[go: up one dir, main page]

JP2010197737A - Fixing device, image forming apparatus, and magnetic field generating device - Google Patents

Fixing device, image forming apparatus, and magnetic field generating device Download PDF

Info

Publication number
JP2010197737A
JP2010197737A JP2009042802A JP2009042802A JP2010197737A JP 2010197737 A JP2010197737 A JP 2010197737A JP 2009042802 A JP2009042802 A JP 2009042802A JP 2009042802 A JP2009042802 A JP 2009042802A JP 2010197737 A JP2010197737 A JP 2010197737A
Authority
JP
Japan
Prior art keywords
magnetic
fixing
magnetic field
width direction
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009042802A
Other languages
Japanese (ja)
Other versions
JP4788789B2 (en
Inventor
Nobuyoshi Komatsu
伸嘉 小松
Takeshi Haruhara
剛 春原
Kazuyoshi Ito
和善 伊藤
Motofumi Baba
基文 馬場
Shigehiko Hasenami
茂彦 長谷波
Eiichiro Tokuhiro
英一郎 徳弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP2009042802A priority Critical patent/JP4788789B2/en
Priority to US12/557,635 priority patent/US8270887B2/en
Priority to CN200910205566.7A priority patent/CN101813906B/en
Publication of JP2010197737A publication Critical patent/JP2010197737A/en
Application granted granted Critical
Publication of JP4788789B2 publication Critical patent/JP4788789B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fixing For Electrophotography (AREA)
  • General Induction Heating (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To achieve a fixing device of an electromagnetic induction heating system, wherein the resistance and inductance of an electric circuit system for generating an AC magnetic field can be adjusted. <P>SOLUTION: A plurality of magnetic cores 84, which are arranged along a width direction of a fixing belt and form a magnetic of an AC magnetic field generated by an excitation coil 82, are supported by a support member 81 so as to be freely moved in the width direction of the fixing belt, and each of the plurality of magnetic cores 84 movably supported by the support member 81 is set and fixed to a predetermined position in the width direction of the fixing belt by a magnetic core-setting member 87. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、定着装置、画像形成装置、および磁界生成装置に関する。   The present invention relates to a fixing device, an image forming apparatus, and a magnetic field generation device.

電子写真方式を用いた複写機、プリンタ等の画像形成装置に搭載する定着装置として、電磁誘導加熱方式を用いたものが知られている。
例えば特許文献1には、磁束発生手段としての電磁誘導コイルが磁性金属製の芯金シリンダからなる定着ロールの内部に配置され、電磁誘導コイルにて生成した誘導磁界により定着ロールに渦電流を誘起させて、定着ロールを直接的に加熱する電磁誘導加熱方式の定着装置が記載されている。
As a fixing device mounted on an image forming apparatus such as a copying machine or a printer using an electrophotographic system, an apparatus using an electromagnetic induction heating system is known.
For example, in Patent Document 1, an electromagnetic induction coil as a magnetic flux generating means is arranged inside a fixing roll made of a core metal cylinder made of magnetic metal, and an eddy current is induced in the fixing roll by an induced magnetic field generated by the electromagnetic induction coil. An electromagnetic induction heating type fixing device that directly heats the fixing roll is described.

特開2003−186322号公報JP 2003-186322 A

ここで一般に、電磁誘導加熱方式の定着装置は、定着装置を構成する構成部材の大きさや配置位置や相互の位置関係等が搭載される画像形成装置に対応させて設計される。そのため、交流磁界を発生させるための電気回路系の抵抗やインダクタンスも構成の異なる定着装置毎に相違する。それにより、例えば電気回路系に電力を供給する電源は定着装置の構成に合わせて設計され、構成の異なる定着装置相互間で電源の互換性を図ることが困難であった。
本発明は、交流磁界を発生させるための電気回路系の抵抗およびインダクタンスを調整可能な電磁誘導加熱方式の定着装置を実現することを目的とする。
Here, in general, an electromagnetic induction heating type fixing device is designed to correspond to an image forming apparatus on which the size, arrangement position, mutual positional relationship, and the like of components constituting the fixing device are mounted. Therefore, the resistance and inductance of the electric circuit system for generating an alternating magnetic field are also different for different fixing devices. Accordingly, for example, a power source that supplies power to the electric circuit system is designed according to the configuration of the fixing device, and it is difficult to achieve compatibility of the power sources between fixing devices having different configurations.
An object of the present invention is to realize an electromagnetic induction heating type fixing device capable of adjusting the resistance and inductance of an electric circuit system for generating an alternating magnetic field.

請求項1に記載の発明は、導電層を有し、当該導電層が電磁誘導加熱されることで記録材にトナーを定着する定着部材と、前記定着部材の前記導電層と交差する交流磁界を発生させる磁界発生部材と、前記定着部材の幅方向に沿って複数配置され、前記磁界発生部材にて発生した交流磁界の磁路を形成する磁路形成部材と、複数の前記磁路形成部材を前記定着部材幅方向に移動自在に支持する支持部材と、前記支持部材にて移動自在に支持された複数の前記磁路形成部材の各々を予め定めた前記定着部材の幅方向位置に設定して固定する位置設定部材とを備えたことを特徴とする定着装置である。   According to the first aspect of the present invention, there is provided a fixing member that has a conductive layer, the toner is fixed to the recording material by electromagnetically heating the conductive layer, and an alternating magnetic field that intersects the conductive layer of the fixing member. A magnetic field generating member to be generated; a plurality of magnetic path forming members that are arranged along a width direction of the fixing member and that form a magnetic path of an alternating magnetic field generated by the magnetic field generating member; and a plurality of the magnetic path forming members. A support member that is movably supported in the fixing member width direction and a plurality of the magnetic path forming members that are movably supported by the support member are set at predetermined positions in the width direction of the fixing member. A fixing device including a position setting member to be fixed.

請求項2に記載の発明は、前記定着部材の幅方向に沿って複数配置され、前記磁界発生部材にて発生した交流磁界を前記定着部材幅方向に均すように調整する調整磁性部材をさらに備え、前記支持部材は、前記調整磁性部材を前記定着部材幅方向に移動自在に支持し、前記位置設定部材は、前記支持部材にて移動自在に支持された前記調整磁性部材各々を予め定めた前記定着部材の幅方向位置に設定して固定することを特徴とする請求項1記載の定着装置である。
請求項3に記載の発明は、前記支持部材は、前記磁界発生部材を前記定着部材と予め定めた間隙を有する位置に設定する位置設定面と、前記磁路形成部材を当該位置設定面と予め定めた間隙を有する位置に設定しながら当該定着部材幅方向に移動自在に支持する位置設定部とを有し、前記支持部材の前記位置設定部は、前記定着部材の移動方向と直交する方向に沿って平行に配置された一対の凸状部で構成され、前記磁路形成部材をさらに前記位置設定面に沿って当該定着部材の移動方向前後に移動自在に支持することを特徴とする請求項1記載の定着装置である。
請求項4に記載の発明は、前記磁界発生部材と前記磁路形成部材との間に、当該磁界発生部材を前記支持部材表面に向けて押圧しながら弾性変形して当該磁界発生部材を当該支持部材表面に支持する弾性支持部材をさらに備えたことを特徴とする請求項1記載の定着装置である。
請求項5に記載の発明は、前記定着部材を挟んで前記磁界発生部材と対向して配置され、透磁率が減少を開始する透磁率変化開始温度までの温度範囲にて当該磁界発生部材で発生させた交流磁界の磁路を形成し、当該透磁率変化開始温度を超える温度範囲にて当該磁界発生部材で発生された交流磁界を透過させる第2の磁路形成部材をさらに備えたことを特徴とする請求項1記載の定着装置である。
According to a second aspect of the present invention, there is further provided an adjusting magnetic member that is arranged in a plurality along the width direction of the fixing member and adjusts an alternating magnetic field generated by the magnetic field generating member so as to equalize the fixing member width direction. The support member supports the adjustment magnetic member so as to be movable in the fixing member width direction, and the position setting member predetermines each of the adjustment magnetic members supported so as to be movable by the support member. The fixing device according to claim 1, wherein the fixing device is set and fixed at a position in a width direction of the fixing member.
According to a third aspect of the present invention, the support member includes a position setting surface for setting the magnetic field generating member at a position having a predetermined gap with the fixing member, and the magnetic path forming member with the position setting surface in advance. A position setting portion that is movably supported in the fixing member width direction while being set at a position having a predetermined gap, and the position setting portion of the support member is in a direction orthogonal to the movement direction of the fixing member. And a pair of convex portions arranged in parallel along the position, and further supports the magnetic path forming member movably back and forth in the moving direction of the fixing member along the position setting surface. The fixing device according to 1.
According to a fourth aspect of the present invention, the magnetic field generating member is elastically deformed while pressing the magnetic field generating member toward the support member surface between the magnetic field generating member and the magnetic path forming member. The fixing device according to claim 1, further comprising an elastic support member that supports the surface of the member.
According to a fifth aspect of the present invention, the magnetic field generating member is disposed in a temperature range up to a magnetic permeability change starting temperature that is arranged to face the magnetic field generating member with the fixing member interposed therebetween and starts to decrease the magnetic permeability. And a second magnetic path forming member that forms a magnetic path of the alternating magnetic field and transmits the alternating magnetic field generated by the magnetic field generating member in a temperature range that exceeds the permeability change start temperature. The fixing device according to claim 1.

請求項6に記載の発明は、トナー像を形成するトナー像形成手段と、前記トナー像形成手段によって形成された前記トナー像を記録材上に転写する転写手段と、前記記録材上に転写された前記トナー像を当該記録材に定着する定着手段とを有し、前記定着手段は、導電層を有し、当該導電層が電磁誘導加熱されることで記録材にトナーを定着する定着部材と、前記定着部材の前記導電層と交差する交流磁界を発生させる磁界発生部材と、前記定着部材の幅方向に沿って複数配置され、前記磁界発生部材にて発生した交流磁界の磁路を形成する磁路形成部材と、複数の前記磁路形成部材を前記定着部材幅方向に移動自在に支持する支持部材と、前記支持部材にて移動自在に支持された複数の前記磁路形成部材の各々を予め定めた前記定着部材の幅方向位置に設定して固定する位置設定部材とを備えたことを特徴とする画像形成装置である。   According to a sixth aspect of the present invention, there is provided a toner image forming unit that forms a toner image, a transfer unit that transfers the toner image formed by the toner image forming unit onto a recording material, and a toner image that is transferred onto the recording material. Fixing means for fixing the toner image to the recording material, the fixing means including a conductive layer, and a fixing member for fixing the toner to the recording material by electromagnetically heating the conductive layer. A plurality of magnetic field generating members for generating an alternating magnetic field intersecting the conductive layer of the fixing member, and a plurality of magnetic field generating members arranged along the width direction of the fixing member to form a magnetic path of the alternating magnetic field generated by the magnetic field generating member. Each of a magnetic path forming member, a support member that supports the plurality of magnetic path forming members movably in the fixing member width direction, and a plurality of the magnetic path forming members supported movably by the support member. Of the fixing member determined in advance. An image forming apparatus characterized by comprising a position setting member for fixing set direction position.

請求項7に記載の発明は、前記定着手段は、前記定着部材の幅方向に沿って複数配置され、前記磁界発生部材にて発生した交流磁界を前記定着部材幅方向に均すように調整する調整磁性部材をさらに備え、前記定着手段の前記支持部材は、前記調整磁性部材を前記定着部材幅方向に移動自在に支持し、前記定着手段の前記位置設定部材は、前記支持部材にて移動自在に支持された前記調整磁性部材各々を予め定めた前記定着部材の幅方向位置に設定して固定することを特徴とする請求項6記載の画像形成装置である。
請求項8に記載の発明は、前記定着手段の前記支持部材は、前記磁界発生部材を前記定着部材と予め定めた間隙を有する位置に設定する位置設定面と、前記磁路形成部材を当該位置設定面と予め定めた間隙を有する位置に設定しながら当該定着部材幅方向に移動自在に支持する位置設定部とを有し、前記支持部材の前記位置設定部は、前記定着部材の移動方向と直交する方向に沿って平行に配置された一対の凸状部で構成され、前記磁路形成部材をさらに前記位置設定面に沿って当該定着部材の移動方向前後に移動自在に支持することを特徴とする請求項6記載の画像形成装置である。
請求項9に記載の発明は、前記定着手段は、前記磁界発生部材と前記磁路形成部材との間に、当該磁界発生部材を前記支持部材表面に向けて押圧しながら弾性変形して当該磁界発生部材を当該支持部材表面に支持する弾性支持部材をさらに備えたことを特徴とする請求項6記載の画像形成装置である。
請求項10に記載の発明は、前記定着手段は、前記定着部材を挟んで前記磁界発生部材と対向して配置され、透磁率が減少を開始する透磁率変化開始温度までの温度範囲にて当該磁界発生部材で発生させた交流磁界の磁路を形成し、当該透磁率変化開始温度を超える温度範囲にて当該磁界発生部材で発生された交流磁界を透過させる第2の磁路形成部材をさらに備えたことを特徴とする請求項6記載の画像形成装置である。
According to a seventh aspect of the present invention, a plurality of the fixing units are arranged along the width direction of the fixing member, and the AC magnetic field generated by the magnetic field generating member is adjusted so as to equalize in the fixing member width direction. The fixing member further includes an adjustment magnetic member, the support member of the fixing unit supports the adjustment magnetic member so as to be movable in the fixing member width direction, and the position setting member of the fixing unit is movable by the support member. The image forming apparatus according to claim 6, wherein each of the adjusting magnetic members supported by the fixing member is set and fixed at a predetermined position in the width direction of the fixing member.
According to an eighth aspect of the present invention, the support member of the fixing unit includes a position setting surface for setting the magnetic field generating member at a position having a predetermined gap from the fixing member, and the magnetic path forming member at the position. A position setting unit that supports the setting surface and a position having a predetermined gap so as to be movable in the fixing member width direction, and the position setting unit of the support member has a moving direction of the fixing member. It is composed of a pair of convex portions arranged in parallel along a direction orthogonal to each other, and further supports the magnetic path forming member movably back and forth in the moving direction of the fixing member along the position setting surface. The image forming apparatus according to claim 6.
According to a ninth aspect of the present invention, the fixing unit elastically deforms the magnetic field between the magnetic field generating member and the magnetic path forming member while pressing the magnetic field generating member toward the support member surface. 7. The image forming apparatus according to claim 6, further comprising an elastic support member for supporting the generating member on the surface of the support member.
According to a tenth aspect of the present invention, the fixing unit is disposed opposite to the magnetic field generating member with the fixing member interposed therebetween, and the fixing unit is in a temperature range up to a magnetic permeability change starting temperature at which the magnetic permeability starts decreasing. A second magnetic path forming member that forms a magnetic path of the alternating magnetic field generated by the magnetic field generating member and transmits the alternating magnetic field generated by the magnetic field generating member in a temperature range that exceeds the permeability change start temperature; The image forming apparatus according to claim 6, wherein the image forming apparatus is provided.

請求項11に記載の発明は、導電層を有し、当該導電層が電磁誘導加熱されることで記録材にトナーを定着する定着部材の当該導電層と交差する交流磁界を発生させる磁界発生部材と、前記定着部材の幅方向に沿って複数配置され、前記磁界発生部材にて発生した交流磁界の磁路を形成する磁路形成部材と、複数の前記磁路形成部材を前記定着部材幅方向に移動自在に支持する支持部材と、前記支持部材にて移動自在に支持された複数の前記磁路形成部材の各々を予め定めた前記定着部材の幅方向位置に設定して固定する位置設定部材とを備えたことを特徴とする磁界生成装置である。   According to an eleventh aspect of the present invention, there is provided a magnetic field generating member that has a conductive layer and generates an alternating magnetic field that intersects the conductive layer of the fixing member that fixes the toner to the recording material by electromagnetic induction heating. A plurality of magnetic path forming members arranged along the width direction of the fixing member and forming a magnetic path of an alternating magnetic field generated by the magnetic field generating member; and a plurality of the magnetic path forming members arranged in the fixing member width direction. And a position setting member for setting and fixing each of the plurality of magnetic path forming members movably supported by the support member at a predetermined position in the width direction of the fixing member. And a magnetic field generating device.

請求項12に記載の発明は、前記定着部材の幅方向に沿って複数配置され、前記磁界発生部材にて発生した交流磁界を前記定着部材幅方向に均すように調整する調整磁性部材をさらに備え、前記支持部材は、前記調整磁性部材を前記定着部材幅方向に移動自在に支持し、前記位置設定部材は、前記支持部材にて移動自在に支持された前記調整磁性部材各々を予め定めた前記定着部材の幅方向位置に設定して固定することを特徴とする請求項11記載の磁界生成装置である。
請求項13に記載の発明は、前記支持部材は、前記磁界発生部材を前記定着部材と予め定めた間隙を有する位置に設定する位置設定面と、前記磁路形成部材を当該位置設定面と予め定めた間隙を有する位置に設定しながら当該定着部材幅方向に移動自在に支持する位置設定部とを有し、前記支持部材の前記位置設定部は、前記定着部材の移動方向と直交する方向に沿って平行に配置された一対の凸状部で構成され、前記磁路形成部材をさらに前記位置設定面に沿って当該定着部材の移動方向前後に移動自在に支持することを特徴とする請求項11記載の磁界生成装置である。
According to a twelfth aspect of the present invention, there is further provided an adjusting magnetic member that is arranged in a plurality along the width direction of the fixing member and adjusts an alternating magnetic field generated by the magnetic field generating member so as to equalize the fixing member width direction. The support member supports the adjustment magnetic member so as to be movable in the fixing member width direction, and the position setting member predetermines each of the adjustment magnetic members supported so as to be movable by the support member. 12. The magnetic field generating apparatus according to claim 11, wherein the fixing member is set and fixed at a position in a width direction of the fixing member.
According to a thirteenth aspect of the present invention, the support member has a position setting surface for setting the magnetic field generating member at a position having a predetermined gap from the fixing member, and the magnetic path forming member is connected to the position setting surface in advance A position setting portion that is movably supported in the fixing member width direction while being set at a position having a predetermined gap, and the position setting portion of the support member is in a direction orthogonal to the movement direction of the fixing member. And a pair of convex portions arranged in parallel along the position, and further supports the magnetic path forming member movably back and forth in the moving direction of the fixing member along the position setting surface. 11 is a magnetic field generation device according to 11.

請求項1の発明によれば、交流磁界を発生させるための電気回路系の抵抗およびインダクタンスを調整可能な電磁誘導加熱方式の定着装置を実現することができる。
請求項2の発明によれば、本発明を採用しない場合に比べ、構成の異なる定着装置相互間において交流磁界を発生させるための電気回路系の抵抗およびインダクタンスを近似させ、電気回路系に電力を供給する電力供給源の互換性を図ることができる。
請求項3の発明によれば、本発明を採用しない場合に比べ、磁路形成部材の寸法精度を緩和しても磁界発生部材と磁路形成部材、さらに磁界発生部材と定着部材との間の位置精度が向上し、構成の異なる定着装置相互間で抵抗およびインダクタンスの近似精度を高めることができる。
請求項4の発明によれば、本発明を採用しない場合に比べ、磁界発生部材での位置ずれの発生が抑制されて、構成の異なる定着装置相互間で抵抗およびインダクタンスの近似精度を高めることができる。
請求項5の発明によれば、本発明を採用しない場合に比べ、非通紙領域での温度の過剰な上昇を抑制することができる。
According to the first aspect of the present invention, it is possible to realize an electromagnetic induction heating type fixing device capable of adjusting the resistance and inductance of an electric circuit system for generating an alternating magnetic field.
According to the second aspect of the present invention, compared to the case where the present invention is not adopted, the resistance and inductance of the electric circuit system for generating an alternating magnetic field between the fixing devices having different configurations are approximated, and the electric circuit system is supplied with electric power. Compatibility of power supply sources to be supplied can be achieved.
According to the third aspect of the present invention, even when the dimensional accuracy of the magnetic path forming member is relaxed, the magnetic field generating member and the magnetic path forming member, and further, between the magnetic field generating member and the fixing member are compared with the case where the present invention is not adopted. The positional accuracy is improved, and the approximate accuracy of resistance and inductance can be increased between fixing devices having different configurations.
According to the fourth aspect of the present invention, compared with the case where the present invention is not adopted, the occurrence of misalignment in the magnetic field generating member is suppressed, and the approximate accuracy of resistance and inductance between the fixing devices having different configurations can be improved. it can.
According to the fifth aspect of the present invention, it is possible to suppress an excessive increase in temperature in the non-sheet passing region as compared with the case where the present invention is not adopted.

請求項6の発明によれば、画像形成装置に搭載する電磁誘導加熱方式の定着装置において、交流磁界を発生させるための電気回路系の抵抗およびインダクタンスを調整可能な構成を実現することができる。
請求項7の発明によれば、構成の異なる定着装置相互間において交流磁界を発生させるための電気回路系の抵抗およびインダクタンスを近似させ、電気回路系に電力を供給する電力供給源の互換性を図ることができる。
請求項8の発明によれば、本発明を採用しない場合に比べ、磁路形成部材の寸法精度を緩和しても磁界発生部材と磁路形成部材、さらに磁界発生部材と定着部材との間の位置精度が向上し、構成の異なる定着装置相互間で抵抗およびインダクタンスの近似精度を高めることができる。
請求項9の発明によれば、本発明を採用しない場合に比べ、磁界発生部材での位置ずれの発生が抑制されて、構成の異なる定着装置相互間で抵抗およびインダクタンスの近似精度を高めることができる。
請求項10の発明によれば、本発明を採用しない場合に比べ、非通紙領域での温度の過剰な上昇を抑制することができる。
According to the invention of claim 6, in the electromagnetic induction heating type fixing device mounted on the image forming apparatus, it is possible to realize a configuration in which the resistance and inductance of the electric circuit system for generating the alternating magnetic field can be adjusted.
According to the seventh aspect of the invention, the compatibility of the power supply source for supplying power to the electric circuit system by approximating the resistance and inductance of the electric circuit system for generating an alternating magnetic field between fixing devices having different configurations is provided. Can be planned.
According to the eighth aspect of the present invention, even when the dimensional accuracy of the magnetic path forming member is relaxed, the magnetic field generating member and the magnetic path forming member, and further, between the magnetic field generating member and the fixing member are compared with the case where the present invention is not adopted. The positional accuracy is improved, and the approximate accuracy of resistance and inductance can be increased between fixing devices having different configurations.
According to the ninth aspect of the present invention, compared to the case where the present invention is not adopted, the occurrence of misalignment in the magnetic field generating member is suppressed, and the approximation accuracy of resistance and inductance between the fixing devices having different configurations can be improved. it can.
According to the tenth aspect of the present invention, it is possible to suppress an excessive increase in temperature in the non-sheet passing region as compared with the case where the present invention is not adopted.

請求項11の発明によれば、電磁誘導加熱方式の定着装置において交流磁界を発生させるための電気回路系の抵抗およびインダクタンスを調整可能な構成を実現することができる。
請求項12の発明によれば、構成の異なる定着装置相互間において交流磁界を発生させるための電気回路系の抵抗およびインダクタンスを近似させ、電気回路系に電力を供給する電力供給源の互換性を図ることができる。
請求項13の発明によれば、本発明を採用しない場合に比べ、磁路形成部材の寸法精度を緩和しても磁界発生部材と磁路形成部材、さらに磁界発生部材と定着部材との間の位置精度が向上し、構成の異なる定着装置相互間で抵抗およびインダクタンスの近似精度を高めることができる。
According to the eleventh aspect of the present invention, it is possible to realize a configuration capable of adjusting the resistance and inductance of an electric circuit system for generating an alternating magnetic field in an electromagnetic induction heating type fixing device.
According to the invention of claim 12, the compatibility of the power supply source for supplying power to the electric circuit system by approximating the resistance and inductance of the electric circuit system for generating an alternating magnetic field between the fixing devices having different configurations. Can be planned.
According to the invention of claim 13, compared with the case where the present invention is not adopted, even if the dimensional accuracy of the magnetic path forming member is relaxed, the magnetic field generating member and the magnetic path forming member, and further between the magnetic field generating member and the fixing member, The positional accuracy is improved, and the approximate accuracy of resistance and inductance can be increased between fixing devices having different configurations.

本実施の形態の定着装置が適用される画像形成装置の構成例を示した図である。1 is a diagram illustrating a configuration example of an image forming apparatus to which a fixing device according to an exemplary embodiment is applied. 本実施の形態の定着ユニットの構成を示す正面図である。FIG. 2 is a front view illustrating a configuration of a fixing unit of the present embodiment. 図2における定着装置のX−X断面図である。FIG. 3 is an XX cross-sectional view of the fixing device in FIG. 2. 定着ベルトの断面層構成図である。FIG. 3 is a cross-sectional layer configuration diagram of a fixing belt. (a)がエンドキャップ部材の側面図であり、(b)がZ方向から見たエンドキャップ部材の平面図である。(a) is a side view of an end cap member, (b) is a top view of the end cap member seen from the Z direction. IHヒータの構成を説明する断面図である。It is sectional drawing explaining the structure of an IH heater. 定着ベルトの温度が透磁率変化開始温度以下の温度範囲にある場合の磁力線の状態を説明する図である。It is a figure explaining the state of a line of magnetic force in case the temperature of a fixing belt exists in the temperature range below the magnetic permeability change start temperature. 小サイズ紙を連続して通紙した際の定着ベルトの幅方向の温度分布の概略を示した図である。FIG. 6 is a diagram illustrating an outline of a temperature distribution in a width direction of a fixing belt when small-size paper is continuously passed. 非通紙領域での定着ベルトの温度が透磁率変化開始温度を超えた温度範囲にある場合の磁力線の状態を説明する図である。FIG. 6 is a diagram for explaining a state of magnetic lines of force when the temperature of the fixing belt in a non-sheet passing region is in a temperature range exceeding the permeability change start temperature. 感温磁性部材に形成されるスリットを示した図である。It is the figure which showed the slit formed in a temperature sensitive magnetic member. IHヒータの積層構造を説明する図である。It is a figure explaining the laminated structure of an IH heater. 磁心が一対の磁心支持部に支持される状態を示した断面構成図である。It is a section lineblock diagram showing the state where a magnetic core is supported by a pair of magnetic core support parts. 磁心設定部材が磁心および調整用磁心の長手方向位置を設定する状態を説明する斜視図である。It is a perspective view explaining the state which a magnetic core setting member sets the longitudinal direction position of a magnetic core and an adjustment magnetic core. 構成の異なる定着ユニットでの抵抗およびインダクタンスのばらつきに合わせて設計される励磁回路の公差範囲を例示した図である。It is a figure which illustrated the tolerance range of the excitation circuit designed according to the dispersion | variation in resistance and inductance in the fixing unit from which a structure differs. IHヒータの構成例を示した図である。It is the figure which showed the structural example of the IH heater. IHヒータの構成例を示した図である。It is the figure which showed the structural example of the IH heater.

以下、添付図面を参照して、本発明の実施の形態について詳細に説明する。
<画像形成装置の説明>
図1は本実施の形態の定着装置が適用される画像形成装置の構成例を示した図である。図1に示す画像形成装置1は、所謂タンデム型のカラープリンタであり、画像データに基づき画像形成を行う画像形成部10、画像形成装置1全体の動作を制御する制御部31を備えている。さらには、例えばパーソナルコンピュータ(PC)3や画像読取装置(スキャナ)4等との通信を行って画像データを受信する通信部32、通信部32にて受信された画像データに対し予め定めた画像処理を施す画像処理部33を備えている。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings.
<Description of Image Forming Apparatus>
FIG. 1 is a diagram illustrating a configuration example of an image forming apparatus to which the fixing device of the present embodiment is applied. An image forming apparatus 1 shown in FIG. 1 is a so-called tandem color printer, and includes an image forming unit 10 that forms an image based on image data and a control unit 31 that controls the operation of the entire image forming apparatus 1. Further, for example, a communication unit 32 that receives image data by communicating with a personal computer (PC) 3 or an image reading device (scanner) 4, and a predetermined image for the image data received by the communication unit 32. An image processing unit 33 that performs processing is provided.

画像形成部10は、一定の間隔を置いて並列的に配置されるトナー像形成手段の一例である4つの画像形成ユニット11Y,11M,11C,11K(「画像形成ユニット11」とも総称する)を備えている。各画像形成ユニット11は、静電潜像を形成してトナー像を保持する像保持体の一例としての感光体ドラム12、感光体ドラム12の表面を予め定めた電位で一様に帯電する帯電器13、帯電器13によって帯電された感光体ドラム12を各色画像データに基づき露光するLED(Light Emitting Diode)プリントヘッド14、感光体ドラム12上に形成された静電潜像を現像する現像器15、転写後の感光体ドラム12表面を清掃するドラムクリーナ16を備えている。
画像形成ユニット11各々は、現像器15に収納されるトナーを除いて略同様に構成され、それぞれがイエロー(Y)、マゼンタ(M)、シアン(C)、黒(K)のトナー像を形成する。
The image forming unit 10 includes four image forming units 11Y, 11M, 11C, and 11K (also collectively referred to as “image forming unit 11”), which are examples of toner image forming units arranged in parallel at a predetermined interval. I have. Each image forming unit 11 forms an electrostatic latent image and a photosensitive drum 12 as an example of an image holding body that holds a toner image, and charging that uniformly charges the surface of the photosensitive drum 12 with a predetermined potential. 13, an LED (Light Emitting Diode) print head 14 that exposes the photosensitive drum 12 charged by the charger 13 based on each color image data, and a developer that develops an electrostatic latent image formed on the photosensitive drum 12. 15. A drum cleaner 16 for cleaning the surface of the photosensitive drum 12 after transfer is provided.
Each of the image forming units 11 is configured in substantially the same manner except for the toner stored in the developing device 15, and each forms a toner image of yellow (Y), magenta (M), cyan (C), and black (K). To do.

また、画像形成部10は、各画像形成ユニット11の感光体ドラム12にて形成された各色トナー像が多重転写される中間転写ベルト20、各画像形成ユニット11にて形成された各色トナー像を中間転写ベルト20に順次転写(一次転写)する一次転写ロール21を備えている。さらに、中間転写ベルト20上に重畳して転写された各色トナー像を記録材(記録紙)である用紙Pに一括転写(二次転写)する二次転写ロール22、二次転写された各色トナー像を用紙P上に定着させる定着手段(定着装置)の一例としての定着ユニット60を備えている。なお、本実施の形態の画像形成装置1では、中間転写ベルト20、一次転写ロール21、および二次転写ロール22により転写手段が構成される。   The image forming unit 10 also receives the intermediate transfer belt 20 onto which the color toner images formed on the photosensitive drums 12 of the image forming units 11 are transferred, and the color toner images formed on the image forming units 11. A primary transfer roll 21 that sequentially transfers (primary transfer) to the intermediate transfer belt 20 is provided. Further, a secondary transfer roll 22 that batch-transfers (secondary transfer) each color toner image transferred and superimposed on the intermediate transfer belt 20 onto a sheet P that is a recording material (recording paper), and each color toner that is secondarily transferred. A fixing unit 60 is provided as an example of a fixing unit (fixing device) that fixes the image on the paper P. In the image forming apparatus 1 of the present embodiment, the intermediate transfer belt 20, the primary transfer roll 21, and the secondary transfer roll 22 constitute a transfer unit.

本実施の形態の画像形成装置1では、制御部31による動作制御の下で、次のようなプロセスによる画像形成処理が行われる。すなわち、PC3やスキャナ4からの画像データは通信部32にて受信され、画像処理部33により予め定めた画像処理が施された後、各色毎の画像データとなって各画像形成ユニット11に送られる。そして、例えば黒(K)色トナー像を形成する画像形成ユニット11Kでは、感光体ドラム12が矢印A方向に回転しながら帯電器13により予め定めた電位で一様に帯電され、画像処理部33から送信されたK色画像データに基づきLEDプリントヘッド14が感光体ドラム12を走査露光する。それにより、感光体ドラム12上にはK色画像に関する静電潜像が形成される。感光体ドラム12上に形成されたK色静電潜像は現像器15により現像され、感光体ドラム12上にK色トナー像が形成される。同様に、画像形成ユニット11Y,11M,11Cにおいても、それぞれイエロー(Y)、マゼンタ(M)、シアン(C)の各色トナー像が形成される。   In the image forming apparatus 1 of the present embodiment, under the operation control by the control unit 31, image forming processing is performed by the following process. That is, the image data from the PC 3 or the scanner 4 is received by the communication unit 32, subjected to predetermined image processing by the image processing unit 33, and then sent to each image forming unit 11 as image data for each color. It is done. For example, in the image forming unit 11K that forms a black (K) toner image, the photosensitive drum 12 is uniformly charged at a predetermined potential by the charger 13 while rotating in the arrow A direction, and the image processing unit 33 is charged. The LED print head 14 scans and exposes the photosensitive drum 12 based on the K-color image data transmitted from. As a result, an electrostatic latent image relating to the K color image is formed on the photosensitive drum 12. The K-color electrostatic latent image formed on the photosensitive drum 12 is developed by the developing unit 15, and a K-color toner image is formed on the photosensitive drum 12. Similarly, yellow (Y), magenta (M), and cyan (C) color toner images are formed in the image forming units 11Y, 11M, and 11C, respectively.

各画像形成ユニット11の感光体ドラム12に形成された各色トナー像は、一次転写ロール21により矢印B方向に移動する中間転写ベルト20上に順次静電転写(一次転写)され、各色トナーが重畳された重畳トナー像が形成される。中間転写ベルト20上の重畳トナー像は、中間転写ベルト20の移動に伴って二次転写ロール22が配置された領域(二次転写部T)に搬送される。重畳トナー像が二次転写部Tに搬送されると、そのタイミングに合わせて用紙保持部40から用紙Pが二次転写部Tに供給される。そして、重畳トナー像は、二次転写部Tにて二次転写ロール22が形成する転写電界により、搬送されてきた用紙P上に一括して静電転写(二次転写)される。   Each color toner image formed on the photosensitive drum 12 of each image forming unit 11 is sequentially electrostatically transferred (primary transfer) onto the intermediate transfer belt 20 that moves in the direction of arrow B by the primary transfer roll 21, and each color toner is superimposed. A superimposed toner image is formed. The superimposed toner image on the intermediate transfer belt 20 is conveyed to a region (secondary transfer portion T) where the secondary transfer roll 22 is disposed as the intermediate transfer belt 20 moves. When the superimposed toner image is conveyed to the secondary transfer unit T, the paper P is supplied from the paper holding unit 40 to the secondary transfer unit T in accordance with the timing. The superimposed toner image is collectively electrostatically transferred (secondary transfer) onto the conveyed paper P by the transfer electric field formed by the secondary transfer roll 22 in the secondary transfer portion T.

その後、重畳トナー像が静電転写された用紙Pは、定着ユニット60まで搬送される。定着ユニット60に搬送された用紙P上のトナー像は、定着ユニット60によって熱および圧力を受け、用紙P上に定着される。そして、定着画像が形成された用紙Pは、画像形成装置1の排出部に設けられた用紙積載部45に搬送される。
一方、一次転写後に感光体ドラム12に付着しているトナー(一次転写残トナー)、および二次転写後に中間転写ベルト20に付着しているトナー(二次転写残トナー)は、それぞれドラムクリーナ16、およびベルトクリーナ25によって除去される。
このようにして、画像形成装置1での画像形成処理がプリント枚数分のサイクルだけ繰り返し実行される。
Thereafter, the sheet P on which the superimposed toner image is electrostatically transferred is conveyed to the fixing unit 60. The toner image on the paper P conveyed to the fixing unit 60 receives heat and pressure by the fixing unit 60 and is fixed on the paper P. Then, the paper P on which the fixed image is formed is conveyed to a paper stacking unit 45 provided in the discharge unit of the image forming apparatus 1.
On the other hand, the toner (primary transfer residual toner) adhering to the photosensitive drum 12 after the primary transfer and the toner (secondary transfer residual toner) adhering to the intermediate transfer belt 20 after the secondary transfer are respectively drum cleaner 16. , And the belt cleaner 25.
In this way, the image forming process in the image forming apparatus 1 is repeatedly executed for the number of printed sheets.

<定着ユニットの構成の説明>
次に、本実施の形態の定着ユニット60について説明する。
図2および図3は本実施の形態の定着ユニット60の構成を示す図であり、図2は正面図、図3は図2におけるX−X断面図である。
まず、断面図である図3に示すように、定着ユニット60は、交流磁界を生成する磁界生成装置の一例としてのIH(Induction Heating)ヒータ80、IHヒータ80により電磁誘導加熱されてトナー像を定着する定着部材の一例としての定着ベルト61、定着ベルト61に対向するように配置された加圧ロール62、定着ベルト61を介して加圧ロール62から押圧される押圧パッド63を備えている。
さらに、定着ユニット60は、押圧パッド63等の構成部材を支持するホルダ65、IHヒータ80にて生成された交流磁界を誘導して磁路を形成する感温磁性部材64、感温磁性部材64を通過した磁力線を誘導する誘導部材66、定着ベルト61からの用紙Pの剥離を補助する剥離補助部材173を備えている。
<Description of fixing unit configuration>
Next, the fixing unit 60 of this embodiment will be described.
2 and 3 are views showing the configuration of the fixing unit 60 of the present embodiment, FIG. 2 is a front view, and FIG. 3 is a sectional view taken along line XX in FIG.
First, as shown in FIG. 3 which is a cross-sectional view, the fixing unit 60 is heated by electromagnetic induction by an IH (Induction Heating) heater 80 and an IH heater 80 as an example of a magnetic field generation device that generates an alternating magnetic field, thereby generating a toner image. A fixing belt 61 as an example of a fixing member to be fixed, a pressure roll 62 disposed so as to face the fixing belt 61, and a pressure pad 63 pressed from the pressure roll 62 via the fixing belt 61 are provided.
Further, the fixing unit 60 includes a holder 65 that supports constituent members such as the pressure pad 63, a temperature-sensitive magnetic member 64 that induces an alternating magnetic field generated by the IH heater 80 to form a magnetic path, and a temperature-sensitive magnetic member 64. A guide member 66 that guides the lines of magnetic force that have passed through the fixing belt 61, and a peeling auxiliary member 173 that assists in peeling the paper P from the fixing belt 61.

<定着ベルトの説明>
定着ベルト61は、原形が円筒形状の無端のベルト部材で構成され、例えば原形(円筒形状)時の直径が30mm、幅方向長が300mmに形成されている。また、図4(定着ベルト61の断面層構成図)に示したように、定着ベルト61は、基材層611、基材層611の上に積層された導電発熱層612、トナー像の定着性を向上させる弾性層613、最上層に被覆された表面離型層614からなる多層構造のベルト部材である。
<Description of fixing belt>
The fixing belt 61 is formed of an endless belt member having an original cylindrical shape. For example, the fixing belt 61 has a diameter of 30 mm and a length in the width direction of 300 mm in the original shape (cylindrical shape). Further, as shown in FIG. 4 (cross-sectional layer configuration diagram of the fixing belt 61), the fixing belt 61 includes a base material layer 611, a conductive heat generating layer 612 laminated on the base material layer 611, and a toner image fixability. The belt member has a multilayer structure including an elastic layer 613 for improving the surface and a surface release layer 614 coated on the uppermost layer.

基材層611は、薄層の導電発熱層612を支持するとともに、定着ベルト61全体としての機械的強度を形成する耐熱性のシート状部材で構成される。また、基材層611は、IHヒータ80にて生成された交流磁界が感温磁性部材64まで作用するように、磁界を通過させる物性(比透磁率、固有抵抗)を持った材質、厚さで形成される。一方、基材層611自身は、磁界の作用により発熱しないか、または発熱し難く構成される。
具体的には、基材層611として、例えば、厚さ30〜200μm(好ましくは50〜150μm)の非磁性ステンレススチール等の非磁性金属や、厚さ60〜200μmの樹脂材料等が用いられる。
The base material layer 611 is composed of a heat-resistant sheet-like member that supports the thin conductive heat generating layer 612 and forms the mechanical strength of the fixing belt 61 as a whole. In addition, the base material layer 611 is made of a material having a physical property (relative magnetic permeability, specific resistance) that allows the magnetic field to pass therethrough so that the AC magnetic field generated by the IH heater 80 acts to the temperature-sensitive magnetic member 64, and the thickness. Formed with. On the other hand, the base material layer 611 itself is configured not to generate heat or hardly generate heat due to the action of a magnetic field.
Specifically, as the base material layer 611, for example, a nonmagnetic metal such as nonmagnetic stainless steel having a thickness of 30 to 200 μm (preferably 50 to 150 μm), a resin material having a thickness of 60 to 200 μm, or the like is used.

導電発熱層612は、導電層の一例であって、IHヒータ80にて生成される交流磁界によって電磁誘導加熱される電磁誘導発熱体層である。すなわち、導電発熱層612は、IHヒータ80からの交流磁界が厚さ方向に通過することにより、渦電流を発生させる層である。
通常、IHヒータ80に交流電流を供給する励磁回路(後段の図6も参照)の電源として、安価に製造できる汎用電源が使用される。そのため、IHヒータ80により生成される交流磁界の周波数は、一般に、汎用電源による20k〜100kHzとなる。それにより、導電発熱層612は、周波数20k〜100kHzの交流磁界が侵入し通過するように構成される。
The conductive heating layer 612 is an example of a conductive layer, and is an electromagnetic induction heating element layer that is electromagnetically heated by an alternating magnetic field generated by the IH heater 80. That is, the conductive heat generating layer 612 is a layer that generates an eddy current when the AC magnetic field from the IH heater 80 passes in the thickness direction.
In general, a general-purpose power source that can be manufactured at low cost is used as a power source for an excitation circuit that supplies an alternating current to the IH heater 80 (see also FIG. 6 below). Therefore, the frequency of the alternating magnetic field generated by the IH heater 80 is generally 20 k to 100 kHz by a general-purpose power source. Thereby, the conductive heat generating layer 612 is configured such that an alternating magnetic field having a frequency of 20 k to 100 kHz enters and passes therethrough.

導電発熱層612に交流磁界が侵入できる領域は、交流磁界が1/eに減衰する領域である「表皮深さ(δ)」として規定され、次の(1)式から導かれる。(1)式において、fは交流磁界の周波数(例えば、20kHz)、ρは固有抵抗値(Ω・m)、μは比透磁率である。
そのため、導電発熱層612の厚さは、周波数20k〜100kHzの交流磁界が導電発熱層612を侵入し通過するように、(1)式で規定される導電発熱層612の表皮深さ(δ)よりも薄層に構成される。また、導電発熱層612を構成する材料として、例えば、Au,Ag,Al,Cu,Zn,Sn,Pb,Bi,Be,Sb等の金属や、これらの金属合金が用いられる。
The region where the alternating magnetic field can enter the conductive heat generating layer 612 is defined as “skin depth (δ)”, which is a region where the alternating magnetic field attenuates to 1 / e, and is derived from the following equation (1). (1) In the equation, f is the AC magnetic field frequency (e.g., 20 kHz), [rho is resistivity (Omega · m), the mu r is the relative permeability.
Therefore, the thickness of the conductive heat generating layer 612 is determined by the skin depth (δ) of the conductive heat generating layer 612 defined by the equation (1) such that an alternating magnetic field having a frequency of 20 k to 100 kHz penetrates and passes through the conductive heat generating layer 612. It is configured in a thinner layer. Further, as a material constituting the conductive heat generating layer 612, for example, a metal such as Au, Ag, Al, Cu, Zn, Sn, Pb, Bi, Be, Sb, or a metal alloy thereof is used.

Figure 2010197737
Figure 2010197737

具体的には、導電発熱層612として、厚さ2〜20μm、固有抵抗2.7×10−8Ω・m以下の例えばCu等の非磁性金属(比透磁率が概ね1の常磁性体)が用いられる。
また、定着ベルト61が定着設定温度まで加熱されるまでに要する時間(以下、「ウォームアップタイム」)を短縮する観点からも、導電発熱層612は、薄層に構成するのが好ましい。
Specifically, as the conductive heat generating layer 612, a nonmagnetic metal such as Cu having a thickness of 2 to 20 μm and a specific resistance of 2.7 × 10 −8 Ω · m or less (a paramagnetic material having a relative permeability of about 1). Is used.
Further, from the viewpoint of shortening the time required for the fixing belt 61 to be heated to the fixing set temperature (hereinafter referred to as “warm-up time”), the conductive heat generating layer 612 is preferably formed as a thin layer.

次に、弾性層613は、シリコーンゴム等の耐熱性の弾性体で構成される。定着対象となる用紙Pに保持されるトナー像は、粉体である各色トナーが積層して形成されている。そのため、ニップ部Nにおいてトナー像の全体に均一に熱を供給するには、用紙P上のトナー像の凹凸に倣って定着ベルト61表面が変形することが好ましい。そこで、弾性層613には、例えば厚みが100〜600μm、硬度が10°〜30°(JIS−A)のシリコーンゴムが好適である。
表面離型層614は、用紙P上に保持された未定着トナー像と直接接触するため、離型性の高い材質が使用される。例えば、PFA(テトラフルオロエチレンパーフルオロアルキルビニルエーテル重合体)、PTFE(ポリテトラフルオロエチレン)、シリコーン共重合体、またはこれらの複合層等が用いられる。表面離型層614の厚さとしては、薄すぎると、耐摩耗性の面で充分でなく、定着ベルト61の寿命を短くする。その一方で、厚すぎると、定着ベルト61の熱容量が大きくなりすぎ、ウォームアップタイムが長くなる。そこで、表面離型層614の厚さとして、耐摩耗性と熱容量とのバランスを考慮し、1〜50μmが好適である。
Next, the elastic layer 613 is composed of a heat-resistant elastic body such as silicone rubber. The toner image held on the sheet P to be fixed is formed by laminating each color toner as powder. Therefore, in order to supply heat uniformly to the entire toner image at the nip portion N, it is preferable that the surface of the fixing belt 61 is deformed following the unevenness of the toner image on the paper P. Therefore, for example, silicone rubber having a thickness of 100 to 600 μm and a hardness of 10 ° to 30 ° (JIS-A) is suitable for the elastic layer 613.
Since the surface release layer 614 is in direct contact with the unfixed toner image held on the paper P, a material having a high release property is used. For example, PFA (tetrafluoroethylene perfluoroalkyl vinyl ether polymer), PTFE (polytetrafluoroethylene), silicone copolymer, or a composite layer thereof is used. If the thickness of the surface release layer 614 is too thin, it is not sufficient in terms of wear resistance, and the life of the fixing belt 61 is shortened. On the other hand, if it is too thick, the heat capacity of the fixing belt 61 becomes too large and the warm-up time becomes long. Therefore, the thickness of the surface release layer 614 is preferably 1 to 50 μm in consideration of the balance between wear resistance and heat capacity.

<押圧パッドの説明>
押圧パッド63は、押圧部材の一例であって、シリコーンゴム等やフッ素ゴム等の弾性体で構成され、加圧ロール62と対向する位置にてホルダ65に支持される。そして、定着ベルト61を介して加圧ロール62から押圧される状態で配置され、加圧ロール62との間でニップ部Nを形成する。
また、押圧パッド63は、ニップ部Nの入口側(用紙Pの搬送方向上流側)のプレニップ領域63aと、ニップ部Nの出口側(用紙Pの搬送方向下流側)の剥離ニップ領域63bとで異なるニップ圧が設定されている。すなわち、プレニップ領域63aでは、加圧ロール62側の面がほぼ加圧ロール62の外周面に倣う円弧形状に形成され、均一で幅の広いニップ部Nを形成する。また、剥離ニップ領域63bでは、剥離ニップ領域63bを通過する定着ベルト61の曲率半径が小さくなるように、加圧ロール62表面から局所的に大きなニップ圧で押圧されるように形成される。それにより、剥離ニップ領域63bを通過する用紙Pに定着ベルト61表面から離れる方向のカール(ダウンカール)を形成して、用紙Pに対する定着ベルト61表面からの剥離を促進させている。
<Description of pressing pad>
The pressing pad 63 is an example of a pressing member, and is constituted by an elastic body such as silicone rubber or fluorine rubber, and is supported by the holder 65 at a position facing the pressure roll 62. Then, it is arranged in a state of being pressed from the pressure roll 62 via the fixing belt 61, and a nip portion N is formed with the pressure roll 62.
The pressing pad 63 includes a pre-nip region 63a on the inlet side of the nip portion N (upstream side in the conveyance direction of the paper P) and a peeling nip region 63b on the outlet side of the nip portion N (downstream side in the conveyance direction of the paper P). Different nip pressures are set. That is, in the pre-nip region 63 a, the surface on the pressure roll 62 side is formed in an arc shape that substantially follows the outer peripheral surface of the pressure roll 62, thereby forming a uniform and wide nip portion N. Further, the peeling nip region 63b is formed so as to be locally pressed from the surface of the pressure roll 62 with a large nip pressure so that the radius of curvature of the fixing belt 61 passing through the peeling nip region 63b becomes small. As a result, a curl (down curl) in a direction away from the surface of the fixing belt 61 is formed on the paper P passing through the peeling nip region 63b to promote the peeling of the paper P from the surface of the fixing belt 61.

なお、本実施の形態では、押圧パッド63による剥離の補助手段として、ニップ部Nの下流側に、剥離補助部材173を配置している。剥離補助部材173は、剥離バッフル171が定着ベルト61の回転移動方向と対向する向き(所謂カウンタ方向)に定着ベルト61と近接する状態でホルダ172によって支持される。そして、押圧パッド63の出口にて用紙Pに形成されたカール部分を剥離バッフル171により支持することで、用紙Pが定着ベルト61方向に向かうことを抑制する。   In the present embodiment, a peeling assisting member 173 is arranged on the downstream side of the nip portion N as a peeling assisting means by the pressing pad 63. The peeling auxiliary member 173 is supported by the holder 172 in a state where the peeling baffle 171 is close to the fixing belt 61 in a direction opposite to the rotational movement direction of the fixing belt 61 (so-called counter direction). The curled portion formed on the paper P at the outlet of the pressing pad 63 is supported by the peeling baffle 171 to suppress the paper P from moving toward the fixing belt 61.

<感温磁性部材の説明>
次に、感温磁性部材64は、定着ベルト61の内周面に倣った円弧形状で形成され、定着ベルト61の内周面とは予め定めた間隙(例えば、0.5〜1.5mm)を有するように近接はさせるが、非接触で配置される。感温磁性部材64を定着ベルト61と近接させて配置するのは、感温磁性部材64の温度が定着ベルト61の温度に対応して変化する、すなわち、感温磁性部材64の温度が定着ベルト61の温度と略同じ温度となるように構成するためである。また、感温磁性部材64を定着ベルト61と非接触で配置するのは、画像形成装置1のメインスイッチがオンされ、定着ベルト61が定着設定温度まで加熱される際に、定着ベルト61の熱が感温磁性部材64に流入するのを抑制して、ウォームアップタイムの短縮を図るためである。
<Description of temperature-sensitive magnetic member>
Next, the temperature-sensitive magnetic member 64 is formed in an arc shape that follows the inner peripheral surface of the fixing belt 61, and a predetermined gap (for example, 0.5 to 1.5 mm) from the inner peripheral surface of the fixing belt 61. Although they are close to each other, they are arranged in a non-contact manner. The temperature-sensitive magnetic member 64 is disposed close to the fixing belt 61 because the temperature of the temperature-sensitive magnetic member 64 changes corresponding to the temperature of the fixing belt 61, that is, the temperature of the temperature-sensitive magnetic member 64 is changed. This is because the temperature is substantially the same as the temperature 61. Further, the temperature-sensitive magnetic member 64 is disposed in a non-contact manner with the fixing belt 61 because the heat of the fixing belt 61 is increased when the main switch of the image forming apparatus 1 is turned on and the fixing belt 61 is heated to the fixing set temperature. This is to prevent the temperature from flowing into the temperature-sensitive magnetic member 64 and shorten the warm-up time.

また、感温磁性部材64は、「透磁率変化開始温度」(後段参照)が各色トナー像が溶融する定着設定温度以上であって、定着ベルト61の弾性層613や表面離型層614の耐熱温度よりも低い温度範囲内に設定された材質で構成される。すなわち、感温磁性部材64は、定着設定温度を含む温度領域において強磁性と常磁性との間を可逆的に変化する特性(「感温磁性」)を有する材質で構成される。そして、感温磁性部材64は、磁路形成部材(第2の磁路形成部材)として機能し、強磁性を呈する透磁率変化開始温度以下の温度範囲においてIHヒータ80にて生成され定着ベルト61を透過した磁力線を内部に誘導して、感温磁性部材64の内部を通過する磁路を形成する。それにより、感温磁性部材64は、定着ベルト61とIHヒータ80の励磁コイル82(後段の図6参照)とを内部に包み込むような閉磁路を形成する。一方、透磁率変化開始温度を超える温度範囲においては、感温磁性部材64は、IHヒータ80にて生成され定着ベルト61を透過した磁力線を、感温磁性部材64の厚さ方向に横切るように透過させる。それにより、IHヒータ80にて生成され定着ベルト61を透過した磁力線は、感温磁性部材64を透過し、誘導部材66の内部を通過してIHヒータ80に戻る磁路を形成する。
なお、ここでの「透磁率変化開始温度」とは、透磁率(例えば、JIS C2531で測定される透磁率)が連続的に低下を開始する温度であり、例えば感温磁性部材64等の部材を透過する磁束量(磁力線の数)が変化し始める温度点をいう。したがって、透磁率変化開始温度は、物質が磁性を失う境界となる温度であるキュリー点に近い温度となるが、キュリー点とは異なる概念を有するものである。
Further, the temperature-sensitive magnetic member 64 has a “permeability change start temperature” (see later stage) equal to or higher than a fixing set temperature at which each color toner image melts, and heat resistance of the elastic layer 613 and the surface release layer 614 of the fixing belt 61. It is composed of a material set within a temperature range lower than the temperature. That is, the temperature-sensitive magnetic member 64 is made of a material having a characteristic (“temperature-sensitive magnetism”) that reversibly changes between ferromagnetism and paramagnetism in a temperature range including the fixing set temperature. The temperature-sensitive magnetic member 64 functions as a magnetic path forming member (second magnetic path forming member), and is generated by the IH heater 80 in a temperature range equal to or lower than the permeability change start temperature exhibiting ferromagnetism, and the fixing belt 61. A magnetic path passing through the inside of the temperature-sensitive magnetic member 64 is formed by guiding the magnetic force lines that have passed through the inside. As a result, the temperature-sensitive magnetic member 64 forms a closed magnetic path that encloses the fixing belt 61 and the exciting coil 82 of the IH heater 80 (see FIG. 6 at a later stage). On the other hand, in the temperature range exceeding the permeability change start temperature, the temperature-sensitive magnetic member 64 crosses the magnetic field lines generated by the IH heater 80 and transmitted through the fixing belt 61 in the thickness direction of the temperature-sensitive magnetic member 64. Make it transparent. Thereby, the magnetic lines of force generated by the IH heater 80 and transmitted through the fixing belt 61 form a magnetic path that passes through the temperature-sensitive magnetic member 64, passes through the inside of the guide member 66, and returns to the IH heater 80.
The “permeability change start temperature” here is a temperature at which the magnetic permeability (for example, the magnetic permeability measured by JIS C2531) starts to decrease continuously. For example, a member such as the temperature-sensitive magnetic member 64 This is the temperature point at which the amount of magnetic flux that passes through (the number of lines of magnetic force) starts to change. Therefore, the permeability change start temperature is close to the Curie point, which is the temperature at which the substance loses magnetism, but has a different concept from the Curie point.

感温磁性部材64に用いる材質としては、透磁率変化開始温度が例えば140(定着設定温度)〜240℃の範囲内に設定された例えばFe−Ni合金(パーマロイ)等の二元系整磁鋼やFe−Ni−Cr合金等の三元系の整磁鋼等が用いられる。例えば、Fe−Niの二元系整磁鋼においては約Fe64%、Ni36%(原子数比)とすることで225℃前後に透磁率変化開始温度を設定することができる。このようなパーマロイや整磁鋼等の金属合金等は、成型性や加工性に優れ、熱伝導性も高く安価である等の理由から、感温磁性部材64に適する。その他の材質としては、Fe,Ni,Si,B,Nb,Cu,Zr,Co,Cr,V,Mn,Mo等からなる金属合金が用いられる。
また、感温磁性部材64は、IHヒータ80により生成された交流磁界(磁力線)に対する表皮深さδ(上記(1)式参照)よりも薄い厚さで形成される。具体的には、例えばFe−Ni合金を用いた場合には50〜300μm程度に設定される。なお、感温磁性部材64の構成や機能に関しては、後段でさらに詳述する。
As a material used for the temperature-sensitive magnetic member 64, a binary magnetic shunt steel such as an Fe—Ni alloy (permalloy) whose permeability change start temperature is set in a range of 140 (fixing set temperature) to 240 ° C., for example. And ternary shunt steels such as Fe—Ni—Cr alloy are used. For example, in the Fe-Ni binary magnetic shunt steel, the permeability change start temperature can be set around 225 ° C. by setting it to about Fe 64% and Ni 36% (atomic ratio). Such metal alloys such as permalloy and magnetic shunt steel are suitable for the temperature-sensitive magnetic member 64 because they are excellent in moldability and workability, have high thermal conductivity, and are inexpensive. As other materials, a metal alloy made of Fe, Ni, Si, B, Nb, Cu, Zr, Co, Cr, V, Mn, Mo or the like is used.
Further, the temperature-sensitive magnetic member 64 is formed with a thickness smaller than the skin depth δ (see the above formula (1)) with respect to the AC magnetic field (lines of magnetic force) generated by the IH heater 80. Specifically, for example, when an Fe—Ni alloy is used, the thickness is set to about 50 to 300 μm. The configuration and function of the temperature-sensitive magnetic member 64 will be described in further detail later.

<ホルダの説明>
押圧パッド63を支持するホルダ65は、押圧パッド63が加圧ロール62からの押圧力を受けた状態での撓み量が一定量以下となるように、剛性の高い材料で構成される。それにより、ニップ部Nにおける長手方向の圧力(ニップ圧N)の均一性を維持している。さらに、本実施の形態の定着ユニット60では、電磁誘導を用いて定着ベルト61を加熱する構成を採用していることから、ホルダ65は、誘導磁界に影響を与えないか、または与え難い材料であり、かつ、誘導磁界から影響を受けないか、または受け難い材料で構成される。例えば、ガラス混入PPS(ポリフェニレンサルファイド)等の耐熱性樹脂や、例えばAl,Cu,Ag等の常磁性金属材料等が用いられる。
<Description of holder>
The holder 65 that supports the pressing pad 63 is made of a material having high rigidity so that the amount of bending in a state where the pressing pad 63 receives the pressing force from the pressing roll 62 becomes a certain amount or less. Thereby, the uniformity of the pressure in the longitudinal direction (nip pressure N) at the nip portion N is maintained. Furthermore, since the fixing unit 60 according to the present embodiment employs a configuration in which the fixing belt 61 is heated using electromagnetic induction, the holder 65 is made of a material that does not affect or hardly gives influence to the induced magnetic field. It is made of a material that is not affected or hardly affected by the induced magnetic field. For example, a heat-resistant resin such as glass mixed PPS (polyphenylene sulfide) or a paramagnetic metal material such as Al, Cu, or Ag is used.

<誘導部材の説明>
誘導部材66は、感温磁性部材64の内周面に倣った円弧形状で形成され、感温磁性部材64の内周面とは予め定めた間隙(例えば、1.0〜5.0mm)を有する非接触に配置される。また、誘導部材66は、例えばAg,Cu,Alといった固有抵抗値が比較的小さい非磁性金属で構成される。そして、感温磁性部材64が透磁率変化開始温度以上の温度に上昇した際に、IHヒータ80により生成された交流磁界(磁力線)を誘導して、定着ベルト61の導電発熱層612よりも渦電流Iが発生し易い状態を形成する。それにより、誘導部材66の厚さは、渦電流Iが流れ易いように、表皮深さδ(上記(1)式参照)よりも充分に厚い予め定めた厚さ(例えば、1.0mm)で形成される。
<Description of induction member>
The induction member 66 is formed in an arc shape that follows the inner peripheral surface of the temperature-sensitive magnetic member 64, and has a predetermined gap (for example, 1.0 to 5.0 mm) from the inner peripheral surface of the temperature-sensitive magnetic member 64. Having a non-contact arrangement. The induction member 66 is made of a nonmagnetic metal having a relatively small specific resistance value, such as Ag, Cu, or Al. Then, when the temperature-sensitive magnetic member 64 rises to a temperature equal to or higher than the permeability change start temperature, an alternating magnetic field (line of magnetic force) generated by the IH heater 80 is induced, and the vortex is more vortexed than the conductive heating layer 612 of the fixing belt 61. A state in which the current I is easily generated is formed. Thereby, the thickness of the induction member 66 is a predetermined thickness (for example, 1.0 mm) sufficiently thicker than the skin depth δ (see the above formula (1)) so that the eddy current I can easily flow. It is formed.

<定着ベルトの駆動機構の説明>
次に、定着ベルト61の駆動機構について説明する。
正面図である図2に示したように、ホルダ65(図3参照)の軸方向両端部には、定着ベルト61の両端部の断面形状を円形に維持しながら定着ベルト61を周方向に回転駆動するエンドキャップ部材67が固定されている。そして、定着ベルト61は、両端部からエンドキャップ部材67を介した回転駆動力を直接的に受けて、例えば140mm/sのプロセススピードで図3の矢印C方向に回転移動する。
ここで図5は、(a)がエンドキャップ部材67の側面図であり、(b)がZ方向から見たエンドキャップ部材67の平面図である。図5に示したように、エンドキャップ部材67は、定着ベルト61の両端部内側に嵌合される固定部67a、固定部67aより外径が大きく形成され、定着ベルト61に装着された際に定着ベルト61よりも半径方向に張り出すように形成されたフランジ部67d、回転駆動力が伝達されるギヤ部67b、ホルダ65の両端部に形成された支持部65aと結合部材167を介して回転自在に結合されたベアリング軸受部67cを備える。そして、上記図2に示したように、ホルダ65の両端部の支持部65aが定着ユニット60の筐体69の両端部に固定されることで、エンドキャップ部材67は、支持部65aに結合されたベアリング軸受部67cを介して回転自在に支持される。
エンドキャップ部材67を構成する材質としては、機械的強度や耐熱性の高い所謂エンジニアリングプラスチックスが用いられる。例えば、フェノール樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、PEEK樹脂、PES樹脂、PPS樹脂、LCP樹脂等が適する。
<Description of Fixing Belt Drive Mechanism>
Next, a driving mechanism for the fixing belt 61 will be described.
As shown in FIG. 2 which is a front view, the fixing belt 61 is rotated in the circumferential direction while maintaining the cross-sectional shape of both ends of the fixing belt 61 in a circular shape at both axial ends of the holder 65 (see FIG. 3). An end cap member 67 to be driven is fixed. The fixing belt 61 directly receives the rotational driving force from both ends via the end cap member 67, and rotates and moves in the direction of arrow C in FIG. 3 at a process speed of 140 mm / s, for example.
5A is a side view of the end cap member 67, and FIG. 5B is a plan view of the end cap member 67 viewed from the Z direction. As shown in FIG. 5, the end cap member 67 is formed with a fixing portion 67 a fitted inside the both ends of the fixing belt 61 and has an outer diameter larger than that of the fixing portion 67 a, and when the end cap member 67 is attached to the fixing belt 61. Rotating through a flange portion 67d formed so as to project radially from the fixing belt 61, a gear portion 67b to which rotational driving force is transmitted, a support portion 65a formed at both ends of the holder 65, and a coupling member 167. A bearing bearing portion 67c that is freely coupled is provided. Then, as shown in FIG. 2, the support portions 65a at both ends of the holder 65 are fixed to both ends of the casing 69 of the fixing unit 60, whereby the end cap member 67 is coupled to the support portion 65a. It is rotatably supported via the bearing bearing portion 67c.
As a material constituting the end cap member 67, so-called engineering plastics having high mechanical strength and heat resistance are used. For example, phenol resin, polyimide resin, polyamide resin, polyamideimide resin, PEEK resin, PES resin, PPS resin, LCP resin and the like are suitable.

そして、図2に示すように、定着ユニット60では、駆動モータ90からの回転駆動力が伝達ギヤ91,92を介してシャフト93に伝達され、シャフト93に結合された伝達ギヤ94,95から両エンドキャップ部材67のギヤ部67b(図5参照)に伝達される。それによって、エンドキャップ部材67から定着ベルト61に回転駆動力が伝わり、エンドキャップ部材67と定着ベルト61とが一体となって回転駆動される。
このように、定着ベルト61が定着ベルト61の両端部から駆動力を直接受けて回転するので、定着ベルト61は安定して回転する。
As shown in FIG. 2, in the fixing unit 60, the rotational driving force from the drive motor 90 is transmitted to the shaft 93 via the transmission gears 91 and 92, and both are transmitted from the transmission gears 94 and 95 coupled to the shaft 93. It is transmitted to the gear portion 67b (see FIG. 5) of the end cap member 67. As a result, a rotational driving force is transmitted from the end cap member 67 to the fixing belt 61, and the end cap member 67 and the fixing belt 61 are integrally rotated.
Thus, the fixing belt 61 rotates by receiving the driving force directly from both ends of the fixing belt 61, so that the fixing belt 61 rotates stably.

ここで、定着ベルト61が両端部のエンドキャップ部材67から駆動力を直接受けて回転する場合には、一般に、0.1〜0.5N・m程度のトルクが作用する。ところが、本実施の形態の定着ベルト61では、基材層611を機械的強度の高い例えば非磁性ステンレススチール等で構成している。そのため、定着ベルト61全体に0.1〜0.5N・m程度のねじりトルクが作用した場合でも、定着ベルト61には座屈等が生じ難い。
また、エンドキャップ部材67のフランジ部67dにより定着ベルト61の片寄りを抑えているが、その際の定着ベルト61には、一般に、端部(フランジ部67d)側から軸方向に向けて1〜5N程度の圧縮力が働く。しかし、定着ベルト61がこのような圧縮力を受けた場合においても、定着ベルト61の基材層611が非磁性ステンレススチール等で構成されていることから、座屈等の発生が抑制される。
上記のように、本実施の形態の定着ベルト61においては、定着ベルト61の両端部から駆動力を直接受けて回転するので、安定した回転が行われる。また、その際に、定着ベルト61の基材層611を機械的強度の高い例えば非磁性ステンレススチール等で構成することで、ねじりトルクや圧縮力に対して座屈等が発生し難い構成を実現している。さらには、基材層611および導電発熱層612を薄層に形成して、定着ベルト61全体としての柔軟性/フレキシブル性を確保しているので、ニップ部Nに倣った変形と形状復元とが行われる。
Here, when the fixing belt 61 rotates by receiving a driving force directly from the end cap members 67 at both ends, a torque of about 0.1 to 0.5 N · m is generally applied. However, in the fixing belt 61 of the present embodiment, the base material layer 611 is made of, for example, nonmagnetic stainless steel having high mechanical strength. For this reason, even when a torsional torque of about 0.1 to 0.5 N · m acts on the entire fixing belt 61, buckling or the like hardly occurs in the fixing belt 61.
Further, the flange portion 67d of the end cap member 67 suppresses the deviation of the fixing belt 61. In general, the fixing belt 61 at that time is generally 1 to 5 in the axial direction from the end portion (flange portion 67d) side. A compressive force of about 5N works. However, even when the fixing belt 61 receives such a compressive force, since the base material layer 611 of the fixing belt 61 is made of nonmagnetic stainless steel or the like, occurrence of buckling or the like is suppressed.
As described above, the fixing belt 61 according to the present embodiment rotates by receiving a driving force directly from both end portions of the fixing belt 61, and thus stable rotation is performed. At that time, the base material layer 611 of the fixing belt 61 is made of, for example, non-magnetic stainless steel having high mechanical strength, thereby realizing a structure in which buckling or the like hardly occurs against torsion torque or compression force. is doing. Furthermore, since the base material layer 611 and the conductive heat generating layer 612 are formed in a thin layer to ensure the flexibility / flexibility of the fixing belt 61 as a whole, deformation and shape restoration following the nip portion N are prevented. Done.

図3に戻り、加圧ロール62は、定着ベルト61に対向するように配置され、定着ベルト61に従動して図3の矢印D方向に、例えば140mm/sのプロセススピードで回転する。そして、加圧ロール62と押圧パッド63とにより定着ベルト61を挟持した状態でニップ部Nを形成し、このニップ部Nに未定着トナー像を保持した用紙Pを通過させることで、熱および圧力を加えて未定着トナー像を用紙Pに定着する。
加圧ロール62は、例えば直径18mmの中実のアルミニウム製コア(円柱状芯金)621と、コア621の外周面に被覆された例えば厚さ5mmのシリコーンスポンジ等の耐熱性弾性体層622と、さらに例えば厚さ50μmのカーボン配合のPFA等の耐熱性樹脂被覆または耐熱性ゴム被覆による離型層623とが積層されて構成される。そして、押圧バネ68(図2参照)により例えば20kgfの荷重で定着ベルト61を介して押圧パッド63を押圧している。
Returning to FIG. 3, the pressure roll 62 is arranged so as to face the fixing belt 61, and rotates in the direction of arrow D in FIG. 3 at a process speed of 140 mm / s, for example, following the fixing belt 61. Then, a nip portion N is formed in a state where the fixing belt 61 is sandwiched between the pressure roll 62 and the pressing pad 63, and the sheet P holding the unfixed toner image is passed through the nip portion N, so that the heat and pressure To fix the unfixed toner image on the paper P.
The pressure roll 62 includes, for example, a solid aluminum core (cylindrical metal core) 621 having a diameter of 18 mm, and a heat-resistant elastic body layer 622 such as a silicone sponge having a thickness of 5 mm, which is coated on the outer peripheral surface of the core 621. Further, for example, a release layer 623 made of a heat-resistant resin coating such as PFA containing carbon having a thickness of 50 μm or a heat-resistant rubber coating is laminated. Then, the pressing pad 63 is pressed via the fixing belt 61 with a load of 20 kgf, for example, by a pressing spring 68 (see FIG. 2).

<IHヒータの説明>
続いて、定着ベルト61の導電発熱層612に交流磁界を作用させて電磁誘導加熱するIHヒータ80について説明する。
図6は、本実施の形態のIHヒータ80の構成を説明する断面図である。図6に示したように、IHヒータ80は、例えば耐熱性樹脂等の非磁性体から構成される支持部材の一例としての支持体81、交流磁界を発生する磁界発生部材の一例としての励磁コイル82を備えている。また、励磁コイル82を支持体81上に固定する弾性体で構成された弾性支持部材83、定着ベルト61の幅方向に沿って複数配置され、励磁コイル82にて生成された交流磁界の磁路を形成する磁心84を備えている。さらには、定着ベルト61の幅方向に沿って複数配置され、励磁コイル82にて生成された交流磁界を支持体81長手方向に均すための調整磁性部材の一例としての調整用磁心100、磁心84および調整用磁心100の支持体81長手方向の位置を設定する位置設定部材の一例としての磁心設定部材87を備えている。さらにまた、磁界を遮蔽するシールド85、磁心84を支持体81側に加圧する加圧部材86、励磁コイル82に交流電流(電力)を供給する電力供給源の一例としての励磁回路88を備えている。
<Description of IH heater>
Next, the IH heater 80 that performs electromagnetic induction heating by applying an AC magnetic field to the conductive heat generating layer 612 of the fixing belt 61 will be described.
FIG. 6 is a cross-sectional view illustrating the configuration of the IH heater 80 of the present embodiment. As shown in FIG. 6, the IH heater 80 includes a support 81 as an example of a support member made of a non-magnetic material such as a heat-resistant resin, and an exciting coil as an example of a magnetic field generating member that generates an alternating magnetic field. 82. In addition, a plurality of elastic support members 83 formed of an elastic body for fixing the excitation coil 82 on the support 81 and a magnetic path of an alternating magnetic field generated by the excitation coil 82 are arranged along the width direction of the fixing belt 61. Is formed. Further, an adjustment magnetic core 100 as an example of an adjustment magnetic member that is arranged along the width direction of the fixing belt 61 and that equalizes the AC magnetic field generated by the excitation coil 82 in the longitudinal direction of the support 81, a magnetic core 84 and a magnetic core setting member 87 as an example of a position setting member for setting the position of the adjustment magnetic core 100 in the longitudinal direction of the support 81. Furthermore, a shield 85 that shields the magnetic field, a pressurizing member 86 that pressurizes the magnetic core 84 toward the support 81 side, and an excitation circuit 88 as an example of a power supply source that supplies an alternating current (electric power) to the excitation coil 82 are provided. Yes.

支持体81は、断面が定着ベルト61の表面形状に沿って湾曲した形状で形成され、励磁コイル82を支持する上部面(支持面)81aが定着ベルト61表面と予め定めた間隙(例えば、0.5〜5mm)を保つように形成され設定されている。また、支持面81aの中央には、磁心84を支持する一対の磁心支持部(凸状部)81b1,81b2が長手方向に沿って平行に配置されている。磁心支持部81b1,81b2は、磁心84と支持面81aとの間隙を一定に保つように支持する。また、磁心支持部81b1,81b2は、内側領域に調整用磁心100が配置される空間が形成されている。
さらに、支持面81aの両側部には、磁心支持部81b1,81b2に支持された磁心84における定着ベルト61移動方向(円弧方向)への移動を規制する磁心規制部81cが配置されている。
支持体81を構成する材質としては、例えば、耐熱ガラス、ポリカーボネート、ポリエーテルサルフォン、PPS(ポリフェニレンサルファイド)等の耐熱性樹脂、またはこれらにガラス繊維を混合した耐熱性樹脂等の耐熱性のある非磁性材料が用いられる。
The support 81 is formed in a shape whose cross section is curved along the surface shape of the fixing belt 61, and an upper surface (supporting surface) 81 a that supports the exciting coil 82 has a predetermined gap (for example, 0) from the surface of the fixing belt 61. 0.5 to 5 mm). In addition, a pair of magnetic core support portions (convex portions) 81b1 and 81b2 that support the magnetic core 84 are arranged in parallel in the longitudinal direction at the center of the support surface 81a. The magnetic core support portions 81b1 and 81b2 support the gap between the magnetic core 84 and the support surface 81a so as to keep constant. The magnetic core support portions 81b1 and 81b2 are formed with spaces in which the adjustment magnetic core 100 is disposed in the inner region.
Further, on both sides of the support surface 81a, there are arranged magnetic core restricting portions 81c for restricting movement of the magnetic core 84 supported by the magnetic core supporting portions 81b1 and 81b2 in the moving direction (arc direction) of the fixing belt 61.
Examples of the material constituting the support 81 include heat-resistant resins such as heat-resistant glass, polycarbonate, polyethersulfone, and PPS (polyphenylene sulfide), or heat-resistant resins obtained by mixing glass fibers with these materials. A non-magnetic material is used.

励磁コイル82は、相互に絶縁された例えば直径0.17mmの銅線材を例えば90本束ねたリッツ線が長円形状や楕円形状、長方形状等の中空きの閉ループ状に巻かれて構成される。そして、励磁コイル82に励磁回路88から予め定めた周波数の交流電流が供給されることにより、励磁コイル82の周囲には、閉ループ状に巻かれたリッツ線を中心とする交流磁界が生成される。励磁回路88から励磁コイル82に供給される交流電流の周波数は、一般に、上記した汎用電源により生成される20k〜100kHzが用いられる。
弾性支持部材83は、例えばシリコーンゴム等やフッ素ゴム等の弾性体で構成されたシート状部材である。弾性支持部材83は、励磁コイル82が支持体81の支持面81aに密着して固定されるように、励磁コイル82を支持体81に対して押圧するように設定されている。
The exciting coil 82 is configured by winding, for example, 90 litz wires, which are bundled with, for example, 90 copper wires having a diameter of 0.17 mm and wound in a closed loop with a hollow shape such as an ellipse, an ellipse, or a rectangle. . Then, when an alternating current having a predetermined frequency is supplied to the exciting coil 82 from the exciting circuit 88, an alternating magnetic field centered around a litz wire wound in a closed loop is generated around the exciting coil 82. . Generally, the frequency of the alternating current supplied from the excitation circuit 88 to the excitation coil 82 is 20 k to 100 kHz generated by the general-purpose power source.
The elastic support member 83 is a sheet-like member made of an elastic body such as silicone rubber or fluorine rubber. The elastic support member 83 is set to press the excitation coil 82 against the support 81 so that the excitation coil 82 is fixed in close contact with the support surface 81a of the support 81.

磁心84は、例えば焼成フェライト、フェライト樹脂、非晶質合金(アモルファス合金)、やパーマロイ、整磁鋼等の高透磁率の酸化物や合金材質で構成される円弧形状の強磁性体が用いられ、磁路形成部材として機能する。磁心84は、励磁コイル82にて生成された交流磁界による磁力線(磁束)を内部に誘導し、磁心84から定着ベルト61を横切って感温磁性部材64方向に向かい、感温磁性部材64の中を通過して磁心84に戻るといった磁力線の通路(磁路)を形成する。すなわち、励磁コイル82にて生成された交流磁界が磁心84の内部と感温磁性部材64の内部とを通過するように構成して、磁力線が定着ベルト61と励磁コイル82とを内部に包み込むような閉磁路を形成する。それにより、励磁コイル82にて生成された交流磁界の磁力線が定着ベルト61の磁心84と対向する領域に集中される。   For the magnetic core 84, for example, an arc-shaped ferromagnetic material made of a high permeability oxide or alloy material such as sintered ferrite, ferrite resin, amorphous alloy (amorphous alloy), permalloy, magnetic shunt steel, or the like is used. It functions as a magnetic path forming member. The magnetic core 84 induces a magnetic force line (magnetic flux) generated by the alternating magnetic field generated by the exciting coil 82, and crosses the fixing belt 61 from the magnetic core 84 toward the temperature-sensitive magnetic member 64. A path of magnetic lines of force (magnetic path) is formed so as to pass through and return to the magnetic core 84. That is, the AC magnetic field generated by the excitation coil 82 is configured to pass through the inside of the magnetic core 84 and the inside of the temperature-sensitive magnetic member 64 so that the magnetic lines of force wrap the fixing belt 61 and the excitation coil 82 inside. A closed magnetic circuit is formed. As a result, the magnetic field lines of the alternating magnetic field generated by the exciting coil 82 are concentrated in a region facing the magnetic core 84 of the fixing belt 61.

ここで、磁心84は磁路形成による損失が小さい材料が望ましい。具体的には、磁心84は渦電流損を小さくする形態(スリット等による電流経路遮断や分断化、薄板束ね等)での使用が望ましく、ヒステリシス損の小さい材料で形成されることが望ましい。
また、定着ベルト61の回転方向に沿った磁心84の長さは、感温磁性部材64の定着ベルト61の回転方向に沿った長さよりも小さく構成される。それにより、磁力線のIHヒータ80周辺への漏洩が減り、力率が向上する。さらには、定着ユニットを構成する金属製部材への電磁誘導を抑え、定着ベルト61(導電発熱層612)での発熱効率を高める。
磁心84は、支持面81aの中央に配置された一対の磁心支持部(凸状部)81b1,81b2により支持され、支持体81長手方向の位置が磁心設定部材87により設定される。
Here, the magnetic core 84 is preferably made of a material having a small loss due to magnetic path formation. Specifically, the magnetic core 84 is desirably used in a form that reduces the eddy current loss (current path interruption or division by slits, thin plate bundling, etc.), and is preferably formed of a material having a small hysteresis loss.
Further, the length of the magnetic core 84 along the rotation direction of the fixing belt 61 is configured to be smaller than the length of the temperature-sensitive magnetic member 64 along the rotation direction of the fixing belt 61. Thereby, the leakage of magnetic lines of force to the periphery of the IH heater 80 is reduced, and the power factor is improved. Furthermore, electromagnetic induction to the metal member constituting the fixing unit is suppressed, and the heat generation efficiency in the fixing belt 61 (conductive heat generation layer 612) is increased.
The magnetic core 84 is supported by a pair of magnetic core support portions (convex portions) 81b1 and 81b2 disposed at the center of the support surface 81a, and the position of the support 81 in the longitudinal direction is set by the magnetic core setting member 87.

調整用磁心100は、例えば焼成フェライト、フェライト樹脂、非晶質合金(アモルファス合金)、やパーマロイ、整磁鋼等の高透磁率の酸化物や合金材質で構成される直方体形状(ブロック形状)の強磁性体が用いられる。そして、調整用磁心100は、励磁コイル82の周囲に配置された磁心84および感温磁性部材64により形成される交流磁界について支持体81長手方向の磁界の強さを均すための調整磁性部材として機能する。支持体81長手方向に生じる磁界の強さが平均化されることにより、定着ベルト61の幅方向の温度むらが低減される。調整用磁心100は、磁心支持部81b1,81b2の内側領域に形成された空間(磁心支持部81b1,81b2内壁で囲まれた領域)に配置され、支持体81長手方向の位置が磁心設定部材87により設定される。   The adjustment magnetic core 100 has a rectangular parallelepiped shape (block shape) made of a high permeability oxide or alloy material such as sintered ferrite, ferrite resin, amorphous alloy (amorphous alloy), permalloy, and magnetic shunt steel, for example. A ferromagnetic material is used. The adjusting magnetic core 100 is an adjusting magnetic member for equalizing the strength of the magnetic field in the longitudinal direction of the support 81 with respect to the AC magnetic field formed by the magnetic core 84 and the temperature-sensitive magnetic member 64 disposed around the exciting coil 82. Function as. By averaging the strength of the magnetic field generated in the longitudinal direction of the support 81, temperature unevenness in the width direction of the fixing belt 61 is reduced. The adjusting magnetic core 100 is disposed in a space formed in the inner region of the magnetic core support portions 81b1 and 81b2 (region surrounded by the inner walls of the magnetic core support portions 81b1 and 81b2), and the position in the longitudinal direction of the support 81 is a magnetic core setting member 87. Is set by

<定着ベルトが発熱する状態の説明>
引き続いて、IHヒータ80により生成された交流磁界によって定着ベルト61が発熱する状態を説明する。
まず、上記したように、感温磁性部材64の透磁率変化開始温度は、各色トナー像を定着する定着設定温度以上であって定着ベルト61の耐熱温度以下となる温度範囲内(例えば、140〜240℃)に設定されている。そして、定着ベルト61の温度が透磁率変化開始温度以下の状態にある場合には、定着ベルト61に近接する感温磁性部材64の温度も定着ベルト61の温度に対応して、透磁率変化開始温度以下となる。そのため、感温磁性部材64は強磁性を呈するので、IHヒータ80により生成された交流磁界の磁力線Hは、定着ベルト61を透過した後、感温磁性部材64の内部を広がり方向に沿って通過する磁路を形成する。ここでの「広がり方向」とは、感温磁性部材64の厚さ方向と直交する方向を意味する。
<Description of the state in which the fixing belt generates heat>
Subsequently, a state in which the fixing belt 61 generates heat by the alternating magnetic field generated by the IH heater 80 will be described.
First, as described above, the permeability change start temperature of the temperature-sensitive magnetic member 64 is within a temperature range that is not less than the set fixing temperature for fixing each color toner image and not more than the heat resistance temperature of the fixing belt 61 (for example, 140 to 240 ° C.). When the temperature of the fixing belt 61 is equal to or lower than the magnetic permeability change start temperature, the temperature of the temperature-sensitive magnetic member 64 adjacent to the fixing belt 61 is also started corresponding to the temperature of the fixing belt 61. Below temperature. Therefore, since the temperature-sensitive magnetic member 64 exhibits ferromagnetism, the magnetic field lines H of the alternating magnetic field generated by the IH heater 80 pass through the fixing belt 61 and then pass through the inside of the temperature-sensitive magnetic member 64 along the spreading direction. To form a magnetic path. Here, the “spreading direction” means a direction orthogonal to the thickness direction of the temperature-sensitive magnetic member 64.

図7は、定着ベルト61の温度が透磁率変化開始温度以下の温度範囲にある場合の磁力線(H)の状態を説明する図である。図7に示したように、定着ベルト61の温度が透磁率変化開始温度以下の温度範囲にある場合には、IHヒータ80により生成された交流磁界の磁力線Hは、定着ベルト61を透過し、感温磁性部材64の内部を広がり方向(厚さ方向と直交する方向)に沿って通過する磁路を形成する。そのため、定着ベルト61の導電発熱層612を横切る領域での単位面積あたりの磁力線Hの数(磁束密度)は多くなる。   FIG. 7 is a diagram for explaining the state of the lines of magnetic force (H) when the temperature of the fixing belt 61 is in the temperature range equal to or lower than the permeability change start temperature. As shown in FIG. 7, when the temperature of the fixing belt 61 is in a temperature range equal to or lower than the permeability change start temperature, the magnetic field lines H of the alternating magnetic field generated by the IH heater 80 are transmitted through the fixing belt 61. A magnetic path passing through the inside of the temperature-sensitive magnetic member 64 along the spreading direction (direction orthogonal to the thickness direction) is formed. Therefore, the number of magnetic field lines H (magnetic flux density) per unit area in the region crossing the conductive heat generating layer 612 of the fixing belt 61 increases.

すなわち、IHヒータ80の磁心84から磁力線Hが放射されて定着ベルト61の導電発熱層612を横切る領域R1,R2を通過した後、磁力線Hは強磁性体である感温磁性部材64の内部に誘導される。そのため、定着ベルト61の導電発熱層612を厚さ方向に横切る磁力線Hは感温磁性部材64の内部に進入するように集中し、領域R1,R2での磁束密度は高くなる。また、感温磁性部材64の内部を広がり方向に沿って通過した磁力線Hが再び磁心84に戻るに際しても、導電発熱層612を厚さ方向に横切る領域R3では、感温磁性部材64内の磁位の低い部分から集中して磁心84に向けて放射される。そのため、定着ベルト61の導電発熱層612を厚さ方向に横切る磁力線Hは、感温磁性部材64から集中して磁心84に向かうこととなり、領域R3での磁束密度も高くなる。   That is, after the magnetic field lines H are radiated from the magnetic core 84 of the IH heater 80 and pass through the regions R1 and R2 across the conductive heat generating layer 612 of the fixing belt 61, the magnetic field lines H enter the inside of the temperature-sensitive magnetic member 64 which is a ferromagnetic material. Be guided. Therefore, the magnetic field lines H crossing the conductive heat generating layer 612 of the fixing belt 61 in the thickness direction are concentrated so as to enter the inside of the temperature-sensitive magnetic member 64, and the magnetic flux density in the regions R1 and R2 increases. Further, even when the magnetic field lines H that have passed through the inside of the temperature-sensitive magnetic member 64 along the spreading direction return to the magnetic core 84 again, in the region R3 that crosses the conductive heat generating layer 612 in the thickness direction, the magnetic field in the temperature-sensitive magnetic member 64 is increased. It is radiated toward the magnetic core 84 in a concentrated manner from the lower part. Therefore, the magnetic force lines H that cross the conductive heat generating layer 612 of the fixing belt 61 in the thickness direction are concentrated from the temperature-sensitive magnetic member 64 toward the magnetic core 84, and the magnetic flux density in the region R3 is also increased.

磁力線Hが厚さ方向に横切る定着ベルト61の導電発熱層612では、単位面積当たりの磁力線Hの数(磁束密度)の変化量に比例した渦電流Iが発生する。それにより、図7に示したように、磁束密度の変化量が大きい領域R1,R2および領域R3では、大きな渦電流Iが発生する。導電発熱層612に生じた渦電流Iは、導電発熱層612の固有抵抗値Rと渦電流Iの二乗の積であるジュール熱W(W=IR)を発生させる。それにより、大きな渦電流Iが発生した導電発熱層612では、大きなジュール熱Wが発生する。
このように、定着ベルト61の温度が透磁率変化開始温度以下の温度範囲にある場合には、磁力線Hが導電発熱層612を横切る領域R1,R2や領域R3において大きな熱が発生する。それにより、定着ベルト61は加熱される。
In the conductive heating layer 612 of the fixing belt 61 where the magnetic lines H cross in the thickness direction, an eddy current I proportional to the amount of change in the number of magnetic lines H per unit area (magnetic flux density) is generated. Thereby, as shown in FIG. 7, a large eddy current I is generated in the regions R1, R2 and R3 where the amount of change in magnetic flux density is large. The eddy current I generated in the conductive heat generation layer 612 generates Joule heat W (W = I 2 R), which is the product of the specific resistance value R of the conductive heat generation layer 612 and the square of the eddy current I. Thereby, a large Joule heat W is generated in the conductive heat generating layer 612 where the large eddy current I is generated.
As described above, when the temperature of the fixing belt 61 is in the temperature range equal to or lower than the permeability change start temperature, large heat is generated in the regions R1 and R2 and the region R3 where the lines of magnetic force H cross the conductive heat generating layer 612. Thereby, the fixing belt 61 is heated.

ところで、本実施の形態の定着ユニット60では、定着ベルト61の内周面側において定着ベルト61に近接させて感温磁性部材64を配置している。それにより、励磁コイル82にて生成された磁力線Hを内部に誘導する磁心84と、定着ベルト61を厚さ方向に横切って透過した磁力線Hを内部に誘導する感温磁性部材64とが近接した構成を実現している。そのため、IHヒータ80(励磁コイル82)により生成された交流磁界は、磁路が短いループを形成するので、磁路内での磁束密度や磁気結合度は高まる。それにより、定着ベルト61の温度が透磁率変化開始温度以下の温度範囲にある場合、定着ベルト61にはさらに効率的に熱が発生する。   By the way, in the fixing unit 60 of the present embodiment, the temperature-sensitive magnetic member 64 is disposed in the vicinity of the fixing belt 61 on the inner peripheral surface side of the fixing belt 61. As a result, the magnetic core 84 that guides the magnetic force lines H generated by the exciting coil 82 to the inside and the temperature-sensitive magnetic member 64 that guides the magnetic force lines H transmitted through the fixing belt 61 in the thickness direction are close to each other. The configuration is realized. For this reason, the AC magnetic field generated by the IH heater 80 (excitation coil 82) forms a loop with a short magnetic path, so that the magnetic flux density and the magnetic coupling degree in the magnetic path increase. Accordingly, when the temperature of the fixing belt 61 is in a temperature range equal to or lower than the magnetic permeability change start temperature, heat is more efficiently generated in the fixing belt 61.

<定着ベルトの非通紙部の昇温を抑制する機能の説明>
次に、定着ベルト61の非通紙部の昇温を抑制する機能について説明する。
ここでまず、定着ユニット60に小サイズの用紙P(小サイズ紙P1)を連続して通紙した場合について述べる。図8は、小サイズ紙P1を連続して通紙した際の定着ベルト61の幅方向の温度分布の概略を示した図である。図8においては、画像形成装置1にて使用される用紙Pの最大サイズ幅(例えば、A3横幅)である最大通紙領域をFf、最大サイズ用紙Pよりも横幅の小さな小サイズ紙P1(例えば、A4縦送り)が通過する領域(小サイズ紙通紙領域)をFs、小サイズ紙P1が通過しない非通紙領域をFbとする。なお、画像形成装置1では中央位置基準で通紙が行われるものとする。
<Description of function for suppressing temperature rise of non-sheet passing portion of fixing belt>
Next, the function of suppressing the temperature rise at the non-sheet passing portion of the fixing belt 61 will be described.
First, a case where small-size paper P (small-size paper P1) is continuously passed through the fixing unit 60 will be described. FIG. 8 is a diagram showing an outline of the temperature distribution in the width direction of the fixing belt 61 when the small size paper P1 is continuously fed. In FIG. 8, the maximum sheet passing area which is the maximum size width (for example, A3 width) of the sheet P used in the image forming apparatus 1 is Ff, and the small size sheet P1 (for example, smaller than the maximum size sheet P) (for example, , A4 (vertical feed) passes through the area (small size paper passing area) as Fs, and the non-sheet passing area through which the small size paper P1 does not pass is Fb. In the image forming apparatus 1, it is assumed that the sheet is passed based on the center position.

図8に示したように、小サイズ紙P1が連続して通紙された場合に、小サイズ紙P1が通過する小サイズ紙通紙領域Fsでは定着のための熱が消費される。そのため、制御部31(図1参照)による定着設定温度での温度調整制御が行われ、小サイズ紙通紙領域Fsでの定着ベルト61の温度は定着設定温度の近傍範囲内に維持される。その一方で、非通紙領域Fbにおいても、小サイズ紙通紙領域Fsと同様の温度調整制御が行われる。しかし、非通紙領域Fbでは定着のための熱が消費されない。そのために、非通紙領域Fbの温度は、定着設定温度よりも高い温度に上昇し易い。そして、その状態で小サイズ紙P1の連続通紙を続けると、非通紙領域Fbの温度が例えば定着ベルト61の弾性層613や表面離型層614の耐熱温度よりも上昇して、定着ベルト61を損傷させる場合がある。   As shown in FIG. 8, when the small size paper P1 is continuously passed, heat for fixing is consumed in the small size paper passing area Fs through which the small size paper P1 passes. Therefore, the temperature adjustment control at the fixing set temperature is performed by the control unit 31 (see FIG. 1), and the temperature of the fixing belt 61 in the small size paper passing area Fs is maintained within the range near the fixing set temperature. On the other hand, temperature adjustment control similar to that of the small-size paper passing area Fs is performed also in the non-paper passing area Fb. However, heat for fixing is not consumed in the non-sheet passing area Fb. For this reason, the temperature of the non-sheet passing area Fb is likely to rise to a temperature higher than the fixing set temperature. Then, when the continuous passage of the small size paper P1 is continued in this state, the temperature of the non-sheet passing region Fb rises, for example, higher than the heat resistance temperature of the elastic layer 613 and the surface release layer 614 of the fixing belt 61, 61 may be damaged.

そこで、上記したように、本実施の形態の定着ユニット60では、感温磁性部材64は、定着設定温度以上であって、例えば定着ベルト61の弾性層613や表面離型層614の耐熱温度以下の温度範囲内に透磁率変化開始温度が設定された例えばFe−Ni合金等で構成されている。すなわち、図8に示したように、感温磁性部材64の透磁率変化開始温度Tcuは、定着設定温度Tf以上であって、例えば弾性層613や表面離型層614の耐熱温度Tlim以下の温度領域に設定されている。   Therefore, as described above, in the fixing unit 60 of the present embodiment, the temperature-sensitive magnetic member 64 is equal to or higher than the preset fixing temperature and is, for example, equal to or lower than the heat resistance temperature of the elastic layer 613 and the surface release layer 614 of the fixing belt 61. For example, an Fe—Ni alloy or the like having a magnetic permeability change start temperature set within the temperature range is used. That is, as shown in FIG. 8, the magnetic permeability change start temperature Tcu of the temperature-sensitive magnetic member 64 is equal to or higher than the fixing set temperature Tf, for example, a temperature equal to or lower than the heat resistance temperature Tlim of the elastic layer 613 and the surface release layer 614. It is set in the area.

それにより、小サイズ紙P1が連続通紙されると、定着ベルト61の非通紙領域Fbでの温度は、感温磁性部材64の透磁率変化開始温度を超える。それによって、定着ベルト61に近接する感温磁性部材64の非通紙領域Fbでの温度も定着ベルト61の温度に対応して、定着ベルト61と同様に透磁率変化開始温度を超える。そのため、非通紙領域Fbでの感温磁性部材64は比透磁率が1に近づき、強磁性体としての性質が消失する。感温磁性部材64の比透磁率が低下して1に近づくことで、非通紙領域Fbでの磁力線Hは感温磁性部材64の内部に誘導されず、感温磁性部材64を透過するようになる。そのため、定着ベルト61の非通紙領域Fbでは、導電発熱層612を通過した後の磁力線Hは拡散し、導電発熱層612を横切る磁力線Hの磁束密度は低下する。それにより、導電発熱層612で発生する渦電流Iは減少して、定着ベルト61での発熱量(ジュール熱W)は低減される。その結果、非通紙領域Fbでの過剰な温度上昇は抑えられ、定着ベルト61の損傷が抑制される。
このように、感温磁性部材64は、定着ベルト61の温度を検知する検知部としての機能と、検知した定着ベルト61の温度に応じて定着ベルト61の過度の温度上昇を抑制する昇温抑制部としての機能とを併せ持っている。
Accordingly, when the small size paper P1 is continuously passed, the temperature in the non-sheet passing region Fb of the fixing belt 61 exceeds the magnetic permeability change start temperature of the temperature-sensitive magnetic member 64. Accordingly, the temperature in the non-sheet passing region Fb of the temperature-sensitive magnetic member 64 adjacent to the fixing belt 61 also exceeds the permeability change start temperature in the same manner as the fixing belt 61 corresponding to the temperature of the fixing belt 61. For this reason, the temperature-sensitive magnetic member 64 in the non-sheet-passing region Fb has a relative magnetic permeability close to 1, and the properties as a ferromagnetic material disappear. The relative magnetic permeability of the temperature-sensitive magnetic member 64 decreases and approaches 1 so that the magnetic field lines H in the non-sheet-passing region Fb are not guided into the temperature-sensitive magnetic member 64 but pass through the temperature-sensitive magnetic member 64. become. Therefore, in the non-sheet passing region Fb of the fixing belt 61, the magnetic field lines H after passing through the conductive heat generating layer 612 are diffused, and the magnetic flux density of the magnetic field lines H crossing the conductive heat generating layer 612 is reduced. Thereby, the eddy current I generated in the conductive heat generation layer 612 is reduced, and the heat generation amount (Joule heat W) in the fixing belt 61 is reduced. As a result, an excessive temperature rise in the non-sheet passing area Fb is suppressed, and damage to the fixing belt 61 is suppressed.
As described above, the temperature-sensitive magnetic member 64 functions as a detection unit that detects the temperature of the fixing belt 61 and suppresses an increase in temperature that suppresses an excessive temperature increase of the fixing belt 61 according to the detected temperature of the fixing belt 61. It also has a function as a department.

感温磁性部材64を通過した後の磁力線Hは、誘導部材66(図3参照)に到達してこの内部に誘導される。磁束が誘導部材66に到達してその内部に誘導されるようになると、導電発熱層612より渦電流Iの流れ易い誘導部材66の方に多くの渦電流Iが流れる。そのため、導電発熱層612で流れる渦電流量はさらに抑制され、非通紙領域Fbでの温度上昇は抑えられる。   The lines of magnetic force H after passing through the temperature-sensitive magnetic member 64 reach the guide member 66 (see FIG. 3) and are guided into this. When the magnetic flux reaches the induction member 66 and is induced therein, more eddy current I flows toward the induction member 66 where the eddy current I flows more easily than the conductive heat generation layer 612. Therefore, the amount of eddy current flowing in the conductive heat generating layer 612 is further suppressed, and the temperature rise in the non-sheet passing region Fb is suppressed.

その際に、誘導部材66が励磁コイル82からの磁力線Hの殆どを誘導して定着ユニット60からの磁力線Hの漏洩を抑えるように、誘導部材66の厚さ、材質、および形状が選定される。具体的には、誘導部材66を表皮深さδが充分に厚い材料で構成すればよい。それにより、誘導部材66に渦電流Iが流れても発熱量も極力小さくなる。本実施の形態では、誘導部材66を感温磁性部材64に沿う略円形形状の厚さ1mmのAl(アルミニウム)で構成し、感温磁性部材64とは非接触(平均的な距離を例えば4mm)に配置している。その他の材料としては、AgやCuが好適である。   At this time, the thickness, material, and shape of the guiding member 66 are selected so that the guiding member 66 guides most of the magnetic force lines H from the exciting coil 82 and suppresses leakage of the magnetic force lines H from the fixing unit 60. . Specifically, the guide member 66 may be made of a material having a sufficiently thick skin depth δ. Thereby, even if the eddy current I flows through the induction member 66, the amount of heat generation is also minimized. In the present embodiment, the guide member 66 is made of Al (aluminum) having a substantially circular shape with a thickness of 1 mm along the temperature-sensitive magnetic member 64, and is not in contact with the temperature-sensitive magnetic member 64 (an average distance of, for example, 4 mm). ). As other materials, Ag and Cu are suitable.

ところで、その後、定着ベルト61の非通紙領域Fbでの温度が感温磁性部材64の透磁率変化開始温度よりも低くなると、感温磁性部材64の非通紙領域Fbでの温度も透磁率変化開始温度よりも低くなる。それにより、感温磁性部材64は再び強磁性に変化して磁力線Hが感温磁性部材64の内部に誘導されるので、導電発熱層612に渦電流Iが多く流れるようになる。そのため、定着ベルト61が再び加熱されるようになる。   By the way, when the temperature in the non-sheet-passing region Fb of the fixing belt 61 becomes lower than the magnetic permeability change start temperature of the temperature-sensitive magnetic member 64, the temperature in the non-sheet-passing region Fb of the temperature-sensitive magnetic member 64 is also permeable. It becomes lower than the change start temperature. As a result, the temperature-sensitive magnetic member 64 changes to ferromagnetic again, and the magnetic field lines H are induced inside the temperature-sensitive magnetic member 64, so that a large amount of eddy current I flows through the conductive heating layer 612. Therefore, the fixing belt 61 is heated again.

図9は、非通紙領域Fbでの定着ベルト61の温度が透磁率変化開始温度を超えた温度範囲にある場合の磁力線Hの状態を説明する図である。図9に示したように、定着ベルト61の温度が非通紙領域Fbにて透磁率変化開始温度を超えた温度範囲にある場合には、非通紙領域Fbの感温磁性部材64は比透磁率が低下する。そのため、IHヒータ80により生成された交流磁界の磁力線Hは感温磁性部材64を容易に透過するように変化する。それにより、IHヒータ80(励磁コイル82)により生成された交流磁界の磁力線Hは、磁心84から定着ベルト61側に向けて拡散するように放射され、誘導部材66に到達するようになる。   FIG. 9 is a diagram illustrating the state of the lines of magnetic force H when the temperature of the fixing belt 61 in the non-sheet passing region Fb is in the temperature range exceeding the permeability change start temperature. As shown in FIG. 9, when the temperature of the fixing belt 61 is in the temperature range exceeding the permeability change start temperature in the non-sheet passing area Fb, the temperature-sensitive magnetic member 64 in the non-sheet passing area Fb has a ratio. Magnetic permeability decreases. Therefore, the magnetic field lines H of the alternating magnetic field generated by the IH heater 80 change so as to easily pass through the temperature-sensitive magnetic member 64. Accordingly, the magnetic field lines H of the alternating magnetic field generated by the IH heater 80 (excitation coil 82) are radiated so as to diffuse from the magnetic core 84 toward the fixing belt 61 and reach the induction member 66.

すなわち、IHヒータ80の磁心84から磁力線Hが放射されて定着ベルト61の導電発熱層612を横切る領域R1,R2では、磁力線Hが感温磁性部材64に誘導され難いため、放射状に拡散する。それにより、定着ベルト61の導電発熱層612を厚さ方向に横切る磁力線Hの磁束密度(単位面積当たりの磁力線Hの数)が減少する。また、磁力線Hが再び磁心84に戻る際に導電発熱層612を厚さ方向に横切る領域R3でも、拡散した広い領域から磁力線Hが磁心84に戻ることとなるため、定着ベルト61の導電発熱層612を厚さ方向に横切る磁力線Hの磁束密度が減少する。
そのため、定着ベルト61の温度が透磁率変化開始温度を超える温度範囲にある場合には、領域R1,R2や領域R3において導電発熱層612を厚さ方向に横切る磁力線Hの磁束密度が減少することとなる。それにより、磁力線Hが厚さ方向に横切る導電発熱層612に発生する渦電流Iは減り、定着ベルト61に発生するジュール熱Wは減少する。それにより、定着ベルト61の温度は低下する。
That is, in the regions R1 and R2 where the magnetic force lines H are radiated from the magnetic core 84 of the IH heater 80 and cross the conductive heat generating layer 612 of the fixing belt 61, the magnetic force lines H are difficult to be guided to the temperature-sensitive magnetic member 64 and thus diffuse radially. As a result, the magnetic flux density (number of magnetic force lines H per unit area) of the magnetic field lines H crossing the conductive heat generating layer 612 of the fixing belt 61 in the thickness direction decreases. Further, even in the region R3 that crosses the conductive heat generating layer 612 in the thickness direction when the magnetic force line H returns to the magnetic core 84 again, the magnetic force line H returns to the magnetic core 84 from the diffused wide region. The magnetic flux density of the magnetic field lines H crossing 612 in the thickness direction decreases.
Therefore, when the temperature of the fixing belt 61 is in a temperature range exceeding the permeability change start temperature, the magnetic flux density of the magnetic field lines H that cross the conductive heating layer 612 in the thickness direction decreases in the regions R1, R2, and R3. It becomes. As a result, the eddy current I generated in the conductive heating layer 612 where the magnetic field lines H cross in the thickness direction is reduced, and the Joule heat W generated in the fixing belt 61 is reduced. As a result, the temperature of the fixing belt 61 decreases.

このように、非通紙領域Fbでの定着ベルト61の温度が透磁率変化開始温度以上の温度範囲にある場合において、非通紙領域Fbでの感温磁性部材64の内部に磁力線Hが誘導され難くなり、励磁コイル82により生成された交流磁界の磁力線Hは、定着ベルト61の導電発熱層612を厚さ方向を拡散しながら横切る。そのため、励磁コイル82により生成された交流磁界の磁路は長いループを形成することとなり、定着ベルト61の導電発熱層612を通過する磁路での磁束密度は減少する。
それにより、例えば小サイズ紙P1が連続通紙されて、温度が上昇した非通紙領域Fbでは、定着ベルト61の導電発熱層612に発生する渦電流Iが減って、定着ベルト61の非通紙領域Fbでの発熱量(ジュール熱W)は低減する。その結果、非通紙領域Fbでの過剰な温度上昇は抑えられる。
As described above, when the temperature of the fixing belt 61 in the non-sheet-passing area Fb is in the temperature range equal to or higher than the magnetic permeability change start temperature, the magnetic field lines H are induced inside the temperature-sensitive magnetic member 64 in the non-sheet-passing area Fb. The magnetic field lines H of the alternating magnetic field generated by the exciting coil 82 cross the conductive heat generating layer 612 of the fixing belt 61 while diffusing in the thickness direction. Therefore, the magnetic path of the alternating magnetic field generated by the exciting coil 82 forms a long loop, and the magnetic flux density in the magnetic path passing through the conductive heating layer 612 of the fixing belt 61 decreases.
Thereby, for example, in the non-sheet passing region Fb where the small size paper P1 is continuously passed and the temperature rises, the eddy current I generated in the conductive heat generating layer 612 of the fixing belt 61 is reduced and the fixing belt 61 is not passed. The amount of heat generation (joule heat W) in the paper region Fb is reduced. As a result, an excessive temperature rise in the non-sheet passing area Fb can be suppressed.

<感温磁性部材の昇温を抑制する構成の説明>
感温磁性部材64が上記した非通紙領域Fbでの過剰な温度上昇を抑える機能を果たすには、感温磁性部材64の長手方向の領域毎の温度がそれに対向する定着ベルト61の長手方向の領域毎の温度に対応して変化し、上記した定着ベルト61の温度を検知する検出部としての機能を果たす必要がある。
そのために、感温磁性部材64自身に関しては、磁力線Hによって誘導加熱され難い構成が採用される。すなわち、定着ベルト61の温度が透磁率変化開始温度以下であり、感温磁性部材64が強磁性を呈する状態であっても、IHヒータ80からの磁力線Hの中には、感温磁性部材64を厚さ方向に横切る磁力線Hは存在する。それにより、感温磁性部材64内部には弱い渦電流Iが発生しており、感温磁性部材64自身においても若干の発熱が生じる。そのため、例えば、大量の画像形成が連続して行われた場合等には、感温磁性部材64に熱が蓄積され、通紙領域(図8参照)でも感温磁性部材64の温度が上昇傾向を呈する。それにより、渦電流損やヒステリシス損が大きく磁力線Hの通過により発熱し易い感温磁性部材64を用いたとすると、状況によっては、定着ベルト61の温度が透磁率変化開始温度を超えていなくとも、感温磁性部材64が通紙領域における定着ベルト61の温度上昇を抑えるように機能してしまう場合がある。そこで、感温磁性部材64の温度と定着ベルト61の温度との対応関係が維持され、感温磁性部材64が定着ベルト61の温度を検知する検知部として精度良く機能するために、感温磁性部材64自身に発生するジュール熱Wを抑える必要がある。
<Description of the configuration for suppressing the temperature rise of the temperature-sensitive magnetic member>
In order for the temperature-sensitive magnetic member 64 to perform the function of suppressing the excessive temperature rise in the non-sheet passing region Fb described above, the temperature of each region in the longitudinal direction of the temperature-sensitive magnetic member 64 is the longitudinal direction of the fixing belt 61 facing it. It is necessary to fulfill a function as a detection unit that detects the temperature of the fixing belt 61 and changes according to the temperature of each region.
Therefore, regarding the temperature-sensitive magnetic member 64 itself, a configuration that is difficult to be induction-heated by the magnetic field lines H is adopted. That is, even if the temperature of the fixing belt 61 is equal to or lower than the permeability change start temperature and the temperature-sensitive magnetic member 64 exhibits ferromagnetism, the temperature-sensitive magnetic member 64 is included in the magnetic force lines H from the IH heater 80. There is a magnetic field line H that crosses in the thickness direction. As a result, a weak eddy current I is generated inside the temperature-sensitive magnetic member 64, and a slight amount of heat is generated in the temperature-sensitive magnetic member 64 itself. Therefore, for example, when a large amount of image formation is continuously performed, heat is accumulated in the temperature-sensitive magnetic member 64, and the temperature of the temperature-sensitive magnetic member 64 tends to increase even in the paper passing area (see FIG. 8). Presents. As a result, if the temperature-sensitive magnetic member 64 that has large eddy current loss and hysteresis loss and easily generates heat due to the passage of the magnetic field lines H is used, depending on the situation, even if the temperature of the fixing belt 61 does not exceed the magnetic permeability change start temperature, In some cases, the temperature-sensitive magnetic member 64 functions to suppress the temperature increase of the fixing belt 61 in the sheet passing region. Therefore, the correspondence between the temperature of the temperature-sensitive magnetic member 64 and the temperature of the fixing belt 61 is maintained, and the temperature-sensitive magnetic member 64 functions as a detection unit that detects the temperature of the fixing belt 61 with high accuracy. It is necessary to suppress the Joule heat W generated in the member 64 itself.

そこで、感温磁性部材64での渦電流損やヒステリシス損を小さくするために、まず第1として、感温磁性部材64は、磁力線Hによって誘導加熱され難い物性(固有抵抗値および透磁率)を持った材質が選定される。
また、第2として、感温磁性部材64の厚さは、少なくとも透磁率変化開始温度以下の温度範囲にて磁力線Hが感温磁性部材64の厚さ方向に横切り難いように、強磁性を呈する状態での表皮深さδよりも厚く形成される。
Therefore, in order to reduce the eddy current loss and hysteresis loss in the temperature-sensitive magnetic member 64, first, the temperature-sensitive magnetic member 64 has physical properties (specific resistance value and magnetic permeability) that are difficult to be induction-heated by the lines of magnetic force H. Selected material is selected.
Second, the thickness of the temperature-sensitive magnetic member 64 exhibits ferromagnetism so that the magnetic field lines H are difficult to cross in the thickness direction of the temperature-sensitive magnetic member 64 at least in the temperature range below the permeability change start temperature. It is formed thicker than the skin depth δ in the state.

さらに、第3として、感温磁性部材64には、磁力線Hによって発生する渦電流Iの流れを分断する複数のスリット64sが形成される(図10参照)。誘導加熱され難いように感温磁性部材64の材質や厚さを選定しても、感温磁性部材64内部に発生する渦電流Iを0とすることは困難である。そこで、感温磁性部材64に発生した渦電流Iの流れを複数のスリット64sにより分断することで、渦電流Iを減少させて、感温磁性部材64に発生するジュール熱Wを低く抑えている。   Third, the temperature-sensitive magnetic member 64 is formed with a plurality of slits 64s that divide the flow of the eddy current I generated by the lines of magnetic force H (see FIG. 10). Even if the material and thickness of the temperature-sensitive magnetic member 64 are selected so that induction heating is difficult, it is difficult to set the eddy current I generated in the temperature-sensitive magnetic member 64 to zero. Therefore, by dividing the flow of the eddy current I generated in the temperature-sensitive magnetic member 64 by the plurality of slits 64s, the eddy current I is reduced and the Joule heat W generated in the temperature-sensitive magnetic member 64 is kept low. .

図10は、感温磁性部材64に形成されるスリットを示した図である。図10(a)は、感温磁性部材64がホルダ65に設置された状態の側面図であり、(b)は、(a)の上方(z方向)から見た平面図である。図10に示したように、感温磁性部材64では、磁力線Hによって発生する渦電流Iの流れる方向に直交して複数のスリット64sが形成される。そのため、スリット64sが無い場合には感温磁性部材64の長手方向の全体に亘って大きな渦となって流れる渦電流I(図10(b)破線)が、スリット64sにより分断される。それにより、スリット64sを形成した場合には、感温磁性部材64内を流れる渦電流I(図10(b)実線)は、スリット64sとスリット64sとの間の領域内での小さな渦となり、全体としての渦電流Iの電流量は低減される。その結果、感温磁性部材64での発熱量(ジュール熱W)は減少し、発熱し難い構成が実現する。したがって、複数のスリット64sは、渦電流Iを分断する渦電流分断部として機能する。   FIG. 10 is a view showing slits formed in the temperature-sensitive magnetic member 64. FIG. 10A is a side view showing a state in which the temperature-sensitive magnetic member 64 is installed on the holder 65, and FIG. 10B is a plan view seen from above (a direction). As shown in FIG. 10, in the temperature-sensitive magnetic member 64, a plurality of slits 64 s are formed orthogonal to the direction in which the eddy current I generated by the magnetic field lines H flows. Therefore, when there is no slit 64s, the eddy current I (broken line in FIG. 10B) that flows as a large eddy over the entire longitudinal direction of the temperature-sensitive magnetic member 64 is divided by the slit 64s. Thereby, when the slit 64s is formed, the eddy current I flowing through the temperature-sensitive magnetic member 64 (solid line in FIG. 10 (b)) becomes a small eddy in the region between the slit 64s and the slit 64s, The amount of eddy current I as a whole is reduced. As a result, the amount of heat generated by the temperature-sensitive magnetic member 64 (Joule heat W) is reduced, and a configuration that hardly generates heat is realized. Therefore, the plurality of slits 64 s function as an eddy current dividing unit that divides the eddy current I.

なお、図10に例示した感温磁性部材64では、スリット64sを渦電流Iの流れる方向に直交して形成したが、渦電流Iの流れを分断する構成であれば、例えば渦電流Iの流れる方向に対して傾斜したスリットを形成してもよい。また、図10に示したようなスリット64sを感温磁性部材64の幅方向の全域に亘って形成する構成の他に、感温磁性部材64の幅方向の一部に形成してもよい。また、感温磁性部材64に発生する熱量に応じて、スリットの数、位置、傾斜角等を設定してもよい。
また、スリットの傾斜角が最大となった状態として、感温磁性部材64がスリット部で小片に分割された状態となる小片分割群となってもよく、このような形態であっても本発明の効果は同様に得られる。
In the temperature-sensitive magnetic member 64 illustrated in FIG. 10, the slit 64s is formed perpendicular to the direction in which the eddy current I flows. However, if the flow of the eddy current I is divided, for example, the eddy current I flows. You may form the slit inclined with respect to the direction. In addition to the configuration in which the slits 64 s as shown in FIG. 10 are formed over the entire region in the width direction of the temperature-sensitive magnetic member 64, the slit 64 s may be formed in a part in the width direction of the temperature-sensitive magnetic member 64. Further, the number, position, inclination angle, and the like of the slits may be set according to the amount of heat generated in the temperature-sensitive magnetic member 64.
Moreover, as a state where the inclination angle of the slit is maximized, the temperature-sensitive magnetic member 64 may be a small piece divided group in which the temperature-sensitive magnetic member 64 is divided into small pieces at the slit portion. The effect of is obtained similarly.

<IHヒータでの励磁コイル、磁心、調整用磁心の固定方法の説明>
次に、本実施の形態のIHヒータ80における励磁コイル82、磁心84、および調整用磁心100の支持体81への固定方法について説明する。
図11は、本実施の形態のIHヒータ80の積層構造を説明する図である。図11に示したように、励磁コイル82は、支持部材の一例としての支持体81の支持面81a上にて、励磁コイル82の閉ループ中空部82aが支持面81aの長手方向中心軸(axis)に沿って平行に配置された位置設定部の一例としての一対の磁心支持部(凸状部)81b1,81b2を囲むように設置される。支持面81aは、略円形状の軌道を描きながら回転移動する定着ベルト61との間隙が規定値(設計値)に形成/設定された位置設定面として形成されている。そして、励磁コイル82は、弾性支持部材83により支持体81の支持面81aに向けて押圧されることで、支持面81aに密着して固定される。
<Description of fixing method of exciting coil, magnetic core and adjusting magnetic core in IH heater>
Next, a method for fixing the exciting coil 82, the magnetic core 84, and the adjusting magnetic core 100 to the support 81 in the IH heater 80 of the present embodiment will be described.
FIG. 11 is a diagram for explaining a laminated structure of the IH heater 80 of the present embodiment. As shown in FIG. 11, in the exciting coil 82, the closed-loop hollow portion 82a of the exciting coil 82 is on the support surface 81a of the support 81 as an example of a support member, and the longitudinal center axis (axis) of the support surface 81a. Are installed so as to surround a pair of magnetic core support portions (convex portions) 81b1 and 81b2 as an example of a position setting portion arranged in parallel. The support surface 81a is formed as a position setting surface in which a gap with the fixing belt 61 that rotates and moves while drawing a substantially circular path is formed / set to a specified value (design value). Then, the exciting coil 82 is pressed against the support surface 81a of the support 81 by the elastic support member 83, thereby being closely attached and fixed to the support surface 81a.

また、定着ベルト61の幅方向に沿って複数配置された磁心84の各々は、励磁コイル82側の内周面が定着ベルト61の移動方向に向けて円弧形状の内周側円弧面84bとして形成されている。加えて、磁心84の内周側円弧面84bは、定着ベルト61の移動方向が励磁コイル82が配置される領域全体を覆う(ラップする)ような長さで形成されている。そして、磁心84の各々は、支持面81a上に長手方向中心軸axisに沿って平行に配置された一対の磁心支持部81b1,81b2に磁心84の内周側円弧面84bが支持されることで、磁心84と支持面81aとの間隙が一定に保たれるように設定される。さらに、その際に、磁心84は、支持面81aの定着ベルト61移動方向両側部に配置された磁心規制部81c相互の間で、磁心支持部81b1,81b2上において定着ベルト61移動方向に沿って移動自在に支持される。また、磁心84は、磁心支持部81b1,81b2上において支持体81の長手方向(=定着ベルト61の幅方向)に移動自在に支持される。   Further, each of the plurality of magnetic cores 84 arranged along the width direction of the fixing belt 61 is formed as an inner circumferential side arc surface 84b whose inner circumferential surface on the exciting coil 82 side is arc-shaped toward the moving direction of the fixing belt 61. Has been. In addition, the inner circumferential arc surface 84b of the magnetic core 84 is formed with such a length that the moving direction of the fixing belt 61 covers (wraps) the entire region where the exciting coil 82 is disposed. Each of the magnetic cores 84 is supported by the inner circumferential arc surface 84b of the magnetic core 84 supported by a pair of magnetic core support portions 81b1 and 81b2 disposed in parallel along the longitudinal central axis axis on the support surface 81a. The gap between the magnetic core 84 and the support surface 81a is set to be constant. Further, at that time, the magnetic core 84 is positioned along the moving direction of the fixing belt 61 on the magnetic core supporting portions 81b1 and 81b2 between the magnetic core restricting portions 81c arranged on both sides of the supporting surface 81a in the moving direction of the fixing belt 61. It is supported movably. The magnetic core 84 is supported on the magnetic core support portions 81b1 and 81b2 so as to be movable in the longitudinal direction of the support 81 (= the width direction of the fixing belt 61).

ここで、弾性支持部材83は、ヤング率が低い例えばシリコーンゴム等やフッ素ゴム等のシート状弾性体で構成され、励磁コイル82と磁心84との間に配置される。一方、磁心84は、内周側円弧面84bが支持面81a上の一対の磁心支持部81b1,81b2によって支持されると、磁心84と支持面81aとの間隙が予め定めた間隙に設定される(図6も参照)。この場合に、弾性支持部材83の厚さは、磁心84と支持面81aとの間隙よりも厚く形成されている。一方、各磁心84は、シールド85が支持体81に取り付けられることで、シールド85の下部面に設けられた加圧部材86により磁心設定部材87を介して支持体81側に加圧される。そのため、弾性支持部材83は磁心84を介して支持体81側への加圧力を受けて弾性変形(圧縮)され、それにより生じる弾性力により励磁コイル82を支持面81aに向けて押圧する。このようにして、弾性支持部材83は、支持面81aに向けて励磁コイル82を密着させ固定する。そして、支持面81aは定着ベルト61表面と予め定めた間隙(設計値)を保つように形成/設定されているので、励磁コイル82は、励磁コイル82全体が定着ベルト61表面と予め定めた間隙を保つように設定される。
なお、加圧部材86としては、例えばシリコーンゴム等やフッ素ゴム等の弾性体の他に、バネ等の弾性部材を用いてもよい。
Here, the elastic support member 83 is made of a sheet-like elastic body such as silicone rubber or fluorine rubber having a low Young's modulus, and is disposed between the exciting coil 82 and the magnetic core 84. On the other hand, in the magnetic core 84, when the inner circumferential arc surface 84b is supported by the pair of magnetic core support portions 81b1 and 81b2 on the support surface 81a, the gap between the magnetic core 84 and the support surface 81a is set to a predetermined gap. (See also FIG. 6). In this case, the elastic support member 83 is formed thicker than the gap between the magnetic core 84 and the support surface 81a. On the other hand, each magnetic core 84 is pressed to the support 81 side via the magnetic core setting member 87 by the pressing member 86 provided on the lower surface of the shield 85 by attaching the shield 85 to the support 81. Therefore, the elastic support member 83 is elastically deformed (compressed) by receiving pressure applied to the support body 81 via the magnetic core 84, and presses the exciting coil 82 toward the support surface 81a by the elastic force generated thereby. In this way, the elastic support member 83 fixes the exciting coil 82 in close contact with the support surface 81a. Since the support surface 81a is formed / set so as to maintain a predetermined gap (design value) with the surface of the fixing belt 61, the exciting coil 82 has the entire exciting coil 82 and the predetermined gap with the surface of the fixing belt 61. Is set to keep.
As the pressure member 86, for example, an elastic member such as a spring may be used in addition to an elastic body such as silicone rubber or fluorine rubber.

続いて、定着ベルト61の幅方向に沿って複数配置された磁心84各々は、内周側円弧面84bが一対の磁心支持部81b1,81b2上に設置され支持された後、磁心設定部材87により支持体81長手方向の位置が固定される。磁心設定部材87は、シールド85の下部面に設けられた加圧部材86により上部側から支持体81側に向けて加圧される。それにより、磁心設定部材87は、各磁心84を支持体81側に向けて押圧するとともに、自身の支持体81長手方向の位置が固定される。それによって、各磁心84は、磁心設定部材87を介した上部面の加圧部材86と下部面の弾性支持部材83とにより挟まれるように押圧されることで、IHヒータ80内部で上下方向が固定される。また、加圧部材86により上部側から加圧された磁心設定部材87により、一対の磁心支持部81b1,81b2上で支持体81の長手方向に移動自在に支持された状態の各磁心84は、支持体81長手方向の位置が固定される。なお、各磁心84についての支持体81長手方向の位置に関する固定方法については、後段で詳述する。   Subsequently, each of the plurality of magnetic cores 84 arranged along the width direction of the fixing belt 61 has an inner peripheral arcuate surface 84b installed and supported on the pair of magnetic core support portions 81b1 and 81b2, and then the magnetic core setting member 87. The position in the longitudinal direction of the support 81 is fixed. The magnetic core setting member 87 is pressed from the upper side toward the support 81 side by a pressing member 86 provided on the lower surface of the shield 85. Thereby, the magnetic core setting member 87 presses each magnetic core 84 toward the support body 81 side, and its position in the longitudinal direction of the support body 81 is fixed. As a result, each magnetic core 84 is pressed so as to be sandwiched between the pressure member 86 on the upper surface and the elastic support member 83 on the lower surface via the magnetic core setting member 87, so that the vertical direction is changed inside the IH heater 80. Fixed. Further, each magnetic core 84 in a state of being supported by the magnetic core setting member 87 pressurized from the upper side by the pressurizing member 86 movably in the longitudinal direction of the support body 81 on the pair of magnetic core support portions 81b1 and 81b2, The position in the longitudinal direction of the support 81 is fixed. The fixing method related to the position in the longitudinal direction of the support 81 for each magnetic core 84 will be described in detail later.

また、定着ベルト61の幅方向に沿って複数配置された調整用磁心100の各々は、直方体形状(ブロック形状)に形成され、磁心支持部81b1,81b2の内側領域に形成された空間に配置される。それにより、調整用磁心100のIHヒータ80内部での位置が設定される。
また、調整用磁心100各々は、磁心支持部81b1,81b2の内側領域に設置された際には、支持体81の長手方向(=定着ベルト61の幅方向)に移動自在に支持されている。そして、磁心設定部材87が設置されることで、調整用磁心100各々は、磁心84各々とともに、磁心設定部材87によって支持体81長手方向の位置が設定され固定される。なお、各調整用磁心100についての支持体81長手方向の位置に関する固定方法についても、後段で詳述する。
Further, each of the plurality of adjusting magnetic cores 100 arranged along the width direction of the fixing belt 61 is formed in a rectangular parallelepiped shape (block shape), and is arranged in a space formed in an inner region of the magnetic core support portions 81b1 and 81b2. The As a result, the position of the adjustment magnetic core 100 inside the IH heater 80 is set.
Each of the adjustment magnetic cores 100 is supported so as to be movable in the longitudinal direction of the support 81 (= the width direction of the fixing belt 61) when installed in the inner region of the magnetic core support portions 81b1 and 81b2. By installing the magnetic core setting member 87, the position of the adjustment core 100 in the longitudinal direction of the support 81 is set and fixed by the magnetic core setting member 87 together with each of the magnetic cores 84. The fixing method related to the position in the longitudinal direction of the support 81 for each adjustment magnetic core 100 will also be described in detail later.

一般に、励磁コイル82にて交流磁界が生成されると、励磁コイル82近傍に配置された磁心84や定着ベルト61の内周面側に配置された感温磁性部材64等との間で相互に磁力が作用することにより、励磁コイル82自身に振動(磁歪)が発生する。そのため、支持体81に対して例えば接着剤等の所謂剛性体(ヤング率が高い材質)を用いて励磁コイル82を固定したとすると、長期に亘る累積使用による励磁コイル82の振動が要因となって、励磁コイル82を固定する接着剤等の剛性体と励磁コイル82との間に剥離が生じ易くなる。励磁コイル82が接着剤等から剥離すると、励磁コイル82の支持面81a上での位置がずれたり、或いは、励磁コイル82に変形が生じたりする。そうなると、励磁コイル82の定着ベルト61との距離が当初の設計値から外れ、磁心84を経て定着ベルト61を通過する磁力線の密度(磁束密度)に、定着ベルト61表面での部分的なばらつきが生じる。その結果、定着ベルト61で発生する渦電流Iの大きさに不均一が生じ、定着ベルト61表面での発熱量が長手方向にばらついて、定着ムラが生じる場合がある。   In general, when an alternating magnetic field is generated by the exciting coil 82, the magnetic core 84 disposed in the vicinity of the exciting coil 82, the temperature-sensitive magnetic member 64 disposed on the inner peripheral surface side of the fixing belt 61, etc. When the magnetic force acts, vibration (magnetostriction) is generated in the exciting coil 82 itself. Therefore, if the excitation coil 82 is fixed to the support 81 using a so-called rigid body (material having a high Young's modulus) such as an adhesive, vibration of the excitation coil 82 due to long-term cumulative use becomes a factor. Thus, peeling between the exciting coil 82 and a rigid body such as an adhesive that fixes the exciting coil 82 is likely to occur. When the exciting coil 82 is peeled off from the adhesive or the like, the position of the exciting coil 82 on the support surface 81a is shifted or the exciting coil 82 is deformed. As a result, the distance between the exciting coil 82 and the fixing belt 61 deviates from the original design value, and the density of magnetic lines of force (magnetic flux density) passing through the fixing belt 61 via the magnetic core 84 varies partially on the surface of the fixing belt 61. Arise. As a result, the magnitude of the eddy current I generated in the fixing belt 61 may be non-uniform, and the amount of heat generated on the surface of the fixing belt 61 may vary in the longitudinal direction, resulting in uneven fixing.

また、接着剤等の剛性体を用いて励磁コイル82を支持体81に固定する場合には、接着剤等が固化するまでの間、励磁コイル82の全面を支持体81との位置ずれが生じないように固定しておく必要がある。ところが、励磁コイル82は例えばリッツ線を閉ループ状に束ねて接着されたものであるため、変形が生じ易い。そのため、接着剤等が固化するまでの間に励磁コイル82が変形や位置ずれを起こし、励磁コイル82の支持体81に対する位置精度が低下する場合がある。励磁コイル82の支持体81に対する位置精度が低下すると、上記と同様に、定着ベルト61表面での発熱量に部分的なばらつきが生じる。   Further, when the excitation coil 82 is fixed to the support 81 using a rigid body such as an adhesive, the entire surface of the excitation coil 82 is displaced from the support 81 until the adhesive or the like is solidified. It is necessary to fix so that there is no. However, since the exciting coil 82 is, for example, a litz wire bundled in a closed loop and bonded, the deformation is likely to occur. For this reason, the exciting coil 82 may be deformed or displaced until the adhesive or the like is solidified, and the positional accuracy of the exciting coil 82 with respect to the support 81 may be lowered. When the positional accuracy of the excitation coil 82 with respect to the support 81 is lowered, the amount of heat generated on the surface of the fixing belt 61 is partially varied as described above.

そこで、本実施の形態のIHヒータ80では、例えばシリコーンゴム等やフッ素ゴム等の弾性体で構成された弾性支持部材83が、励磁コイル82を支持体81に対して押圧することで支持面81aに密着するように支持する構成を採用している。弾性体で構成された弾性支持部材83は、励磁コイル82の振動を吸収しながら、励磁コイル82の振動に合わせて弾性支持部材83自身が弾性変形する。それにより、定着ユニット60の長期に亘る累積使用によって励磁コイル82の振動の累積数が多大となっても、弾性支持部材83と励磁コイル82との間は剥離せず、支持体81と励磁コイル82との間を初期に設定された両者の位置関係に維持する。
また、弾性支持部材83は、製造時に厚さ(設定値)が予め定めた寸法精度に収まるように管理できる。それにより、励磁コイル82を支持面81a上に支持する押圧力が長手方向に亘って略均等となるように設定することは容易である。さらには、本実施の形態のIHヒータ80では、励磁コイル82の長手方向に沿って分割して設けられた複数の磁心84が、弾性支持部材83を長手方向に亘って均一に押圧する。それにより、励磁コイル82と支持面81aとの密着性が長手方向に亘って高められる。
加えて、IHヒータ80の製造時には、接着剤等が固化するまでの時間を要さず、短時間で励磁コイル82が取り付けられる。
Therefore, in the IH heater 80 of the present embodiment, the elastic support member 83 made of an elastic body such as silicone rubber or fluorine rubber presses the excitation coil 82 against the support 81 to support the surface 81a. The structure which supports so that it closely_contact | adheres to is adopted. The elastic support member 83 formed of an elastic body elastically deforms itself according to the vibration of the excitation coil 82 while absorbing the vibration of the excitation coil 82. Accordingly, even if the cumulative number of vibrations of the excitation coil 82 becomes large due to the cumulative use of the fixing unit 60 over a long period of time, the elastic support member 83 and the excitation coil 82 are not separated, and the support 81 and the excitation coil are separated. 82 is maintained in the initial positional relationship.
Further, the elastic support member 83 can be managed so that the thickness (set value) is within a predetermined dimensional accuracy at the time of manufacture. Thereby, it is easy to set the pressing force for supporting the exciting coil 82 on the support surface 81a so as to be substantially uniform over the longitudinal direction. Furthermore, in the IH heater 80 of the present embodiment, the plurality of magnetic cores 84 provided by being divided along the longitudinal direction of the excitation coil 82 presses the elastic support member 83 uniformly over the longitudinal direction. Thereby, the adhesiveness of the exciting coil 82 and the support surface 81a is improved over the longitudinal direction.
In addition, when the IH heater 80 is manufactured, the exciting coil 82 is attached in a short time without requiring time until the adhesive or the like is solidified.

次に、定着ベルト61の幅方向に沿って複数配置された磁心84の各々は、内周側円弧面84bが支持面81a上に長手方向中心軸axisに沿って平行に配置された一対の磁心支持部81b1,81b2によって支持される。
図12は、磁心84が一対の磁心支持部81b1,81b2に支持される状態を示した断面構成図である。図12に示したように、一対の磁心支持部81b1,81b2は、定着ベルト61表面と予め定めた間隙g1を保つように形成/設定されている支持体81の支持面81a上に配置されている。また、一対の磁心支持部81b1および磁心支持部81b2は、支持面81aの長手方向中心軸axis(図11も参照)に対して対称な位置に配置されている。すなわち、磁心支持部81b1外壁と長手方向中心軸axisとの距離と、磁心支持部81b2外壁と長手方向中心軸axisとの距離とは、等しく(=w)設定されている。また、磁心支持部81b1外壁の高さと磁心支持部81b2外壁の高さとは、等しく(=h)設定されている。
Next, each of the plurality of magnetic cores 84 arranged along the width direction of the fixing belt 61 has a pair of magnetic cores in which the inner circumferential arc surface 84b is arranged in parallel along the longitudinal center axis axis on the support surface 81a. It is supported by the support portions 81b1 and 81b2.
FIG. 12 is a cross-sectional configuration diagram illustrating a state in which the magnetic core 84 is supported by the pair of magnetic core support portions 81b1 and 81b2. As shown in FIG. 12, the pair of magnetic core support portions 81b1 and 81b2 are disposed on the support surface 81a of the support 81 formed / set so as to maintain a predetermined gap g1 from the surface of the fixing belt 61. Yes. Further, the pair of magnetic core support portions 81b1 and the magnetic core support portions 81b2 are disposed at positions symmetrical with respect to the longitudinal center axis axis (see also FIG. 11) of the support surface 81a. That is, the distance between the outer wall of the magnetic core support portion 81b1 and the longitudinal center axis axis and the distance between the outer wall of the magnetic core support portion 81b2 and the longitudinal center axis axis are set equal (= w). Further, the height of the outer wall of the magnetic core support portion 81b1 and the height of the outer wall of the magnetic core support portion 81b2 are set to be equal (= h).

なお、長手方向中心軸axisは、図11にも示したが、定着ベルト61の移動方向と直交する直線である。特に、長手方向中心軸axisを励磁コイル82の中心軸と支持面81aとが交差する長手方向に沿った直線とすれば、励磁コイル82にて発生した交流磁界が磁心84の定着ベルト61の移動方向の前方と後方とに均等に振り分けられる。   The longitudinal center axis axis is a straight line orthogonal to the moving direction of the fixing belt 61 as shown in FIG. In particular, if the longitudinal center axis axis is a straight line along the longitudinal direction where the center axis of the excitation coil 82 and the support surface 81 a intersect, the alternating magnetic field generated by the excitation coil 82 moves the fixing belt 61 of the magnetic core 84. It is equally distributed between the front and back of the direction.

一方、各磁心84の内周側円弧面84bは、各磁心84が一対の磁心支持部81b1,81b2によって支持された際に、支持面81aが構成する円(cir1)と中心を同じくして(同心円で)形成され、そして、支持面81aとは予め定めた間隙g2が設定される円(cir2)上に設定されるように形成されている。   On the other hand, the inner circumferential arc surface 84b of each magnetic core 84 has the same center as the circle (cir1) formed by the support surface 81a when each magnetic core 84 is supported by the pair of magnetic core support portions 81b1 and 81b2 ( The support surface 81a is formed on a circle (cir2) in which a predetermined gap g2 is set.

それにより、各磁心84の内周側円弧面84bは、定着ベルト61移動方向(円弧方向)の何れの位置が一対の磁心支持部81b1,81b2に支持されようとも、支持面81aとは間隙g2が設定される。すなわち、各磁心84の内周側円弧面84bは、磁心支持部81b1外壁の頂点b1と磁心支持部81b2外壁の頂点b2とを通る円(cir2)の一部として構成される。そして、この円(cir2)は、支持面81a(=cir1)と同心である。そのため、内周側円弧面84bの何れの位置が一対の磁心支持部81b1,81b2に支持された場合であっても、内周側円弧面84bと円cir2とは一致するので、内周側円弧面84bと支持面81aとは間隙g2が設定される。   As a result, the inner circumferential arc surface 84b of each magnetic core 84 is separated from the support surface 81a by a gap g2 regardless of which position in the moving direction (arc direction) of the fixing belt 61 is supported by the pair of magnetic core support portions 81b1 and 81b2. Is set. That is, the inner circumferential arc surface 84b of each magnetic core 84 is configured as a part of a circle (cir2) passing through the vertex b1 of the outer wall of the magnetic core support portion 81b1 and the vertex b2 of the outer wall of the magnetic core support portion 81b2. The circle (cir2) is concentric with the support surface 81a (= cir1). Therefore, even if any position of the inner circumferential side arc surface 84b is supported by the pair of magnetic core support portions 81b1 and 81b2, the inner circumferential side arc surface 84b and the circle cil2 coincide with each other. A gap g2 is set between the surface 84b and the support surface 81a.

ところで、磁心84を構成するフェライトは、一般に、成型後の熱処理によって形状にばらつきが生じ易く、寸法精度を高めることが難しい材質である。そのため、成型および熱処理された磁心84の形状に基づいて磁心84と励磁コイル82との位置を設定しようとすると、両者間の位置精度は低下する。しかし、磁心84と励磁コイル82との位置関係は、IHヒータ80から出力される交流磁界に大きな影響を与える。実験によれば、例えば、磁心84と励磁コイル82との間隙が0.5mm変動すると、励磁コイル82と励磁回路88とで構成される電気回路系の抵抗(R)およびインダクタンス(L)は10%程度変化する。そのため、磁心84と励磁コイル82との位置精度が低下すると、上記した励磁コイル82と支持体81との位置精度の場合と同様に、定着ベルト61表面での発熱量に部分的なばらつきが生じる。
その一方で、磁心84の長さ(length)や厚み(thick)等の磁心84の形状を決定するすべての要素について寸法精度を高めることができなくとも、磁心84の一部分である内周側円弧面84bだけを精度良く形成することは可能である。そこで、本実施の形態では、内周側円弧面84bを磁心84の基準位置とし、内周側円弧面84bを用いた上記の構成により、磁心84と励磁コイル82との位置精度を高めている。
By the way, the ferrite constituting the magnetic core 84 is generally a material whose shape tends to vary due to the heat treatment after molding, and it is difficult to improve the dimensional accuracy. Therefore, if it is going to set the position of the magnetic core 84 and the exciting coil 82 based on the shape of the magnetic core 84 which was shape | molded and heat-processed, the positional accuracy between both will fall. However, the positional relationship between the magnetic core 84 and the exciting coil 82 greatly affects the AC magnetic field output from the IH heater 80. According to the experiment, for example, when the gap between the magnetic core 84 and the exciting coil 82 varies by 0.5 mm, the resistance (R) and inductance (L) of the electric circuit system constituted by the exciting coil 82 and the exciting circuit 88 are 10 % Changes. For this reason, when the positional accuracy between the magnetic core 84 and the exciting coil 82 is lowered, as in the case of the positional accuracy between the exciting coil 82 and the support 81 described above, a partial variation occurs in the amount of heat generated on the surface of the fixing belt 61. .
On the other hand, even if it is not possible to improve the dimensional accuracy of all the elements that determine the shape of the magnetic core 84 such as the length and thickness of the magnetic core 84, the inner circumferential arc that is a part of the magnetic core 84 can be obtained. It is possible to form only the surface 84b with high accuracy. Therefore, in the present embodiment, the position accuracy of the magnetic core 84 and the exciting coil 82 is increased by the above-described configuration using the inner circumferential arc surface 84b as the reference position of the magnetic core 84 and the inner circumferential arc surface 84b. .

またその際に、磁心84の内周側円弧面84bは、定着ベルト61移動方向の長さlength(図12参照)が定着ベルト61の移動方向に関して励磁コイル82が配置される領域全体を覆う(ラップする)ように形成されている。励磁コイル82の配置領域の一部に内周側円弧面84bよりも外側に位置する領域が存在すると、励磁コイル82にて生成された交流磁界には磁心84内部に誘導されない磁力線(磁束)が発生し、磁心84内部に誘導される磁束数が減少する。その場合には、定着ベルト61(導電発熱層612)での発熱効率が低下する。そのため、内周側円弧面84bの長さlengthを励磁コイル82の配置領域全体を覆うように形成する。   At this time, the inner circumferential arc surface 84b of the magnetic core 84 covers the entire region in which the length of the fixing belt 61 in the moving direction (see FIG. 12) is arranged with respect to the moving direction of the fixing belt 61. It is formed to wrap. If a region located outside the inner peripheral arcuate surface 84b exists in a part of the arrangement region of the exciting coil 82, a magnetic field line (magnetic flux) that is not induced in the magnetic core 84 is generated in the AC magnetic field generated by the exciting coil 82. The number of magnetic fluxes generated and induced inside the magnetic core 84 decreases. In that case, the heat generation efficiency in the fixing belt 61 (conductive heat generation layer 612) is lowered. Therefore, the length length of the inner circumferential arc surface 84b is formed so as to cover the entire arrangement region of the exciting coil 82.

その際にも、上記した理由から、磁心84の長さlengthについて高い寸法精度を得ることは難しい。しかし、各磁心84において、励磁コイル82が配置される領域全体を覆う長さ以上であって、支持面81aの定着ベルト61移動方向両側部に配置された磁心規制部81c相互間の長さよりも小さいという比較的広い範囲での寸法精度は容易に実現できる。それにより、磁心84の長さlengthについては、励磁コイル82が配置される領域全体を覆う長さ以上であって、支持面81aに配置された磁心規制部81c相互間の長さよりも小さい範囲での寸法精度を許容して、磁心84を製造する。そして、一対の磁心支持部81b1,81b2により、支持面81aの両側部に配置された規制部の一例としての磁心規制部81c相互の間で、磁心84が定着ベルト61移動方向に沿って移動自在に支持する。   At this time, it is difficult to obtain high dimensional accuracy for the length length of the magnetic core 84 for the reason described above. However, each magnetic core 84 is longer than the length covering the entire region where the exciting coil 82 is disposed, and is longer than the length between the magnetic core restricting portions 81c disposed on both sides of the support surface 81a in the moving direction of the fixing belt 61. The dimensional accuracy in a relatively wide range of small can be easily realized. As a result, the length length of the magnetic core 84 is not less than the length covering the entire region where the exciting coil 82 is disposed and is smaller than the length between the magnetic core restricting portions 81c disposed on the support surface 81a. The magnetic core 84 is manufactured with the dimensional accuracy of The magnetic core 84 is movable along the moving direction of the fixing belt 61 between the magnetic core restricting portions 81c as an example of the restricting portions disposed on both sides of the support surface 81a by the pair of magnetic core supporting portions 81b1 and 81b2. To support.

それにより、磁心84の長さlengthの寸法精度が比較的広い範囲に設定されたとしても、磁心84は、支持面81aに配置された磁心規制部81c相互間に挟まれた領域内に設置される。そして、磁心84の長さlengthに比較的広い範囲の寸法精度内でばらつきが生じ、各磁心84の内周側円弧面84bの何れの位置が一対の磁心支持部81b1,81b2に支持されようとも、上記したように、内周側円弧面84bと支持面81aとは間隙g2が設定される。さらには、磁心84は励磁コイル82の配置領域全体を覆うように設置される。
それにより、磁心84と励磁コイル82との位置精度は高まるとともに、励磁コイル82にて生成された交流磁界は磁心84内部に効率的に誘導される。また、磁心84と励磁コイル82との位置精度が高まることにより、磁心84が弾性支持部材83を長手方向に亘って均一に押圧するので、励磁コイル82と支持面81aとの密着性が長手方向に亘ってさらに高められる。
その一方で、磁心規制部81c相互間の長さの範囲内で磁心84の長さlengthにばらつきが生じて、定着ベルト61移動方向(円弧方向)について磁心84が何れの位置に配置された場合であっても、定着ベルト61(導電発熱層612)が加熱される図7に示した領域R1,R2の位置が円弧方向に多少移動するだけである。そのため、導電発熱層612の発熱効率への影響も少ない。
Thereby, even if the dimensional accuracy of the length length of the magnetic core 84 is set in a relatively wide range, the magnetic core 84 is installed in a region sandwiched between the magnetic core restricting portions 81c disposed on the support surface 81a. The Then, the length length of the magnetic core 84 varies within a relatively wide range of dimensional accuracy, and any position of the inner circumferential arc surface 84b of each magnetic core 84 is supported by the pair of magnetic core support portions 81b1 and 81b2. As described above, the gap g2 is set between the inner circumferential arc surface 84b and the support surface 81a. Furthermore, the magnetic core 84 is installed so as to cover the entire arrangement region of the exciting coil 82.
As a result, the positional accuracy between the magnetic core 84 and the exciting coil 82 is increased, and the alternating magnetic field generated by the exciting coil 82 is efficiently induced inside the magnetic core 84. Further, since the positional accuracy between the magnetic core 84 and the exciting coil 82 is increased, the magnetic core 84 uniformly presses the elastic support member 83 in the longitudinal direction, so that the adhesion between the exciting coil 82 and the support surface 81a is longitudinal. It is further increased over time.
On the other hand, when the length 84 of the magnetic core 84 varies within the range of the length between the magnetic core restricting portions 81c, the magnetic core 84 is arranged at any position in the moving direction (arc direction) of the fixing belt 61. Even so, the positions of the regions R1 and R2 shown in FIG. 7 where the fixing belt 61 (conductive heat generating layer 612) is heated are only slightly moved in the arc direction. Therefore, there is little influence on the heat generation efficiency of the conductive heat generation layer 612.

<IHヒータでの磁心および調整用磁心の長手方向位置の設定方法の説明>
次に、本実施の形態のIHヒータ80における磁心84および調整用磁心100の支持体81の長手方向位置に関する設定方法について述べる。
上記したように、磁心84および調整用磁心100は、支持部材の一例としての支持体81(一対の磁心支持部81b1,81b2)により、励磁コイル82との層方向位置が設定される。一方、磁心84は、磁心支持部81b1外壁と磁心支持部81b2外壁とに設置された際には、支持体81の長手方向に移動自在に支持されている。同様に、調整用磁心100は、磁心支持部81b1,81b2の内側領域(磁心支持部81b1内壁と磁心支持部81b2内壁とに囲まれた領域)に設置された際には、支持体81の長手方向に移動自在に支持されている。そして、支持体81の長手方向に移動自在に支持された状態の磁心84および調整用磁心100については、位置設定部材の一例としての磁心設定部材87が支持体81長手方向の位置を設定し固定する。すなわち、磁心84および調整用磁心100が磁心支持部81b1,81b2に設置された状態では、磁心84および調整用磁心100は長手方向に自由に移動でき、磁心設定部材87に設けられた長手方向位置設定部の配置構成に応じて、磁心84および調整用磁心100の長手方向位置は長手方向位置設定部の配置位置に固定される。
<Description of Setting Method of Longitudinal Position of Magnetic Core and Adjustment Magnetic Core in IH Heater>
Next, a setting method related to the longitudinal position of the support body 81 of the magnetic core 84 and the adjustment magnetic core 100 in the IH heater 80 of the present embodiment will be described.
As described above, the position of the magnetic core 84 and the adjustment magnetic core 100 in the layer direction with respect to the exciting coil 82 is set by the support 81 (a pair of magnetic core support portions 81b1 and 81b2) as an example of a support member. On the other hand, when the magnetic core 84 is installed on the outer wall of the magnetic core support portion 81b1 and the outer wall of the magnetic core support portion 81b2, it is supported movably in the longitudinal direction of the support body 81. Similarly, when the adjustment magnetic core 100 is installed in the inner region of the magnetic core support portions 81b1 and 81b2 (the region surrounded by the inner wall of the magnetic core support portion 81b1 and the inner wall of the magnetic core support portion 81b2), the length of the support body 81 is increased. It is supported movably in the direction. For the magnetic core 84 and the adjustment magnetic core 100 that are supported movably in the longitudinal direction of the support 81, a magnetic core setting member 87 as an example of a position setting member sets and fixes the position in the longitudinal direction of the support 81. To do. That is, in a state where the magnetic core 84 and the adjustment magnetic core 100 are installed on the magnetic core support portions 81 b 1 and 81 b 2, the magnetic core 84 and the adjustment magnetic core 100 can freely move in the longitudinal direction, and the longitudinal position provided on the magnetic core setting member 87. The longitudinal positions of the magnetic core 84 and the adjusting magnetic core 100 are fixed to the arrangement position of the longitudinal position setting section according to the arrangement configuration of the setting section.

図13は、磁心設定部材87が磁心84および調整用磁心100の長手方向位置を設定する状態を説明する斜視図である。図13に示したように、支持面81a上に励磁コイル82が設置された支持体81には、弾性支持部材83を挟んで磁心84が設置される。各磁心84は、磁心支持部81b1,81b2の外壁に支持されるが、この段階で各磁心84の支持体81長手方向(図中実線矢印)への移動を規制する部材は支持体81に設けられていない。そのため、磁心84は長手方向に自由に移動できる状態で、磁心支持部81b1,81b2外壁に支持されている。
また、調整用磁心100は、磁心支持部81b1,81b2の内壁内側に支持されるが、この段階で各調整用磁心100の支持体81長手方向(図中実線矢印)への移動を規制する部材は支持体81に設けられていない。そのため、調整用磁心100は長手方向に自由に移動できる状態で、磁心支持部81b1,81b2の内壁内側に支持されている。
FIG. 13 is a perspective view illustrating a state in which the magnetic core setting member 87 sets the longitudinal positions of the magnetic core 84 and the adjustment magnetic core 100. As shown in FIG. 13, the magnetic core 84 is installed on the support 81 having the excitation coil 82 installed on the support surface 81 a with the elastic support member 83 interposed therebetween. Each magnetic core 84 is supported on the outer wall of the magnetic core support portions 81b1 and 81b2. At this stage, a member that restricts the movement of each magnetic core 84 in the longitudinal direction of the support 81 (solid arrow in the figure) is provided on the support 81. It is not done. Therefore, the magnetic core 84 is supported by the outer walls of the magnetic core support portions 81b1 and 81b2 in a state where it can freely move in the longitudinal direction.
Further, the adjustment magnetic core 100 is supported on the inner walls of the magnetic core support portions 81b1 and 81b2. At this stage, the member that regulates the movement of each adjustment magnetic core 100 in the longitudinal direction of the support 81 (solid arrow in the figure). Is not provided on the support 81. Therefore, the adjustment magnetic core 100 is supported on the inner walls of the magnetic core support portions 81b1 and 81b2 in a state where it can freely move in the longitudinal direction.

そして、この状態で、磁心84および調整用磁心100の上方から磁心設定部材87が設置される(図中破線矢印)。磁心設定部材87の下方面(支持体81側の面)には、磁心84の長手方向の位置を定める第1の長手方向位置設定部87aと、調整用磁心100の長手方向の位置を定める第2の長手方向位置設定部87bとが、IHヒータ80に配置される複数の磁心84と複数の調整用磁心100それぞれに対応させて配置されている。
それにより、磁心設定部材87が設置されると、各磁心84は第1の長手方向位置設定部87aにより長手方向位置が予め定めた位置に設定される。同様に、各調整用磁心100は第2の長手方向位置設定部87bにより長手方向位置が予め定めた位置に設定される。
すなわち、磁心設定部材87に配置された第1の長手方向位置設定部87aおよび第2の長手方向位置設定部87bの配置位置を選択することで、各磁心84および各調整用磁心100の長手方向位置は、支持体81により規制されず、自由に設定される。さらには、各磁心84および各調整用磁心100の数を増減して設定することもできる。
In this state, the magnetic core setting member 87 is installed from above the magnetic core 84 and the adjustment magnetic core 100 (broken arrows in the figure). A first longitudinal position setting portion 87a that defines the longitudinal position of the magnetic core 84 and a longitudinal position of the adjusting magnetic core 100 are defined on the lower surface of the magnetic core setting member 87 (the surface on the support 81 side). The two longitudinal direction position setting portions 87b are arranged in correspondence with the plurality of magnetic cores 84 and the plurality of adjustment magnetic cores 100 arranged in the IH heater 80, respectively.
Thereby, when the magnetic core setting member 87 is installed, each magnetic core 84 is set to a position where the longitudinal direction position is predetermined by the first longitudinal direction position setting portion 87a. Similarly, each of the adjustment magnetic cores 100 is set at a predetermined position in the longitudinal direction by the second longitudinal position setting unit 87b.
That is, by selecting the arrangement positions of the first longitudinal position setting portion 87a and the second longitudinal position setting portion 87b disposed on the magnetic core setting member 87, the longitudinal direction of each magnetic core 84 and each adjustment magnetic core 100 is selected. The position is not restricted by the support 81 and can be set freely. Furthermore, the number of each magnetic core 84 and each adjustment magnetic core 100 can be increased or decreased.

一般に、例えば定着ベルト61や励磁コイル82等のような構成要素間の位置関係や、定着ベルト61や感温磁性部材64等のような構成要素の配置位置には、設計上の公差(許容される範囲内での製造上のばらつき)が存在する。それにより、励磁コイル82と励磁回路88とで構成される電気回路系の抵抗(R)およびインダクタンス(L)は、定着ユニット60の構成に対応して異なるばらつき領域を有する。そのため、励磁コイル82に駆動電力を供給する励磁回路88を設計するに際しては、電気回路系の抵抗(R)およびインダクタンス(L)のばらつきに合わせて、励磁回路88を構成するトランジスタ等の回路素子の耐電圧や短絡電流を想定し、励磁回路88の設計が行われる。そのために、通常は、定着ユニット60の構成毎に異なる仕様の励磁回路88が設計される。   In general, for example, the positional relationship between the components such as the fixing belt 61 and the exciting coil 82 and the arrangement position of the components such as the fixing belt 61 and the temperature-sensitive magnetic member 64 are allowed by design tolerances (allowable). Variation in manufacturing range). Accordingly, the resistance (R) and inductance (L) of the electric circuit system configured by the exciting coil 82 and the exciting circuit 88 have different variation regions corresponding to the configuration of the fixing unit 60. Therefore, when designing the excitation circuit 88 that supplies driving power to the excitation coil 82, circuit elements such as transistors that constitute the excitation circuit 88 in accordance with variations in resistance (R) and inductance (L) of the electric circuit system. The excitation circuit 88 is designed on the assumption of the withstand voltage and the short-circuit current. Therefore, normally, the excitation circuit 88 having different specifications is designed for each configuration of the fixing unit 60.

図14は、構成の異なる定着ユニット60での抵抗(R)およびインダクタンス(L)のばらつきに合わせて設計される励磁回路88の公差範囲を例示した図である。
図14に示したように、タイプAの定着ユニット60では、抵抗Rのばらつき範囲であるR_AmaxからR_Aminの範囲、およびインダクタンスLのばらつき範囲であるL_AmaxからL_Aminの範囲に対応させた仕様の励磁回路88が設計される。また、タイプBの定着ユニット60では、抵抗Rのばらつき範囲であるR_BmaxからR_Bminの範囲、およびインダクタンスLのばらつき範囲であるL_BmaxからL_Bminの範囲に対応させた仕様の励磁回路88が設計される。
しかし、そのために、タイプAの定着ユニット60およびタイプBの定着ユニット60に対応させた励磁回路88では、互いに仕様が異なるために互換性がなくなる。また、仕様が異なる励磁回路88を設計し製造するためのコストも上昇する。
FIG. 14 is a diagram illustrating a tolerance range of the excitation circuit 88 designed in accordance with variations in resistance (R) and inductance (L) in the fixing unit 60 having different configurations.
As shown in FIG. 14, in the fixing unit 60 of type A, the excitation circuit having specifications corresponding to the range of resistance R variation from R_Amax to R_Amin and the range of inductance L variation from L_Amax to L_Amin. 88 is designed. In the type B fixing unit 60, the excitation circuit 88 having a specification corresponding to the variation range of the resistance R from R_Bmax to R_Bmin and the variation range of the inductance L from L_Bmax to L_Bmin is designed.
However, the excitation circuits 88 corresponding to the type A fixing unit 60 and the type B fixing unit 60 are not compatible because their specifications are different from each other. Further, the cost for designing and manufacturing the excitation circuit 88 having different specifications also increases.

そこで、本実施の形態のIHヒータ80では、構成が異なる定着ユニット60に対して抵抗Rのばらつき範囲およびインダクタンスLのばらつき範囲が近似するように、各磁心84および各調整用磁心100の長手方向位置が、自由に設定され、さらには、各磁心84および各調整用磁心100の数を増減して設定されるように構成している。
各磁心84および各調整用磁心100の長手方向位置や数を変更することで、励磁コイル82と励磁回路88とで構成される電気回路系の抵抗RおよびインダクタンスLが調整される。そのため、構成が異なる定着ユニット60における抵抗RおよびインダクタンスLを相互に近似するように一方または双方の定着ユニット60の各磁心84および各調整用磁心100の長手方向位置や数を変更すれば、励磁回路88の相互互換性が実現する。例えば、図14のタイプBの定着ユニット60での抵抗Rのばらつき範囲およびインダクタンスLのばらつき範囲を、タイプAの定着ユニット60での抵抗Rのばらつき範囲およびインダクタンスLのばらつき範囲に近づけるように各磁心84および各調整用磁心100の長手方向位置や数を設定すれば、タイプAの定着ユニット60用に設計された励磁回路88がタイプBの定着ユニット60においても使用可能となる。具体的には、例えば調整用磁心100の配置数を増やせば、抵抗RやインダクタンスLは大きくなる傾向を示す。そのため、例えばタイプBの定着ユニット60において調整用磁心100の長手方向位置や数を調整することで、例えばタイプBの定着ユニット60の抵抗Rのばらつき範囲およびインダクタンスLのばらつき範囲を、タイプAの定着ユニット60での抵抗Rのばらつき範囲およびインダクタンスLのばらつき範囲に近づけることができる。
Therefore, in the IH heater 80 of the present embodiment, the longitudinal direction of each magnetic core 84 and each adjustment magnetic core 100 is such that the variation range of the resistance R and the variation range of the inductance L are approximated to the fixing unit 60 having a different configuration. The positions are set freely, and further, the positions are set by increasing / decreasing the numbers of the magnetic cores 84 and the adjustment magnetic cores 100.
By changing the longitudinal position and number of each magnetic core 84 and each adjustment magnetic core 100, the resistance R and inductance L of the electric circuit system constituted by the excitation coil 82 and the excitation circuit 88 are adjusted. Therefore, if the longitudinal positions and the numbers of the magnetic cores 84 and the adjustment magnetic cores 100 of one or both of the fixing units 60 are changed so as to approximate the resistance R and the inductance L in the fixing units 60 having different configurations, excitation is performed. Mutual compatibility of the circuits 88 is achieved. For example, the variation range of the resistance R and the variation range of the inductance L in the fixing unit 60 of type B in FIG. 14 are made close to the variation range of the resistance R and the variation range of the inductance L in the fixing unit 60 of type A. If the longitudinal positions and the numbers of the magnetic cores 84 and the adjustment magnetic cores 100 are set, the excitation circuit 88 designed for the type A fixing unit 60 can be used in the type B fixing unit 60. Specifically, for example, if the number of adjusting magnetic cores 100 is increased, the resistance R and the inductance L tend to increase. Therefore, for example, by adjusting the longitudinal position and number of the adjusting magnetic core 100 in the type B fixing unit 60, for example, the variation range of the resistance R and the variation range of the inductance L of the type B fixing unit 60 can be reduced. The variation range of the resistance R and the variation range of the inductance L in the fixing unit 60 can be approached.

そのために、本実施の形態のIHヒータ80では、各磁心84および各調整用磁心100の長手方向位置が自由に設定でき、さらには、各磁心84および各調整用磁心100の数を増減して設定できるように構成している。それにより、構成が異なる定着ユニット60にて励磁コイル82と励磁回路88とで構成される電気回路系の抵抗RおよびインダクタンスLのばらつき範囲を近似させて、共通の励磁回路88の使用を可能としている。   Therefore, in the IH heater 80 of the present embodiment, the longitudinal positions of the magnetic cores 84 and the adjustment magnetic cores 100 can be freely set. Further, the number of the magnetic cores 84 and the adjustment magnetic cores 100 can be increased or decreased. It is configured so that it can be set. As a result, it is possible to use the common excitation circuit 88 by approximating the variation range of the resistance R and inductance L of the electric circuit system constituted by the excitation coil 82 and the excitation circuit 88 in the fixing unit 60 having a different configuration. Yes.

例えば、図15および図16は、励磁コイル82と励磁回路88とで構成される電気回路系の抵抗RおよびインダクタンスLのばらつき範囲を近似させるように、磁心84および調整用磁心100の長手方向位置や数を設定したIHヒータ80の構成例を示した図である。なお、図15および図16において、(b)はシールド85を取り外した状態のIHヒータ80の平面図、(a)は磁心設定部材87の図16(b)でのX−X断面部である。
まず図15に示した構成のIHヒータ80では、9個の幅a1の磁心84を相互の間隔がa2となるように設定し、7個の幅b1の調整用磁心100を磁心84と磁心84との間で磁心84との間隔がb2となるように設定して配置している。ただし、図中左端での磁心84相互の間隔は、左端部での磁界の低下を抑えるために、間隔a2よりも近接させている。
このような磁心84および調整用磁心100の長手方向位置を設定するために、磁心設定部材87には、第1の長手方向位置設定部87aおよび第2の長手方向位置設定部87bが配置されている。すなわち、磁心設定部材87には、図中左端の磁心84を除き、幅a1の磁心84を相互の間隔がa2となるように設定する第1の長手方向位置設定部87aと、幅b1の調整用磁心100を磁心84と磁心84との間で磁心84との間隔がb2となるように設定する第2の長手方向位置設定部87bとが配置されている。
For example, FIGS. 15 and 16 show longitudinal positions of the magnetic core 84 and the adjusting magnetic core 100 so as to approximate the variation ranges of the resistance R and the inductance L of the electric circuit system constituted by the exciting coil 82 and the exciting circuit 88. It is the figure which showed the structural example of the IH heater 80 to which the number was set. 15 and 16, (b) is a plan view of the IH heater 80 with the shield 85 removed, and (a) is an XX cross-section of the magnetic core setting member 87 in FIG. 16 (b). .
First, in the IH heater 80 having the configuration shown in FIG. 15, the nine magnetic cores 84 having the width a1 are set so that the distance between the magnetic cores 84 is a2, and the seven adjusting magnetic cores 100 having the width b1 are formed. Between the magnetic core 84 and the magnetic core 84 is set so as to be b2. However, the interval between the magnetic cores 84 at the left end in the figure is set closer to the interval a2 in order to suppress a decrease in the magnetic field at the left end portion.
In order to set the longitudinal position of the magnetic core 84 and the adjusting magnetic core 100, the magnetic core setting member 87 is provided with a first longitudinal position setting portion 87a and a second longitudinal position setting portion 87b. Yes. That is, in the magnetic core setting member 87, the first longitudinal position setting portion 87a for setting the magnetic core 84 having the width a1 to be a2 apart from the magnetic core 84 at the left end in the drawing and the adjustment of the width b1. A second longitudinal position setting portion 87b for setting the magnetic core 100 between the magnetic core 84 and the magnetic core 84 so that the distance between the magnetic core 84 is b2 is disposed.

一方、図16に示した構成のIHヒータ80では、12個の幅a1の磁心84を相互の間隔がa3となるように設定して配置し、調整用磁心100を配置していない。ただし、図15の場合と同様に、図中左端での磁心84相互の間隔は、左端部での磁界の低下を抑えるために、間隔a3よりも近接させている。
このような磁心84の長手方向位置を設定するために、磁心設定部材87には、第1の長手方向位置設定部87aが配置され、第2の長手方向位置設定部87bは配置されていない。すなわち、磁心設定部材87には、図中左端の磁心84を除き、幅a1の磁心84を相互の間隔がa2となるように設定する第1の長手方向位置設定部87aだけが配置されている。
On the other hand, in the IH heater 80 having the configuration shown in FIG. 16, twelve magnetic cores 84 having a width a1 are arranged so that the distance between them is a3, and the adjusting magnetic core 100 is not arranged. However, as in the case of FIG. 15, the interval between the magnetic cores 84 at the left end in the drawing is closer to the interval a3 in order to suppress a decrease in the magnetic field at the left end portion.
In order to set such a longitudinal position of the magnetic core 84, the magnetic core setting member 87 is provided with the first longitudinal direction position setting part 87a and is not provided with the second longitudinal direction position setting part 87b. That is, the magnetic core setting member 87 is provided with only the first longitudinal position setting portion 87a for setting the magnetic cores 84 having the width a1 so that the mutual interval is a2, except for the magnetic core 84 at the left end in the drawing. .

この場合において、図15および図16に示した構成のIHヒータ80では、磁心84および調整用磁心100の長手方向位置や数、調整用磁心100の設置の有無、さらには、それに対応させた磁心設定部材87での第1の長手方向位置設定部87aおよび第2の長手方向位置設定部87bの配置構成を除き、IHヒータ80は同様に構成されている。すなわち、図15および図16に示した構成のIHヒータ80において、支持体81、励磁コイル82、弾性支持部材83、シールド85、加圧部材86、および励磁回路88は同様に構成されている。また、磁心84および調整用磁心100の形状や大きさもそれぞれ同様に構成されている。
そして、定着ユニット60におけるIHヒータ80以外の構成の全部または一部の相違に対応させて、励磁コイル82と励磁回路88とで構成される電気回路系の抵抗RおよびインダクタンスLのばらつき範囲が近似するように、各磁心84および各調整用磁心100の長手方向位置を設定し、さらには、各磁心84および各調整用磁心100の数を設定している。
このような各磁心84および各調整用磁心100の配置設定を実現するために、本実施の形態のIHヒータ80では、各磁心84および各調整用磁心100の長手方向位置が自由に設定でき、さらには、各磁心84および各調整用磁心100の数を増減して設定できるように構成している。
In this case, in the IH heater 80 having the configuration shown in FIGS. 15 and 16, the longitudinal positions and the number of the magnetic cores 84 and the adjustment magnetic core 100, the presence / absence of the installation of the adjustment magnetic core 100, and the corresponding magnetic core Except for the arrangement configuration of the first longitudinal direction position setting portion 87a and the second longitudinal direction position setting portion 87b in the setting member 87, the IH heater 80 is configured similarly. That is, in the IH heater 80 having the configuration shown in FIGS. 15 and 16, the support 81, the excitation coil 82, the elastic support member 83, the shield 85, the pressurizing member 86, and the excitation circuit 88 are similarly configured. The shapes and sizes of the magnetic core 84 and the adjustment magnetic core 100 are also configured in the same manner.
Then, the variation range of the resistance R and the inductance L of the electric circuit system constituted by the exciting coil 82 and the exciting circuit 88 is approximated in correspondence with all or part of the configuration other than the IH heater 80 in the fixing unit 60. As described above, the longitudinal positions of the magnetic cores 84 and the adjustment magnetic cores 100 are set, and the numbers of the magnetic cores 84 and the adjustment magnetic cores 100 are set.
In order to realize such an arrangement setting of the magnetic cores 84 and the adjustment magnetic cores 100, in the IH heater 80 of the present embodiment, the longitudinal positions of the magnetic cores 84 and the adjustment magnetic cores 100 can be freely set. Further, the number of magnetic cores 84 and the number of adjusting magnetic cores 100 can be increased or decreased.

なお、図15および図16に示したIHヒータ80の構成例では、磁心84の数が異なる場合について示したが、抵抗RおよびインダクタンスLのばらつき範囲を近似させるに際して、磁心84の数が同数であり、調整用磁心100の有無だけが異なる構成となる場合もある。
また、調整用磁心100の長手方向位置および数については、IHヒータ80にて生成される交流磁界の支持体81長手方向での均一性を高めるような観点からの設定も行われる。
In the configuration example of the IH heater 80 shown in FIGS. 15 and 16, the case where the number of the magnetic cores 84 is different is shown. However, when approximating the variation range of the resistance R and the inductance L, the number of the magnetic cores 84 is the same. In some cases, only the presence or absence of the adjusting magnetic core 100 is different.
The longitudinal position and number of the adjustment magnetic core 100 are also set from the viewpoint of improving the uniformity of the alternating magnetic field generated by the IH heater 80 in the longitudinal direction of the support 81.

以上説明したように、本実施の形態の画像形成装置1に備えられる定着ユニット60では、定着ベルト61の内周面に近接させて感温磁性部材64を配置している。それにより、非通紙領域が過剰に昇温するのを抑制する。
また、定着ベルト61を電磁誘導加熱するIHヒータ80は、各磁心84および各調整用磁心100の長手方向位置が自由に設定でき、さらには、各磁心84および各調整用磁心100の数を増減して設定できるように構成している。それにより、構成が異なる定着ユニット60にて励磁コイル82と励磁回路88とで構成される電気回路系の抵抗RおよびインダクタンスLのばらつき範囲を近似させて、共通の励磁回路88の使用を可能としている。
As described above, in the fixing unit 60 provided in the image forming apparatus 1 of the present embodiment, the temperature-sensitive magnetic member 64 is disposed in the vicinity of the inner peripheral surface of the fixing belt 61. As a result, the temperature rise of the non-sheet passing region is suppressed excessively.
Further, the IH heater 80 that electromagnetically heats the fixing belt 61 can freely set the longitudinal positions of the magnetic cores 84 and the adjustment magnetic cores 100, and further increase or decrease the number of the magnetic cores 84 and the adjustment magnetic cores 100. And can be set. As a result, it is possible to use the common excitation circuit 88 by approximating the variation range of the resistance R and inductance L of the electric circuit system constituted by the excitation coil 82 and the excitation circuit 88 in the fixing unit 60 having a different configuration. Yes.

なお、本実施の形態では、感温磁性部材64を定着ベルト61とは非接触で配置し、感温磁性部材64自体は発熱し難い構成とした定着ユニット60について説明したが、本実施の形態のIHヒータ80は、感温磁性部材64を定着ベルト61と接触させて配置し、感温磁性部材64自体も発熱する構成の定着ユニット60についても適用できる。   In the present embodiment, the fixing unit 60 is described in which the temperature-sensitive magnetic member 64 is disposed in a non-contact manner with the fixing belt 61 and the temperature-sensitive magnetic member 64 itself does not easily generate heat. The IH heater 80 can be applied to the fixing unit 60 in which the temperature-sensitive magnetic member 64 is disposed in contact with the fixing belt 61 and the temperature-sensitive magnetic member 64 itself generates heat.

1…画像形成装置、60…定着装置、61…定着ベルト、62…加圧ロール、64…感温磁性部材、80…IHヒータ、81…支持部、81a…支持面、81b1,81b2…磁心支持部、81c…磁心規制部、82…励磁コイル、84…磁心、87…磁心設定部材、87a…第1の長手方向位置設定部、87b…第2の長手方向位置設定部、611…基材層、612…導電発熱層 DESCRIPTION OF SYMBOLS 1 ... Image forming apparatus, 60 ... Fixing device, 61 ... Fixing belt, 62 ... Pressure roll, 64 ... Temperature-sensitive magnetic member, 80 ... IH heater, 81 ... Support part, 81a ... Support surface, 81b1, 81b2 ... Magnetic core support Part, 81c ... magnetic core regulating part, 82 ... excitation coil, 84 ... magnetic core, 87 ... magnetic core setting member, 87a ... first longitudinal direction position setting part, 87b ... second longitudinal direction position setting part, 611 ... base material layer 612 ... conductive heat generating layer

Claims (13)

導電層を有し、当該導電層が電磁誘導加熱されることで記録材にトナーを定着する定着部材と、
前記定着部材の前記導電層と交差する交流磁界を発生させる磁界発生部材と、
前記定着部材の幅方向に沿って複数配置され、前記磁界発生部材にて発生した交流磁界の磁路を形成する磁路形成部材と、
複数の前記磁路形成部材を前記定着部材幅方向に移動自在に支持する支持部材と、
前記支持部材にて移動自在に支持された複数の前記磁路形成部材の各々を予め定めた前記定着部材の幅方向位置に設定して固定する位置設定部材と
を備えたことを特徴とする定着装置。
A fixing member having a conductive layer and fixing the toner to the recording material by electromagnetic induction heating of the conductive layer;
A magnetic field generating member that generates an alternating magnetic field that intersects the conductive layer of the fixing member;
A plurality of magnetic path forming members arranged along the width direction of the fixing member and forming a magnetic path of an alternating magnetic field generated by the magnetic field generating member;
A support member that movably supports the plurality of magnetic path forming members in the fixing member width direction;
A position setting member configured to set and fix each of the plurality of magnetic path forming members supported movably by the support member at a predetermined position in the width direction of the fixing member; apparatus.
前記定着部材の幅方向に沿って複数配置され、前記磁界発生部材にて発生した交流磁界を前記定着部材幅方向に均すように調整する調整磁性部材をさらに備え、
前記支持部材は、前記調整磁性部材を前記定着部材幅方向に移動自在に支持し、
前記位置設定部材は、前記支持部材にて移動自在に支持された前記調整磁性部材各々を予め定めた前記定着部材の幅方向位置に設定して固定することを特徴とする請求項1記載の定着装置。
A plurality of adjusting magnetic members arranged along the width direction of the fixing member and adjusting the AC magnetic field generated by the magnetic field generating member so as to equalize the fixing member width direction;
The support member supports the adjustment magnetic member movably in the fixing member width direction,
2. The fixing according to claim 1, wherein the position setting member sets and fixes each of the adjustment magnetic members supported movably by the support member at a predetermined position in the width direction of the fixing member. apparatus.
前記支持部材は、前記磁界発生部材を前記定着部材と予め定めた間隙を有する位置に設定する位置設定面と、前記磁路形成部材を当該位置設定面と予め定めた間隙を有する位置に設定しながら当該定着部材幅方向に移動自在に支持する位置設定部とを有し、
前記支持部材の前記位置設定部は、前記定着部材の移動方向と直交する方向に沿って平行に配置された一対の凸状部で構成され、前記磁路形成部材をさらに前記位置設定面に沿って当該定着部材の移動方向前後に移動自在に支持することを特徴とする請求項1記載の定着装置。
The support member sets the magnetic field generating member to a position having a predetermined gap from the fixing member, and sets the magnetic path forming member to a position having a predetermined gap from the position setting surface. While having a position setting unit that is movably supported in the fixing member width direction,
The position setting portion of the support member includes a pair of convex portions arranged in parallel along a direction orthogonal to the moving direction of the fixing member, and further extends the magnetic path forming member along the position setting surface. The fixing device according to claim 1, wherein the fixing device is supported so as to be movable forward and backward in the moving direction of the fixing member.
前記磁界発生部材と前記磁路形成部材との間に、当該磁界発生部材を前記支持部材表面に向けて押圧しながら弾性変形して当該磁界発生部材を当該支持部材表面に支持する弾性支持部材をさらに備えたことを特徴とする請求項1記載の定着装置。   An elastic support member that elastically deforms and supports the magnetic field generation member on the surface of the support member while pressing the magnetic field generation member toward the surface of the support member between the magnetic field generation member and the magnetic path forming member. The fixing device according to claim 1, further comprising: 前記定着部材を挟んで前記磁界発生部材と対向して配置され、透磁率が減少を開始する透磁率変化開始温度までの温度範囲にて当該磁界発生部材で発生させた交流磁界の磁路を形成し、当該透磁率変化開始温度を超える温度範囲にて当該磁界発生部材で発生された交流磁界を透過させる第2の磁路形成部材をさらに備えたことを特徴とする請求項1記載の定着装置。   A magnetic path of an alternating magnetic field generated by the magnetic field generation member is formed in a temperature range up to a magnetic permeability change start temperature at which the magnetic permeability starts to decrease. The fixing device according to claim 1, further comprising a second magnetic path forming member that transmits an alternating magnetic field generated by the magnetic field generating member in a temperature range that exceeds the permeability change start temperature. . トナー像を形成するトナー像形成手段と、
前記トナー像形成手段によって形成された前記トナー像を記録材上に転写する転写手段と、
前記記録材上に転写された前記トナー像を当該記録材に定着する定着手段とを有し、
前記定着手段は、
導電層を有し、当該導電層が電磁誘導加熱されることで記録材にトナーを定着する定着部材と、
前記定着部材の前記導電層と交差する交流磁界を発生させる磁界発生部材と、
前記定着部材の幅方向に沿って複数配置され、前記磁界発生部材にて発生した交流磁界の磁路を形成する磁路形成部材と、
複数の前記磁路形成部材を前記定着部材幅方向に移動自在に支持する支持部材と、
前記支持部材にて移動自在に支持された複数の前記磁路形成部材の各々を予め定めた前記定着部材の幅方向位置に設定して固定する位置設定部材と
を備えたことを特徴とする画像形成装置。
Toner image forming means for forming a toner image;
Transfer means for transferring the toner image formed by the toner image forming means onto a recording material;
Fixing means for fixing the toner image transferred onto the recording material to the recording material;
The fixing means is
A fixing member having a conductive layer and fixing the toner to the recording material by electromagnetic induction heating of the conductive layer;
A magnetic field generating member that generates an alternating magnetic field that intersects the conductive layer of the fixing member;
A plurality of magnetic path forming members arranged along the width direction of the fixing member and forming a magnetic path of an alternating magnetic field generated by the magnetic field generating member;
A support member that movably supports the plurality of magnetic path forming members in the fixing member width direction;
And a position setting member for setting and fixing each of the plurality of magnetic path forming members supported movably by the support member at a predetermined position in the width direction of the fixing member. Forming equipment.
前記定着手段は、前記定着部材の幅方向に沿って複数配置され、前記磁界発生部材にて発生した交流磁界を前記定着部材幅方向に均すように調整する調整磁性部材をさらに備え、
前記定着手段の前記支持部材は、前記調整磁性部材を前記定着部材幅方向に移動自在に支持し、
前記定着手段の前記位置設定部材は、前記支持部材にて移動自在に支持された前記調整磁性部材各々を予め定めた前記定着部材の幅方向位置に設定して固定することを特徴とする請求項6記載の画像形成装置。
The fixing unit further includes an adjustment magnetic member that is arranged in a plurality along the width direction of the fixing member and adjusts an alternating magnetic field generated by the magnetic field generation member so as to equalize the fixing member width direction.
The support member of the fixing unit supports the adjustment magnetic member so as to be movable in the fixing member width direction,
The position setting member of the fixing unit sets and fixes each of the adjustment magnetic members supported movably by the support member at a predetermined position in the width direction of the fixing member. 6. The image forming apparatus according to 6.
前記定着手段の前記支持部材は、前記磁界発生部材を前記定着部材と予め定めた間隙を有する位置に設定する位置設定面と、前記磁路形成部材を当該位置設定面と予め定めた間隙を有する位置に設定しながら当該定着部材幅方向に移動自在に支持する位置設定部とを有し、
前記支持部材の前記位置設定部は、前記定着部材の移動方向と直交する方向に沿って平行に配置された一対の凸状部で構成され、前記磁路形成部材をさらに前記位置設定面に沿って当該定着部材の移動方向前後に移動自在に支持することを特徴とする請求項6記載の画像形成装置。
The support member of the fixing unit has a position setting surface for setting the magnetic field generating member to a position having a predetermined gap from the fixing member, and a gap for setting the magnetic path forming member to the position setting plane. A position setting unit that supports the fixing member so as to be movable in the width direction while setting the position,
The position setting portion of the support member includes a pair of convex portions arranged in parallel along a direction orthogonal to the moving direction of the fixing member, and further extends the magnetic path forming member along the position setting surface. The image forming apparatus according to claim 6, wherein the image forming apparatus is supported so as to be movable forward and backward in the moving direction of the fixing member.
前記定着手段は、前記磁界発生部材と前記磁路形成部材との間に、当該磁界発生部材を前記支持部材表面に向けて押圧しながら弾性変形して当該磁界発生部材を当該支持部材表面に支持する弾性支持部材をさらに備えたことを特徴とする請求項6記載の画像形成装置。   The fixing means is elastically deformed while pressing the magnetic field generating member toward the support member surface between the magnetic field generating member and the magnetic path forming member, and supports the magnetic field generating member on the support member surface. The image forming apparatus according to claim 6, further comprising an elastic support member. 前記定着手段は、前記定着部材を挟んで前記磁界発生部材と対向して配置され、透磁率が減少を開始する透磁率変化開始温度までの温度範囲にて当該磁界発生部材で発生させた交流磁界の磁路を形成し、当該透磁率変化開始温度を超える温度範囲にて当該磁界発生部材で発生された交流磁界を透過させる第2の磁路形成部材をさらに備えたことを特徴とする請求項6記載の画像形成装置。   The fixing unit is disposed opposite to the magnetic field generating member with the fixing member interposed therebetween, and an AC magnetic field generated by the magnetic field generating member in a temperature range up to a magnetic permeability change starting temperature at which the magnetic permeability starts decreasing. And a second magnetic path forming member that transmits an alternating magnetic field generated by the magnetic field generating member in a temperature range exceeding the permeability change start temperature. 6. The image forming apparatus according to 6. 導電層を有し、当該導電層が電磁誘導加熱されることで記録材にトナーを定着する定着部材の当該導電層と交差する交流磁界を発生させる磁界発生部材と、
前記定着部材の幅方向に沿って複数配置され、前記磁界発生部材にて発生した交流磁界の磁路を形成する磁路形成部材と、
複数の前記磁路形成部材を前記定着部材幅方向に移動自在に支持する支持部材と、
前記支持部材にて移動自在に支持された複数の前記磁路形成部材の各々を予め定めた前記定着部材の幅方向位置に設定して固定する位置設定部材と
を備えたことを特徴とする磁界生成装置。
A magnetic field generating member having a conductive layer and generating an alternating magnetic field intersecting with the conductive layer of the fixing member that fixes the toner to the recording material by electromagnetic induction heating of the conductive layer;
A plurality of magnetic path forming members arranged along the width direction of the fixing member and forming a magnetic path of an alternating magnetic field generated by the magnetic field generating member;
A support member that movably supports the plurality of magnetic path forming members in the fixing member width direction;
A position setting member configured to set and fix each of the plurality of magnetic path forming members movably supported by the support member at a predetermined position in the width direction of the fixing member. Generator.
前記定着部材の幅方向に沿って複数配置され、前記磁界発生部材にて発生した交流磁界を前記定着部材幅方向に均すように調整する調整磁性部材をさらに備え、
前記支持部材は、前記調整磁性部材を前記定着部材幅方向に移動自在に支持し、
前記位置設定部材は、前記支持部材にて移動自在に支持された前記調整磁性部材各々を予め定めた前記定着部材の幅方向位置に設定して固定することを特徴とする請求項11記載の磁界生成装置。
A plurality of adjusting magnetic members arranged along the width direction of the fixing member and adjusting the AC magnetic field generated by the magnetic field generating member so as to equalize the fixing member width direction;
The support member supports the adjustment magnetic member movably in the fixing member width direction,
12. The magnetic field according to claim 11, wherein the position setting member sets and fixes each of the adjustment magnetic members supported movably by the support member at a predetermined position in the width direction of the fixing member. Generator.
前記支持部材は、前記磁界発生部材を前記定着部材と予め定めた間隙を有する位置に設定する位置設定面と、前記磁路形成部材を当該位置設定面と予め定めた間隙を有する位置に設定しながら当該定着部材幅方向に移動自在に支持する位置設定部とを有し、
前記支持部材の前記位置設定部は、前記定着部材の移動方向と直交する方向に沿って平行に配置された一対の凸状部で構成され、前記磁路形成部材をさらに前記位置設定面に沿って当該定着部材の移動方向前後に移動自在に支持することを特徴とする請求項11記載の磁界生成装置。
The support member sets the magnetic field generating member to a position having a predetermined gap from the fixing member, and sets the magnetic path forming member to a position having a predetermined gap from the position setting surface. While having a position setting unit that is movably supported in the fixing member width direction,
The position setting portion of the support member includes a pair of convex portions arranged in parallel along a direction orthogonal to the moving direction of the fixing member, and further extends the magnetic path forming member along the position setting surface. The magnetic field generation device according to claim 11, wherein the magnetic field generation device is supported so as to be movable forward and backward in the moving direction of the fixing member.
JP2009042802A 2009-02-25 2009-02-25 Fixing apparatus, image forming apparatus, and magnetic field generating apparatus Expired - Fee Related JP4788789B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2009042802A JP4788789B2 (en) 2009-02-25 2009-02-25 Fixing apparatus, image forming apparatus, and magnetic field generating apparatus
US12/557,635 US8270887B2 (en) 2009-02-25 2009-09-11 Fixing device, image forming apparatus, and magnetic field generating device having a pressing member
CN200910205566.7A CN101813906B (en) 2009-02-25 2009-10-16 Fixing device, image forming apparatus and magnetic field generating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009042802A JP4788789B2 (en) 2009-02-25 2009-02-25 Fixing apparatus, image forming apparatus, and magnetic field generating apparatus

Publications (2)

Publication Number Publication Date
JP2010197737A true JP2010197737A (en) 2010-09-09
JP4788789B2 JP4788789B2 (en) 2011-10-05

Family

ID=42822515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009042802A Expired - Fee Related JP4788789B2 (en) 2009-02-25 2009-02-25 Fixing apparatus, image forming apparatus, and magnetic field generating apparatus

Country Status (1)

Country Link
JP (1) JP4788789B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010230831A (en) * 2009-03-26 2010-10-14 Fuji Xerox Co Ltd Fixing device, image forming apparatus, and magnetic field generating device
JP2012163934A (en) * 2011-01-21 2012-08-30 Kyocera Document Solutions Inc Fixing device and image forming device
US8983352B2 (en) 2011-09-30 2015-03-17 Konica Minolta, Inc. Fixing device and image forming apparatus provided with the same
JP2016011968A (en) * 2014-06-27 2016-01-21 京セラドキュメントソリューションズ株式会社 Induction heating unit, fixation device comprising the same, and image forming apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001244062A (en) * 2000-02-29 2001-09-07 Canon Inc Heating apparatus and image forming device
WO2004063819A1 (en) * 2003-01-08 2004-07-29 Matsushita Electric Industrial Co., Ltd. Image heating device and image forming device
JP2006269089A (en) * 2005-03-22 2006-10-05 Sanyo Electric Co Ltd Electromagnetic induction heating cooking appliance for institutional use
JP2007132993A (en) * 2005-11-08 2007-05-31 Konica Minolta Business Technologies Inc Fixing device and assembling method for fixing device
JP2007264021A (en) * 2006-03-27 2007-10-11 Matsushita Electric Ind Co Ltd Electromagnetic induction heating fixing device and image forming apparatus equipped therewith

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001244062A (en) * 2000-02-29 2001-09-07 Canon Inc Heating apparatus and image forming device
WO2004063819A1 (en) * 2003-01-08 2004-07-29 Matsushita Electric Industrial Co., Ltd. Image heating device and image forming device
JP2006269089A (en) * 2005-03-22 2006-10-05 Sanyo Electric Co Ltd Electromagnetic induction heating cooking appliance for institutional use
JP2007132993A (en) * 2005-11-08 2007-05-31 Konica Minolta Business Technologies Inc Fixing device and assembling method for fixing device
JP2007264021A (en) * 2006-03-27 2007-10-11 Matsushita Electric Ind Co Ltd Electromagnetic induction heating fixing device and image forming apparatus equipped therewith

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010230831A (en) * 2009-03-26 2010-10-14 Fuji Xerox Co Ltd Fixing device, image forming apparatus, and magnetic field generating device
JP2012163934A (en) * 2011-01-21 2012-08-30 Kyocera Document Solutions Inc Fixing device and image forming device
US8983352B2 (en) 2011-09-30 2015-03-17 Konica Minolta, Inc. Fixing device and image forming apparatus provided with the same
JP2016011968A (en) * 2014-06-27 2016-01-21 京セラドキュメントソリューションズ株式会社 Induction heating unit, fixation device comprising the same, and image forming apparatus

Also Published As

Publication number Publication date
JP4788789B2 (en) 2011-10-05

Similar Documents

Publication Publication Date Title
JP4793467B2 (en) Fixing apparatus and image forming apparatus
JP5691370B2 (en) Fixing apparatus and image forming apparatus
JP2009258453A (en) Fixing device and image forming apparatus
JP4821873B2 (en) Fixing device and image forming apparatus
JP5359362B2 (en) Fixing device and image forming apparatus
JP5369958B2 (en) Fixing apparatus and image forming apparatus
JP4788789B2 (en) Fixing apparatus, image forming apparatus, and magnetic field generating apparatus
JP4807427B2 (en) Fixing apparatus and image forming apparatus
JP4711003B2 (en) Fixing device and image forming apparatus
JP5532646B2 (en) Fixing device and image forming apparatus
JP5765135B2 (en) Fixing apparatus and image forming apparatus
JP5375393B2 (en) Fixing apparatus, image forming apparatus, and magnetic field generating apparatus
JP2011022446A (en) Fixing device, image forming apparatus, and magnetic field generating device
JP4715942B2 (en) Fixing apparatus, image forming apparatus, and magnetic field generating apparatus
JP2010224342A (en) Fixing device and image forming apparatus
JP2010224370A (en) Fixing device and image forming apparatus
JP2013003564A (en) Fixing device and image forming apparatus
JP2010231106A (en) Fixing device and image forming apparatus
JP4893763B2 (en) Fixing device and image forming apparatus
JP4858561B2 (en) Fixing apparatus, image forming apparatus, and magnetic field generating apparatus
JP5929017B2 (en) Fixing apparatus and image forming apparatus
JP2010224032A (en) Fixing unit and image forming apparatus
JP4947222B2 (en) Fixing device and image forming apparatus
JP4873035B2 (en) Fixing apparatus and image forming apparatus
JP5644054B2 (en) Fixing device and image forming apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110621

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110704

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4788789

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees