JP2010196155A - Thick, high tensile-strength hot-rolled steel sheet having excellent low temperature toughness and manufacturing method therefor - Google Patents
Thick, high tensile-strength hot-rolled steel sheet having excellent low temperature toughness and manufacturing method therefor Download PDFInfo
- Publication number
- JP2010196155A JP2010196155A JP2009243042A JP2009243042A JP2010196155A JP 2010196155 A JP2010196155 A JP 2010196155A JP 2009243042 A JP2009243042 A JP 2009243042A JP 2009243042 A JP2009243042 A JP 2009243042A JP 2010196155 A JP2010196155 A JP 2010196155A
- Authority
- JP
- Japan
- Prior art keywords
- steel sheet
- temperature
- hot
- less
- thickness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Heat Treatment Of Steel (AREA)
Abstract
【課題】TS:510MPa以上の高強度と、優れた低温靭性とを有し、材質均一性に優れた厚肉高張力熱延鋼板を提供する。
【解決手段】C:0.02〜0.08%、Nb:0.01〜0.10%、Ti:0.001〜0.05%を含み、かつC、Ti、Nbが(Ti+(Nb/2))/C<4を満足するように含有する組成の鋼素材を加熱し、粗圧延前にスケール除去処理を行って粗圧延を行いシートバーとし、シートバーにさらにスケール除去処理を行って、FETを800〜1050℃とし、FDTを750〜950℃とする仕上圧延を施し、ついで板厚中央位置の平均冷却速度で10℃/s以上の冷却を、合金元素量、冷却速度に依存した特定の冷却停止温度以下まで行い、ついで合金元素量に依存した特定の巻取温度以下で巻き取る。これにより、適正範囲の黒皮厚さを有し、鋼板内の材質均一性に優れ、さらに板厚方向の組織均一性に優れた厚肉熱延鋼板となる。
【選択図】図1The present invention provides a thick, high-tensile hot-rolled steel sheet having high strength of TS: 510 MPa or more and excellent low-temperature toughness and excellent material uniformity.
SOLUTION: C: 0.02 to 0.08%, Nb: 0.01 to 0.10%, Ti: 0.001 to 0.05%, and C, Ti and Nb satisfy (Ti + (Nb / 2)) / C <4 The steel material with the composition contained in is heated, scale-removed before rough rolling, rough-rolled into a sheet bar, further scale-removed into the sheet bar, FET set to 800-1050 ° C, and FDT Finish rolling to 750-950 ° C, then cool down to 10 ° C / s or more at the average cooling rate at the center position of the plate thickness to below the specific cooling stop temperature depending on the alloy element amount and cooling rate, and then alloy Winding below a specific winding temperature depending on the amount of elements. As a result, a thick hot rolled steel sheet having an appropriate range of black skin thickness, excellent material uniformity in the steel sheet, and excellent structure uniformity in the sheet thickness direction is obtained.
[Selection] Figure 1
Description
本発明は、原油、天然ガス等を輸送するラインパイプ用として、高靭性が要求される高強度電縫鋼管あるいは高強度スパイラル鋼管の素材用として好適な、厚肉高張力熱延鋼板およびその製造方法に係り、とくに低温靭性の向上に関する。なお、「鋼板」は、鋼板及び鋼帯を含むものとする。なお、ここでいう「高張力熱延鋼板」とは、引張強さTS:510MPa以上の高強度を有する熱延鋼板をいい、また、「厚肉」鋼板とは、板厚11mm以上の鋼板をいうものとする。 The present invention is a thick-walled, high-tensile hot-rolled steel sheet suitable for use as a material for high-strength ERW steel pipes or high-strength spiral steel pipes that require high toughness for line pipes that transport crude oil, natural gas, and the like, and production thereof In particular, it relates to the improvement of low temperature toughness. The “steel plate” includes a steel plate and a steel strip. As used herein, “high-tensile hot-rolled steel sheet” refers to a hot-rolled steel sheet having a high strength of tensile strength TS: 510 MPa or more, and “thick-walled” steel sheet refers to a steel sheet having a thickness of 11 mm or more. It shall be said.
近年、石油危機以来の原油の高騰や、エネルギー供給源の多様化の要求などから、北海、カナダ、アラスカ等のような極寒地での石油、天然ガスの採掘およびパイプラインの敷設が活発に行われるようになっている。また、一旦は、開発が放棄された腐食性の強いサワーガス田等に対する開発も盛んとなっている。
さらに、パイプラインにおいては、天然ガスやオイルの輸送効率向上のため、大径で高圧操業を行う傾向となっている。パイプラインの高圧操業に耐えるため、輸送管(ラインパイプ)は厚肉の鋼管とする必要があり、厚鋼板を素材とするUOE鋼管が使用されるようになってきている。しかし、最近では、パイプラインの施工コストの更なる低減という強い要望や、UOE鋼管の供給能力不足などのために、鋼管の材料コスト低減の要求も強く、輸送管として、厚鋼板を素材とするUOE鋼管に代わり、生産性が高くより安価な、コイル形状の熱延鋼板(熱延鋼帯)を素材とした高強度電縫鋼管あるいは高強度スパイラル鋼管が用いられるようになってきた。
In recent years, oil and natural gas mining and pipeline construction have been actively carried out in extremely cold regions such as the North Sea, Canada and Alaska due to soaring crude oil since the oil crisis and the demand for diversified energy supply sources. It has come to be. Also, once the development has been abandoned, the development of a corrosive sour gas field, etc., has become active.
Furthermore, in the pipeline, in order to improve the transportation efficiency of natural gas and oil, there is a tendency to perform high-pressure operation with a large diameter. In order to withstand the high-pressure operation of the pipeline, the transport pipe (line pipe) needs to be a thick steel pipe, and a UOE steel pipe made of a thick steel plate has been used. However, recently, due to the strong demand for further reduction of pipeline construction costs and the lack of supply capacity of UOE steel pipes, there is a strong demand for reducing the material cost of steel pipes. Instead of UOE steel pipes, high-strength ERW steel pipes or high-strength spiral steel pipes made of coil-shaped hot-rolled steel sheets (hot-rolled steel strips), which are more productive and cheaper, have come to be used.
これら高強度鋼管には、ラインパイプの破壊を防止する観点から、優れた低温靭性を保持することが要求されている。このような高強度と高靭性とを兼備した鋼管を製造するために、鋼管素材である鋼板では、熱間圧延後の加速冷却を利用した変態強化や、Nb、V、Ti等の合金元素の析出物を利用した析出強化等による高強度化と、制御圧延等を利用した組織の微細化等による高靭性化が図られてきた。 These high-strength steel pipes are required to maintain excellent low-temperature toughness from the viewpoint of preventing line pipe breakage. In order to produce a steel pipe having both such high strength and high toughness, in steel sheets that are steel pipe materials, transformation strengthening using accelerated cooling after hot rolling and alloying elements such as Nb, V, Ti, etc. Strengthening by precipitation strengthening using precipitates and toughness by microstructure refinement using controlled rolling have been attempted.
また、硫化水素を含む原油や天然ガスの輸送に用いられるラインパイプでは、高強度、高靭性などの特性に加えて、耐水素誘起割れ性(耐HIC性)、耐応力腐食割れ性などのいわゆる耐サワー性にも優れることが要求される。
このような要求に対し、例えば特許文献1には、C:0.005〜0.030%未満、B:0.0002〜0.0100%を含み、Ti:0.20%以下およびNb:0.25%以下のうちから選ばれる1種または2種を(Ti+Nb/2)/C:4以上を満足するように含み、さらにSi、Mn、P、S、Al、Nを適正量含有する鋼を熱間圧延後、5〜20℃/sの冷却速度で冷却し、550℃超〜700℃の温度範囲で巻き取り、組織がフェライトおよび/またはベイニティックフェライトからなるとともに、粒内の固溶C量が1.0〜4.0ppmである、靭性に優れた低降伏比高強度熱延鋼板の製造方法が提案されている。特許文献1に記載された技術では、厚み方向、長さ方向における材質の不均一を伴うことなく、靭性、溶接性、耐サワー性に優れ、かつ低降伏比を有する高強度熱延鋼板を得ることができるとしている。しかし、特許文献1に記載された技術では、粒内の固溶C量が1.0〜4.0ppmであるため、円周溶接時の入熱で、結晶粒成長が起こりやすく、溶接熱影響部が粗大粒になり、円周溶接部の溶接熱影響部の靭性低下が起こりやすいという問題がある。
In addition, in line pipes used for transporting crude oil and natural gas containing hydrogen sulfide, in addition to characteristics such as high strength and high toughness, so-called hydrogen-induced crack resistance (HIC resistance), stress corrosion crack resistance, and so on It is required to have excellent sour resistance.
In response to such a request, for example, Patent Document 1 includes C: 0.005 to less than 0.030%, B: 0.0002 to 0.0100%, Ti: 0.20% or less, and Nb: 0.25% or less. Two kinds are included so as to satisfy (Ti + Nb / 2) / C: 4 or more, and further steel containing an appropriate amount of Si, Mn, P, S, Al, N is hot-rolled, and then 5 to 20 ° C./s. Toughness, cooled at a cooling rate of 550 ° C and wound up in a temperature range of more than 550 ° C to 700 ° C, the structure is composed of ferrite and / or bainitic ferrite, and the amount of solid solution C in the grain is 1.0 to 4.0 ppm A method for producing a high-strength hot-rolled steel sheet having a low yield ratio and an excellent strength has been proposed. With the technique described in Patent Document 1, a high-strength hot-rolled steel sheet having excellent toughness, weldability, and sour resistance and having a low yield ratio is obtained without causing material unevenness in the thickness direction and the length direction. You can do that. However, in the technique described in Patent Document 1, since the amount of solid solution C in the grains is 1.0 to 4.0 ppm, crystal grain growth is likely to occur due to heat input during circumferential welding, and the weld heat affected zone is coarse. There exists a problem that it becomes a grain and the toughness fall of the welding heat affected zone of a circumferential welded part tends to occur.
また、特許文献2には、C:0.01〜0.12%、Si:0.5%以下、Mn:0.5〜1.8%、Ti:0.010〜0.030%、Nb:0.01〜0.05%、Ca:0.0005〜0.0050%を、炭素当量:0.40以下、Ca/O:1.5〜2.0を満足するように、含む鋼片を、Ar3+100℃以上で熱間圧延を終了し、1〜20秒空冷したのち、Ar3点以上の温度から冷却し、20秒以内に550〜650℃まで冷却し、その後450〜500℃で巻き取る、耐水素誘起割れ性に優れた高強度鋼板の製造方法が提案されている。特許文献2に記載された技術では、耐水素誘起割れ性を有するAPI規格のX60〜X70グレードのラインパイプ用鋼板を製造できるとしている。しかし、特許文献2に記載された技術では、板厚が厚い鋼板で、所望の冷却時間を確保できなくなり、所望の特性を確保するためには、さらなる冷却能力の向上を必要とするという問題があった。 In Patent Document 2, C: 0.01 to 0.12%, Si: 0.5% or less, Mn: 0.5 to 1.8%, Ti: 0.010 to 0.030%, Nb: 0.01 to 0.05%, Ca: 0.0005 to 0.0050%, carbon equivalent: 0.40, Ca / O: 1.5 to 2.0 so as to satisfy, the steel slab comprising, exit hot rolled at Ar 3 + 100 ° C. or higher, 20 seconds After cooling, the above Ar 3 point There has been proposed a method for producing a high-strength steel sheet excellent in hydrogen-induced cracking resistance, which is cooled from temperature, cooled to 550 to 650 ° C. within 20 seconds, and then wound up at 450 to 500 ° C. According to the technology described in Patent Document 2, API standard X60 to X70 grade steel plates for line pipe having hydrogen-induced crack resistance can be manufactured. However, in the technique described in Patent Document 2, there is a problem that it is impossible to secure a desired cooling time with a thick steel plate, and further cooling capacity needs to be improved in order to secure desired characteristics. there were.
また、厚鋼板であるが、特許文献3には、C:0.03〜0.06%、Si:0.01〜0.5%、Mn:0.8〜1.5%、S:0.0015%以下、Al:0.08%以下、Ca:0.001〜0.005%、O:0.0030%以下を含み、かつCa,S,Oが特定関係を満足するように含有する鋼を、加熱しAr3変態点以上の温度から5℃/s以上の冷却速度で400〜600℃まで加速冷却を行い、その後直ちに0.5℃/s以上の昇温速度で鋼板表面温度600℃以上、板厚中央位置温度550〜700℃まで再加熱し、再加熱終了時の鋼板表面と板厚中央位置の温度差を20℃以上とする、耐水素誘起割れ性に優れた高強度ラインパイプ用鋼板の製造方法が提案されている。特許文献3に記載された技術では、金属組織中の第2相の分率を3%以下であり、表層と板厚中央位置の硬さ差がビッカース硬さで40ポイント以内の鋼板が得られ、耐水素誘起割れ性に優れた厚鋼板となるとしている。しかし、特許文献3に記載された技術では、再加熱工程を必要とし、製造工程が複雑になるとともに、再加熱設備等の更なる配設が必要となるなどの問題があった。 Moreover, although it is a thick steel plate, in patent document 3, C: 0.03-0.06%, Si: 0.01-0.5%, Mn: 0.8-1.5%, S: 0.0015% or less, Al: 0.08% or less, Ca: 0.001 The steel containing up to 0.005%, O: 0.0030% or less, and containing Ca, S, O so as to satisfy a specific relationship is heated to a cooling rate of 5 ° C./s or more from the temperature above the Ar 3 transformation point. Accelerated cooling to 400 to 600 ° C, and then immediately reheats to a steel plate surface temperature of 600 ° C or higher and a plate thickness center position temperature of 550 to 700 ° C at a heating rate of 0.5 ° C / s or higher. There has been proposed a method for producing a steel sheet for high-strength line pipe excellent in hydrogen-induced cracking resistance, in which the temperature difference between the center of the plate thickness is 20 ° C. or more. In the technique described in Patent Document 3, a steel sheet is obtained in which the fraction of the second phase in the metal structure is 3% or less, and the hardness difference between the surface layer and the center of the plate thickness is Vickers hardness within 40 points. The thick steel plate is excellent in hydrogen-induced crack resistance. However, the technique described in Patent Document 3 has a problem that a reheating process is required, the manufacturing process becomes complicated, and further arrangement of a reheating facility or the like is required.
また、厚鋼板であるが、特許文献4には、C:0.01〜0.3%、Si:0.6%以下、Mn:0.2〜2.0%、Al:0.06%以下、Ti:0.005〜0.035%、N:0.001〜0.006%を含む鋳片を熱間圧延した後の冷却過程のAc1−50℃以下の温度で、累積で2%以上の圧延を行い、その後、Ac1超Ac3未満の温度に加熱し、放冷する、表裏面に粗粒フェライト層を有する鋼材の製造方法が提案されている。特許文献4に記載された技術では、鋼材のSCC感受性や耐候性、耐食性の向上、さらには冷間加工後の材質劣化抑制などに寄与するとしている。しかし、特許文献4に記載された技術では、再加熱工程を必要とし、製造工程が複雑になるとともに、再加熱設備等の更なる設置が必要となるなどの問題があった。
Moreover, although it is a thick steel plate, in
またさらに最近では、極寒冷地用の鋼管には、パイプラインのバースト破壊を防止する観点から、破壊靭性、とくにCTOD特性や、DWTT特性に優れることが要求されることが多い。
このような要求に対し、例えば、特許文献5には、C、Si、Mn、Nを適正量含有し、さらにSi、MnをMn/Siが5〜8を満足する範囲において含有し、さらにNb:0.01〜0.1%を含有する鋼片を、加熱後、1100℃以上で行う最初の圧延の圧下率:15〜30%、1000℃以上での合計圧下率:60%以上、最終圧延の圧下率:15〜30%の条件下で粗圧延を行ったのち、いったん5℃/s以上の冷却速度で、表層部の温度をAr1点以下まで冷却し、ついで、復熱または強制加熱で表層部の温度が(Ac3−40℃)〜(Ac3+40℃)となった時点で仕上圧延を開始し、950℃以下での合計圧下率:60%以上、圧延終了温度:Ar3点以上の条件で仕上圧延を終了し、仕上圧延終了後2s以内に冷却を開始し、10℃/s以上の速度で600℃以下まで冷却し、600〜350℃の温度範囲で巻き取る高強度電縫鋼管用熱延鋼板の製造方法が記載されている。特許文献5に記載された技術で製造された鋼板は、高価な合金元素を添加することなく、また鋼管全体を熱処理することなく、鋼板表層の組織が微細化され、低温靭性、とくにDWTT特性に優れた高強度電縫鋼管が製造できるとしている。しかし、特許文献5に記載された技術では、板厚が厚い鋼板では、所望の冷却速度を確保できなくなり、所望の特性を確保するためには、さらなる冷却能力の向上を必要とするという問題があった。
Furthermore, recently, steel pipes for extremely cold regions are often required to have excellent fracture toughness, particularly CTOD characteristics and DWTT characteristics, from the viewpoint of preventing burst fracture of pipelines.
In response to such a requirement, for example, Patent Document 5 contains appropriate amounts of C, Si, Mn, and N, and further contains Si and Mn in a range where Mn / Si satisfies 5 to 8, and further includes Nb. : Rolling ratio of the first rolling performed at 1100 ° C or higher after heating the steel slab containing 0.01 to 0.1%: 15-30%, Total rolling ratio at 1000 ° C or higher: 60% or higher, Rolling ratio of final rolling : After rough rolling under the condition of 15-30%, once the surface layer is cooled to a temperature of 1 point or less at a cooling rate of 5 ° C / s or more, then the surface layer is recovered by reheating or forced heating. Finishing rolling is started when the temperature of (Ac 3 −40 ° C.) to (Ac 3 + 40 ° C.) reaches 950 ° C. or less, the total rolling reduction: 60% or more, and the rolling end temperature: Ar 3 points or more Finishing finish rolling under conditions, starting cooling within 2 s after finishing rolling, cooling to 600 ° C. or less at a rate of 10 ° C./s or more, and winding in a temperature range of 600 to 350 ° C. Method of manufacturing a degree electric resistance welded steel pipe for hot rolled steel sheet is described. The steel sheet manufactured by the technique described in Patent Document 5 has a refined structure of the steel sheet surface layer without adding an expensive alloy element or heat-treating the entire steel pipe, resulting in low temperature toughness, particularly DWTT characteristics. An excellent high-strength ERW steel pipe can be manufactured. However, the technique described in Patent Document 5 has a problem that a steel plate with a large thickness cannot secure a desired cooling rate, and further cooling capacity needs to be improved in order to secure desired characteristics. there were.
また、特許文献6には、C、Si、Mn、Al、Nを適正量含有し、さらにNb:0.001〜0.1%、V:0.001〜0.1%、Ti:0.001〜0.1%を含み、Cu、Ni、Moのうちの1種または2種以上を含有し、Pcm値が0.17以下である鋼スラブを、加熱したのち、表面温度が(Ar3−50℃)以上の条件で仕上圧延を終了し、圧延後直ちに冷却し700℃以下の温度で巻き取り徐冷する低温靭性および溶接性に優れた高強度電縫管用熱延鋼帯の製造方法が記載されている。 Patent Document 6 contains appropriate amounts of C, Si, Mn, Al, and N, and further includes Nb: 0.001 to 0.1%, V: 0.001 to 0.1%, Ti: 0.001 to 0.1%, Cu, Ni After heating a steel slab containing one or more of Mo and having a Pcm value of 0.17 or less, finish rolling is finished under conditions where the surface temperature is (A r3 −50 ° C.) or more, A method for producing a hot-rolled steel strip for a high-strength ERW pipe excellent in low-temperature toughness and weldability that is cooled immediately after rolling and wound up and cooled at a temperature of 700 ° C. or lower is described.
しかしながら、最近、高強度電縫鋼管用鋼板には、低温靭性、とくにCTOD特性、DWTT特性の更なる向上が要求されている。特許文献6に記載された技術では、低温靭性が充分でなく、要求されるCTOD特性、DWTT特性を十分に満足させるほど、優れた低温靭性を具備させることができないという問題があった。
また、従来技術から、熱延鋼板では、板長手方向、板幅方向の各位置で材質特性に大きなばらつきが生じる場合が多々あるという問題があった。
Recently, however, steel sheets for high-strength ERW steel pipes are required to further improve low-temperature toughness, particularly CTOD characteristics and DWTT characteristics. The technique described in Patent Document 6 has a problem that the low-temperature toughness is not sufficient, and the excellent low-temperature toughness cannot be provided to the extent that the required CTOD characteristics and DWTT characteristics are sufficiently satisfied.
Further, from the prior art, there has been a problem that hot rolled steel sheets often have large variations in material properties at respective positions in the plate longitudinal direction and the plate width direction.
本発明は、上記した従来技術の問題を解決し、多量の合金元素添加を必要とすることなく、TS:510MPa以上の高強度と、優れた低温靭性、とくに優れたCTOD特性、DWTT特性、とを兼備する、高強度電縫鋼管用あるいは高強度スパイラル鋼管用として好適な、厚肉高張力熱延鋼板およびその製造方法を提供することを目的とし、さらに、本発明では、板長手方向および板幅方向の材質均一性の更なる向上をも目的とする。 The present invention solves the above-mentioned problems of the prior art, and does not require the addition of a large amount of alloy elements, and has a high strength of TS: 510 MPa or more, excellent low-temperature toughness, particularly excellent CTOD characteristics, and DWTT characteristics. The present invention aims to provide a thick-walled high-tensile hot-rolled steel sheet suitable for high-strength ERW steel pipe or high-strength spiral steel pipe, and a method for producing the same. It aims at the further improvement of the material uniformity of the width direction.
なお、ここでいう「優れたCTOD特性」とは、ASTM E 1290の規定に準拠して、試験温度:−10℃で実施したCTOD試験における限界開口変位量CTOD値が、0.30mm以上である場合をいうものとする。また、ここでいう「優れたDWTT特性」とは、ASTM E 436の規定に準拠して行ったDWTT試験で、延性破面率が85%となる最低温度(DWTT温度)が、−35℃以下の場合をいうものとする。 The “excellent CTOD characteristics” referred to here is when the critical opening displacement CTOD value in a CTOD test conducted at a test temperature of −10 ° C. is 0.30 mm or more in accordance with the provisions of ASTM E 1290. It shall be said. The “excellent DWTT property” here is a DWTT test conducted in accordance with the provisions of ASTM E 436, and the minimum temperature (DWTT temperature) at which the ductile fracture surface ratio is 85% is −35 ° C. or less. This shall be the case.
本発明者らは、上記した目的を達成するために、低温靭性、とくにDWTT特性、CTOD特性に及ぼす各種要因について鋭意考究した。その結果、全厚での靭性試験であるDWTT特性、CTOD特性は、板厚方向の組織均一性に大きく影響されることに思い至った。そして、全厚での靭性試験であるDWTT特性、CTOD特性に及ぼす板厚方向の組織不均一の影響は、板厚:11mm以上の厚肉材で顕在化することを見出した。 In order to achieve the above-mentioned object, the present inventors diligently studied various factors affecting low temperature toughness, particularly DWTT characteristics and CTOD characteristics. As a result, it came to mind that the DWTT characteristic and the CTOD characteristic, which are toughness tests at the full thickness, are greatly influenced by the structure uniformity in the thickness direction. And it discovered that the influence of the structure nonuniformity of the sheet thickness direction on the DWTT characteristic and the CTOD characteristic, which are toughness tests at the full thickness, was manifested by a thick material having a sheet thickness of 11 mm or more.
また、本発明者らの更なる研究によれば、「優れたDWTT特性」、「優れたCTOD特性」は、表面から板厚方向に1mmの位置(表層部)における主相であるフェライトの平均結晶粒径と板厚中央位置(板厚中心部)における主相であるフェライトの平均結晶粒径との差、ΔDが2μm以下で、かつ鋼板表面から板厚方向に1mmの位置(表層部)における第二相の組織分率(体積率)と板厚中央位置(板厚中心部)における第二相の組織分率(体積率)との差、ΔVが2%以下である場合に、確保できることを見出した。 Further, according to further studies by the present inventors, “excellent DWTT characteristics” and “excellent CTOD characteristics” are the average of ferrite as the main phase at a position 1 mm (surface layer portion) in the thickness direction from the surface. Difference between the crystal grain size and the average crystal grain size of ferrite as the main phase at the plate thickness center position (plate thickness center portion), ΔD is 2 μm or less, and 1 mm from the steel plate surface in the plate thickness direction (surface layer portion) The difference between the second phase structure fraction (volume ratio) and the second phase structure fraction (volume ratio) at the plate thickness center position (plate thickness center), which is ensured when ΔV is 2% or less. I found out that I can do it.
まず、本発明の基礎となった実験結果について説明する。
質量%で、0.037%C−0.20%Si−1.59%Mn−0.016%P−0.0023%S−0.041%Al−0.061%Nb−0.013%Ti−残部Feからなるスラブを鋼素材として使用した。なお、(Ti+Nb/2)/Cは1.18である。
上記した組成の鋼素材を、1230℃に加熱し、仕上圧延開始温度:980℃、仕上圧延終了温度:800℃とする熱間圧延を施して板厚:14.5mmの熱延板とし、熱間圧延終了後、板厚中央位置の温度が750℃超の温度領域における冷却速度で18℃/sとなる冷却を、種々の冷却停止温度まで施す加速冷却を施し、ついで、種々の巻取温度で巻き取り、熱延鋼板(鋼帯)とした。
First, the experimental results on which the present invention is based will be described.
A slab composed of 0.037% C-0.20% Si-1.59% Mn-0.016% P-0.0023% S-0.041% Al-0.061% Nb-0.013% Ti-balance Fe in mass% was used as a steel material. Note that (Ti + Nb / 2) / C is 1.18.
The steel material having the above composition is heated to 1230 ° C and hot rolled to a finish rolling start temperature of 980 ° C and a finish rolling finish temperature of 800 ° C to obtain a hot rolled sheet having a thickness of 14.5 mm. After the end of rolling, accelerated cooling is applied to various cooling stop temperatures at a cooling rate of 18 ° C / s in the temperature range where the temperature at the center of the plate thickness exceeds 750 ° C, and then at various winding temperatures. Winding and hot rolled steel sheet (steel strip) were used.
得られた熱延鋼板から試験片を採取し、組織およびDWTT特性を調査した。組織は、鋼板表面から板厚方向に1mmの位置(表層部)、板厚中央位置(板厚中心部)について、主相であるフェライトの平均結晶粒径(μm)、第二相の組織分率(体積%)を求めた。得られた測定値から、鋼板表面から板厚方向に1mmの位置(表層部)と板厚中央位置(板厚中心部)との、主相であるフェライトの平均結晶粒径差ΔDおよび第二相の組織分率の差ΔVをそれぞれ算出した。なお、第二相は、パーライト、マルテンサイト、MA(島状マルテンサイトともいう)等である。 Test pieces were collected from the obtained hot-rolled steel sheet, and the structure and DWTT characteristics were investigated. The microstructure is the average crystal grain size (μm) of ferrite that is the main phase at the 1 mm position (surface layer part) in the sheet thickness direction from the steel sheet surface, and the center position (sheet thickness center part). The rate (volume%) was determined. From the measured values obtained, the average crystal grain size difference ΔD of the ferrite, which is the main phase, at the 1 mm position (surface layer portion) and the plate thickness center position (plate thickness center portion) in the plate thickness direction from the steel plate surface and the second The difference ΔV in the phase tissue fraction was calculated. The second phase is pearlite, martensite, MA (also called island martensite) or the like.
得られた結果を、DWTTに及ぼすΔDとΔVとの関係で図1にそれぞれ示す。
図1から、DWTTが−35℃以下となる「優れたDWTT特性」は、ΔDが2μm以下でかつΔVが2%以下となる場合に確実に維持できることを知見した。
つぎに、ΔD、ΔVと冷却停止温度との関係を図2に、ΔD、ΔVと巻取温度との関係を図3に示す。
The obtained results are shown in FIG. 1 as the relationship between ΔD and ΔV on DWTT.
From FIG. 1, it was found that “excellent DWTT characteristics” in which DWTT is −35 ° C. or less can be reliably maintained when ΔD is 2 μm or less and ΔV is 2% or less.
Next, FIG. 2 shows the relationship between ΔD and ΔV and the cooling stop temperature, and FIG. 3 shows the relationship between ΔD and ΔV and the coiling temperature.
図2、図3から、ΔDが2μm以下でかつΔVが2%以下とするためには、使用した鋼では、冷却停止温度を620℃以下、巻取温度を647℃以下に調整する必要があることがわかる。
本発明者らの更なる研究によれば、ΔDが2μm以下でかつΔVが2%以下とするために必要な冷却停止温度および巻取温度は、主としてベイナイト変態開始温度に影響する合金元素の含有量や、熱間圧延終了からの冷却速度に依存して決定されることを見出した。すなわち、ΔDが2μm以下でかつΔVが2%以下とするためには、冷却停止温度を、鋼板の板厚中央位置の温度で、次式
BFS(℃)=770−300C−70Mn−70Cr−170Mo−40Cu−40Ni−1.5CR
(ここで、C、Mn、Cr、Mo、Cu、Ni:各元素の含有量(質量%)、CR:鋼板の板厚中央位置の平均冷却速度(℃/s))
で定義されるBFS以下の温度とし、かつ、巻取温度を、鋼板の板厚中央位置の温度で、次式
BFS0(℃)=770−300C−70Mn−70Cr−170Mo−40Cu−40Ni
(ここで、C、Mn、Cr、Mo、Cu、Ni:各元素の含有量(質量%))
で定義されるBFS0以下の温度とすることが肝要となる。
2 and 3, it is necessary to adjust the cooling stop temperature to 620 ° C. or lower and the coiling temperature to 647 ° C. or lower in order to make ΔD 2 μm or less and ΔV 2% or less. I understand that.
According to further studies by the present inventors, the cooling stop temperature and the coiling temperature necessary for ΔD to be 2 μm or less and ΔV to be 2% or less include the inclusion of alloy elements mainly affecting the bainite transformation start temperature. It was found that it was determined depending on the amount and the cooling rate from the end of hot rolling. That is, in order to set ΔD to 2 μm or less and ΔV to 2% or less, the cooling stop temperature is the temperature at the center position of the plate thickness of the steel plate,
BFS (℃) = 770−300C−70Mn−70Cr−170Mo−40Cu−40Ni−1.5CR
(Here, C, Mn, Cr, Mo, Cu, Ni: content of each element (mass%), CR: average cooling rate at the center position of the plate thickness of the steel sheet (° C./s))
The temperature is equal to or lower than the BFS defined in, and the coiling temperature is the temperature at the center of the plate thickness of the steel sheet.
BFS0 (℃) = 770−300C−70Mn−70Cr−170Mo−40Cu−40Ni
(Here, C, Mn, Cr, Mo, Cu, Ni: content of each element (mass%))
It is important to set the temperature below BFS0 as defined in.
また、本発明者らの更なる研究によれば、鋼板の長手方向および幅方向の材質均一性向上のためには、熱延鋼板表面に形成される黒皮(スケール)厚さを適正範囲に調整する必要があることを見出した。
次に、この知見のもととなった実験結果について説明する。
質量%で、0.053%C−0.20%Si−1.60%Mn−0.012%P−0.0026%S−0.035%Al−0.061%Nb−0.013%Ti−0.0032%N−残部Feからなるスラブを鋼素材として使用した。なお、(Ti+Nb/2)/Cは0.82である。
Further, according to further studies by the present inventors, in order to improve the material uniformity in the longitudinal direction and width direction of the steel sheet, the thickness of the black skin (scale) formed on the surface of the hot-rolled steel sheet is within an appropriate range. I found that I needed to adjust.
Next, the experimental results that led to this finding will be described.
A slab consisting of 0.053% C-0.20% Si-1.60% Mn-0.012% P-0.0026% S-0.035% Al-0.061% Nb-0.013% Ti-0.0032% N-balance Fe is used as a steel material. did. Note that (Ti + Nb / 2) / C is 0.82.
上記した組成の鋼素材を、1200℃に加熱し、粗圧延と仕上圧延からなる熱間圧延を施し熱延鋼板(鋼帯)とした。なお、粗圧延前に、スケールブレーカー(RSB)でスケール除去処理を行った。また、仕上圧延においては、仕上圧延前のスケールブレーカー(FSB)によるスケール除去処理、仕上圧延入側温度FET、および仕上圧延出側温度FDTを種々変化させた熱間圧延を施して、表面の黒皮厚さが異なる、板厚:15.6mmの熱延板とした。なお、熱間圧延終了後は、鋼板の板厚中央位置の温度が750℃以下の温度領域における冷却速度で50℃/sとなる冷却を、冷却停止温度:540℃まで施す加速冷却を施し、ついで、巻取温度:520℃で巻き取った。 The steel material having the above composition was heated to 1200 ° C. and subjected to hot rolling consisting of rough rolling and finish rolling to obtain a hot rolled steel sheet (steel strip). In addition, the scale removal process was performed with the scale breaker (RSB) before the rough rolling. Also, in finish rolling, the surface blackening is performed by variously changing the descaling process by the scale breaker (FSB) before finish rolling, finishing rolling entry temperature FET, and finishing rolling exit temperature FDT. The thickness of the sheet was 15.6 mm. In addition, after the hot rolling is completed, the cooling at a cooling rate of 50 ° C./s in the temperature region where the temperature at the center position of the steel sheet is 750 ° C. or less is subjected to accelerated cooling to a cooling stop temperature: 540 ° C., Subsequently, it wound up at winding-up temperature: 520 degreeC.
得られた熱延鋼板の表面から板厚方向に1mmの位置から引張試験片(板厚1mm厚×幅12.5mm:GL=25mm)を採取し、引張特性を調査した。
得られた結果を、引張特性(引張強さTS、伸びEl)と黒皮厚さ(μm)との関係で図4に示す。
図4から、黒皮厚さが5〜30μmの範囲である場合に、表層の引張特性(TS、El)の変化が少なくなることがわかる。このことから、黒皮厚さを適正な範囲に調整できれば、表層の引張特性のばらつきが少なくなり、結果として、鋼板の長手方向および幅方向の材質のばらつきも少なくなり、材質の均一性がさらに向上することに思い至った。
Tensile test pieces (plate thickness 1 mm thickness x width 12.5 mm: GL = 25 mm) were sampled from a position 1 mm from the surface of the obtained hot-rolled steel plate in the plate thickness direction, and the tensile properties were investigated.
The obtained results are shown in FIG. 4 in relation to the tensile properties (tensile strength TS, elongation El) and black skin thickness (μm).
FIG. 4 shows that the change in the tensile properties (TS, El) of the surface layer is reduced when the thickness of the black skin is in the range of 5 to 30 μm. From this, if the black skin thickness can be adjusted to an appropriate range, the variation in the tensile properties of the surface layer will be reduced, and as a result, the variation in the material in the longitudinal direction and the width direction of the steel sheet will be reduced, and the material uniformity will be further increased. I thought it would improve.
本発明は、上記した知見に基づき、さらに検討を加えて完成されたものである。すなわち、本発明の要旨はつぎの通りである。
(1)質量%で、C:0.02〜0.08%、Si:0.01〜0.50%、Mn:0.5〜1.8%、P:0.025%以下、S:0.005%以下、Al:0.005〜0.10%、Nb:0.01〜0.10%、Ti:0.001〜0.05%を含み、かつC、Ti、Nbを次(1)式
(Ti+(Nb/2))/C<4 ‥‥(1)
(ここで、Ti、Nb、C:各元素の含有量(質量%))
を満足するように含み、残部Feおよび不可避的不純物からなる組成と、鋼板表面から板厚方向に1mmの位置における主相であるフェライト相の平均結晶粒径と鋼板の板厚中央位置における主相であるフェライト相の平均結晶粒径との差ΔDが2μm以下、かつ鋼板表面から板厚方向に1mmの位置における第二相の組織分率(体積%)と鋼板の板厚中央位置における第二相の組織分率(体積%)との差ΔVが2%以下である組織を有し、さらに鋼板表面に厚さ3〜30μmの黒皮を有することを特徴とする低温靭性に優れた厚肉高張力熱延鋼板。
The present invention has been completed based on the above findings and further studies. That is, the gist of the present invention is as follows.
(1) By mass%, C: 0.02 to 0.08%, Si: 0.01 to 0.50%, Mn: 0.5 to 1.8%, P: 0.025% or less, S: 0.005% or less, Al: 0.005 to 0.10%, Nb: 0.01 ˜0.10%, Ti: 0.001˜0.05%, and C, Ti, Nb is expressed by the following formula (1) (Ti + (Nb / 2)) / C <4 (1)
(Here, Ti, Nb, C: content of each element (mass%))
The composition consisting of the balance Fe and inevitable impurities, the average crystal grain size of the ferrite phase, which is the main phase at a position 1 mm from the steel sheet surface, and the main phase at the center position of the steel sheet The difference ΔD from the average grain size of the ferrite phase is 2 μm or less, and the second phase structure fraction (volume%) at a position 1 mm from the steel sheet surface in the thickness direction and the second thickness at the center of the thickness of the steel sheet. Thickness excellent in low temperature toughness characterized by having a structure in which the difference ΔV from the phase structure fraction (volume%) is 2% or less, and further having a black skin with a thickness of 3 to 30 μm on the steel sheet surface High tensile hot rolled steel sheet.
(2)(1)において、前記組成に加えてさらに、質量%で、V:0.01〜0.10%、Mo:0.01〜0.50%、Cr:0.01〜1.0%、Cu:0.01〜0.50%、Ni:0.01〜0.50%のうちの1種または2種以上を含有する組成とすることを特徴とする厚肉高張力熱延鋼板。
(3)(1)または(2)において、前記組成に加えてさらに、質量%で、Ca:0.0005〜0.005%を含有する組成とすることを特徴とする厚肉高張力熱延鋼板。
(2) In (1), in addition to the above composition, in terms of mass%, V: 0.01 to 0.10%, Mo: 0.01 to 0.50%, Cr: 0.01 to 1.0%, Cu: 0.01 to 0.50%, Ni: 0.01 A thick-walled, high-tensile hot-rolled steel sheet characterized by comprising one or more of ˜0.50%.
(3) A thick-walled, high-tensile hot-rolled steel sheet according to (1) or (2), further comprising, in addition to the above composition, Ca: 0.0005 to 0.005% by mass.
(4)質量%で、C:0.02〜0.08%、Si:0.01〜0.50%、Mn:0.5〜1.8%、P:0.025%以下、S:0.005%以下、Al:0.005〜0.10%、Nb:0.01〜0.10%、Ti:0.001〜0.05%を含み、かつC、Ti、Nbを次(1)式
(Ti+(Nb/2))/C<4 ‥‥(1)
(ここで、Ti、Nb、C:各元素の含有量(質量%))
を満足するように含有し、残部Feおよび不可避的不純物からなる組成の鋼素材を加熱し、粗圧延と仕上圧延とからなる熱間圧延を施して熱延鋼板とするにあたり、前記粗圧延前および前記仕上圧延前にスケールブレーカーによるスケール除去処理を行い、前記仕上圧延の入側温度FETを800〜1050℃とし、さらに前記仕上圧延の出側温度FDTを750〜950℃とする熱間圧延を施し、該熱間圧延終了後に、鋼板の板厚中央位置の平均冷却速度で10℃/s以上の冷却を、鋼板の板厚中央位置の温度で、次(2)式
BFS(℃)=770−300C−70Mn−70Cr−170Mo−40Cu−40Ni−1.5CR ‥‥(2)
(ここで、C、Mn、Cr、Mo、Cu、Ni:各元素の含有量(質量%)、CR:鋼板の板厚中央位置の平均冷却速度(℃/s))
で定義されるBFS以下の冷却停止温度まで行う加速冷却を施し、ついで鋼板の板厚中央位置での温度で、次(3)式
BFS0(℃)=770−300C−70Mn−70Cr−170Mo−40Cu−40Ni ‥‥(3)
(ここで、C、Mn、Cr、Mo、Cu、Ni:各元素の含有量(質量%))
で定義されるBFS0以下の巻取温度で巻き取ることを特徴とする低温靭性に優れた厚肉高張力熱延鋼板の製造方法。
(4) By mass%, C: 0.02 to 0.08%, Si: 0.01 to 0.50%, Mn: 0.5 to 1.8%, P: 0.025% or less, S: 0.005% or less, Al: 0.005 to 0.10%, Nb: 0.01 ˜0.10%, Ti: 0.001˜0.05%, and C, Ti, Nb is expressed by the following formula (1) (Ti + (Nb / 2)) / C <4 (1)
(Here, Ti, Nb, C: content of each element (mass%))
In order to heat the steel material of the composition consisting of the remaining Fe and inevitable impurities, hot rolling consisting of rough rolling and finish rolling to form a hot rolled steel sheet, before the rough rolling and Before the finish rolling, a scale removal process is performed by a scale breaker, and the finish rolling entry temperature FET is set to 800 to 1050 ° C., and the finish rolling exit temperature FDT is set to 750 to 950 ° C. After the hot rolling, cooling at 10 ° C./s or more at the average cooling rate at the plate thickness center position of the steel plate is performed at the temperature at the plate thickness center position by the following equation (2):
BFS (℃) = 770−300C−70Mn−70Cr−170Mo−40Cu−40Ni−1.5CR (2)
(Here, C, Mn, Cr, Mo, Cu, Ni: content of each element (mass%), CR: average cooling rate at the center position of the plate thickness of the steel sheet (° C./s))
Accelerated cooling is performed to the cooling stop temperature below BFS defined in, and then the temperature at the center of the plate thickness of the steel plate,
BFS0 (℃) = 770−300C−70Mn−70Cr−170Mo−40Cu−40Ni (3)
(Here, C, Mn, Cr, Mo, Cu, Ni: content of each element (mass%))
A method for producing a thick-walled, high-tensile hot-rolled steel sheet excellent in low-temperature toughness, characterized by winding at a winding temperature of BFS0 or less as defined in 1.
(5)(4)において、前記組成に加えてさらに、質量%で、V:0.01〜0.10%、Mo:0.01〜0.50%、Cr:0.01〜1.0%、Cu:0.01〜0.50%、Ni:0.01〜0.50%のうちの1種または2種以上を含有する組成とすることを特徴とする厚肉高張力熱延鋼板の製造方法。
(6)(4)または(5)において、前記組成に加えてさらに、質量%で、Ca:0.0005〜0.005%を含有する組成とすることを特徴とする厚肉高張力熱延鋼板の製造方法。
(5) In (4), in addition to the above composition, in terms of mass%, V: 0.01 to 0.10%, Mo: 0.01 to 0.50%, Cr: 0.01 to 1.0%, Cu: 0.01 to 0.50%, Ni: 0.01 A method for producing a thick-walled, high-tensile hot-rolled steel sheet, characterized in that the composition contains one or more of ˜0.50%.
(6) In (4) or (5), in addition to the said composition, it is set as the composition which contains further Ca: 0.0005-0.005% by the mass%, The manufacturing method of the thick-wall high tension hot-rolled steel plate characterized by the above-mentioned. .
本発明によれば、板長手方向、板幅方向の材質ばらつきが少なく材質の均一性に優れ、また、板厚方向の組織変動が少なく、低温靭性、とくにDWTT特性とCTOD特性に優れた厚肉高張力熱延鋼板を容易にしかも安価に製造でき、産業上格段の効果を奏する。また本発明によれば、低温靭性、さらにはパイプライン敷設時の円周溶接性に優れたラインパイプ用電縫鋼管およびラインパイプ用スパイラル鋼管を容易に製造できるという効果もある。 According to the present invention, there is little material variation in the plate longitudinal direction and plate width direction, excellent material uniformity, and there is little structure variation in the plate thickness direction, and low-temperature toughness, especially DWTT characteristics and CTOD characteristics are excellent. A high-tensile hot-rolled steel sheet can be manufactured easily and at a low cost, and there is a remarkable industrial effect. In addition, according to the present invention, there is also an effect that an ERW steel pipe for line pipe and a spiral steel pipe for line pipe, which are excellent in low temperature toughness and circumferential weldability when laying a pipeline, can be easily manufactured.
まず、本発明厚肉高張力熱延鋼板の組成限定理由について説明する。なお、とくに断らないかぎり、質量%は単に%と記す。
C:0.02〜0.08%
Cは、鋼の強度を上昇させる作用を有する元素であり、本発明では所望の高強度を確保するために、0.02%以上の含有を必要とする。一方、0.08%を超える過剰な含有は、パーライト等の第二相の組織分率を増大させ、母材靭性および溶接熱影響部靭性を低下させる。このため、Cは0.02〜0.08%の範囲に限定した。なお、好ましくは0.02〜0.05%である。さらに好ましくは、0.04〜0.06%である。
First, the reasons for limiting the composition of the thick-walled high-tensile hot-rolled steel sheet of the present invention will be described. Unless otherwise specified, mass% is simply expressed as%.
C: 0.02 to 0.08%
C is an element having an action of increasing the strength of steel, and in the present invention, it is necessary to contain 0.02% or more in order to ensure a desired high strength. On the other hand, an excessive content exceeding 0.08% increases the structural fraction of the second phase such as pearlite, and lowers the base metal toughness and the weld heat affected zone toughness. For this reason, C was limited to the range of 0.02 to 0.08%. In addition, Preferably it is 0.02 to 0.05%. More preferably, it is 0.04 to 0.06%.
Si:0.01〜0.50%
Siは、固溶強化、焼入れ性の向上を介して、鋼の強度を増加させる作用を有する。このような効果は0.01%以上の含有で認められる。一方、Siは、γ→α変態時にCをγ相に濃化させ、第二相としてマルテンサイト相の形成を促進させる作用を有し、結果としてΔDの増加を招き、鋼板の靭性を低下させる。また、Siは、電縫溶接時にSiを含有する酸化物を形成し、溶接部品質を低下させるとともに、溶接熱影響部靭性を低下させる。このような観点から、Siはできるだけ低減することが望ましいが、0.50%までは許容できる。このようなことから、Siは0.01〜0.50%に限定した。好ましくは0.40%以下である。
Si: 0.01-0.50%
Si has an action of increasing the strength of steel through solid solution strengthening and improvement of hardenability. Such an effect is recognized when the content is 0.01% or more. On the other hand, Si has the effect of concentrating C in the γ phase during the γ → α transformation and promoting the formation of the martensite phase as the second phase, resulting in an increase in ΔD and a decrease in the toughness of the steel sheet. . Moreover, Si forms an oxide containing Si during ERW welding, lowers the weld zone quality, and lowers the weld heat affected zone toughness. From this point of view, it is desirable to reduce Si as much as possible, but up to 0.50% is acceptable. For these reasons, Si was limited to 0.01 to 0.50%. Preferably it is 0.40% or less.
なお、電縫溶接鋼管向け熱延鋼板では、Mnを含有するため、Siは低融点のMn珪酸化物を形成し溶接部からの酸化物排出が容易となるため、Siは0.10〜0.30%程度含有させてもよい。
Mn:0.5〜1.8%
Mnは、焼入性を向上させる作用を有し、焼入性向上を介し鋼板の強度を増加させる。また、Mnは、MnSを形成しSを固定することにより、Sの粒界偏析を防止してスラブ(鋼素材)割れを抑制する。このような効果を得るためには、0.5%以上の含有を必要とする。一方、1.8%を超える含有は、スラブ鋳造時の凝固偏析を助長し、鋼板にMn濃化部を残存させ、セパレーションの発生を増加させる。このMn濃化部を消失させるには、1300℃を超える温度に加熱する必要があり、このような熱処理を工業的規模で実施することは現実的でない。このため、Mnは0.5〜1.8%の範囲に限定した。なお、好ましくは0.9〜1.7%である。
In addition, since hot rolled steel sheets for ERW welded steel pipes contain Mn, Si forms a low-melting point Mn silicate and facilitates oxide discharge from the weld zone, so Si is contained in an amount of about 0.10 to 0.30%. You may let them.
Mn: 0.5-1.8%
Mn has the effect of improving hardenability, and increases the strength of the steel sheet through the improvement of hardenability. Further, Mn forms MnS and fixes S, thereby preventing segregation of S grain boundaries and suppressing slab (steel material) cracking. In order to acquire such an effect, 0.5% or more of content is required. On the other hand, if the content exceeds 1.8%, solidification segregation during slab casting is promoted, Mn-concentrated portions remain in the steel sheet, and the occurrence of separation increases. In order to eliminate this Mn enriched part, it is necessary to heat to a temperature exceeding 1300 ° C., and it is not practical to carry out such a heat treatment on an industrial scale. For this reason, Mn was limited to the range of 0.5 to 1.8%. In addition, Preferably it is 0.9 to 1.7%.
P:0.025%以下
Pは、鋼中に不純物として不可避的に含まれるが、鋼の強度を上昇させる作用を有する。しかし、0.025%を超えて過剰に含有すると溶接性が低下する。このため、Pは0.025%以下に限定した。なお、好ましくは0.015%以下である。
S:0.005%以下
Sは、Pと同様に鋼中に不純物として不可避的に含まれるが、0.005%を超えて過剰に含有すると、スラブ割れを生起させるとともに、熱延鋼板においては粗大なMnSを形成し、延性の低下を生じさせる。このため、Sは0.005%以下に限定した。なお、好ましくは0.004%以下である。
P: 0.025% or less P is inevitably contained as an impurity in steel, but has an effect of increasing the strength of steel. However, when it exceeds 0.025% and it contains excessively, weldability will fall. For this reason, P was limited to 0.025% or less. In addition, Preferably it is 0.015% or less.
S: 0.005% or less S is inevitably contained as an impurity in steel like P, but if it exceeds 0.005% and excessively contained, slab cracking occurs and coarse MnS is contained in the hot-rolled steel sheet. Forming and causing a reduction in ductility. For this reason, S was limited to 0.005% or less. In addition, Preferably it is 0.004% or less.
Al:0.005〜0.10%
Alは、脱酸剤として作用する元素であり、このような効果を得るためには、0.005%以上含有することが望ましい。一方、0.10%を超える含有は、電縫溶接時の、溶接部の清浄性を著しく損なう。このため、Alは0.005〜0.10%に限定した。なお、好ましくは0.08%以下である。
Al: 0.005-0.10%
Al is an element that acts as a deoxidizer, and in order to obtain such an effect, it is desirable to contain 0.005% or more. On the other hand, the content exceeding 0.10% significantly impairs the cleanliness of the welded part during ERW welding. For this reason, Al was limited to 0.005 to 0.10%. In addition, Preferably it is 0.08% or less.
Nb:0.01〜0.10%
Nbは、オーステナイト粒の粗大化、再結晶を抑制する作用を有する元素であり、熱間仕上圧延におけるオーステナイト未再結晶温度域圧延を可能にするとともに、炭窒化物として微細析出することにより、溶接性を損なうことなく、少ない含有量で熱延鋼板を高強度化する作用を有する。このような効果を得るためには、0.01%以上の含有を必要とする。一方、0.10%を超える過剰な含有は、熱間仕上圧延中の圧延荷重の増大をもたらし、熱間圧延が困難となる場合がある。このため、Nbは0.01〜0.10%の範囲に限定した。なお、好ましくは0.03〜0.09%である。
Nb: 0.01-0.10%
Nb is an element that has the effect of suppressing the coarsening and recrystallization of austenite grains, enabling the austenite non-recrystallization temperature range rolling in hot finish rolling, and by precipitating finely as carbonitride, It has the effect | action which makes a hot-rolled steel plate high intensity | strength with little content, without impairing property. In order to acquire such an effect, 0.01% or more of content is required. On the other hand, an excessive content exceeding 0.10% may cause an increase in rolling load during hot finish rolling, which may make hot rolling difficult. For this reason, Nb was limited to the range of 0.01 to 0.10%. In addition, Preferably it is 0.03-0.09%.
Ti:0.001〜0.05%
Tiは、窒化物を形成しNを固定しスラブ(鋼素材)割れを防止する作用を有するとともに、炭化物として微細析出することにより、鋼板を高強度化させる。このような効果は、0.001%以上の含有で顕著となるが、0.05%を超える含有は析出強化により降伏点が著しく上昇する。このため、Tiは0.001〜0.05%の範囲に限定した。なお、好ましくは0.005〜0.035%である。
Ti: 0.001 to 0.05%
Ti has the effect of forming nitrides and fixing N to prevent cracking of slabs (steel material), and finely precipitates as carbides, thereby increasing the strength of the steel sheet. Such an effect becomes remarkable when the content is 0.001% or more. However, when the content exceeds 0.05%, the yield point is remarkably increased by precipitation strengthening. For this reason, Ti was limited to the range of 0.001 to 0.05%. In addition, Preferably it is 0.005-0.035%.
本発明では、上記した範囲のNb、Ti、Cを含み、かつ下記(1)式
(Ti+(Nb/2))/C<4 ‥‥(1)
を満足するようにNb、Ti、Cの含有量を調整する。
Nb、Tiは、炭化物形成傾向の強い元素で、C含有量が低い場合にはほとんどのCが炭化物となり、フェライト粒内の固溶C量が激減することが想定される。しかし、フェライト粒内の固溶C量の激減は、パイプライン施工時の円周溶接性に悪影響を及ぼす。というのは、フェライト粒内の固溶C量が極度に低減した鋼板を用いて製造された鋼管をラインパイプとして、円周溶接を行った場合には、円周溶接部の熱影響部における粒成長が顕著となり、円周溶接部の熱影響部靭性が低下する恐れがあるためである。このようなことから、本発明では、Nb、Ti、Cを(1)式を満足するように調整して含有させる。これにより、フェライト粒内の固溶C量を10ppm以上とすることが可能となり、円周溶接部の熱影響部靭性の低下を防止できる。なお、溶接部の強度低下を抑制するためには、Nb、Ti、Cを、次(1a)式
(Ti+(Nb/2))/C≦3 ‥‥(1a)
を満足するように調整して含有させることが好ましい。
In the present invention, Nb, Ti, and C in the above ranges are included, and the following formula (1) (Ti + (Nb / 2)) / C <4 (1)
Nb, Ti, and C content are adjusted so as to satisfy the above.
Nb and Ti are elements that have a strong tendency to form carbides. When the C content is low, most of the C becomes carbides, and the amount of solid solution C in the ferrite grains is assumed to decrease drastically. However, the drastic decrease in the amount of C dissolved in ferrite grains adversely affects the circumferential weldability during pipeline construction. The reason is that when circumferential welding is performed using a steel pipe manufactured using a steel sheet in which the amount of dissolved C in the ferrite grain is extremely reduced as a line pipe, the grain in the heat-affected zone of the circumferential welded part This is because the growth becomes remarkable and the heat-affected zone toughness of the circumferential weld may be lowered. For this reason, in the present invention, Nb, Ti, and C are contained so as to satisfy the formula (1). Thereby, it becomes possible to make solid solution C amount in a
It is preferable to make it contain so that it may satisfy.
本発明では、上記した成分が基本成分であるが、この基本の組成に加えてさらに、選択元素として、V:0.01〜0.10%、Mo:0.01〜0.50%、Cr:0.01〜1.0%、Cu:0.01〜0.50%、Ni:0.01〜0.50%のうちの1種または2種以上、および/または、Ca:0.0005〜0.005%を、必要に応じて選択して含有することができる。
V:0.01〜0.10%、Mo:0.01〜0.50%、Cr:0.01〜1.0%、Cu:0.01〜0.50%、Ni:0.01〜0.50%のうちの1種または2種以上
V、Mo、Cr、Cu、Niはいずれも、焼入れ性を向上させ、鋼板の強度を増加させる元素であり、必要に応じて1種または2種以上を選択して含有できる。
In the present invention, the above components are basic components. In addition to this basic composition, V: 0.01 to 0.10%, Mo: 0.01 to 0.50%, Cr: 0.01 to 1.0%, Cu: One or more of 0.01 to 0.50%, Ni: 0.01 to 0.50%, and / or Ca: 0.0005 to 0.005% can be selected and contained as necessary.
One or more of V: 0.01 to 0.10%, Mo: 0.01 to 0.50%, Cr: 0.01 to 1.0%, Cu: 0.01 to 0.50%, Ni: 0.01 to 0.50% V, Mo, Cr, Cu , Ni is an element that improves the hardenability and increases the strength of the steel sheet, and can be selected from one or more as required.
Vは、焼入性を向上させるとともに、炭窒化物を形成して鋼板を高強度化する作用を有する元素であり、このような効果は0.01%以上の含有で顕著となる。一方、0.10%を超える過剰の含有は、溶接性を劣化させる。このため、Vは0.01〜0.10%とすることが好ましい。なお、さらに好ましくは0.03〜0.08%である。
Moは、焼入性を向上させるとともに、炭窒化物を形成して鋼板を高強度化する作用を有する元素であり、このような効果を得るためには0.01%以上含有することが望ましい。一方、0.50%を超える多量の含有は、溶接性を低下させる。このため、Moは0.01〜0.50%に限定することが好ましい。なお、より好ましくは0.05〜0.30%である。
V is an element that has an effect of improving hardenability and forming carbonitride to increase the strength of the steel sheet, and such an effect becomes remarkable when the content is 0.01% or more. On the other hand, excessive content exceeding 0.10% deteriorates weldability. For this reason, V is preferably 0.01 to 0.10%. Further, it is more preferably 0.03 to 0.08%.
Mo is an element that has an effect of improving hardenability and forming carbonitride to increase the strength of the steel sheet. In order to obtain such an effect, it is preferable to contain 0.01% or more. On the other hand, a large content exceeding 0.50% reduces weldability. For this reason, it is preferable to limit Mo to 0.01 to 0.50%. In addition, More preferably, it is 0.05 to 0.30%.
Crは、焼入性を向上させ、鋼板強度を増加させる作用を有する元素である。このような効果を得るためには、0.01%以上含有することが望ましい。一方、1.0%を超える過剰の含有は、電縫溶接時に溶接欠陥を多発させる傾向となる。このため、Crは0.01〜1.0%に限定することが好ましい。なお、さらに好ましくは0.01〜0.80%である。
Cuは、焼入れ性を向上させるとともに、固溶強化あるいは析出強化により鋼板の強度を増加させる作用を有する元素である。このような効果を得るためには、0.01%以上含有することが望ましいが、0.50%を超える含有は熱間加工性を低下させる。このため、Cuは0.01〜0.50%に限定することが好ましい。なお、より好ましくは0.10〜0.40%である。
Cr is an element that has the effect of improving hardenability and increasing the strength of the steel sheet. In order to acquire such an effect, it is desirable to contain 0.01% or more. On the other hand, an excessive content exceeding 1.0% tends to cause frequent welding defects during ERW welding. For this reason, it is preferable to limit Cr to 0.01 to 1.0%. In addition, More preferably, it is 0.01 to 0.80%.
Cu is an element that has the effect of improving the hardenability and increasing the strength of the steel sheet by solid solution strengthening or precipitation strengthening. In order to acquire such an effect, it is desirable to contain 0.01% or more, but inclusion exceeding 0.50% reduces hot workability. For this reason, it is preferable to limit Cu to 0.01 to 0.50%. In addition, More preferably, it is 0.10 to 0.40%.
Niは、焼入性を向上させ、鋼の強度を増加させるとともに、鋼板の靭性をも向上させる作用を有する元素である。このような効果を得るためには、0.01%以上含有することが望ましい。一方、0.50%を超えて含有しても、効果が飽和し含有量に見合う効果が期待できなくなり経済的に不利となる。このため、Niは0.01〜0.50%に限定することが好ましい。なお、より好ましくは0.10〜0.45%である。 Ni is an element that has the effect of improving hardenability, increasing the strength of the steel, and improving the toughness of the steel sheet. In order to acquire such an effect, it is desirable to contain 0.01% or more. On the other hand, if the content exceeds 0.50%, the effect is saturated and an effect commensurate with the content cannot be expected, which is economically disadvantageous. For this reason, it is preferable to limit Ni to 0.01 to 0.50%. In addition, More preferably, it is 0.10 to 0.45%.
Ca:0.0005〜0.005%
Caは、SをCaSとして固定し、硫化物系介在物を球状化し、介在物の形態を制御する作用を有し、介在物の周囲のマトリックスの格子歪を小さくし、水素のトラップ能を低下させる作用を有する元素である。このような効果を得るためには、0.0005%以上含有させることが望ましいが、0.005%を超えて含有すると、CaOの増加を招き、耐食性、靭性を低下させる。このため、Caは含有する場合には、0.0005〜0.005%に限定することが好ましい。なお、より好ましくは0.0009〜0.003%である。
Ca: 0.0005 to 0.005%
Ca has the action of fixing S as CaS, spheroidizing sulfide inclusions, and controlling the form of inclusions, reducing the lattice strain of the matrix surrounding inclusions, and reducing the hydrogen trapping ability It is an element which has the effect | action to make. In order to acquire such an effect, it is desirable to make it contain 0.0005% or more, but if it contains more than 0.005%, CaO will increase and corrosion resistance and toughness will be reduced. For this reason, when it contains Ca, it is preferable to limit to 0.0005 to 0.005%. In addition, More preferably, it is 0.0009 to 0.003%.
上記した成分以外の残部は、Feおよび不可避的不純物からなる。なお、不可避的不純物としては、N:0.005%以下、O:0.005%以下、Mg:0.003%以下、Sn:0.005%以下が許容できる。
N:0.005%以下
Nは、鋼中に不可避的に含有されるが、過剰の含有は、鋼素材(スラブ)鋳造時の割れを多発させる。このため、Nは0.005%以下に限定することが望ましい。なお、より好ましくは0.004%以下である。
The balance other than the components described above consists of Fe and inevitable impurities. Inevitable impurities include N: 0.005% or less, O: 0.005% or less, Mg: 0.003% or less, and Sn: 0.005% or less.
N: 0.005% or less N is inevitably contained in steel, but excessive inclusion frequently causes cracking during casting of a steel material (slab). For this reason, it is desirable to limit N to 0.005% or less. More preferably, it is 0.004% or less.
O:0.005%以下
Oは、鋼中では各種の酸化物として存在し、熱間加工性、耐食性、靭性等を低下させる原因となる。このため、本発明ではできるだけ低減することが望ましいが、0.005%までは許容できる。極端な低減は精錬コストを高騰を招くため、Oは0.005%以下に限定することが望ましい。
O: 0.005% or less O exists as various oxides in steel, and causes hot workability, corrosion resistance, toughness and the like to decrease. For this reason, it is desirable to reduce as much as possible in the present invention, but it is acceptable up to 0.005%. Since extreme reduction leads to an increase in refining costs, it is desirable to limit O to 0.005% or less.
Mg:0.003%以下
Mgは、Caと同様に酸化物、硫化物を形成し、粗大なMnSの形成を抑制する作用を有するが、0.003%を超える含有は、Mg酸化物、Mg硫化物のクラスターを多発させ、靭性の低下を招く。このため、Mgは0.003%以下に限定することが望ましい。
Sn:0.005%以下
Snは、製鋼原料として使用されるスクラップ等から混入する。Snは、粒界等に偏析しやすい元素であり、0.005%を超えて多量に含有すると、粒界強度が低下し、靭性の低下を招く。このため、Snは0.005%以下に限定することが望ましい。
Mg: 0.003% or less
Mg, like Ca, forms oxides and sulfides and has the effect of suppressing the formation of coarse MnS, but if it exceeds 0.003%, Mg oxide and Mg sulfide clusters occur frequently, and toughness Cause a decline. For this reason, it is desirable to limit Mg to 0.003% or less.
Sn: 0.005% or less
Sn is mixed from scraps used as steelmaking raw materials. Sn is an element that easily segregates at grain boundaries and the like, and if it is contained in a large amount exceeding 0.005%, the grain boundary strength is lowered and the toughness is lowered. For this reason, it is desirable to limit Sn to 0.005% or less.
本発明の厚肉高張力熱延鋼板は、上記した組成を有し、さらに、鋼板表面から板厚方向に1mmの位置における主相であるフェライト相の平均結晶粒径と鋼板の板厚中央位置における主相であるフェライト相の平均結晶粒径(μm)との差ΔDが2μm以下で、かつ鋼板表面から板厚方向に1mmの位置における第二相の組織分率(体積%)と鋼板の板厚中央位置における第二相の組織分率(体積%)との差ΔVが2%以下である組織を有する。 The thick-walled high-tensile hot-rolled steel sheet of the present invention has the above-described composition, and further, the average crystal grain size of the ferrite phase, which is the main phase at a position of 1 mm in the sheet thickness direction from the sheet surface, and the sheet thickness center position. The difference ΔD from the average crystal grain size (μm) of the ferrite phase, which is the main phase, is 2 μm or less, and the structure fraction (volume%) of the second phase at a position 1 mm from the steel sheet surface in the sheet thickness direction It has a structure having a difference ΔV of 2% or less with respect to the structure fraction (volume%) of the second phase at the plate thickness center position.
なお、ここでいう「主相であるフェライト相」とは、本発明における主たる組織(主相)が硬質な低温変態フェライト相からなることを意味し、硬質な低温変態フェライト相とはベイニティックフェライト相、あるいはベイナイト相およびこれらの混合相をいう。ここでは、軟質な高温変態フェライト相は含まない。また、主相以外の第二相は、パーライト相、マルテンサイト相、MA相(島状マルテンサイト相ともいう)およびこれらの混合相である。 The “ferrite phase as the main phase” here means that the main structure (main phase) in the present invention is composed of a hard low-temperature transformation ferrite phase, and the hard low-temperature transformation ferrite phase is bainitic. It refers to a ferrite phase, a bainite phase, or a mixed phase thereof. Here, the soft high temperature transformation ferrite phase is not included. The second phase other than the main phase is a pearlite phase, a martensite phase, an MA phase (also referred to as an island martensite phase) and a mixed phase thereof.
ΔDが2μm以下でかつΔVが2%以下となる場合にのみ、厚肉高張力熱延鋼板の低温靭性、とくに全厚試験片を用いるDWTT特性やCTOD特性が顕著に向上する。ΔDまたはΔVのいずれか一つが、上記した範囲の外となる場合には、図1からも明らかなように、DWTTが−35℃より高くなり、DWTT特性が低下し、低温靭性が劣化する。このようなことから、本発明では、組織を、鋼板表面から板厚方向に1mmの位置における主相であるフェライト相の平均結晶粒径と鋼板の板厚中央位置における主相であるフェライト相の平均結晶粒径(μm)との差ΔDが2μm以下、かつ鋼板表面から板厚方向に1mmの位置における第二相の組織分率(体積%)と鋼板の板厚中央位置における第二相の組織分率(体積%)との差ΔVが2%以下である組織に限定した。 Only when ΔD is 2 μm or less and ΔV is 2% or less, the low-temperature toughness of the thick, high-tensile hot-rolled steel sheet, in particular, the DWTT characteristics and CTOD characteristics using a full-thickness test piece are significantly improved. When any one of ΔD and ΔV falls outside the above range, as is apparent from FIG. 1, DWTT is higher than −35 ° C., DWTT characteristics are lowered, and low temperature toughness is deteriorated. For this reason, in the present invention, the structure of the ferrite phase, which is the main phase at the center position of the steel sheet thickness, and the average crystal grain size of the ferrite phase, which is the main phase at a position 1 mm from the steel sheet surface in the thickness direction, is obtained. The difference ΔD from the average crystal grain size (μm) is 2 μm or less, and the structure fraction (volume%) of the second phase at a position of 1 mm from the steel sheet surface in the sheet thickness direction and the second phase at the center position of the sheet thickness of the steel sheet. The difference ΔV with respect to the tissue fraction (volume%) was limited to a tissue of 2% or less.
なお、ΔDが2μm以下でかつΔVが2%以下となる組織を有する熱延鋼板は、鋼板表面から板厚方向に1mmの位置と板厚1/4位置との、主相であるフェライト相の平均結晶粒径(μm)の差ΔD*が2μm以下、第二相の組織分率(%)の差ΔV*が2%以下を満足し、また鋼板表面から板厚方向に1mmの位置と板厚3/4位置との、主相であるフェライト相の平均結晶粒径(μm)の差ΔD**も2μm以下、第二相の組織分率(%)の差ΔV**も2%以下を満足することを確認している。 Note that a hot-rolled steel sheet having a structure in which ΔD is 2 μm or less and ΔV is 2% or less has a ferrite phase that is a main phase at a position of 1 mm in the sheet thickness direction from the sheet surface and a 1/4 position of the sheet thickness. The difference ΔD * in the average grain size (μm) is 2 μm or less, the difference ΔV * in the structure fraction (%) in the second phase is 2% or less, and the position 1 mm from the steel sheet surface in the thickness direction The difference ΔD ** in the average crystal grain size (μm) of the ferrite phase, the main phase, from the 3/4 thickness position is also 2 μm or less, and the difference ΔV ** in the second phase structure fraction (%) is also 2% or less. Make sure you are satisfied.
さらに本発明の厚肉高張力熱延鋼板は、表面に厚さ3〜30μmの範囲の均一な黒皮を有する。
表面に形成された黒皮の厚さが3μm未満では、それより厚い場合に比し熱伝達係数が低下し、図4(a)に示すように引張強さの低下を招くとともに、結果的に板厚中央位置の冷却停止温度の上昇を招き靱性低下の要因となる。また、厚さが3μm未満の黒皮が薄い部分が存在すると、冷却ムラが生じ、局所的な強度低下を招く。一方、黒皮の厚さが30μmを超えて厚くなると、それより薄い場合に比し熱伝達係数が増加し、図4(a)に示すように引張強さTSの増加を招くとともに、表層部の過度な高強度化を招き靭性低下の要因となる。また、厚さが30μmを超えて厚い部分が存在すると、冷却ムラが生じ、局所的な強度増加、延性の低下を招く。このため、表面に形成する黒皮の厚さは3〜30μmの範囲に限定した。表面に形成する黒皮の厚さをこの範囲内に調整することにより、鋼板内各位置での強度、延性のばらつきが小さくなり、鋼板内各位置での材質の均一性が向上する。
Furthermore, the thick high-tensile hot-rolled steel sheet of the present invention has a uniform black skin with a thickness in the range of 3 to 30 μm on the surface.
When the thickness of the black skin formed on the surface is less than 3 μm, the heat transfer coefficient is reduced as compared with the case where the thickness is larger than that, and as a result, the tensile strength is reduced as shown in FIG. This causes an increase in the cooling stop temperature at the center position of the plate thickness and causes a decrease in toughness. In addition, if there is a portion where the black skin having a thickness of less than 3 μm is thin, uneven cooling occurs, resulting in local strength reduction. On the other hand, when the thickness of the black skin exceeds 30 μm, the heat transfer coefficient increases as compared with the case where the thickness of the black skin is smaller than that, and the tensile strength TS is increased as shown in FIG. This leads to excessive increase in strength and causes a decrease in toughness. In addition, if there is a thick portion exceeding 30 μm, cooling unevenness occurs, causing a local increase in strength and a decrease in ductility. For this reason, the thickness of the black skin formed on the surface is limited to a range of 3 to 30 μm. By adjusting the thickness of the black skin formed on the surface within this range, variations in strength and ductility at each position in the steel sheet are reduced, and the uniformity of the material at each position in the steel sheet is improved.
つぎに、本発明熱延鋼板の好ましい製造方法について説明する。
鋼素材の製造方法としては、上記した組成の溶鋼を転炉等の常用の溶製方法で溶製し、連続鋳造法等の常用の鋳造方法でスラブ等の鋼素材とすることが好ましいが、本発明では、これに限定されることはない。
上記した組成の鋼素材に、加熱し熱間圧延を施す。熱間圧延は、鋼素材をシートバーとする粗圧延と、該シートバーを熱延板とする仕上圧延とからなる。
Below, the preferable manufacturing method of this invention hot-rolled steel plate is demonstrated.
As a manufacturing method of the steel material, it is preferable to melt the molten steel having the above composition by a conventional melting method such as a converter, and to make a steel material such as a slab by a conventional casting method such as a continuous casting method, The present invention is not limited to this.
The steel material having the above composition is heated and hot-rolled. Hot rolling consists of rough rolling using a steel material as a sheet bar and finish rolling using the sheet bar as a hot-rolled sheet.
鋼素材の加熱温度は、熱延板に圧延することが可能な温度であればよく、とくに限定する必要はないが、1100〜1300℃の範囲の温度とすることが好ましい。加熱温度が1100℃未満では、変形抵抗が高く圧延負荷が増大し圧延機への負荷が過大となりすぎる。一方、加熱温度が1300℃を超えて高温になると、結晶粒が粗大して低温靭性が低下するうえ、スケール生成量が増大し、歩留りが低下する。このため、熱間圧延における加熱温度は1100〜1300℃とすることが好ましい。 The heating temperature of the steel material is not particularly limited as long as it can be rolled into a hot-rolled sheet, but it is preferably a temperature in the range of 1100 to 1300 ° C. When the heating temperature is less than 1100 ° C., the deformation resistance is high, the rolling load increases, and the load on the rolling mill becomes excessive. On the other hand, when the heating temperature is higher than 1300 ° C., the crystal grains are coarsened and the low-temperature toughness is reduced, the amount of scale generation is increased, and the yield is lowered. For this reason, it is preferable that the heating temperature in hot rolling shall be 1100-1300 degreeC.
加熱された鋼素材に、粗圧延を施し、シートバーとする。粗圧延の条件は、所望の寸法形状のシートバーが得られればよく、その条件はとくに限定されない。なお、低温靭性確保の観点からは、粗圧延の圧延終了温度は1050℃以下とすることが好ましい。なお、本発明では粗圧延前に、加熱により鋼素材表面に生じた一次スケールを、粗圧延機用スケールブレーカーRSBにより除去するスケール除去処理を施す。スケール除去処理は、粗圧延前に加えて、粗圧延中に複数回行ってもよい。なお、製品(熱延板)の黒皮厚さを適正範囲に調整するために、過剰なスケールブレーカーの使用は避けることが望ましい。 The heated steel material is roughly rolled into a sheet bar. The rough rolling conditions are not particularly limited as long as a sheet bar having a desired size and shape can be obtained. From the viewpoint of securing low temperature toughness, the rolling end temperature of rough rolling is preferably 1050 ° C. or lower. In the present invention, prior to rough rolling, a scale removal treatment is performed to remove the primary scale generated on the surface of the steel material by heating with a scale breaker RSB for a rough rolling mill. The scale removal treatment may be performed a plurality of times during rough rolling in addition to before rough rolling. In order to adjust the black skin thickness of the product (hot rolled sheet) to an appropriate range, it is desirable to avoid the use of an excessive scale breaker.
得られたシートバーに、さらに仕上圧延を施す。なお、仕上圧延における温度は、表面温度を用いるものとする。
仕上圧延では、入側温度FETを800〜1050℃、出側温度FDTを750〜950℃とすることが好ましい。仕上圧延の入側温度FETが800℃未満では、表面近傍が冷却されすぎてAr3変態点未満となる場合があり、板厚方向の組織が不均一となり靭性が低下する。一方、FETが1050℃を超えると、仕上圧延のミル内で、二次スケールが生成する場合があり、黒皮の厚さを所望の適正範囲内に調整することが困難となる。また、仕上圧延の出側温度FDTが750℃未満では、表面近傍がAr3変態点未満となる場合があり、板厚方向の組織が不均一となり靭性が低下する。一方、FDTが950℃を超えて高温となると、仕上圧延のミル内で、二次スケールが生成し黒皮の厚さを所望の適正範囲内に調整することが困難となる。
The obtained sheet bar is further subjected to finish rolling. The surface temperature is used as the temperature in finish rolling.
In finish rolling, it is preferable that the inlet temperature FET is 800 to 1050 ° C. and the outlet temperature FDT is 750 to 950 ° C. If the entry temperature FET of finish rolling is less than 800 ° C, the vicinity of the surface may be cooled too much to be less than the Ar3 transformation point, and the structure in the plate thickness direction becomes non-uniform and the toughness decreases. On the other hand, when the FET exceeds 1050 ° C., a secondary scale may be generated in the finish rolling mill, and it becomes difficult to adjust the thickness of the black skin within a desired appropriate range. Further, when the exit side temperature FDT of finish rolling is less than 750 ° C., the vicinity of the surface may be less than the Ar3 transformation point, and the structure in the plate thickness direction becomes non-uniform and the toughness decreases. On the other hand, when the FDT exceeds 950 ° C. and becomes a high temperature, a secondary scale is generated in the finish rolling mill, and it becomes difficult to adjust the thickness of the black skin within a desired appropriate range.
なお、仕上圧延前のシートバーに加速冷却を施すか、あるいはテーブル上でオシレーションなどを行って仕上圧延の入側温度を調整することが好ましい。これにより、仕上圧延ミル内での、高靭性化に有効な温度域での圧下率を大きくすることができる。また本発明では、仕上圧延前のシートバーに、仕上圧延機用スケールブレーカーFSBを用いてシートバーに形成された二次スケールを除去するスケール除去処理を施す。スケール除去処理は仕上圧延前に加えて仕上圧延機のスタンド間冷却により複数回実施してもよい。なお、スケール除去処理を施す際のシートバーの温度は、800〜1050℃の範囲の温度とすることが好ましい。なお、製品(熱延板)の黒皮厚さを適正範囲に調整するために、過剰なスケールブレーカーの使用は避けることが望ましい。このスケール除去処理によっても、仕上圧延の入側温度を調整することができる。 In addition, it is preferable to adjust the entrance temperature of finish rolling by performing accelerated cooling on the sheet bar before finish rolling, or performing oscillation on a table. Thereby, the reduction rate in the temperature range effective for high toughness in the finish rolling mill can be increased. Moreover, in this invention, the scale removal process which removes the secondary scale formed in the sheet bar using the scale breaker FSB for finish rolling mills is performed on the sheet bar before finish rolling. The scale removal treatment may be performed a plurality of times by cooling between stands of the finishing mill in addition to finishing rolling. In addition, it is preferable that the temperature of the sheet bar at the time of performing the descaling process is a temperature in the range of 800 to 1050 ° C. In order to adjust the black skin thickness of the product (hot rolled sheet) to an appropriate range, it is desirable to avoid the use of an excessive scale breaker. Also by this scale removal process, the entry temperature of finish rolling can be adjusted.
仕上圧延では、高靭性化の観点から、有効圧下率を20%以上とすることが好ましい。ここで、「有効圧下率」とは、950℃以下の温度域での全圧下量(%)をいう。なお、板厚全体で所望の高靭性化を達成するためには、板厚中央位置における有効圧下率が20%以上を満足することが好ましい。
熱間圧延(仕上圧延)終了後、熱延板には、ホットランテーブル上で加速冷却を施すことが好ましい。加速冷却の開始は、板厚中央位置の温度が750℃以上であるうちに行うことが望ましい。板厚中央位置の温度が750℃未満となると、高温変態フェライト(ポリゴナルフェライト)が形成され、γ→α変態時に排出されたCにより、ポリゴナルフェライト周辺に第二相が形成される。このため、板厚中央位置で第二相の組織分率が高くなり、上記した所望の組織を形成できなくなる。
In finish rolling, it is preferable that the effective rolling reduction is 20% or more from the viewpoint of increasing toughness. Here, the “effective reduction ratio” refers to the total reduction amount (%) in the temperature range of 950 ° C. or lower. In order to achieve the desired high toughness over the entire plate thickness, it is preferable that the effective rolling reduction at the plate thickness center position satisfies 20% or more.
After the hot rolling (finish rolling), the hot-rolled sheet is preferably subjected to accelerated cooling on a hot run table. It is desirable to start the accelerated cooling while the temperature at the center position of the plate thickness is 750 ° C. or higher. When the temperature at the center of the plate thickness is less than 750 ° C., high-temperature transformation ferrite (polygonal ferrite) is formed, and a second phase is formed around the polygonal ferrite due to C discharged during the γ → α transformation. For this reason, the structure fraction of the second phase becomes high at the plate thickness center position, and the above-described desired structure cannot be formed.
加速冷却は、板厚中央位置の平均冷却速度で10℃/s以上の冷却速度で、BFS以下の冷却停止温度まで行うことが好ましい。なお、平均冷却速度は750〜650℃の温度領域の平均とする。
冷却速度が10℃/s未満では、高温変態フェライト(ポリゴナルフェライト)が形成されやすくなり、板厚中央位置で第二相の組織分率が高くなり、上記した所望の組織を形成できなくなる。このため、熱間圧延終了後の加速冷却は、板厚中央位置の平均冷却速度で10℃/s以上の冷却速度で行うことが好ましい。なお、より好ましくは、20℃/s以上である。なお、冷却速度の上限は、使用する冷却装置の能力に依存して決定されるが、反り等の鋼板形状の悪化を伴わない冷却速度であるマルテンサイト生成冷却速度より遅いことが好ましい。また、このような冷却速度は、フラットノズル、棒状ノズル、円管ノズル等を利用した水冷装置により達成できる。なお、本発明では、板厚中央位置の温度、冷却速度、巻取温度等は、伝熱計算等で算出したものを使用することとした。
Accelerated cooling is preferably performed at a cooling rate of 10 ° C./s or more at the average cooling rate at the center position of the plate thickness up to a cooling stop temperature of BFS or less. In addition, let an average cooling rate be the average of a temperature range of 750-650 degreeC.
If the cooling rate is less than 10 ° C./s, high-temperature transformation ferrite (polygonal ferrite) is likely to be formed, and the second phase structure fraction becomes high at the center of the plate thickness, making it impossible to form the desired structure described above. For this reason, it is preferable to perform accelerated cooling after completion | finish of hot rolling with the cooling rate of 10 degrees C / s or more by the average cooling rate of a plate | board thickness center position. In addition, More preferably, it is 20 degrees C / s or more. In addition, although the upper limit of a cooling rate is determined depending on the capability of the cooling device to be used, it is preferable that it is slower than the martensite production cooling rate which is a cooling rate without the deterioration of steel plate shapes, such as curvature. In addition, such a cooling rate can be achieved by a water cooling device using a flat nozzle, a rod-like nozzle, a circular tube nozzle, or the like. In the present invention, the temperature at the center of the plate thickness, the cooling rate, the coiling temperature, and the like are those calculated by heat transfer calculation or the like.
また、上記した加速冷却の冷却停止温度は、板厚中央位置の温度で、BFS 以下の温度とすることが好ましい。なお、より好ましくは(BFS−20℃)以下である。BFS は、次(2)式
BFS(℃)=770−300C−70Mn−70Cr−170Mo−40Cu−40Ni−1.5CR ‥‥(2)
(ここで、C、Mn、Cr、Mo、Cu、Ni:各元素の含有量(質量%)、CR:板厚中央位置の平均冷却速度(℃/s))
で定義される。また、上記した冷却停止温度以下で、加速冷却を停止したのち、熱延板は板厚中央位置の温度でBFS0以下の巻取温度でコイル状に巻き取られる。なお、より好ましくは(BFS0−20℃)以下である。BFS0は、次(3)式
BFS0(℃)=770−300C−70Mn−70Cr−170Mo−40Cu−40Ni ‥‥(3)
(ここで、C、Mn、Cr、Mo、Cu、Ni:各元素の含有量(質量%))
で定義される。
Further, the cooling stop temperature of the above-described accelerated cooling is preferably set to a temperature at the center position of the plate thickness or lower than BFS. In addition, More preferably, it is (BFS-20 degreeC) or less. BFS is the following equation (2)
BFS (℃) = 770−300C−70Mn−70Cr−170Mo−40Cu−40Ni−1.5CR (2)
(Here, C, Mn, Cr, Mo, Cu, Ni: content of each element (mass%), CR: average cooling rate at the center position of the plate thickness (° C / s))
Defined by In addition, after accelerating cooling is stopped below the above-described cooling stop temperature, the hot-rolled sheet is wound in a coil shape at a coiling temperature equal to or lower than BFS0 at the temperature at the center of the sheet thickness. More preferably, it is (BFS 0-20 ° C.) or less. BFS0 is the following formula (3)
BFS0 (℃) = 770−300C−70Mn−70Cr−170Mo−40Cu−40Ni (3)
(Here, C, Mn, Cr, Mo, Cu, Ni: content of each element (mass%))
Defined by
加速冷却の冷却停止温度をBFS 以下の温度とし、かつ巻取温度をBFS0以下の温度とすることにより、図2、図3に示すように、はじめてΔDが2μm以下でかつΔVが2%以下となり、板厚方向の組織の均一性が顕著となる。これにより、優れたDWTT特性および優れたCTOD特性を確保でき、低温靭性が顕著に向上した厚肉高張力熱延鋼板とすることができる。 By setting the cooling stop temperature for accelerated cooling to BFS or lower and the coiling temperature to BFS0 or lower, as shown in FIGS. 2 and 3, ΔD is 2 μm or less and ΔV is 2% or less for the first time. In addition, the uniformity of the structure in the thickness direction becomes remarkable. Thereby, the excellent DWTT characteristic and the outstanding CTOD characteristic can be ensured, and it can be set as the thick-walled high-tensile-strength hot-rolled steel plate which markedly improved low-temperature toughness.
なお、コイル状に巻き取られた熱延板は、コイル中央部(コイル長手方向中央部)での冷却速度で20〜60℃/hrで室温まで冷却することが好ましい。冷却速度が20℃/hr未満では、結晶粒の成長が進行するため、靭性が低下する場合がある。また、60℃/hrを超える冷却速度では、コイル中央部とコイル外周部や内周部との温度差が大きくなり、コイル形状の悪化を招きやすい。 In addition, it is preferable that the hot-rolled sheet wound up in a coil shape is cooled to room temperature at 20 to 60 ° C./hr at a cooling rate at the coil central part (coil longitudinal direction central part). If the cooling rate is less than 20 ° C./hr, the growth of crystal grains proceeds, so that the toughness may decrease. Further, at a cooling rate exceeding 60 ° C./hr, the temperature difference between the coil central portion and the coil outer peripheral portion or inner peripheral portion becomes large, and the coil shape tends to deteriorate.
以下、さらに実施例に基づいて本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail based on examples.
表1に示す組成のスラブ(鋼素材)(肉厚:230mm)を用いて、表2に示す熱間圧延条件で熱間圧延を施し、熱間圧延終了後、表2に示す冷却条件で冷却し、表2に示す巻取温度でコイル状に巻取り、表2に示す板厚の熱延鋼板(鋼帯)とした。なお、これら熱延鋼板を素材として、冷間でのロール連続成形によりオープン管とし、該オープン管の端面同士を電縫溶接して、電縫鋼管(外径660mmφ)とした。 Using a slab (steel material) (thickness: 230 mm) having the composition shown in Table 1, hot rolling is performed under the hot rolling conditions shown in Table 2, and after completion of the hot rolling, cooling is performed under the cooling conditions shown in Table 2. And it wound up in coil shape at the coiling temperature shown in Table 2, and it was set as the hot-rolled steel plate (steel strip) of the board thickness shown in Table 2. Using these hot-rolled steel sheets as the raw material, open pipes were formed by continuous roll forming in the cold, and the end faces of the open pipes were electro-welded to form electric-welded steel pipes (outer diameter 660 mmφ).
得られた熱延鋼板から試験片を採取し、組織観察、引張試験、衝撃試験、DWTT試験、CTOD試験を実施した。なお、DWTT試験、CTOD試験は電縫鋼管についても実施した。試験方法は次の通りとした。
(1)組織観察
得られた熱延鋼板から組織観察用試験片を採取し、圧延方向断面を研磨、腐食し、光学顕微鏡(倍率:1000倍)または走査型電子顕微鏡(倍率:1000倍)で各2視野以上観察し、撮像して、画像解析装置を用いて、主相であるフェライト相の平均結晶粒径、および主相であるフェライト相以外の第二相の組織分率(体積%)を測定した。観察位置は、鋼板表面から板厚方向に1mmの位置、および板厚中央位置とした。なお、主相であるフェライト相の平均結晶粒径は、切断方により平均結晶粒径を求め、公称粒径を該位置における平均結晶粒径とした。
Test pieces were collected from the obtained hot-rolled steel sheet and subjected to structure observation, tensile test, impact test, DWTT test, and CTOD test. The DWTT test and CTOD test were also conducted on ERW steel pipes. The test method was as follows.
(1) Microstructure observation A specimen for microstructural observation was collected from the obtained hot-rolled steel sheet, the cross section in the rolling direction was polished and corroded, and the optical microscope (magnification: 1000 times) or scanning electron microscope (magnification: 1000 times) was used. Observe at least two fields of view, take an image, and use an image analyzer to determine the average grain size of the ferrite phase as the main phase and the fraction of the second phase other than the ferrite phase as the main phase (volume%) Was measured. The observation position was a position of 1 mm in the thickness direction from the surface of the steel plate and a central position of the thickness. The average crystal grain size of the ferrite phase as the main phase was determined by the cutting method, and the nominal grain size was defined as the average crystal grain size at this position.
また、得られた熱延鋼板の長手方向各位置(長さ方向に40m間隔で4個所)、幅方向各位置(幅方向に0.4m間隔で4個所)から黒皮厚さ測定用試験片を採取し、圧延方向断面を研磨し、光学顕微鏡または走査型電子顕微鏡を用いて黒皮厚さを測定した。得られた黒皮厚さの平均値、平均黒皮厚さtsと、各位置での黒皮厚さのうち、最大値と最小値との差Δtsを算出した。 In addition, a test piece for measuring the thickness of the black skin is obtained from each position in the longitudinal direction of the obtained hot-rolled steel sheet (4 locations at intervals of 40 m in the length direction) and from each position in the width direction (4 locations at intervals of 0.4 m in the width direction). The sample was collected, the cross section in the rolling direction was polished, and the thickness of the black skin was measured using an optical microscope or a scanning electron microscope. Of the obtained average value of the black skin thickness, the average black skin thickness ts, and the black skin thickness at each position, a difference Δts between the maximum value and the minimum value was calculated.
(2)引張試験
得られた熱延鋼板の長手方向各位置(長さ方向に40m間隔で4個所)、幅方向各位置(幅方向に0.4m間隔で4個所)から、圧延方向に直交する方向(C方向)が長手方向となるように、板状の試験片(平行部幅:25mm、標点間距離:50mm)を採取し、ASTM E8M−04の規定に準拠して、室温で引張試験を実施し、引張強さTSを求めた。得られた各位置での引張強さTSから、最小値と最大値の差を求め、ばらつきΔTSとし、鋼板各位置での引張強さのばらつきを評価した。ΔTSが35MPa以内の場合を均一であるとした。
(2) Tensile test The obtained hot-rolled steel sheet is orthogonal to the rolling direction from each position in the longitudinal direction (4 places at intervals of 40 m in the length direction) and each position in the width direction (4 places at intervals of 0.4 m in the width direction). Take a plate-shaped test piece (parallel part width: 25 mm, distance between gauge points: 50 mm) so that the direction (C direction) is the longitudinal direction, and pull it at room temperature in accordance with the provisions of ASTM E8M-04. A test was conducted to determine the tensile strength TS. The difference between the minimum value and the maximum value was obtained from the obtained tensile strength TS at each position, and the variation ΔTS was used to evaluate the variation in tensile strength at each position of the steel sheet. The case where ΔTS was 35 MPa or less was assumed to be uniform.
(3)衝撃試験
得られた熱延鋼板の長手方向各位置(長さ方向に40m間隔で4個所)、幅方向各位置(幅方向に0.4m間隔で4個所)の板厚中央位置から、圧延方向に直交する方向(C方向)が長手方向となるようにVノッチ試験片を採取し、JIS Z 2242の規定に準拠してシャルピー衝撃試験を実施し、試験温度:−80℃での吸収エネルギー(J)を求めた。なお、試験片は3本とし、得られた吸収エネルギー値の算術平均をもとめ、その鋼板の吸収エネルギー値vE−80(J)とした。vE−80が300J以上である場合を「靭性が良好である」と評価した。また、得られた各位置でのvE−80から、最小値と最大値の差を求め、ばらつきΔvE−80とし、鋼板各位置での靭性のばらつきを評価した。ΔvE−80が45J以内の場合を均一であるとした。
(3) Impact test From the center position of the plate thickness of each position in the longitudinal direction of the obtained hot-rolled steel sheet (4 places at intervals of 40 m in the length direction) and each position in the width direction (4 places at intervals of 0.4 m in the width direction), V-notch test specimens are collected so that the direction perpendicular to the rolling direction (C direction) is the longitudinal direction, Charpy impact test is performed in accordance with the provisions of JIS Z 2242, and the test temperature is absorbed at −80 ° C. The energy (J) was determined. The number of test pieces was three, and the arithmetic average of the obtained absorbed energy values was obtained to obtain the absorbed energy value vE- 80 (J) of the steel sheet. The case where vE- 80 was 300 J or more was evaluated as “good toughness”. Further, the vE -80 at each position obtained, obtains a difference between the minimum and maximum values, and variations [Delta] VE -80, it was evaluated variations in toughness at the steel sheet each position. The case where ΔvE- 80 was 45 J or less was assumed to be uniform.
(4)DWTT試験
得られた熱延鋼板から、圧延方向に直交する方向(C方向)が長手方向となるようにDWTT試験片(大きさ:板厚×幅3in.×長さ12in.)を採取し、ASTM E 436の規定に準拠して、DWTT試験を行い、延性破面率が85%となる最低温度(DWTT)を求めた。DWTTが、−35℃以下の場合を[優れたDWTT特性]を有すると評価した。
(4) DWTT test From the obtained hot-rolled steel sheet, a DWTT test piece (size: plate thickness x width 3 in. X length 12 in.) Was set so that the direction perpendicular to the rolling direction (C direction) was the longitudinal direction. The sample was collected and subjected to a DWTT test in accordance with ASTM E 436, and the lowest temperature (DWTT) at which the ductile fracture surface ratio was 85% was determined. The case where DWTT was −35 ° C. or less was evaluated as having [excellent DWTT characteristics].
なお、DWTT試験は、電縫鋼管の母材部からも試験片の長手方向が管周方向となるように、DWTT試験片を採取し、鋼板と同様に試験した。
(5)CTOD試験
得られた熱延鋼板から、圧延方向に直交する方向(C方向)が長手方向となるようにCTOD試験片(大きさ:板厚t×幅(2×t)×長さ(10×t))を採取し、ASTM E 1290の規定に準拠して、試験温度:−10℃でCTOD試験を行い、−10℃での限界開口変位量(CTOD値) を求めた。なお、試験荷重は、三点曲げ方式で負荷し、切欠部に変位計を取り付け、限界開口変位量CTOD値を求めた。CTOD値が0.30mm以上である場合を、「優れたCTOD特性」を有すると評価した。
In the DWTT test, a DWTT test piece was sampled from the base material portion of the ERW steel pipe so that the longitudinal direction of the test piece became the pipe circumferential direction, and tested in the same manner as the steel plate.
(5) CTOD test From the obtained hot-rolled steel sheet, a CTOD test piece (size: thickness t × width (2 × t) × length so that the direction orthogonal to the rolling direction (C direction) is the longitudinal direction. (10 × t)) was collected, and a CTOD test was conducted at a test temperature of −10 ° C. in accordance with the provisions of ASTM E 1290 to determine a critical opening displacement (CTOD value) at −10 ° C. The test load was applied by a three-point bending method, a displacement meter was attached to the notch, and the critical opening displacement CTOD value was obtained. The case where the CTOD value was 0.30 mm or more was evaluated as having “excellent CTOD characteristics”.
なお、CTOD試験は、電縫鋼管からも、管軸方向に直交する方向が試験片の長手方向となるように、CTOD試験片を採取し、ノッチを母材部およびシーム部に導入して、鋼板と同様に試験した。
得られた結果を表3に示す。
In addition, CTOD test is also taken from the ERW steel pipe, so that the direction orthogonal to the tube axis direction is the longitudinal direction of the test piece, CTOD test piece is taken, and the notch is introduced into the base metal part and the seam part, Tested in the same manner as the steel sheet.
The obtained results are shown in Table 3.
本発明例はいずれも、適正厚さの黒皮と、適正な組織とを有し、TS:510MPa以上の高強度と、vE−80が300J以上、CTOD値が0.30mm以上、−35℃以下のDWTTと、優れた低温靭性とを有し、かつ、板長手方向および板幅方向での材質ばらつきも少なく均一な材質を有する熱延鋼板となり、とくに優れたCTOD特性、優れたDWTT特性を有している。本発明例の熱延鋼板を使用した電縫鋼管も、母材部、シーム部ともに、0.30mm以上のCTOD値、−20℃以下のDWTTを有し、優れた低温靭性を有する鋼管となっている。 Each of the examples of the present invention has a black skin with an appropriate thickness and an appropriate structure, TS: high strength of 510 MPa or more, vE- 80 of 300 J or more, CTOD value of 0.30 mm or more, −35 ° C. or less. DWTT and excellent low-temperature toughness, and it is a hot-rolled steel sheet that has a uniform material with little material variation in the longitudinal and width directions of the sheet, and has particularly excellent CTOD characteristics and excellent DWTT characteristics. is doing. The ERW steel pipe using the hot-rolled steel sheet of the present invention also has a CTOD value of 0.30 mm or more and a DWTT of −20 ° C. or less for both the base metal part and the seam part, and has excellent low temperature toughness. Yes.
一方、本発明の範囲を外れる比較例は、vE−80が300J未満であるか、CTOD値が0.30mm未満であるか、−35℃超えのDWTTであるかして、低温靭性が低下しているか、さらには黒皮厚さにばらつきがあり、板長手方向および板幅方向での材質ばらつきが大きくなっている。熱間圧延終了後の加速冷却の冷却速度が本発明の範囲を低く外れる比較例(鋼板No.5)は、第二相の組織分率の差ΔVが2%を超え、低温靭性が低下している。また、加速冷却の冷却停止温度が本発明の範囲を高く外れた比較例(鋼板No.4)では、平均黒皮厚さが30μmを超え、また、黒皮厚さにばらつきがあり、また、ΔDが2μmを超えて、低温靭性が低下している。また、引張強さのばらつきΔTSも大きい。加速冷却の冷却速度が本発明の範囲を低く外れ、巻取温度が本発明の範囲を高く外れた比較例(鋼板No.3)では、平均黒皮厚さが3μm未満であり、ΔVが2%を超えて、低温靭性が低下している。また、粗圧延前に、スケールブレーカーでスケール除去処理しない場合の比較例(鋼板No.7)は、平均黒皮厚さが30μmを超え、また、黒皮厚さにばらつきがあり、引張強さのばらつきΔTSも大きい。また、仕上げ圧延前に、スケールブレーカーでスケール除去処理しない場合で、巻取温度が本発明の範囲を高く外れた比較例(鋼板No.8)は、平均黒皮厚さが30μmを超え、また、黒皮厚さにばらつきがあり、引張強さのばらつきΔTSも大きい。さらに、ΔDが2μmを超え、ΔVが2%を超えて、低温靭性が低下している。また、Si、Nb含有量が本発明の範囲を外れ、さらに(1)式を満足しない組成の比較例(鋼板No.15)は、ΔDが2μmを超え、低温靭性が低下している。また、この鋼板を用いて製造された電縫鋼管の母材部およびシーム部の低温靭性も低下している。 On the other hand, comparative examples that are out of the scope of the present invention show that the low temperature toughness is reduced as vE- 80 is less than 300 J, the CTOD value is less than 0.30 mm, or the DWTT exceeds -35 ° C. Furthermore, there is a variation in the thickness of the black skin, and the material variation in the plate longitudinal direction and the plate width direction is large. In the comparative example (steel plate No. 5) in which the cooling rate of accelerated cooling after the end of hot rolling is out of the range of the present invention is low, the difference ΔV in the structure fraction of the second phase exceeds 2%, and the low temperature toughness decreases. ing. Further, in the comparative example (steel plate No. 4) in which the cooling stop temperature of the accelerated cooling is out of the range of the present invention, the average black skin thickness exceeds 30 μm, and the black skin thickness varies, ΔD exceeds 2 μm and the low temperature toughness is reduced. Also, the tensile strength variation ΔTS is large. In the comparative example (steel plate No. 3) in which the cooling rate of accelerated cooling is out of the range of the present invention and the coiling temperature is out of the range of the present invention, the average black skin thickness is less than 3 μm and ΔV is 2 %, The low-temperature toughness is reduced. In addition, in the comparative example (steel plate No. 7) in which the scale breaker is not removed before the rough rolling, the average black skin thickness exceeds 30 μm, and the black skin thickness varies, and the tensile strength The variation ΔTS is also large. In addition, in the comparative example (steel plate No. 8) in which the scale removal treatment was not performed with the scale breaker before the finish rolling and the winding temperature was outside the range of the present invention, the average black skin thickness exceeded 30 μm. The black skin thickness varies, and the tensile strength variation ΔTS is also large. Furthermore, ΔD exceeds 2 μm, ΔV exceeds 2%, and low temperature toughness is reduced. Further, in the comparative example (steel plate No. 15) having a composition in which the Si and Nb contents are outside the scope of the present invention and does not satisfy the formula (1), ΔD exceeds 2 μm, and the low temperature toughness is lowered. Moreover, the low temperature toughness of the base material part and seam part of the electric resistance welded steel pipe manufactured using this steel plate is also lowered.
Claims (6)
C:0.02〜0.08%、 Si:0.01〜0.50%、
Mn:0.5〜1.8%、 P:0.025%以下、
S:0.005%以下、 Al:0.005〜0.10%、
Nb:0.01〜0.10%、 Ti:0.001〜0.05%
を含み、かつC、Ti、Nbを下記(1)式を満足するように含み、残部Feおよび不可避的不純物からなる組成と、鋼板表面から板厚方向に1mmの位置における主相であるフェライト相の平均結晶粒径と鋼板の板厚中央位置における主相であるフェライト相の平均結晶粒径との差ΔDが2μm以下、かつ鋼板表面から板厚方向に1mmの位置における第二相の組織分率(体積%)と鋼板の板厚中央位置における第二相の組織分率(体積%)との差ΔVが2%以下である組織を有し、さらに鋼板表面に厚さ3〜30μmの黒皮を有することを特徴とする低温靭性に優れた厚肉高張力熱延鋼板。
記
(Ti+(Nb/2))/C<4 ‥‥(1)
ここで、Ti、Nb、C:各元素の含有量(質量%) % By mass
C: 0.02 to 0.08%, Si: 0.01 to 0.50%,
Mn: 0.5 to 1.8%, P: 0.025% or less,
S: 0.005% or less, Al: 0.005-0.10%,
Nb: 0.01-0.10%, Ti: 0.001-0.05%
And a composition comprising C, Ti, Nb so as to satisfy the following formula (1), the balance Fe and unavoidable impurities, and a ferrite phase which is a main phase at a position of 1 mm from the steel sheet surface in the thickness direction The difference ΔD between the average crystal grain size of the steel sheet and the average crystal grain size of the ferrite phase, which is the main phase at the center position of the steel sheet, is 2 μm or less, and the microstructure of the second phase at a position 1 mm from the steel sheet surface in the thickness direction. The difference ΔV between the rate (volume%) and the structure fraction (volume%) of the second phase at the center of the plate thickness of the steel sheet has a structure where the difference ΔV is 2% or less, and the steel sheet surface has a thickness of 3 to 30 μm. A thick, high-tensile hot-rolled steel sheet excellent in low-temperature toughness characterized by having a leather.
(Ti + (Nb / 2)) / C <4 (1)
Here, Ti, Nb, C: Content of each element (mass%)
C:0.02〜0.08%、 Si:0.01〜0.50%、
Mn:0.5〜1.8%、 P:0.025%以下、
S:0.005%以下、 Al:0.005〜0.10%、
Nb:0.01〜0.10%、 Ti:0.001〜0.05%
を含み、かつC、Ti、Nbを下記(1)式を満足するように含有し、残部Feおよび不可避的不純物からなる組成の鋼素材を加熱し、粗圧延と仕上圧延とからなる熱間圧延を施して熱延鋼板とするにあたり、
前記粗圧延前および前記仕上圧延前にスケールブレーカーによるスケール除去処理を行い、前記仕上圧延の入側温度FETを800〜1050℃とし、さらに前記仕上圧延の出側温度FDTを750〜950℃とする熱間圧延を施し、該熱間圧延終了後に、鋼板の板厚中心位置の平均冷却速度で10℃/s以上の冷却を、鋼板の板厚中央位置での温度で、下記(2)式で定義されるBFS以下の冷却停止温度まで行う加速冷却を施し、ついで鋼板の板厚中央位置での温度で、下記(3)式で定義されるBFS0以下の巻取温度で巻き取ることを特徴とする低温靭性に優れた厚肉高張力熱延鋼板の製造方法。
記
(Ti+(Nb/2))/C<4 ‥‥(1)
BFS(℃)=770−300C−70Mn−70Cr−170Mo−40Cu−40Ni−1.5CR ‥‥(2)
BFS0(℃)=770−300C−70Mn−70Cr−170Mo−40Cu−40Ni ‥‥(3)
ここで、C、Ti、Nb、Mn、Cr、Mo、Cu、Ni:各元素の含有量(質量%)
CR:鋼板の板厚中央位置の平均冷却速度(℃/s) % By mass
C: 0.02 to 0.08%, Si: 0.01 to 0.50%,
Mn: 0.5 to 1.8%, P: 0.025% or less,
S: 0.005% or less, Al: 0.005-0.10%,
Nb: 0.01-0.10%, Ti: 0.001-0.05%
And containing C, Ti, Nb so as to satisfy the following formula (1), heating a steel material having a composition composed of the balance Fe and inevitable impurities, and performing hot rolling consisting of rough rolling and finish rolling To make a hot-rolled steel sheet,
Before the rough rolling and before the finish rolling, a scale removal process is performed by a scale breaker, the finish-side entry temperature FET is set to 800 to 1050 ° C, and the finish-rolling exit temperature FDT is set to 750 to 950 ° C. After hot rolling, after the hot rolling is completed, cooling at 10 ° C / s or more at the average cooling rate at the plate thickness center position of the steel plate is performed at the temperature at the plate thickness center position of the steel plate by the following formula (2) Accelerated cooling is performed to the cooling stop temperature below the defined BFS, and then the coil is wound at the coil thickness below the BFS0 defined by the following equation (3) at the temperature at the center of the plate thickness. A method for producing a thick, high-tensile hot-rolled steel sheet with excellent low-temperature toughness.
(Ti + (Nb / 2)) / C <4 (1)
BFS (℃) = 770−300C−70Mn−70Cr−170Mo−40Cu−40Ni−1.5CR (2)
BFS0 (℃) = 770−300C−70Mn−70Cr−170Mo−40Cu−40Ni (3)
Here, C, Ti, Nb, Mn, Cr, Mo, Cu, Ni: Content of each element (mass%)
CR: Average cooling rate at the center position of the steel sheet thickness (° C / s)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009243042A JP5521482B2 (en) | 2009-01-30 | 2009-10-22 | Thick high-tensile hot-rolled steel sheet excellent in low-temperature toughness and method for producing the same |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009019345 | 2009-01-30 | ||
JP2009019345 | 2009-01-30 | ||
JP2009243042A JP5521482B2 (en) | 2009-01-30 | 2009-10-22 | Thick high-tensile hot-rolled steel sheet excellent in low-temperature toughness and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010196155A true JP2010196155A (en) | 2010-09-09 |
JP5521482B2 JP5521482B2 (en) | 2014-06-11 |
Family
ID=42821165
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009243042A Active JP5521482B2 (en) | 2009-01-30 | 2009-10-22 | Thick high-tensile hot-rolled steel sheet excellent in low-temperature toughness and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5521482B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013047702A1 (en) | 2011-09-27 | 2013-04-04 | 新日鐵住金株式会社 | Hot coil for line pipe and manufacturing method therefor |
KR20150110719A (en) * | 2013-01-24 | 2015-10-02 | 바오샨 아이론 앤 스틸 유한공사 | High Corrosion Resistance and High Strength Weathering Steel Plate Containing Aluminium and Manufacturing Method Therefor |
JP2015190014A (en) * | 2014-03-28 | 2015-11-02 | Jfeスチール株式会社 | High strength hot rolled steel sheet and method for producing the same |
JP2015190015A (en) * | 2014-03-28 | 2015-11-02 | Jfeスチール株式会社 | High strength hot rolled steel sheet and method for producing the same |
US20190247902A1 (en) * | 2016-10-18 | 2019-08-15 | Jfe Steel Corporation | Hot-rolled steel sheet for electrical steel sheet production and method of producing same |
CN112077143A (en) * | 2020-07-30 | 2020-12-15 | 河北新金轧材有限公司 | Continuous plate production line for hot-rolled coiled plates |
CN113492151A (en) * | 2021-07-16 | 2021-10-12 | 山西太钢不锈钢股份有限公司 | Manufacturing method of iron-nickel-based alloy hot-rolled coil |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6572963B2 (en) | 2017-12-25 | 2019-09-11 | Jfeスチール株式会社 | Hot-rolled steel sheet and manufacturing method thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6425916A (en) * | 1987-07-21 | 1989-01-27 | Nippon Steel Corp | Manufacture of high-strength steel for electric resistance welded tube excellent in toughness at low temperature |
JPH0421719A (en) * | 1990-05-14 | 1992-01-24 | Sumitomo Metal Ind Ltd | Production of steel plate for resistance welded tube |
JP2001286927A (en) * | 2000-04-05 | 2001-10-16 | Nippon Steel Corp | Hot rolled steel sheet manufacturing method |
JP2005240051A (en) * | 2004-02-24 | 2005-09-08 | Jfe Steel Kk | Hot-rolled steel sheet for sour-resistant high-strength ERW steel pipe with excellent weld toughness and method for producing the same |
JP2006299415A (en) * | 2005-03-24 | 2006-11-02 | Jfe Steel Kk | Manufacturing method of hot rolled steel sheet for low yield ratio ERW steel pipe with excellent low temperature toughness |
-
2009
- 2009-10-22 JP JP2009243042A patent/JP5521482B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6425916A (en) * | 1987-07-21 | 1989-01-27 | Nippon Steel Corp | Manufacture of high-strength steel for electric resistance welded tube excellent in toughness at low temperature |
JPH0421719A (en) * | 1990-05-14 | 1992-01-24 | Sumitomo Metal Ind Ltd | Production of steel plate for resistance welded tube |
JP2001286927A (en) * | 2000-04-05 | 2001-10-16 | Nippon Steel Corp | Hot rolled steel sheet manufacturing method |
JP2005240051A (en) * | 2004-02-24 | 2005-09-08 | Jfe Steel Kk | Hot-rolled steel sheet for sour-resistant high-strength ERW steel pipe with excellent weld toughness and method for producing the same |
JP2006299415A (en) * | 2005-03-24 | 2006-11-02 | Jfe Steel Kk | Manufacturing method of hot rolled steel sheet for low yield ratio ERW steel pipe with excellent low temperature toughness |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013047702A1 (en) | 2011-09-27 | 2013-04-04 | 新日鐵住金株式会社 | Hot coil for line pipe and manufacturing method therefor |
US9062363B2 (en) | 2011-09-27 | 2015-06-23 | Nippon Steel & Sumitomo Metal Corporation | Method of production of hot coil for line pipe |
EP2749668A4 (en) * | 2011-09-27 | 2015-07-01 | Nippon Steel & Sumitomo Metal Corp | HOT COIL FOR A PIPE TUBE AND METHOD FOR MANUFACTURING THE SAME |
KR20150110719A (en) * | 2013-01-24 | 2015-10-02 | 바오샨 아이론 앤 스틸 유한공사 | High Corrosion Resistance and High Strength Weathering Steel Plate Containing Aluminium and Manufacturing Method Therefor |
KR102240599B1 (en) | 2013-01-24 | 2021-04-15 | 바오샨 아이론 앤 스틸 유한공사 | Highly Corrosion-resistant, High Strength, Al-containing Weathering Steel Plate and Process of Manufacturing Same |
JP2015190014A (en) * | 2014-03-28 | 2015-11-02 | Jfeスチール株式会社 | High strength hot rolled steel sheet and method for producing the same |
JP2015190015A (en) * | 2014-03-28 | 2015-11-02 | Jfeスチール株式会社 | High strength hot rolled steel sheet and method for producing the same |
US20190247902A1 (en) * | 2016-10-18 | 2019-08-15 | Jfe Steel Corporation | Hot-rolled steel sheet for electrical steel sheet production and method of producing same |
US11577291B2 (en) * | 2016-10-18 | 2023-02-14 | Jfe Steel Corporation | Hot-rolled steel sheet for electrical steel sheet production and method of producing same |
CN112077143A (en) * | 2020-07-30 | 2020-12-15 | 河北新金轧材有限公司 | Continuous plate production line for hot-rolled coiled plates |
CN113492151A (en) * | 2021-07-16 | 2021-10-12 | 山西太钢不锈钢股份有限公司 | Manufacturing method of iron-nickel-based alloy hot-rolled coil |
CN113492151B (en) * | 2021-07-16 | 2023-03-17 | 山西太钢不锈钢股份有限公司 | Manufacturing method of iron-nickel-based alloy hot-rolled coil |
Also Published As
Publication number | Publication date |
---|---|
JP5521482B2 (en) | 2014-06-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5499733B2 (en) | Thick high-tensile hot-rolled steel sheet excellent in low-temperature toughness and method for producing the same | |
KR101306418B1 (en) | Thick, high tensile-strength hot-rolled steel sheets with excellent low temperature toughness and manufacturing method therefor | |
KR101333854B1 (en) | Thick high-tensile-strength hot-rolled steel sheet with excellent low-temperature toughness and process for production of same | |
JP5630026B2 (en) | Thick high-tensile hot-rolled steel sheet excellent in low-temperature toughness and method for producing the same | |
JP5499734B2 (en) | Ultra-thick high-tensile hot-rolled steel sheet excellent in low-temperature toughness and method for producing the same | |
JP5195469B2 (en) | Manufacturing method for thick-walled high-tensile hot-rolled steel sheet with excellent low-temperature toughness | |
JP5679114B2 (en) | Low yield ratio high strength hot rolled steel sheet with excellent low temperature toughness and method for producing the same | |
JP5533024B2 (en) | Manufacturing method for thick-walled high-tensile hot-rolled steel sheet with excellent low-temperature toughness | |
JP4905240B2 (en) | Manufacturing method of hot-rolled steel sheet with excellent surface quality, fracture toughness and sour resistance | |
WO2010087512A1 (en) | Heavy gauge, high tensile strength, hot rolled steel sheet with excellent hic resistance and manufacturing method therefor | |
JP5151233B2 (en) | Hot-rolled steel sheet excellent in surface quality and ductile crack propagation characteristics and method for producing the same | |
JP5499731B2 (en) | Thick high-tensile hot-rolled steel sheet with excellent HIC resistance and method for producing the same | |
JP5418251B2 (en) | Manufacturing method of thick-walled high-tensile hot-rolled steel sheet with excellent HIC resistance | |
WO2013002413A1 (en) | High strength hot-rolled steel sheet for welded steel line pipe having excellent souring resistance, and method for producing same | |
JP5401863B2 (en) | Manufacturing method for thick-walled high-tensile hot-rolled steel sheet with excellent low-temperature toughness | |
JP5521482B2 (en) | Thick high-tensile hot-rolled steel sheet excellent in low-temperature toughness and method for producing the same | |
JP5553093B2 (en) | Thick high-tensile hot-rolled steel sheet with excellent low-temperature toughness | |
JP5521483B2 (en) | Thick high-tensile hot-rolled steel sheet excellent in low-temperature toughness and method for producing the same | |
JP5347540B2 (en) | Thick high-tensile hot-rolled steel sheet excellent in low-temperature toughness and method for producing the same | |
JP5521484B2 (en) | Thick high-tensile hot-rolled steel sheet excellent in low-temperature toughness and method for producing the same | |
JP5413496B2 (en) | Hot-rolled steel sheet excellent in surface quality and ductile crack propagation characteristics and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120727 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20130712 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20131224 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140224 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140311 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140324 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5521482 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |