[go: up one dir, main page]

JP2010190203A - Exhaust emission control device for internal combustion engine - Google Patents

Exhaust emission control device for internal combustion engine Download PDF

Info

Publication number
JP2010190203A
JP2010190203A JP2009038532A JP2009038532A JP2010190203A JP 2010190203 A JP2010190203 A JP 2010190203A JP 2009038532 A JP2009038532 A JP 2009038532A JP 2009038532 A JP2009038532 A JP 2009038532A JP 2010190203 A JP2010190203 A JP 2010190203A
Authority
JP
Japan
Prior art keywords
combustion engine
internal combustion
fuel ratio
sensor
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009038532A
Other languages
Japanese (ja)
Inventor
Keisuke Sano
啓介 佐野
Kazuhiro Wakao
和弘 若尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2009038532A priority Critical patent/JP2010190203A/en
Publication of JP2010190203A publication Critical patent/JP2010190203A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust emission control device for an internal combustion engine, capable of detecting the abnormality of air fuel ratio sensors without increasing emission. <P>SOLUTION: The exhaust emission control device for the internal combustion engine 10 includes an adsorption catalyst 40 provided in the exhaust passage 20 of the internal combustion engine 10 and O<SB>2</SB>sensors 60A, 60B each provided at least downstream of the adsorption catalyst 40 in the exhaust passage 20 and serving as the air fuel ratio sensor having a built-in heater. Before start of the internal combustion engine 10, the heaters are operated to activate the O<SB>2</SB>sensors 60A, 60B, and based on the detection signals of the O<SB>2</SB>sensors 60A, 60B with respect to the exhaust gas at start of the internal combustion engine 10, the abnormality of the O<SB>2</SB>sensors 60A, 60B is detected. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、内燃機関の排気通路に設けられる排気浄化装置に関する。   The present invention relates to an exhaust purification device provided in an exhaust passage of an internal combustion engine.

内燃機関から排出される排気ガスを浄化するために、吸着浄化触媒を内蔵する排気浄化装置が内燃機関の排気通路に設けられる。排気ガスの浄化率を一定以上に保つためには、吸着浄化触媒の異常検出が必要である。このため、吸着浄化触媒の上流側と下流側に酸素センサや空燃比センサを設け、これらのセンサの検出信号を用いて異常診断することが行われている(たとえば、例えば、特許文献1〜3等参照)。   In order to purify the exhaust gas discharged from the internal combustion engine, an exhaust purification device incorporating an adsorption purification catalyst is provided in the exhaust passage of the internal combustion engine. In order to keep the exhaust gas purification rate above a certain level, it is necessary to detect abnormality of the adsorption purification catalyst. For this reason, oxygen sensors and air-fuel ratio sensors are provided upstream and downstream of the adsorption purification catalyst, and abnormality diagnosis is performed using detection signals of these sensors (for example, Patent Documents 1 to 3, for example). Etc.).

吸着浄化触媒の異常診断に酸素センサを用いた場合には、吸着浄化触媒の上流側および下流側でリッチ/リーン雰囲気を検出することにより、吸着浄化触媒の吸着・離脱性能や酸素吸蔵能を推定して吸着浄化触媒をモニターする。この場合に、酸素センサが正常に動作しているかも検出する必要がある。そのためには、たとえば、排気通路に空燃比がリッチなガスを一時的に流し、酸素センサからそれに応じた出力が得られるかを検出する。   When an oxygen sensor is used to diagnose an abnormality of the adsorption purification catalyst, the adsorption / desorption performance and oxygen storage capacity of the adsorption purification catalyst are estimated by detecting the rich / lean atmosphere upstream and downstream of the adsorption purification catalyst. Then, the adsorption purification catalyst is monitored. In this case, it is necessary to detect whether the oxygen sensor is operating normally. For this purpose, for example, a gas having a rich air-fuel ratio is temporarily allowed to flow through the exhaust passage, and it is detected whether an output corresponding to the oxygen sensor can be obtained.

特開2006−016974号公報JP 2006-016974 A 特開2005−240729号公報JP-A-2005-240729 特開1999−190244号公報JP 1999-190244 A

ところで、排気通路に空燃比がリッチなリッチガスを流すと、炭化水素(HC)が外部に排出されてしまう。すなわち、酸素センサの異常を検出するには、空燃比をアクティブに制御する必要があるため、外部に排出されるエミッションが増加するという問題がある。   By the way, if a rich gas having a rich air-fuel ratio is caused to flow through the exhaust passage, hydrocarbons (HC) are discharged to the outside. That is, in order to detect an abnormality of the oxygen sensor, it is necessary to actively control the air-fuel ratio, so that there is a problem that the emission discharged to the outside increases.

本発明は、上記問題に鑑みてなされたものであって、その目的は、エミッションを増加させることなく空燃比センサの異常を検出することができる内燃機関の排気浄化装置を提供することにある。   The present invention has been made in view of the above problems, and an object of the present invention is to provide an exhaust purification device for an internal combustion engine that can detect an abnormality of an air-fuel ratio sensor without increasing emissions.

本発明に係る内燃機関の排気浄化装置は、内燃機関の排気通路に設けられた吸着触媒と、前記排気通路の前記吸着触媒の少なくとも下流側に設けられ、ヒータを内蔵する空燃比センサと、前記内燃機関の始動前に前記ヒータを作動させて前記空燃比センサを活性化させ、内燃機関の始動時の排気ガスに対する前記空燃比センサの検出信号に基づいて、前記空燃比センサの異常を検出する異常検出手段とを有することを特徴とする。   An exhaust gas purification apparatus for an internal combustion engine according to the present invention includes an adsorption catalyst provided in an exhaust passage of the internal combustion engine, an air-fuel ratio sensor provided at least downstream of the adsorption catalyst in the exhaust passage, and including a heater, Before starting the internal combustion engine, the heater is activated to activate the air-fuel ratio sensor, and the abnormality of the air-fuel ratio sensor is detected based on the detection signal of the air-fuel ratio sensor with respect to the exhaust gas at the start of the internal combustion engine. And an abnormality detection means.

本発明によれば、空燃比がリッチなガスが排出される内燃機関の始動開始時または直後における排気ガスの空燃比を空燃比センサで検出し、この検出信号を用いて空燃比センサの異常を検出するので、エミッションを抑制しつつ空燃比センサの異常検出が可能となる。   According to the present invention, the air-fuel ratio of the exhaust gas at the start or immediately after the start of the internal combustion engine from which the gas with rich air-fuel ratio is discharged is detected by the air-fuel ratio sensor, and the abnormality of the air-fuel ratio sensor is detected using this detection signal. Therefore, the abnormality of the air-fuel ratio sensor can be detected while suppressing emissions.

本発明が適用される内燃機関の一例を示す構成図である。1 is a configuration diagram illustrating an example of an internal combustion engine to which the present invention is applied. 内燃機関の排気通路に設けられた各センサの出力の一例を示すグラフである。It is a graph which shows an example of the output of each sensor provided in the exhaust passage of an internal-combustion engine. 本発明の一実施形態に係るセンサの異常検出処理の一例を示すフローチャートである。It is a flowchart which shows an example of the abnormality detection process of the sensor which concerns on one Embodiment of this invention.

以下、本発明の好適一実施形態を添付図面に基づいて詳述する。   Hereinafter, a preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings.

図1は、本発明の一実施形態に係る排気浄化装置が適用された内燃機関システムの一例を示す概略構成図である。   FIG. 1 is a schematic configuration diagram showing an example of an internal combustion engine system to which an exhaust emission control device according to an embodiment of the present invention is applied.

この内燃機関システムは、内燃機関10と、内燃機関本体10の排気系に接続された排気通路20と、この排気通路20に上流側から順に設けられた三元触媒30および吸着触媒40と、吸着触媒40の上流側と下流側に設けられた空燃比センサとしてのO2センサ60A,60Bと、三元触媒30の上流側に設けられたA/Fセンサ70と、車両のドアに設けられたドアカーテシスイッチ80と、電子制御ユニット(以下、ECUという)100とを含む。 This internal combustion engine system includes an internal combustion engine 10, an exhaust passage 20 connected to the exhaust system of the internal combustion engine body 10, a three-way catalyst 30 and an adsorption catalyst 40 provided in this exhaust passage 20 in order from the upstream side, and an adsorption O 2 sensors 60A, 60B as air-fuel ratio sensors provided upstream and downstream of the catalyst 40, an A / F sensor 70 provided upstream of the three-way catalyst 30, and a vehicle door A door courtesy switch 80 and an electronic control unit (hereinafter referred to as ECU) 100 are included.

内燃機関10は、図示しない燃焼室の内部で燃料および空気の混合気を燃焼させ、燃焼室内でピストンを往復移動させることにより動力を発生する。また、車両用多気筒エンジン(例えば4気筒ガソリンエンジン)である。   The internal combustion engine 10 generates power by burning a fuel / air mixture in a combustion chamber (not shown) and reciprocating a piston in the combustion chamber. Moreover, it is a multi-cylinder engine for vehicles (for example, 4-cylinder gasoline engine).

三元触媒30は、排気ガス中のNOx、HC、CO等の物質を還元・酸化によって浄化する周知の装置であり、ガソリンと酸素が完全燃焼し、酸素が余らない理論空燃比付近において効率良く還元・酸化が行われる。   The three-way catalyst 30 is a well-known device that purifies substances such as NOx, HC, and CO in exhaust gas by reduction and oxidation, and is efficient in the vicinity of the stoichiometric air-fuel ratio where gasoline and oxygen are completely combusted and oxygen does not remain. Reduction and oxidation are performed.

吸着触媒40は、三元触媒30で浄化されずに通過したHC等の物質を吸着し、これを酸化する機能を有している。   The adsorption catalyst 40 has a function of adsorbing and oxidizing a substance such as HC that has passed without being purified by the three-way catalyst 30.

2センサ60A,60Bは、吸着触媒40の吸着および酸化性能を検出してその劣化判断をするために、吸着触媒40の上流側と下流側における排気ガスの空燃比を検出し、検出信号をECU100へ出力する。O2センサ60A,60Bには、ヒータが内蔵されており、このヒータに通電することにより、O2センサ60A,60Bが加熱されて活性化し、空燃比を検出可能となる。 The O 2 sensors 60A and 60B detect the air-fuel ratio of the exhaust gas upstream and downstream of the adsorption catalyst 40 and detect the detection signal in order to detect the adsorption and oxidation performance of the adsorption catalyst 40 and judge its deterioration. Output to the ECU 100. The O 2 sensors 60A and 60B have a built-in heater. When the heater is energized, the O 2 sensors 60A and 60B are heated and activated, and the air-fuel ratio can be detected.

A/Fセンサ70は、内燃機関10の空燃比制御等のために、排気ガスの空燃比を検出し、検出信号をECU100へ出力する。   The A / F sensor 70 detects the air-fuel ratio of the exhaust gas and controls the air-fuel ratio of the internal combustion engine 10 and outputs a detection signal to the ECU 100.

ドアカーテシスイッチ80は、車両のドアの開閉を検出し、検出信号をECU100へ出力する。   Door courtesy switch 80 detects the opening and closing of the door of the vehicle and outputs a detection signal to ECU 100.

ECU100は、例えば、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、EEPROM(Electronically Erasable and Programmable Read Only Memory)等のバックアップ用メモリ、A/D変換器やバッファ等を含む入力インターフェース回路、駆動回路等を含む出力インターフェース回路を含むハードウエアと所要のソフトウエアで構成される。このECU100は、内燃機関10の各気筒に対して設けられた点火プラグ、燃料噴射弁、スロットルバルブ等を制御可能に構成され、これらを制御することにより点火時期、空燃比及び燃料噴射時期を制御する。さらに、ECU100は、上記したように、O2センサ60A,60Bからの信号に基づいて吸着触媒40の劣化を判断する。この吸着触媒40の劣化判断の際に、後述するように、O2センサ60A,60Bの異常検出処理を実行する。 The ECU 100 includes, for example, a backup memory such as a central processing unit (CPU), a read only memory (ROM), a random access memory (RAM), and an electronically erasable and programmable read only memory (EEPROM), an A / D converter, a buffer, and the like. The input interface circuit includes a hardware including an output interface circuit including a drive circuit and the like, and necessary software. The ECU 100 is configured to be able to control an ignition plug, a fuel injection valve, a throttle valve, and the like provided for each cylinder of the internal combustion engine 10, and controls the ignition timing, air-fuel ratio, and fuel injection timing by controlling them. To do. Furthermore, as described above, the ECU 100 determines the deterioration of the adsorption catalyst 40 based on the signals from the O 2 sensors 60A and 60B. When determining the deterioration of the adsorption catalyst 40, an abnormality detection process for the O 2 sensors 60A and 60B is executed as described later.

図2は、内燃機関10の始動時における、車速、エンジン回転数、O2センサ60A,60Bの出力およびA/Fセンサ70の出力の一例を示すグラフである。図2に示すように、ECU100は、内燃機関10の始動時に、内燃機関10に供給される混合気の空燃比を理論空燃比よりもリッチな空燃比に制御する。これにより、エンジン回転数が所定回転数を超える。このとき、O2センサ60A,60Bの出力およびA/Fセンサ70からは、空燃比がリッチなことを示すリッチ信号が出力される。その後、ECU100は、混合気の空燃比を理論空燃比よりもリーンな空燃比に制御する。これにより、リッチ一定の回転数が維持される。このとき、O2センサ60A,60Bの出力およびA/Fセンサ70からは、空燃比がリーンなことを示すリーン信号が出力される。 FIG. 2 is a graph showing an example of the vehicle speed, the engine speed, the outputs of the O 2 sensors 60A and 60B, and the output of the A / F sensor 70 when the internal combustion engine 10 is started. As shown in FIG. 2, when the internal combustion engine 10 is started, the ECU 100 controls the air-fuel ratio of the air-fuel mixture supplied to the internal combustion engine 10 to an air-fuel ratio richer than the stoichiometric air-fuel ratio. As a result, the engine speed exceeds a predetermined speed. At this time, rich signals indicating that the air-fuel ratio is rich are output from the outputs of the O 2 sensors 60A and 60B and the A / F sensor 70. Thereafter, the ECU 100 controls the air-fuel ratio of the air-fuel mixture to an air-fuel ratio that is leaner than the stoichiometric air-fuel ratio. Thereby, a rich constant rotational speed is maintained. At this time, a lean signal indicating that the air-fuel ratio is lean is output from the outputs of the O 2 sensors 60A and 60B and the A / F sensor 70.

本発明では、図2に示したような、内燃機関10の始動時および始動直後の空燃比の変化を利用して、O2センサ60A,60Bの異常を検出する。 In the present invention, the abnormality of the O 2 sensors 60A and 60B is detected by utilizing the change in the air-fuel ratio at the start of the internal combustion engine 10 and immediately after the start as shown in FIG.

図3は、ECU100によるO2センサ60A,60Bの異常検出処理の一例を示すフローチャートである。図3に示す処理ルーチンは、例えば、所定時間毎に実行される。また、ECU100は、内燃機関10が駆動されていない状態においても、一部の機能はバッテリーにより作動している。 FIG. 3 is a flowchart showing an example of an abnormality detection process of the O 2 sensors 60A and 60B by the ECU 100. The processing routine shown in FIG. 3 is executed, for example, every predetermined time. In addition, even when the internal combustion engine 10 is not driven, some functions of the ECU 100 are operated by the battery.

まず、ドアカーテシスイッチ80からの信号に基づいて、車両のドアが開操作されたかを判断する(ステップS1)。車両のドアが開操作されていない場合には、処理を終了する。   First, based on a signal from the door courtesy switch 80, it is determined whether or not the vehicle door has been opened (step S1). If the door of the vehicle has not been opened, the process ends.

車両のドアが開操作されたと判断した場合には、ECU100の機能の全てを起動する(ステップS2)。   If it is determined that the vehicle door has been opened, all the functions of the ECU 100 are activated (step S2).

次いで、エンジン冷却水温が所定温度Taより低く、かつ、エンジン冷却水温と吸気温度との差が所定温度Tbよりも小さいかを判断する(ステップS3)。この処理は、内燃機関10が冷間状態か、あるいは、既に暖機状態にあるのかを判断するためである。なお、内燃機関10が冷間状態にあるかを判断できれば、これら以外のパラメータを判断に用いることも可能である。   Next, it is determined whether the engine coolant temperature is lower than a predetermined temperature Ta and the difference between the engine coolant temperature and the intake air temperature is smaller than a predetermined temperature Tb (step S3). This process is for determining whether the internal combustion engine 10 is in a cold state or is already in a warm-up state. If it can be determined whether the internal combustion engine 10 is in a cold state, parameters other than these can be used for the determination.

ステップS3において、既に、暖機状態にあると判断した場合には、内燃機関10を始動させたのち(ステップS16)、処理を終了する。ステップS3において、内燃機関10が冷間状態にあると判断した場合には、前回のトリップ終了時の三元触媒30の推定温度α及び吸着触媒40の推定温度βと、前回のトリップ終了時から今回の始動時までに経過した時間に応じた経過時間係数Kとの積がそれぞれ所定温度Td,Teよりも低いかを判断する(ステップS4)。すなわち、前回のトリップ終了時における三元触媒30および吸着触媒40の温度が今回の始動時までに十分に下がっているかを判断する。   If it is determined in step S3 that the engine is already warmed up, the internal combustion engine 10 is started (step S16), and the process is terminated. If it is determined in step S3 that the internal combustion engine 10 is in a cold state, the estimated temperature α of the three-way catalyst 30 and the estimated temperature β of the adsorption catalyst 40 at the end of the previous trip, and the time from the end of the previous trip. It is determined whether the product of the elapsed time coefficient K corresponding to the time elapsed until the start of this time is lower than the predetermined temperatures Td and Te (step S4). That is, it is determined whether the temperatures of the three-way catalyst 30 and the adsorption catalyst 40 at the end of the previous trip have sufficiently decreased by the time of the current start.

ステップS4において、三元触媒30および吸着触媒40の温度が今回の始動時までに十分に下がっていないと判断した場合には、内燃機関10を始動させたのち(ステップS16)、処理を終了する。三元触媒30および吸着触媒40の温度が今回の始動時までに十分に下がっていると判断した場合には、前回のトリップ終了時の吸着触媒40の推定温度βが所定温度Tfよりも低いかを判断する(ステップS5)。すなわち、前回のトリップ終了時の吸着触媒40の温度がHCを吸着浄化可能な状態まで上昇していたかを判断する。前回のトリップ終了時の吸着触媒40の温度がHCを吸着浄化可能な状態まで上昇していなかった場合には、O2センサの異常判定を行わず、内燃機関10を始動させたのち(ステップS16)、処理を終了する。これにより、後述するO2センサの加熱処理(プレヒート)に要する電力を低減する。 If it is determined in step S4 that the temperatures of the three-way catalyst 30 and the adsorption catalyst 40 have not sufficiently decreased by the time of the current start, the internal combustion engine 10 is started (step S16), and the process is terminated. . If it is determined that the temperatures of the three-way catalyst 30 and the adsorption catalyst 40 have sufficiently decreased by the time of the current start, is the estimated temperature β of the adsorption catalyst 40 at the end of the previous trip lower than the predetermined temperature Tf? Is determined (step S5). That is, it is determined whether the temperature of the adsorption catalyst 40 at the end of the previous trip has increased to a state where HC can be adsorbed and purified. If the temperature of the adsorption catalyst 40 at the end of the previous trip has not increased to a state where HC can be adsorbed and purified, the abnormality determination of the O 2 sensor is not performed and the internal combustion engine 10 is started (step S16). ), The process is terminated. Thereby, the electric power required for the heating process (preheating) of the O 2 sensor described later is reduced.

ステップS5において、前回のトリップ終了時の吸着触媒40の温度がHCを吸着浄化可能な状態まで上昇していないと判断した場合には、O2センサ60A,60Bのプレヒートを実行し(ステップ6)、その後、エンジンを始動する(ステップS7)。なお、O2センサ60A,60Bに加えてA/Fセンサ70もプレヒートする。 If it is determined in step S5 that the temperature of the adsorption catalyst 40 at the end of the previous trip has not increased to a state where HC can be adsorbed and purified, preheating of the O 2 sensors 60A and 60B is executed (step 6). Thereafter, the engine is started (step S7). In addition to the O 2 sensors 60A and 60B, the A / F sensor 70 is also preheated.

次いで、A/Fセンサ70からの信号が所定値V1よりも小さいかを判断する(ステップS8)。すなわち、エンジン始動時に吸着触媒40の下流側のO2センサ60Bにより、リッチ信号を確実に検出できるA/Fセンサ70からの信号に基づいて確認する。すなわち、A/Fセンサ70からの信号が所定値V1よりも小さいと、O2センサ60Bがリッチ信号を確実に検出できると判断する。 Next, it is determined whether the signal from the A / F sensor 70 is smaller than the predetermined value V1 (step S8). In other words, the O 2 sensor 60B on the downstream side of the adsorption catalyst 40 is checked based on the signal from the A / F sensor 70 that can reliably detect the rich signal when the engine is started. That is, if the signal from the A / F sensor 70 is smaller than the predetermined value V1, it is determined that the O 2 sensor 60B can reliably detect the rich signal.

ステップS8において、A/Fセンサ70からの信号が所定値V1よりも大きい場合には、O2センサ60Bがリッチ信号を検出できないと判断して、処理を終了する。O2センサ60Bがリッチ信号を確実に検出できると判断した場合には、O2センサ60Bの出力が所定値X1よりも大きいかを判断する(ステップS9)。すなわち、O2センサ60Bの出力がリッチレベルであるかを判断する。このとき、上流側のO2センサ60Aの出力がリッチレベルであるかを同時に判断してもよい。 In step S8, when the signal from the A / F sensor 70 is larger than the predetermined value V1, it is determined that the O 2 sensor 60B cannot detect the rich signal, and the process is terminated. O 2 sensor 60B is when it is determined that can be reliably detected rich signal, the output of the O 2 sensor 60B determines greater than a predetermined value X1 (step S9). That is, it is determined whether the output of the O 2 sensor 60B is at a rich level. At this time, it may be simultaneously determined whether the output of the upstream O 2 sensor 60A is at a rich level.

ステップS9において、O2センサ60Bの出力がリッチレベルに達していない場合には、O2センサ60Bのリッチ出力異常と判断する(ステップS15)。このとき、O2センサ60Bの出力がリッチレベルに達し、O2センサ60Aの出力がリッチレベルに達していない場合には、O2センサ60Aのリッチ出力異常と判断する。また、いずれのO2センサ60A,60Bの出力もリッチレベルに達していない場合には、異常判定を保留し、ステップS10の処理を実行する。 In step S9, when the output of the O 2 sensor 60B has not reached the rich level, it is determined that the rich output abnormality of the O 2 sensor 60B is present (step S15). At this time, when the output of the O 2 sensor 60B reaches the rich level and the output of the O 2 sensor 60A does not reach the rich level, it is determined that the rich output abnormality of the O 2 sensor 60A has occurred. If none of the outputs of the O 2 sensors 60A and 60B reach the rich level, the abnormality determination is suspended and the process of step S10 is executed.

ステップS9において、O2センサ60A,60Bの出力の両方がリッチレベルに達している場合には、内燃機関10に供給される燃料が重質燃料であるかを判断する(ステップS10)。揮発性の低い重質燃料と判断された場合には、処理を終了し、O2センサの異常判定を実行しない。燃料が、揮発性の低い重質燃料ではなく正常な燃料と判断された場合には、図2に示したように、エンジン始動後最初のアイドリング(F.I.)中に、A/Fセンサ70の出力に基づいて、目標空燃比をリーンである所定値Rに設定する(ステップS11)。 In step S9, when both the outputs of the O 2 sensors 60A and 60B reach the rich level, it is determined whether the fuel supplied to the internal combustion engine 10 is heavy fuel (step S10). If it is determined that the fuel is heavy fuel with low volatility, the process is terminated and the abnormality determination of the O 2 sensor is not executed. If it is determined that the fuel is normal rather than heavy fuel with low volatility, the A / F sensor is used during the first idling (FI) after engine start, as shown in FIG. Based on the output of 70, the target air-fuel ratio is set to a predetermined value R that is lean (step S11).

次いで、エンジン始動後ファーストアイドリング中のO2センサ60A,60Bの出力が所定値X2よりも低いかを判断する(ステップS12)。すなわち、O2センサ60A,60Bの出力の両方がリッチレベルからリーンレベルに反転したかを判断する。 Next, it is determined whether the outputs of the O 2 sensors 60A and 60B during the first idling after the engine start are lower than a predetermined value X2 (step S12). That is, it is determined whether both the outputs of the O 2 sensors 60A and 60B are inverted from the rich level to the lean level.

ステップS12において、O2センサ60A,60Bの出力の両方がリッチレベルからリーンレベルに反転した場合には、O2センサ60A,60Bは正常に動作していると判定する(ステップS13)。O2センサ60A,60Bの出力が反転しない場合には、O2センサ60A,60Bのうち反転しないセンサのリーン出力異常と判定する(ステップS14)。 In step S12 determines, when the O 2 sensor 60A, both of the output of 60B inverted from the rich level in the lean level, O 2 sensor 60A, and 60B are operating normally (step S13). O 2 when the sensor 60A, the output of 60B is not inverted, it is determined that the O 2 sensor 60A, lean output abnormality of the sensor not reversed out of the 60B (step S14).

10…内燃機関
20…排気通路
30…三元触媒
40…吸着触媒
60A,60B…O2センサ
70…A/Fセンサ
80…カーテシスイッチ
100…ECU
10 ... engine 20 ... exhaust passage 30 ... three-way catalyst 40 ... adsorber 60A, 60B ... O 2 sensor 70 ... A / F sensor 80 ... courtesy switch 100 ... ECU

Claims (1)

内燃機関の排気通路に設けられた吸着触媒と、
前記排気通路の前記吸着触媒の少なくとも下流側に設けられ、ヒータを内蔵する空燃比センサと、
前記内燃機関の始動前に前記ヒータを作動させて前記空燃比センサを活性化させ、内燃機関の始動時の排気ガスに対する前記空燃比センサの検出信号に基づいて、前記空燃比センサの異常を検出する異常検出手段と
を有することを特徴とする内燃機関の排気浄化装置。
An adsorption catalyst provided in an exhaust passage of the internal combustion engine;
An air-fuel ratio sensor provided at least downstream of the adsorption catalyst in the exhaust passage and incorporating a heater;
Before starting the internal combustion engine, the heater is activated to activate the air-fuel ratio sensor, and the abnormality of the air-fuel ratio sensor is detected based on the detection signal of the air-fuel ratio sensor with respect to the exhaust gas at the start of the internal combustion engine An exhaust gas purifying device for an internal combustion engine, comprising:
JP2009038532A 2009-02-20 2009-02-20 Exhaust emission control device for internal combustion engine Pending JP2010190203A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009038532A JP2010190203A (en) 2009-02-20 2009-02-20 Exhaust emission control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009038532A JP2010190203A (en) 2009-02-20 2009-02-20 Exhaust emission control device for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2010190203A true JP2010190203A (en) 2010-09-02

Family

ID=42816482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009038532A Pending JP2010190203A (en) 2009-02-20 2009-02-20 Exhaust emission control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2010190203A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108223161A (en) * 2016-12-13 2018-06-29 现代自动车株式会社 For heating the method and device of the exhaust gas oxygensensor of moderate hybrid electric vehicle
US11060473B2 (en) * 2017-04-10 2021-07-13 Volkswagen Aktiengesellschaft Method for commissioning an internal combustion engine, and motor vehicle comprising an internal combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108223161A (en) * 2016-12-13 2018-06-29 现代自动车株式会社 For heating the method and device of the exhaust gas oxygensensor of moderate hybrid electric vehicle
US11060473B2 (en) * 2017-04-10 2021-07-13 Volkswagen Aktiengesellschaft Method for commissioning an internal combustion engine, and motor vehicle comprising an internal combustion engine

Similar Documents

Publication Publication Date Title
US10513961B2 (en) NOx offset diagnostic during engine soak
JP3788424B2 (en) Engine failure diagnosis device
JP4253294B2 (en) Engine self-diagnosis device
US20140144125A1 (en) Scr catalyst diagnostics
JPH07259539A (en) Exhaust gas purification device for internal combustion engine
JP2000230416A (en) Failure detection device for exhaust switching valve of internal combustion engine
JP2009257236A (en) Cylinder air-fuel ratio variation abnormality detecting device for multi-cylinder internal combustion engine
JPH05202785A (en) Air/fuel ratio control device of internal combustion engine
US6792749B2 (en) Exhaust gas purifying apparatus for internal combustion engine
JP3926694B2 (en) Exhaust gas purification device state determination device
US6945034B2 (en) Exhaust gas purifying apparatus for internal combustion engine
JP3863003B2 (en) Adsorbent status judgment device
JP3779828B2 (en) Exhaust gas purification device for internal combustion engine
JP2010190203A (en) Exhaust emission control device for internal combustion engine
JP4719129B2 (en) Failure diagnosis device for exhaust gas purification system
JP3855720B2 (en) Abnormality diagnosis device for catalyst early warm-up control system of internal combustion engine
JP2005002867A (en) Exhaust gas purification system for internal combustion engine
JPWO2003021090A1 (en) Deterioration state evaluation device of exhaust gas purification device
JP2010071267A (en) Control device of internal combustion engine
JP4001094B2 (en) Control device for hybrid vehicle
JP4089507B2 (en) Catalyst deterioration detection device for internal combustion engine
JP4013654B2 (en) Exhaust gas purification device for hybrid vehicle
JP5004935B2 (en) Air-fuel ratio control method for internal combustion engine
JP2010001798A (en) Malfunction diagnosis device for exhaust gas sensor
JP4872793B2 (en) Control device for internal combustion engine