mmの形状に加工した後、脱脂した剃刀を用いたスライド法によってノッチ先端にクラックを形成して試験片を作製した。得られた試験片について、ASTM D−5045に従って試験を行い、GIcを求めた。試験はインストロン社製万能試験機を用い、圧子及びサポートはR=5.0のものを用い、サポート間距離28mm、温度23℃、湿度50%RHの環境下にて試験を実施した。荷重負荷速度は10mm/分とした。
Measurement of GIc A GIc test was conducted as an evaluation index of resin toughness. The 3 mm thick resin plate obtained above was processed into a shape of 32 mm long x 3 mm wide x 7 mm thick and 3.5 mm notch with a wet diamond cutter, and then cracked at the notch tip by a slide method using a degreased razor. To form a test piece. The obtained test piece was tested according to ASTM D-5045 to obtain GIc. The test was carried out using a universal testing machine manufactured by Instron, the indenter and the support having R = 5.0, and the test was carried out in an environment with a support distance of 28 mm, a temperature of 23 ° C., and a humidity of 50% RH. The loading speed was 10 mm / min.
プリプレグの製造方法
コンマコーターを用い、離型紙の片面にエポキシ樹脂組成物およびベンゾオキサジン樹脂組成物を目付49g/m2で均一に塗布して、樹脂担持シートを得た。ダブルフィルム式のプリプレグマシンにて引張強度:5500MPa、引張弾性率:360GPaの炭素繊維を引きそろえ、上記の樹脂担持シート2枚で挟んで加熱ロールにて加熱加圧することにより含浸させ、炭素繊維目付190g/m2、樹脂含有率34質量%のプリプレグを得た。
Method for Producing Prepreg Using a comma coater, an epoxy resin composition and a benzoxazine resin composition were uniformly applied on one side of a release paper with a basis weight of 49 g / m 2 to obtain a resin-carrying sheet. Using a double film type prepreg machine, pulling carbon fibers with a tensile strength of 5500 MPa and a tensile modulus of elasticity: 360 GPa, and sandwiching them between the two resin-carrying sheets, heating them with a heating roll to impregnate the carbon fibers A prepreg having 190 g / m 2 and a resin content of 34% by mass was obtained.
積層複合材の0°引張り強度の測定
上述した方法により作製した一方向プリプレグの繊維方向を揃え、6プライ積層し、オートクレーブにて180℃で2時間、0.7MPaの圧力下に、昇温速度1.7℃/分で成形して積層複合材を作製した。この積層複合材について、温度23℃、湿度50%RHの環境下にてSACMA 4R−94に従い、90°引張り強度を求めた。かかる引張り強度は、6個の試料について測定し、繊維含有量を60%とした換算値を算出して、その平均を0°圧縮強度として求めた。
Measurement of 0 ° Tensile Strength of Laminated Composite Material Unidirectional prepreg produced by the method described above is aligned in fiber direction, laminated in 6 plies, and heated in an autoclave at 180 ° C for 2 hours under 0.7 MPa pressure. A laminated composite material was produced by molding at 1.7 ° C./min. About this laminated composite material, 90 degree tensile strength was calculated | required according to SACMA 4R-94 in the environment of temperature 23 degreeC and humidity 50% RH. The tensile strength was measured for six samples, and a converted value with a fiber content of 60% was calculated, and the average was obtained as 0 ° compressive strength.
積層複合材の90°引張り強度の測定
上述した方法により作製した一方向プリプレグの繊維方向を揃え、12プライ積層し、オートクレーブにて180℃で2時間、0.7MPaの圧力下に、昇温速度1.7℃/分で成形して積層複合材を作製した。この積層複合材について、温度23℃、湿度50%RHの環境下にてSACMA 4R−94に従い、90°引張り強度を求めた。かかる引張り強度は、6個の試料について測定した。
Measurement of 90 ° tensile strength of laminated composite material The unidirectional prepreg produced by the method described above is aligned in the fiber direction, laminated in 12 plies, and heated in an autoclave at 180 ° C for 2 hours under a pressure of 0.7 MPa. A laminated composite material was produced by molding at 1.7 ° C./min. About this laminated composite material, 90 degree tensile strength was calculated | required according to SACMA 4R-94 in the environment of temperature 23 degreeC and humidity 50% RH. Such tensile strength was measured on six samples.
積層複合材の0°圧縮強度の測定
上述した方法により作製した一方向プリプレグの繊維方向を揃え、6プライ積層し、オートクレーブにて180℃で2時間、0.7MPaの圧力下に、昇温速度1.7℃/分で成形して積層複合材を作製した。この積層複合材について、温度23℃、湿度50%RHの環境下にてSACMA 1R−94に従い、0°圧縮強度を求めた。かかる圧縮強度は、6個の試料について測定し、繊維含有量を60%とした換算値を算出して、その平均を0°圧縮強度として求めた。
Measurement of 0 ° Compressive Strength of Laminated Composite Material Unidirectional prepreg produced by the method described above is aligned in fiber direction, 6 plies are laminated, and heated at 180 ° C. for 2 hours at 0.7 MPa under a pressure of 0.7 MPa. A laminated composite material was produced by molding at 1.7 ° C./min. About this laminated composite, 0 degree compressive strength was calculated | required according to SACMA 1R-94 in the environment of temperature 23 degreeC and humidity 50% RH. The compressive strength was measured for six samples, and a converted value with a fiber content of 60% was calculated, and the average was obtained as 0 ° compressive strength.
実施例1〜10および比較例1〜14
上記のようにして、表1に示す原料組成(各成分の配合量は質量部である)からなるエポキシ樹脂組成物およびベンゾオキサジン樹脂組成物を調製し、次いで硬化樹脂版を作成し、この硬化樹脂板の物性測定を行った。エポキシ樹脂組成物およびベンゾオキサジン樹脂組成物の含有成分(各成分の配合量は質量部である)および硬化樹脂板の物性の評価結果を表2に示す。
Examples 1-10 and Comparative Examples 1-14
As described above, an epoxy resin composition and a benzoxazine resin composition comprising the raw material composition shown in Table 1 (the amount of each component is in parts by mass) are prepared, and then a cured resin plate is prepared and cured. The physical properties of the resin plate were measured. Table 2 shows the evaluation results of the physical properties of the components contained in the epoxy resin composition and the benzoxazine resin composition (the amount of each component is part by mass) and the cured resin plate.
配合に用いた原料の詳細を下記に示す。
Nanopox E430:エポキシ樹脂中にナノシリカ微粒子がコロイダル分散した、ナノシリカ微粒子配合エポキシ樹脂、成分の60%がビスフェノール型エポキシ樹脂(2官能)で成分の40%がコロイド分散型ナノシリカ微粒子のマスターバッチ型エポキシ樹脂、ナノシリカ微粒子の平均粒径20nm、ナノレジン社製
HP4032:2官能ナフタレン型エポキシ樹脂、DIC社製
HP7200:ジシクロペンタジエン型エポキシ樹脂、DIC社製
AER4152:オキサゾジドリドン環型エポキシ樹脂、旭化成社製
GAN:グリシジルアニリン、日本化薬社製
セロキサイド3000:シクロヘキセンオキサイド基を有するエポキシ樹脂、ダイセル化学社製
JER604:テトラグリシジルジアミノジフェニルメタン型エポキシ樹脂、ジャパンエポキシレジン社製
EPPN502H:トリフェニルメタンノボラック型エポキシ樹脂、日本化薬社製
MY−0600:メタアミノフェノール型エポキシ樹脂、ハンツマン社製
NC−7300L:ナフタレンノボラック型エポキシ樹脂、日本化薬社製
ELM−100:パラアミノクレゾール型エポキシ樹脂、ハンツマン社製
JER828:ビスフェノールA型エポキシ樹脂、ジャパンエポキシレジン社製
JER807:ビスフェノールF型エポキシ樹脂、ジャパンエポキシレジン社製
JER1009:ビスフェノールA型エポキシ樹脂、ジャパンエポキシレジン社製
EXA1514:ビスフェノールS型エポキシ樹脂、DIC社製
F−a型ベンゾオキサジン:F−a型ベンゾオキサジン樹脂、四国化成社製
UFP−80:湿式シリカ微粒子、シリカ微粒子の平均粒径34nm、電気化学社製
3,3’−DDS:3,3’−ジアミノジフェニルスルホン、日本合成化工社製
PES−5003P:ポリエーテルスルホン、熱可塑性樹脂、住友化学社製
Details of the raw materials used for the blending are shown below.
Nanopox E430: Nanosilica fine particle-blended epoxy resin in which nanosilica fine particles are colloidally dispersed in an epoxy resin, 60% of the component is a bisphenol type epoxy resin (bifunctional), and 40% of the component is a colloidally dispersed nanosilica fine particle masterbatch type epoxy resin An average particle diameter of nano silica fine particles 20 nm, manufactured by Nanoresin, HP4032: bifunctional naphthalene type epoxy resin, manufactured by DIC, HP7200: dicyclopentadiene type epoxy resin, manufactured by DIC, AER4152: oxazodidoridone ring type epoxy resin, manufactured by Asahi Kasei GAN: Glycidyl aniline, Nippon Kayaku Co., Ltd. Celoxide 3000: Epoxy resin having cyclohexene oxide group, Daicel Chemical Industries, Ltd. JER604: Tetraglycidyl diaminodiphenylmethane type epoxy tree Fat, Japan Epoxy Resin EPPN502H: Triphenylmethane novolak epoxy resin, Nippon Kayaku MY-0600: Metaaminophenol epoxy resin, Huntsman NC-7300L: Naphthalene novolac epoxy resin, Nippon Kayaku Co., Ltd. Manufactured ELM-100: Paraaminocresol type epoxy resin, Huntsman JER828: Bisphenol A type epoxy resin, Japan Epoxy Resin JER807: Bisphenol F type epoxy resin, Japan Epoxy Resin JER1009: Bisphenol A type epoxy resin, Japan Epoxy EXA1514 manufactured by Resin Co., Ltd .: Bisphenol S type epoxy resin, manufactured by DIC, Fa type benzoxazine: Fa type benzoxazine resin, Shikoku Kasei Co., Ltd. UFP-80: Type silica fine particles, average particle size of silica fine particles 34 nm, manufactured by Denki Kagaku Co., Ltd. 3,3′-DDS: 3,3′-diaminodiphenyl sulfone, manufactured by Nippon Synthetic Chemical Industry Co., Ltd. PES-5003P: polyethersulfone, thermoplastic resin, Sumitomo Made by Chemical
表1および2からわかるように、実施例でそれぞれ得られた硬化樹脂板は非常に高い弾性率を持ち、耐熱性、靭性も同時に高い値を示し、得られた樹脂から作製した積層複合材は0°引張り強度、90°引張り強度、0°圧縮強度のすべてが高い値を示した。 As can be seen from Tables 1 and 2, the cured resin plates obtained in the examples each have a very high elastic modulus, heat resistance and toughness at the same time, and the laminated composite material produced from the obtained resin is The 0 ° tensile strength, 90 ° tensile strength, and 0 ° compressive strength all showed high values.
一方、比較例では成分(A)および成分(B)の両方を含んでいないため、得られた硬化樹脂板は弾性率および耐熱性、靭性で同時に高い値を示す事が出来ず、積層複合材の物性においても0°引張り強度、90°引張り強度、0°圧縮強度のいずれかで低い値を示した。 On the other hand, since the comparative example does not contain both the component (A) and the component (B), the obtained cured resin plate cannot exhibit high values in terms of elastic modulus, heat resistance and toughness at the same time, and is a laminated composite material. Also in the physical properties, low values were shown in any of 0 ° tensile strength, 90 ° tensile strength, and 0 ° compressive strength.
以上に詳細に説明したように、本発明のプリプレグ用エポキシ樹脂組成物は、硬化後のマトリックス自体の弾性率ならびに耐熱性、靭性が高く、そのエポキシ樹脂組成物から得られた繊維強化複合材料は0°引張り強度、90°引張り強度、0°圧縮強度のすべてで高い値を示した。よって、本発明は産業上有用である。 As described in detail above, the epoxy resin composition for a prepreg of the present invention has high elastic modulus, heat resistance, and toughness of the matrix itself after curing, and the fiber-reinforced composite material obtained from the epoxy resin composition is High values were shown in all of 0 ° tensile strength, 90 ° tensile strength, and 0 ° compressive strength. Therefore, the present invention is industrially useful.
Claims (9)
成分(A)コロイド分散型ナノシリカ微粒子
成分(B)複素環式構造、縮合環式構造のうちの少なくとも1種の構造を有するエポキシ樹脂 An epoxy resin composition for fiber-reinforced composite materials, comprising the following components (A) and (B) as essential constituent elements.
Component (A) Colloidal dispersion type nano silica fine particle Component (B) Epoxy resin having at least one of a heterocyclic structure and a condensed cyclic structure
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009047828A JP2010202727A (en) | 2009-03-02 | 2009-03-02 | Epoxy resin composition for fiber-reinforced composite material and fiber-reinforced composite material using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009047828A JP2010202727A (en) | 2009-03-02 | 2009-03-02 | Epoxy resin composition for fiber-reinforced composite material and fiber-reinforced composite material using the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2010202727A true JP2010202727A (en) | 2010-09-16 |
Family
ID=42964542
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009047828A Pending JP2010202727A (en) | 2009-03-02 | 2009-03-02 | Epoxy resin composition for fiber-reinforced composite material and fiber-reinforced composite material using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2010202727A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017057561A1 (en) * | 2015-09-30 | 2017-04-06 | 積水化学工業株式会社 | Resin composition and multilayer substrate |
JP2017226774A (en) * | 2016-06-23 | 2017-12-28 | Dic株式会社 | Curable composition and fiber reinforced composite material |
JP2017226773A (en) * | 2016-06-23 | 2017-12-28 | Dic株式会社 | Curable composition and fiber reinforced composite material |
WO2018163929A1 (en) | 2017-03-08 | 2018-09-13 | 三菱マテリアル株式会社 | Low-refractive-index film-forming liquid composition and method of forming low-refractive-index film using same |
WO2020058766A1 (en) * | 2018-09-21 | 2020-03-26 | Toray Industries, Inc. | Epoxy resin composition, prepreg, and fiber reinforced composite material |
JP2020528471A (en) * | 2018-02-13 | 2020-09-24 | エルジー・ケム・リミテッド | Thermosetting resin composition for semiconductor packaging and prepreg using this |
WO2021131740A1 (en) | 2019-12-26 | 2021-07-01 | 東レ株式会社 | Prepreg |
CN115260704A (en) * | 2022-08-10 | 2022-11-01 | 重庆科技学院 | A kind of carbon fiber reinforced epoxy resin composite material and preparation method thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005156840A (en) * | 2003-11-25 | 2005-06-16 | Nitto Denko Corp | Resin sheet, liquid crystal cell substrate, liquid crystal display device, substrate for electroluminescence display device, substrate for electroluminescence display, and substrate for solar cell |
JP2005298815A (en) * | 2004-03-17 | 2005-10-27 | Toray Ind Inc | Epoxy resin composition, prepreg and fiber reinforced composite material |
JP2008031193A (en) * | 2006-07-26 | 2008-02-14 | Toray Ind Inc | Epoxy resin composition, prepreg, and fiber-reinforced composite |
-
2009
- 2009-03-02 JP JP2009047828A patent/JP2010202727A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005156840A (en) * | 2003-11-25 | 2005-06-16 | Nitto Denko Corp | Resin sheet, liquid crystal cell substrate, liquid crystal display device, substrate for electroluminescence display device, substrate for electroluminescence display, and substrate for solar cell |
JP2005298815A (en) * | 2004-03-17 | 2005-10-27 | Toray Ind Inc | Epoxy resin composition, prepreg and fiber reinforced composite material |
JP2008031193A (en) * | 2006-07-26 | 2008-02-14 | Toray Ind Inc | Epoxy resin composition, prepreg, and fiber-reinforced composite |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017057561A1 (en) * | 2015-09-30 | 2017-04-06 | 積水化学工業株式会社 | Resin composition and multilayer substrate |
JPWO2017057561A1 (en) * | 2015-09-30 | 2017-10-05 | 積水化学工業株式会社 | Resin composition for multilayer printed wiring board and multilayer printed wiring board |
CN107849336A (en) * | 2015-09-30 | 2018-03-27 | 积水化学工业株式会社 | Resin combination and multilager base plate |
CN107849336B (en) * | 2015-09-30 | 2023-11-10 | 积水化学工业株式会社 | Resin composition and multilayer substrate |
JP2017226774A (en) * | 2016-06-23 | 2017-12-28 | Dic株式会社 | Curable composition and fiber reinforced composite material |
JP2017226773A (en) * | 2016-06-23 | 2017-12-28 | Dic株式会社 | Curable composition and fiber reinforced composite material |
WO2018163929A1 (en) | 2017-03-08 | 2018-09-13 | 三菱マテリアル株式会社 | Low-refractive-index film-forming liquid composition and method of forming low-refractive-index film using same |
KR20190121293A (en) | 2017-03-08 | 2019-10-25 | 미쓰비시 마테리알 가부시키가이샤 | Low refractive index film forming liquid composition and method for forming low refractive index film using the same |
JP2020528471A (en) * | 2018-02-13 | 2020-09-24 | エルジー・ケム・リミテッド | Thermosetting resin composition for semiconductor packaging and prepreg using this |
US11193015B2 (en) | 2018-02-13 | 2021-12-07 | Lg Chem, Ltd. | Thermosetting resin composition for semiconductor package and prepreg using the same |
JP6989086B6 (en) | 2018-02-13 | 2022-02-28 | エルジー・ケム・リミテッド | Thermosetting resin composition for semiconductor packaging and prepreg using this |
CN112739742A (en) * | 2018-09-21 | 2021-04-30 | 东丽株式会社 | Epoxy resin compositions, prepregs, and fiber-reinforced composites |
JP2022501458A (en) * | 2018-09-21 | 2022-01-06 | 東レ株式会社 | Epoxy resin compositions, prepregs, and fiber reinforced composites |
JP7264237B2 (en) | 2018-09-21 | 2023-04-25 | 東レ株式会社 | Epoxy resin composition, prepreg, and fiber reinforced composite |
WO2020058766A1 (en) * | 2018-09-21 | 2020-03-26 | Toray Industries, Inc. | Epoxy resin composition, prepreg, and fiber reinforced composite material |
US12146051B2 (en) | 2018-09-21 | 2024-11-19 | Toray Industries, Inc. | Epoxy resin compositions, prepreg, and fiber-reinforced composite materials |
WO2021131740A1 (en) | 2019-12-26 | 2021-07-01 | 東レ株式会社 | Prepreg |
CN115260704A (en) * | 2022-08-10 | 2022-11-01 | 重庆科技学院 | A kind of carbon fiber reinforced epoxy resin composite material and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5349143B2 (en) | Resin composition for fiber reinforced composite material and fiber reinforced composite material using the same | |
CN105793315B (en) | Epoxy resin composition and film, prepreg and fiber reinforced plastic using same | |
KR102235448B1 (en) | Epoxy resin composition, resin cured product, fibre-reinforced composite material, and prepreg | |
CN104583310B (en) | Composition epoxy resin and the film using the composition epoxy resin, prepreg, fibre reinforced plastics | |
JP5761366B2 (en) | Epoxy resin composition, and film, prepreg, and fiber reinforced plastic using the same | |
JP6903897B2 (en) | Epoxy resin composition, articles using it, prepregs and fiber reinforced plastics | |
JP2010202727A (en) | Epoxy resin composition for fiber-reinforced composite material and fiber-reinforced composite material using the same | |
JP6950174B2 (en) | Epoxy resin composition, articles using it, prepregs and fiber reinforced plastics | |
JP2013543035A (en) | Epoxy resin composition, prepreg, and fiber reinforced composite material for fiber reinforced composite material | |
JP6156569B2 (en) | Epoxy resin composition for carbon fiber reinforced plastic, and film, prepreg and carbon fiber reinforced plastic using the same | |
JP5668329B2 (en) | Epoxy resin composition and fiber reinforced composite material using the same | |
JP2004277481A (en) | Epoxy resin composition | |
JP7063021B2 (en) | Prepreg and carbon fiber reinforced composites | |
JP2012149237A (en) | Thermosetting resin composition, prepreg and fiber-reinforced composite material | |
JP2010174073A (en) | Epoxy resin composition for fiber-reinforced composite material and fiber-reinforced composite material using the same | |
CN112673038B (en) | Epoxy resin composition, molding material for fiber-reinforced composite material, and fiber-reinforced composite material | |
JP4428978B2 (en) | Epoxy resin composition | |
JP4821163B2 (en) | Epoxy resin composition for fiber reinforced composite materials | |
JP2006265458A (en) | Resin composition for prepregs, and prepreg | |
JP2012136568A (en) | Epoxy resin composition, and fiber-reinforced composite material using the same | |
JP2010100696A (en) | Epoxy resin composition | |
JP2009292866A (en) | Epoxy resin composition for fiber-reinforced composite material and fiber-reinforced composite material using it | |
JP2011231187A (en) | Epoxy resin composition, prepreg, and fiber-reinforced composite material | |
JP2006219513A (en) | Epoxy resin composition, prepreg and fiber-reinforced composite material | |
JP2016216657A (en) | Epoxy resin composition, and fiber-reinforced composite material precursor and fiber-reinforced composite material using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Effective date: 20120215 Free format text: JAPANESE INTERMEDIATE CODE: A621 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20121126 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121204 |
|
A521 | Written amendment |
Effective date: 20130201 Free format text: JAPANESE INTERMEDIATE CODE: A523 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20130319 |