[go: up one dir, main page]

JP2010193134A - Temperature compensation type piezoelectric oscillator - Google Patents

Temperature compensation type piezoelectric oscillator Download PDF

Info

Publication number
JP2010193134A
JP2010193134A JP2009034877A JP2009034877A JP2010193134A JP 2010193134 A JP2010193134 A JP 2010193134A JP 2009034877 A JP2009034877 A JP 2009034877A JP 2009034877 A JP2009034877 A JP 2009034877A JP 2010193134 A JP2010193134 A JP 2010193134A
Authority
JP
Japan
Prior art keywords
voltage
temperature
piezoelectric oscillator
circuit
compensated piezoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009034877A
Other languages
Japanese (ja)
Inventor
Atsushi Kiyohara
厚 清原
Katsuhiko Miyazaki
克彦 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miyazaki Epson Corp
Original Assignee
Epson Toyocom Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Epson Toyocom Corp filed Critical Epson Toyocom Corp
Priority to JP2009034877A priority Critical patent/JP2010193134A/en
Publication of JP2010193134A publication Critical patent/JP2010193134A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Oscillators With Electromechanical Resonators (AREA)

Abstract

【課題】発熱素子の影響を軽減する。
【解決手段】圧電振動子10と、制御電圧VCに基づき圧電振動子10の発振周波数を制
御する発振回路150と、温度を検出し第1の電圧V1を出力する第1の温度検出器T1
と、温度を検出し第2の電圧V2を出力する第2の温度検出器T2と、第1の電圧V1と
第2の電圧V2との差の電圧である第3の電圧V3を出力する差分回路120と、第1の
電圧V1と第3の電圧V3との和の電圧である第4の電圧V4を出力する加算回路130
と、第4の電圧V4に基づき制御電圧VCを発生する制御電圧発生回路140と、を含む
温度補償型圧電発振器1。
【選択図】図1
An object of the present invention is to reduce the influence of a heating element.
A piezoelectric vibrator, an oscillation circuit that controls an oscillation frequency of the piezoelectric vibrator based on a control voltage, and a first temperature detector that detects a temperature and outputs a first voltage.
And a second temperature detector T2 that detects the temperature and outputs the second voltage V2, and a difference that outputs a third voltage V3 that is a difference voltage between the first voltage V1 and the second voltage V2. An adder circuit 130 that outputs a circuit 120 and a fourth voltage V4 that is the sum of the first voltage V1 and the third voltage V3.
And a temperature-compensated piezoelectric oscillator 1 including a control voltage generation circuit 140 that generates a control voltage VC based on the fourth voltage V4.
[Selection] Figure 1

Description

本発明は、温度補償型圧電発振器に関する。   The present invention relates to a temperature compensated piezoelectric oscillator.

携帯電話などの小型電子機器は、実装基板上に間欠的に動作する素子が配置されており
、このような素子の中には動作し始めると急激に発熱するものがある。このような発熱す
る素子のそばに温度補償型圧電発振器(TCXO:Temperature Compensated Xtal Oscil
lator)が配置されている場合、温度補償型圧電発振器を構成している温度検出器が素子
の急激な温度変化に追従した電圧値を出力するため、本来検出しなければならない環境温
度の変化とは無関係な制御電圧が発生し、発振周波数に影響が出てしまうという課題があ
った。
In a small electronic device such as a cellular phone, elements that operate intermittently are arranged on a mounting substrate, and some of these elements generate heat rapidly when they start to operate. A temperature compensated piezoelectric oscillator (TCXO: Temperature Compensated Xtal Oscil)
lator) is arranged, the temperature detector that constitutes the temperature compensated piezoelectric oscillator outputs a voltage value that follows the rapid temperature change of the element. There is a problem that an irrelevant control voltage is generated and the oscillation frequency is affected.

この問題を解決するために、例えば特許文献1には、温度検出器(温度センサー)の出
力を積分回路(ローパスフィルター)に挿入し、熱衝撃が加わったとき、両者の差電圧を
利用し、急激な温度変化に対する周波数補償を行う方法が記載されている。
In order to solve this problem, for example, in Patent Document 1, when the output of a temperature detector (temperature sensor) is inserted into an integration circuit (low-pass filter) and a thermal shock is applied, the difference voltage between the two is used, A method of performing frequency compensation for a rapid temperature change is described.

特開平5−145339号公報(図1)JP-A-5-145339 (FIG. 1)

しかしながら、従来の方法では、急激な温度変化に対応するためには大容量のコンデン
サーと抵抗からなる積分回路が必要になり、集積回路の小型化には不向きであり、デジタ
ル処理が入るのでノイズが大きいという課題がある。また、近傍に発熱する素子が置かれ
た場合の影響を免れることができない。
However, the conventional method requires an integrating circuit consisting of a large-capacitance capacitor and resistor in order to cope with a rapid temperature change, and is not suitable for downsizing of an integrated circuit. There is a problem of being big. In addition, the effect of placing an element that generates heat in the vicinity cannot be avoided.

本発明は、上述の課題の少なくとも一部を解決するためになされたものであり、以下の
形態または適用例として実現することが可能である。
SUMMARY An advantage of some aspects of the invention is to solve at least a part of the problems described above, and the invention can be implemented as the following forms or application examples.

[適用例1]
圧電振動子と、制御電圧に基づき前記圧電振動子の発振周波数を制御する発振回路と、
温度を検出し第1の電圧を出力する第1の温度検出器と、温度を検出し第2の電圧を出力
する第2の温度検出器と、前記第1の電圧と前記第2の電圧との差の電圧である第3の電
圧を出力する差分回路と、前記第1の電圧と前記第3の電圧との和の電圧である第4の電
圧を出力する加算回路と、前記第4の電圧に基づき前記制御電圧を発生する制御電圧発生
回路と、を含む、ことを特徴とする温度補償型圧電発振器。
[Application Example 1]
A piezoelectric vibrator, and an oscillation circuit that controls an oscillation frequency of the piezoelectric vibrator based on a control voltage;
A first temperature detector that detects a temperature and outputs a first voltage; a second temperature detector that detects a temperature and outputs a second voltage; the first voltage and the second voltage; A difference circuit that outputs a third voltage that is a difference voltage, an adder circuit that outputs a fourth voltage that is the sum of the first voltage and the third voltage, and the fourth circuit And a control voltage generation circuit that generates the control voltage based on a voltage.

この構成によれば、温度補償型圧電発振器の近傍に発熱素子が配置された場合に、発熱
素子に近い第1の温度検出器と発熱素子から遠い第2の温度検出器の温度差を合成するこ
とができるので、発熱素子からの熱衝撃による周波数の変動を小さくすることができる。
According to this configuration, when a heating element is disposed in the vicinity of the temperature compensated piezoelectric oscillator, the temperature difference between the first temperature detector close to the heating element and the second temperature detector far from the heating element is synthesized. Therefore, the frequency fluctuation due to the thermal shock from the heating element can be reduced.

[適用例2]
上記に記載の温度補償型圧電発振器において、前記第1の温度検出器と前記第2の温度
検出器とは、電圧−温度特性が略同一であることを特徴とする温度補償型圧電発振器。
[Application Example 2]
The temperature compensated piezoelectric oscillator according to the above, wherein the first temperature detector and the second temperature detector have substantially the same voltage-temperature characteristics.

この構成によれば、第1の温度検出器と第2の温度検出器とが同一の電圧−温度特性で
あれば、熱衝撃がない場合にも1個の温度検出器で構成した場合と同等の検出結果を得る
ことができる。
According to this configuration, if the first temperature detector and the second temperature detector have the same voltage-temperature characteristics, even if there is no thermal shock, it is the same as the case where it is configured with one temperature detector. Detection results can be obtained.

[適用例3]
上記に記載の温度補償型圧電発振器において、前記第1の温度検出器と前記第2の温度
検出器とは、離れて配置されていることを特徴とする温度補償型圧電発振器。
[Application Example 3]
The temperature compensated piezoelectric oscillator according to the above, wherein the first temperature detector and the second temperature detector are arranged apart from each other.

この構成によれば、第1の温度検出器と第2の温度検出器とを離れて配置させることに
より発熱素子からの熱衝撃を受けた場合の温度と熱衝撃を受けない場合の温度との差が大
きくなるので温度差の検出が容易にできる。
According to this configuration, by arranging the first temperature detector and the second temperature detector apart from each other, the temperature when the thermal shock is received from the heating element and the temperature when the thermal shock is not received are Since the difference becomes large, the temperature difference can be easily detected.

第1実施形態に係る温度補償型圧電発振器の構成を示す構成図。The block diagram which shows the structure of the temperature compensation type | mold piezoelectric oscillator which concerns on 1st Embodiment. 第1実施形態に係る温度補償型圧電発振器の構成を示す回路図。1 is a circuit diagram showing a configuration of a temperature compensated piezoelectric oscillator according to a first embodiment. (A)第1実施形態に係る温度補償型圧電発振器の基板上での配置方法を示す配置図、(B)第1実施形態に係る温度補償型圧電発振器の温度センサーの動きを示すグラフ。(A) Arrangement | positioning figure which shows the arrangement | positioning method on the board | substrate of the temperature compensation type | mold piezoelectric oscillator which concerns on 1st Embodiment, (B) The graph which shows the motion of the temperature sensor of the temperature compensation type | mold piezoelectric oscillator which concerns on 1st Embodiment. 変形例1に係る温度補償型圧電発振器の構成を示す構成図。FIG. 6 is a configuration diagram showing a configuration of a temperature compensated piezoelectric oscillator according to Modification 1. 変形例2に係る温度補償型圧電発振器の構成を示す構成図。FIG. 9 is a configuration diagram showing a configuration of a temperature compensated piezoelectric oscillator according to Modification 2. 変形例2に係る温度補償型圧電発振器の配置方法を示す配置図。FIG. 6 is a layout diagram illustrating a method for arranging a temperature compensated piezoelectric oscillator according to a second modification. 変形例3に係る温度補償型圧電発振器の構成を示す構成図。FIG. 9 is a configuration diagram showing a configuration of a temperature compensated piezoelectric oscillator according to Modification 3. 変形例3に係る温度補償型圧電発振器の配置方法を示す配置図。FIG. 9 is a layout diagram illustrating a method for arranging a temperature compensated piezoelectric oscillator according to a third modification.

以下、温度補償型圧電発振器の実施形態について図面に従って説明する。   Hereinafter, embodiments of a temperature compensated piezoelectric oscillator will be described with reference to the drawings.

(第1実施形態)
<温度補償型圧電発振器の構成>
先ず、第1実施形態に係る温度補償型圧電発振器の構成について、図1〜3を参照して
説明する。図1は、第1実施形態に係る温度補償型圧電発振器の構成を示す構成図である
。図2は、第1実施形態に係る温度補償型圧電発振器の構成を示す回路図である。図3(
A)は、第1実施形態に係る温度補償型圧電発振器の基板上での配置方法を示す配置図で
ある。図3(B)は、第1実施形態に係る温度補償型圧電発振器の温度センサーの動きを
示すグラフである。
(First embodiment)
<Configuration of temperature compensated piezoelectric oscillator>
First, the configuration of the temperature compensated piezoelectric oscillator according to the first embodiment will be described with reference to FIGS. FIG. 1 is a configuration diagram showing the configuration of the temperature compensated piezoelectric oscillator according to the first embodiment. FIG. 2 is a circuit diagram showing a configuration of the temperature compensated piezoelectric oscillator according to the first embodiment. FIG.
FIG. 6A is an arrangement diagram illustrating a method of arranging the temperature compensated piezoelectric oscillator according to the first embodiment on a substrate. FIG. 3B is a graph showing the movement of the temperature sensor of the temperature compensated piezoelectric oscillator according to the first embodiment.

図1に示すように、温度補償型圧電発振器1は、圧電振動子10と、発振回路150と
、第1の温度検出器である温度センサーT1と、第2の温度検出器である温度センサーT
2と、差分回路120と、加算回路130と、制御電圧発生回路140と、EEPROM
(Electrically Erasable and Programmable Read Only Memory)160と、から構成さ
れている。なお、図3,4での説明の簡略化のために、差分回路120と加算回路130
と制御電圧発生回路140とを含む回路を検出回路110と名付ける。
As shown in FIG. 1, a temperature compensated piezoelectric oscillator 1 includes a piezoelectric vibrator 10, an oscillation circuit 150, a temperature sensor T1 that is a first temperature detector, and a temperature sensor T that is a second temperature detector.
2, difference circuit 120, adder circuit 130, control voltage generation circuit 140, EEPROM
(Electrically Erasable and Programmable Read Only Memory) 160. For simplification of the description in FIGS. 3 and 4, the difference circuit 120 and the adder circuit 130.
A circuit including the control voltage generation circuit 140 is referred to as a detection circuit 110.

温度センサーT1は、検出した温度を電圧に変換した第1の電圧である電圧V1を出力
する。温度センサーT2は、検出した温度を電圧に変換した第2の電圧である電圧V2を
出力する。差分回路120は、電圧V1と電圧V2との差を検出し第3の電圧である電圧
V3を出力する。加算回路130は、電圧V1と電圧V3との和を検出し第4の電圧であ
る電圧V4を出力する。制御電圧発生回路140は、電圧V4に基づき制御電圧VCを発
生し出力する。発振回路150は、制御電圧VCによって圧電振動子10の発振周波数の
温度特性をうち消すように制御し出力端子OUTから発振信号を出力する。
The temperature sensor T1 outputs a voltage V1, which is a first voltage obtained by converting the detected temperature into a voltage. The temperature sensor T2 outputs a voltage V2, which is a second voltage obtained by converting the detected temperature into a voltage. The difference circuit 120 detects a difference between the voltage V1 and the voltage V2 and outputs a voltage V3 that is a third voltage. The adder circuit 130 detects the sum of the voltage V1 and the voltage V3 and outputs a voltage V4 that is a fourth voltage. The control voltage generation circuit 140 generates and outputs a control voltage VC based on the voltage V4. The oscillation circuit 150 is controlled so as to cancel the temperature characteristic of the oscillation frequency of the piezoelectric vibrator 10 by the control voltage VC, and outputs an oscillation signal from the output terminal OUT.

図2は、温度センサーT1と温度センサーT2と差分回路120と加算回路130の具
体的な回路構成を示している。温度センサーT1は、電源線と接地線との間に抵抗112
と2個のダイオード113,114が直列に接続されている。抵抗112とダイオード1
13との接続線から電圧V1が出力される。温度センサーT2は、電源線と接地線との間
に抵抗116と2個のダイオード117,118が直列に接続されている。抵抗116と
ダイオード117との接続線から電圧V2が出力される。
FIG. 2 shows specific circuit configurations of the temperature sensor T1, the temperature sensor T2, the difference circuit 120, and the adder circuit 130. The temperature sensor T1 has a resistor 112 between the power line and the ground line.
And two diodes 113 and 114 are connected in series. Resistor 112 and diode 1
The voltage V <b> 1 is output from the connection line with 13. In the temperature sensor T2, a resistor 116 and two diodes 117 and 118 are connected in series between a power supply line and a ground line. The voltage V2 is output from the connection line between the resistor 116 and the diode 117.

差分回路120は、差動増幅器122と抵抗R1と可変抵抗R2とから構成されている
。差動増幅器122は、+端子に電圧V1が印加され、−端子に抵抗R1を介して電圧V
2が印加され、出力端子から電圧V3を出力する。可変抵抗R2は、差動増幅器122の
−端子と出力端子との間に接続され、EEPROM160に記憶されたデジタル信号VR
に基づき抵抗値を調整できる。EEPROM160は、制御端子CSから制御信号が印加
されるとデータ端子DAから可変抵抗R2を調整するデジタルデータなどのデータが書き
込まれる。
The differential circuit 120 includes a differential amplifier 122, a resistor R1, and a variable resistor R2. In the differential amplifier 122, the voltage V1 is applied to the + terminal, and the voltage V is applied to the − terminal via the resistor R1.
2 is applied, and the voltage V3 is output from the output terminal. The variable resistor R <b> 2 is connected between the − terminal and the output terminal of the differential amplifier 122, and the digital signal VR stored in the EEPROM 160.
The resistance value can be adjusted based on When a control signal is applied from the control terminal CS, the EEPROM 160 is written with data such as digital data for adjusting the variable resistor R2 from the data terminal DA.

加算回路130は、差動増幅器132と抵抗R3,R4とから構成されている。差動増
幅器132は、+端子に電圧V1が印加され、−端子に抵抗R3を介して電圧V3が印加
され、出力端子から電圧V4を出力する。抵抗R4は、差動増幅器132の−端子と出力
端子との間に接続されている。
The adding circuit 130 includes a differential amplifier 132 and resistors R3 and R4. In the differential amplifier 132, the voltage V1 is applied to the + terminal, the voltage V3 is applied to the − terminal via the resistor R3, and the voltage V4 is output from the output terminal. The resistor R4 is connected between the − terminal and the output terminal of the differential amplifier 132.

図3(A)に示すように、基板300上に温度補償型圧電発振器1と発熱素子20が配
置された場合、温度センサーT1は発熱素子20の近傍にあるので、発熱素子20が間欠
駆動し発熱すると発熱素子20の温度の影響を受ける。一方、温度センサーT2は発熱素
子20から離れた位置にあるので、発熱素子20の温度の影響を受けるのは遅くなる。
As shown in FIG. 3A, when the temperature compensated piezoelectric oscillator 1 and the heating element 20 are arranged on the substrate 300, the temperature sensor T1 is in the vicinity of the heating element 20, so that the heating element 20 is intermittently driven. When heat is generated, the temperature of the heating element 20 is affected. On the other hand, since the temperature sensor T2 is located away from the heating element 20, it is delayed to be affected by the temperature of the heating element 20.

図3(B)に示すように、時点t1で発熱素子20が間欠駆動すると、温度センサーT
1が出力する電圧V1は温度が上がるので急激に下降する。一方、温度センサーT2が出
力する電圧V2は電圧V1に比べ緩やかに下降する。これら電圧V1とV2とを合成した
電圧(図2のV4に相当する電圧)は電圧V2に比べて更に緩やかに下降することになる
As shown in FIG. 3B, when the heating element 20 is intermittently driven at time t1, the temperature sensor T
The voltage V1 output by 1 falls rapidly as the temperature rises. On the other hand, the voltage V2 output from the temperature sensor T2 falls more slowly than the voltage V1. A voltage obtained by synthesizing these voltages V1 and V2 (a voltage corresponding to V4 in FIG. 2) falls more slowly than the voltage V2.

以上に述べた本実施形態によれば、以下の効果が得られる。   According to the present embodiment described above, the following effects can be obtained.

従来の温度補償型圧電発振器は温度センサーが1個だったので、発熱素子20の影響を
受け、急激に制御電圧VCが変化したが、本実施形態では、発熱素子20に近い温度セン
サーT1と発熱素子20から遠い温度センサーT2の温度差を合成することができるので
、発熱素子20からの熱衝撃による周波数の変動を小さくすることができる。
Since the conventional temperature-compensated piezoelectric oscillator has only one temperature sensor, the control voltage VC changes abruptly due to the influence of the heating element 20, but in this embodiment, the temperature sensor T1 close to the heating element 20 and the heat generation. Since the temperature difference of the temperature sensor T2 far from the element 20 can be synthesized, the frequency fluctuation due to the thermal shock from the heating element 20 can be reduced.

以上、温度補償型圧電発振器の実施形態を説明したが、こうした実施の形態に何ら限定
されるものではなく、趣旨を逸脱しない範囲内において様々な形態で実施し得ることがで
きる。以下、変形例を挙げて説明する。
The embodiments of the temperature compensated piezoelectric oscillator have been described above. However, the embodiments are not limited to these embodiments, and can be implemented in various forms without departing from the scope of the invention. Hereinafter, a modification will be described.

(変形例1)温度補償型圧電発振器の変形例1について説明する。前記第1実施形態で
は、温度補償型圧電発振器1に温度センサーT1と温度センサーT2を配置した場合を説
明したが、温度センサーT2を温度補償型圧電発振器1の外部に配置してもよい。図4は
、変形例1に係る温度補償型圧電発振器の構成を示す構成図である。
(Modification 1) Modification 1 of the temperature compensated piezoelectric oscillator will be described. In the first embodiment, the case where the temperature sensor T1 and the temperature sensor T2 are disposed in the temperature compensated piezoelectric oscillator 1 has been described. However, the temperature sensor T2 may be disposed outside the temperature compensated piezoelectric oscillator 1. FIG. 4 is a configuration diagram showing the configuration of the temperature compensated piezoelectric oscillator according to the first modification.

図4に示すように、温度補償型圧電発振器4は、温度センサーT2を含まず、外部に配
置している。温度センサーT2を温度補償型圧電発振器4に接続するために新たな端子を
設けず、データ端子DAを兼用している。そのために、温度補償型圧電発振器4は、スイ
ッチ回路170を含み、制御端子CSから入力される制御信号がイネーブルの時はスイッ
チ回路170のa端子とb端子を接続状態にし、制御信号がディスエーブルの時はスイッ
チ回路170のa端子とc端子を接続状態にするように動作する。従って、EEPROM
160にデータを書き込む期間は、制御信号はイネーブルなので温度センサーT2は非接
続状態となり、EEPROM160にデータを書き込まない期間は、制御信号はディスエ
ーブルなので温度センサーT2は接続状態となる。
As shown in FIG. 4, the temperature compensated piezoelectric oscillator 4 does not include the temperature sensor T2 and is disposed outside. In order to connect the temperature sensor T2 to the temperature compensated piezoelectric oscillator 4, no new terminal is provided, and the data terminal DA is also used. For this purpose, the temperature-compensated piezoelectric oscillator 4 includes a switch circuit 170. When the control signal input from the control terminal CS is enabled, the a terminal and the b terminal of the switch circuit 170 are connected, and the control signal is disabled. In this case, the switch circuit 170 operates so as to connect the terminals a and c. Therefore, EEPROM
During the period when data is written to 160, the control signal is enabled so that the temperature sensor T2 is disconnected. During the period when data is not written to the EEPROM 160, the control signal is disabled and the temperature sensor T2 is connected.

図4に示すように、基板400上に発熱素子20と温度補償型圧電発振器4と温度セン
サーT2を配置することにより、温度センサーT2は発熱素子20の温度の影響をさらに
受けにくくなる。
As shown in FIG. 4, by disposing the heating element 20, the temperature compensated piezoelectric oscillator 4 and the temperature sensor T2 on the substrate 400, the temperature sensor T2 becomes less susceptible to the temperature of the heating element 20.

(変形例2)温度補償型圧電発振器の変形例2について説明する。前記第1実施形態で
は、2個の温度センサーT1,T2を配置する方法を説明したが、3個以上の温度センサ
ーを配置するようにしてもよい。図5は、変形例2に係る温度補償型圧電発振器の構成を
示す構成図である。図6は、変形例2に係る温度補償型圧電発振器の配置方法を示す配置
図である。
(Modification 2) Modification 2 of the temperature compensated piezoelectric oscillator will be described. In the first embodiment, the method of arranging the two temperature sensors T1, T2 has been described. However, three or more temperature sensors may be arranged. FIG. 5 is a configuration diagram illustrating a configuration of a temperature compensated piezoelectric oscillator according to the second modification. FIG. 6 is an arrangement diagram illustrating a method of arranging the temperature compensated piezoelectric oscillator according to the second modification.

図5に示すように、温度補償型圧電発振器5は、温度センサーT1と温度センサーT2
に加えて3個目の温度センサーT3と、差分回路520と、をさらに含んで構成されてい
る。温度センサーT3は、検出した温度を電圧に変換した電圧V5を出力する。差分回路
520は、電圧V1と電圧V5との差を検出し電圧V6を出力する。加算回路530は、
電圧V1と電圧V3と電圧V6との和を検出し電圧V4を出力する。なお、図6での説明
の簡略化のために、差分回路120,520と加算回路530と制御電圧発生回路140
とを含む回路を検出回路510と名付ける。
As shown in FIG. 5, the temperature compensated piezoelectric oscillator 5 includes a temperature sensor T1 and a temperature sensor T2.
In addition, a third temperature sensor T3 and a difference circuit 520 are further included. The temperature sensor T3 outputs a voltage V5 obtained by converting the detected temperature into a voltage. The difference circuit 520 detects a difference between the voltage V1 and the voltage V5 and outputs a voltage V6. The adder circuit 530
The sum of voltage V1, voltage V3 and voltage V6 is detected and voltage V4 is output. For simplification of the description in FIG. 6, the difference circuits 120 and 520, the adder circuit 530, and the control voltage generation circuit 140.
A circuit including the above is named a detection circuit 510.

図6(A)に示すように、基板600上に発熱素子20と温度補償型圧電発振器5とを
配置することにより、温度センサーT3は発熱素子20の温度の影響を受けやすくなり、
温度センサーT1,T2は発熱素子20の温度の影響を受けにくくなる。一方、図6(B
)に示すように、基板600上に発熱素子20と温度補償型圧電発振器5とを配置するこ
とにより、温度センサーT1,T3は発熱素子20の温度の影響を受けやすくなり、温度
センサーT2は発熱素子20の温度の影響を受けにくくなる。
As shown in FIG. 6A, by disposing the heating element 20 and the temperature compensated piezoelectric oscillator 5 on the substrate 600, the temperature sensor T3 is easily affected by the temperature of the heating element 20,
The temperature sensors T1, T2 are less susceptible to the temperature of the heating element 20. On the other hand, FIG.
As shown in FIG. 5, by arranging the heating element 20 and the temperature compensated piezoelectric oscillator 5 on the substrate 600, the temperature sensors T1 and T3 are easily affected by the temperature of the heating element 20, and the temperature sensor T2 generates heat. It becomes difficult to be influenced by the temperature of the element 20.

(変形例3)温度補償型圧電発振器の変形例3について説明する。前記変形例2では、
3個の温度センサーT1,T2,T3と2個の差分回路120,520を配置する方法を
説明したが、1個の差分回路120でも構成できる。図7は、変形例3に係る温度補償型
圧電発振器の構成を示す構成図である。図8は、変形例3に係る温度補償型圧電発振器の
配置方法を示す配置図である。
(Modification 3) Modification 3 of the temperature compensated piezoelectric oscillator will be described. In the modified example 2,
Although the method of arranging the three temperature sensors T1, T2, T3 and the two difference circuits 120, 520 has been described, a single difference circuit 120 can also be configured. FIG. 7 is a configuration diagram illustrating a configuration of a temperature compensated piezoelectric oscillator according to the third modification. FIG. 8 is an arrangement diagram illustrating a method of arranging the temperature compensated piezoelectric oscillator according to the third modification.

図7に示すように、温度補償型圧電発振器7は、2個の温度センサーT2,T3の出力
する電圧V2,V5をスイッチ回路570で切り替えて差分回路120に入力するように
構成されている。スイッチ回路570は、EEPROM160に書き込まれた制御信号V
Sに基づき、スイッチ回路570のb端子とc端子とが接続するか、a端子とc端子とが
接続するかを切り替えることができる。なお、図8での説明の簡略化のために、差分回路
120と加算回路130とスイッチ回路570と制御電圧発生回路140とを含む回路を
検出回路710と名付ける。
As shown in FIG. 7, the temperature-compensated piezoelectric oscillator 7 is configured to switch the voltages V2 and V5 output from the two temperature sensors T2 and T3 by the switch circuit 570 and input them to the difference circuit 120. The switch circuit 570 is a control signal V written in the EEPROM 160.
Based on S, whether the b terminal and the c terminal of the switch circuit 570 are connected or whether the a terminal and the c terminal are connected can be switched. For simplification of the description in FIG. 8, a circuit including the difference circuit 120, the adder circuit 130, the switch circuit 570, and the control voltage generation circuit 140 is named a detection circuit 710.

図8(A)に示すように、基板800上に発熱素子20と温度補償型圧電発振器7とを
配置する場合は、温度センサーT1,T3が発熱素子20に近く温度センサーT2が発熱
素子20から遠いので、スイッチ回路570のb端子とc端子とが接続するように制御信
号VSを設定する。一方、図8(B)に示すように、基板800上に発熱素子20と温度
補償型圧電発振器7とを配置する場合は、温度センサーT1,T2が発熱素子20に近く
温度センサーT3が発熱素子20から遠いので、スイッチ回路570のa端子とc端子と
が接続するように制御信号VSを設定する。
As shown in FIG. 8A, when the heating element 20 and the temperature compensated piezoelectric oscillator 7 are arranged on the substrate 800, the temperature sensors T1 and T3 are close to the heating element 20 and the temperature sensor T2 is moved from the heating element 20. Since it is far, the control signal VS is set so that the b terminal and the c terminal of the switch circuit 570 are connected. On the other hand, as shown in FIG. 8B, when the heating element 20 and the temperature compensated piezoelectric oscillator 7 are arranged on the substrate 800, the temperature sensors T1 and T2 are close to the heating element 20 and the temperature sensor T3 is the heating element. Since it is far from 20, the control signal VS is set so that the terminals a and c of the switch circuit 570 are connected.

1…温度補償型圧電発振器、4…温度補償型圧電発振器、5…温度補償型圧電発振器、
7…温度補償型圧電発振器、10…圧電振動子、20…発熱素子、110…検出回路、1
12…抵抗、113,114…ダイオード、116…抵抗、117,118…ダイオード
、120…差分回路、122…差動増幅器、130…加算回路、132…差動増幅器、1
40…制御電圧発生回路、150…発振回路、160…EEPROM、170…スイッチ
回路、300,400…基板、510…検出回路、520…差分回路、530…加算回路
、570…スイッチ回路、600…基板、710…検出回路、800…基板。
DESCRIPTION OF SYMBOLS 1 ... Temperature compensated piezoelectric oscillator, 4 ... Temperature compensated piezoelectric oscillator, 5 ... Temperature compensated piezoelectric oscillator,
7 ... temperature compensated piezoelectric oscillator, 10 ... piezoelectric vibrator, 20 ... heating element, 110 ... detection circuit, 1
DESCRIPTION OF SYMBOLS 12 ... Resistance, 113, 114 ... Diode, 116 ... Resistance, 117, 118 ... Diode, 120 ... Differential circuit, 122 ... Differential amplifier, 130 ... Adder circuit, 132 ... Differential amplifier, 1
DESCRIPTION OF SYMBOLS 40 ... Control voltage generation circuit, 150 ... Oscillation circuit, 160 ... EEPROM, 170 ... Switch circuit, 300, 400 ... Substrate, 510 ... Detection circuit, 520 ... Difference circuit, 530 ... Adder circuit, 570 ... Switch circuit, 600 ... Substrate 710: Detection circuit, 800: Substrate.

Claims (3)

圧電振動子と、
制御電圧に基づき前記圧電振動子の発振周波数を制御する発振回路と、
温度を検出し第1の電圧を出力する第1の温度検出器と、
温度を検出し第2の電圧を出力する第2の温度検出器と、
前記第1の電圧と前記第2の電圧との差の電圧である第3の電圧を出力する差分回路と

前記第1の電圧と前記第3の電圧との和の電圧である第4の電圧を出力する加算回路と

前記第4の電圧に基づき前記制御電圧を発生する制御電圧発生回路と、
を含む、
ことを特徴とする温度補償型圧電発振器。
A piezoelectric vibrator;
An oscillation circuit for controlling the oscillation frequency of the piezoelectric vibrator based on a control voltage;
A first temperature detector for detecting temperature and outputting a first voltage;
A second temperature detector for detecting temperature and outputting a second voltage;
A difference circuit that outputs a third voltage that is a difference voltage between the first voltage and the second voltage;
An adder circuit that outputs a fourth voltage that is the sum of the first voltage and the third voltage;
A control voltage generation circuit for generating the control voltage based on the fourth voltage;
including,
A temperature compensated piezoelectric oscillator characterized by the above.
請求項1に記載の温度補償型圧電発振器において、前記第1の温度検出器と前記第2の
温度検出器とは、電圧−温度特性が略同一であることを特徴とする温度補償型圧電発振器
2. The temperature compensated piezoelectric oscillator according to claim 1, wherein the first temperature detector and the second temperature detector have substantially the same voltage-temperature characteristics. .
請求項1または2に記載の温度補償型圧電発振器において、前記第1の温度検出器と前
記第2の温度検出器とは、離れて配置されていることを特徴とする温度補償型圧電発振器
3. The temperature compensated piezoelectric oscillator according to claim 1, wherein the first temperature detector and the second temperature detector are arranged apart from each other.
JP2009034877A 2009-02-18 2009-02-18 Temperature compensation type piezoelectric oscillator Withdrawn JP2010193134A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009034877A JP2010193134A (en) 2009-02-18 2009-02-18 Temperature compensation type piezoelectric oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009034877A JP2010193134A (en) 2009-02-18 2009-02-18 Temperature compensation type piezoelectric oscillator

Publications (1)

Publication Number Publication Date
JP2010193134A true JP2010193134A (en) 2010-09-02

Family

ID=42818707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009034877A Withdrawn JP2010193134A (en) 2009-02-18 2009-02-18 Temperature compensation type piezoelectric oscillator

Country Status (1)

Country Link
JP (1) JP2010193134A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013183212A (en) * 2012-02-29 2013-09-12 Kyocera Crystal Device Corp Piezoelectric device
JP2019129488A (en) * 2018-01-26 2019-08-01 セイコーエプソン株式会社 Integrated circuit device, oscillator, electronic apparatus, and moving body

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013183212A (en) * 2012-02-29 2013-09-12 Kyocera Crystal Device Corp Piezoelectric device
JP2019129488A (en) * 2018-01-26 2019-08-01 セイコーエプソン株式会社 Integrated circuit device, oscillator, electronic apparatus, and moving body
JP7151085B2 (en) 2018-01-26 2022-10-12 セイコーエプソン株式会社 Integrated circuit devices, oscillators, electronic devices and moving bodies

Similar Documents

Publication Publication Date Title
EP2062361B1 (en) Apparatus and method for temperature compensation of crystal oscillators
KR100416456B1 (en) Temperature compensated oscillator, Method of controlling temperature compensated oscillator, and Wireless communication device
JPH0918234A (en) Temperature compensated piezoelectric oscillator
US9013244B2 (en) Oscillating device, oscillating element and electronic apparatus
JP5218169B2 (en) Piezoelectric oscillator and method for measuring ambient temperature of this piezoelectric oscillator
JP5252221B2 (en) Piezoelectric oscillator
JP2010193134A (en) Temperature compensation type piezoelectric oscillator
JP2008258710A (en) Temperature compensated piezoelectric oscillator and temperature compensation method thereof
JP5291564B2 (en) Oscillator
JP5253318B2 (en) Oscillator
JP5311545B2 (en) Oscillator
JP2009130587A (en) Oscillator circuit and oscillator
JP2013017074A (en) Temperature compensation oscillator and electronic apparatus
JP2009272734A (en) Piezoelectric oscillator
JP2009182881A (en) Temperature compensated crystal oscillator
JP2002135051A (en) Piezoelectric oscillator
JP5178457B2 (en) Oscillator
JP4296982B2 (en) Oscillator circuit
JP2014230201A (en) Temperature control circuit, oven-controlled piezoelectric oscillator and temperature control method
JP2010199664A (en) Oscillator
JP2009290380A (en) Oscillator
JP3272659B2 (en) Temperature compensated piezoelectric oscillator with frequency correction circuit
JP2010161437A (en) Temperature compensated piezoelectric oscillator
KR0130852B1 (en) Digital type of crystal oscillator for compensating
JP2004186754A (en) Temperature compensating piezoelectric oscillator

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100705

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120501