[go: up one dir, main page]

JP2010178484A - Linear electromagnetic driving device - Google Patents

Linear electromagnetic driving device Download PDF

Info

Publication number
JP2010178484A
JP2010178484A JP2009017620A JP2009017620A JP2010178484A JP 2010178484 A JP2010178484 A JP 2010178484A JP 2009017620 A JP2009017620 A JP 2009017620A JP 2009017620 A JP2009017620 A JP 2009017620A JP 2010178484 A JP2010178484 A JP 2010178484A
Authority
JP
Japan
Prior art keywords
mover
magnetic
peripheral surface
stator
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009017620A
Other languages
Japanese (ja)
Other versions
JP5391706B2 (en
Inventor
Toyohisa Yamada
豊久 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP2009017620A priority Critical patent/JP5391706B2/en
Publication of JP2010178484A publication Critical patent/JP2010178484A/en
Application granted granted Critical
Publication of JP5391706B2 publication Critical patent/JP5391706B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)

Abstract

【課題】 可動子を自在に往復動させることにより、組付が容易で、信頼性及び耐久性が高く、コストが安く且つ効率の高いリニア式電磁駆動装置を提供すること。
【解決手段】 内周面と外周面を有し非磁性材で且つ電気良導材の導体14と、導体14の両端面に設けた磁性材の鉄心片12、13とで可動子10を構成し、鉄心片12、13の内周面側に磁性材からなる可動子側ヨーク2を配備し、そして、可動子10の軸X回りに導線を巻回したコイル24と、コイル24の両側に設けられ磁性材の磁極片22、23と、磁極片22と23とを連結する磁性材からなる固定子側ヨーク25とで固定子20を構成し、可動子10の内周面と固定子20の内周面とを所定の間隙51、52を持って対面させる。
【選択図】 図1
PROBLEM TO BE SOLVED: To provide a linear electromagnetic drive device that is easy to assemble, has high reliability and durability, is low in cost, and has high efficiency by freely reciprocating a mover.
A mover 10 is composed of a conductor 14 made of a non-magnetic material and having an inner peripheral surface and an outer peripheral surface and an electrically conductive material, and iron core pieces 12 and 13 provided on both end surfaces of the conductor 14. Further, a mover side yoke 2 made of a magnetic material is provided on the inner peripheral surface side of the iron core pieces 12 and 13, and a coil 24 in which a conducting wire is wound around the axis X of the mover 10, The stator 20 is composed of magnetic pole pieces 22 and 23 made of magnetic material and the stator side yoke 25 made of a magnetic material that connects the magnetic pole pieces 22 and 23, and the inner peripheral surface of the mover 10 and the stator 20. Are opposed to each other with predetermined gaps 51 and 52.
[Selection] Figure 1

Description

本発明は、電磁力を利用して、例えば蓄冷型冷凍機(例えば、スターリング冷凍機、パルス管冷凍機)、圧縮機等のピストン等を往復動させるリニア式電磁駆動装置に関する。   The present invention relates to a linear electromagnetic drive device that reciprocates pistons of a regenerative refrigerator (for example, a Stirling refrigerator, a pulse tube refrigerator), a compressor, and the like by using electromagnetic force.

従来技術のリニア式電磁駆動装置として、例えば、特許文献1に示されるリニア圧縮機のリニアモータ部(リニア式電磁駆動装置)が開示されている。このリニア圧縮機は、シリンダと、シリンダと同一の軸心でその軸線方向に沿って摺動自在に支持されるピストンと、ピストンに固定される永久磁石及びシリンダに固定されるコイルで磁路を形成して推力を発生させるリニアモータ部とを備え、リニアモータ部をピストンの外周に配置し、ピストンに固定される円筒保持部材とこれと同心円の筒体とにより永久磁石を挟持固定し、更に円筒保持部材とピストンに設けた棒体とがフランジ部を介在して結合され、フランジ部はバネ機構部のバネ板に接続される。   As a conventional linear electromagnetic drive device, for example, a linear motor unit (linear electromagnetic drive device) of a linear compressor disclosed in Patent Document 1 is disclosed. This linear compressor has a magnetic path composed of a cylinder, a piston that is slidably supported along the axial direction at the same axis as the cylinder, a permanent magnet fixed to the piston, and a coil fixed to the cylinder. A linear motor unit that generates thrust, and the linear motor unit is disposed on the outer periphery of the piston, and a permanent magnet is sandwiched and fixed by a cylindrical holding member fixed to the piston and a cylindrical body concentric with the cylindrical holding member. The cylindrical holding member and the rod provided on the piston are coupled via a flange portion, and the flange portion is connected to the spring plate of the spring mechanism portion.

特許第3499447号公報Japanese Patent No. 3499447

しかしながら、特許文献1によれば、リニアモータ部は永久磁石を使用しているため、コイルに電流を流さない時でも、径方向の吸引力が可動子に作用している。このため、可動子と固定とのクリアランスを確保するために設けたバネ板及びライナ(摺動軸受)には、永久磁石により常時、大きなラジアル荷重が作用し、バネ板及びライナの耐久性が低下してリニアモータ部の耐久性が低下する問題がある。   However, according to Patent Document 1, since the linear motor unit uses a permanent magnet, a radial attractive force acts on the mover even when no current is passed through the coil. For this reason, a large radial load is always applied to the spring plate and liner (sliding bearing) provided to ensure the clearance between the mover and the stationary by the permanent magnet, and the durability of the spring plate and liner is reduced. As a result, the durability of the linear motor section is reduced.

また、非通電磁時でも、可動部には永久磁石の吸引力が生じているので、組付が難しく、リニアモータ部の組付時に於けるクリアランス確保に関する初期故障が起き易く信頼性が低下する問題がある。   In addition, even when there is no electromagnetic current, the moving part has a permanent magnet attracting force, making it difficult to assemble, and initial failure related to securing clearance during assembly of the linear motor part is likely to occur, reducing reliability. There's a problem.

また、リニアモータ部は、保持力の大きな永久磁石(例えば、ネオジウム−鉄−ボロン系の永久磁石)が必要で、保持力の大きな永久磁石は高価であるため、リニアモータ部のコストが高くなる問題がある。   Further, the linear motor unit requires a permanent magnet having a large holding force (for example, a neodymium-iron-boron permanent magnet), and the permanent magnet having a large holding force is expensive, so the cost of the linear motor unit increases. There's a problem.

本発明は上記問題点に鑑みてなされたものであり、永久磁石を使用することなく、組付が容易で、信頼性及び耐久性が高く、コストが安く且つ効率の高いリニア式電磁駆動装置を提供することを目的とする。   The present invention has been made in view of the above problems, and a linear electromagnetic drive device that is easy to assemble, has high reliability and durability, is inexpensive, and has high efficiency without using a permanent magnet. The purpose is to provide.

上記課題を解決するため、請求項1に記載の発明は、内周面と外周面を形成し非磁性材で且つ電気良導材の導体と、前記導体の軸方向の両側に設けられ磁性材である鉄心片と、を有する可動子と、前記可動子の軸回りに導線を巻回したコイルと、前記コイルの前記軸方向の両側に設けられ磁性材である磁極片と、前記磁極片を互いに連結する磁性材である固定子側ヨークと、を有する固定子と、前記鉄心片の内周面側に配備した磁性材である可動子側ヨークと、を備え、前記可動子の外周面と前記外周面に対面する前記固定子の内面との間に所定の距離を有する。   In order to solve the above-mentioned problem, the invention according to claim 1 is a non-magnetic material which is formed of an inner peripheral surface and an outer peripheral surface and a conductor of an electrically conductive material, and a magnetic material provided on both sides in the axial direction of the conductor. A mover having an iron core piece, a coil in which a conductive wire is wound around the axis of the mover, a pole piece made of a magnetic material provided on both sides of the coil in the axial direction, and the pole piece A stator having a stator-side yoke that is a magnetic material connected to each other, and a mover-side yoke that is a magnetic material provided on the inner peripheral surface side of the core piece, and an outer peripheral surface of the mover. A predetermined distance is provided between the stator and the inner surface of the stator facing the outer peripheral surface.

また、前記可動子は、シリンダに往復動可能に挿設されるピストンを備える。   The mover includes a piston inserted into the cylinder so as to be reciprocally movable.

また、一対の前記固定子と前記可動子とは、複数組同軸に設けられる。   The pair of stators and movers are provided in a plurality of sets coaxially.

請求項1に記載の発明では、リニア式電磁駆動装置は永久磁石を有しないので、コイルの無通電時、固定子と可動子との間には、磁気力が発生しない。従って、可動子の外周面が固定子の内周面に当接することなく所定の間隙をもって可動子を固定子の容易に組付でき、固定部材と可動部材の間の間隙に関する初期故障の発生が阻止され、リニア式電磁駆動装置の信頼性が向上する。   In the first aspect of the invention, since the linear electromagnetic drive device does not have a permanent magnet, no magnetic force is generated between the stator and the mover when the coil is not energized. Therefore, the mover can be easily assembled to the stator with a predetermined gap without the outer peripheral surface of the mover coming into contact with the inner peripheral surface of the stator, and an initial failure related to the gap between the fixed member and the movable member is generated. This prevents the reliability of the linear electromagnetic drive device.

また、リニア式電磁駆動装置は永久磁石を有しないので、可動子の支持部材(例えば、フレクシャベアリング)は、常時作用するラジアル荷重が作用せず、このラジアル荷重分、荷重が軽減されて支持部材の耐久性が向上する。結果、リニア式電磁駆動装置の耐久性が向上する。   In addition, since the linear electromagnetic drive device does not have a permanent magnet, the support member of the mover (for example, the flexure bearing) is not supported by a radial load that always acts, and the load is reduced by this radial load. The durability of the member is improved. As a result, the durability of the linear electromagnetic drive device is improved.

また、リニア式電磁駆動装置は永久磁石を使用せず永久磁石の代わりに非磁性材で且つ電気良導材の導体を使用しているので、コストの安いリニア式電磁駆動装置を提供できる。   Further, since the linear electromagnetic drive device does not use a permanent magnet and uses a non-magnetic material and a conductor of electrically conductive material instead of the permanent magnet, a low cost linear electromagnetic drive device can be provided.

また、請求項2に記載の発明では、本発明のリニア式電磁駆動装置を使用してピストンを往復動することで、例えば、蓄冷型冷凍機あるいは圧縮機等に使用するリニア式電磁駆動装置は、組付が容易で、信頼性、耐久性が向上すると共に、コストが低減する。   Further, in the invention described in claim 2, by using the linear electromagnetic drive device of the present invention to reciprocate the piston, for example, the linear electromagnetic drive device used for a regenerative refrigerator or a compressor is Assembling is easy, reliability and durability are improved, and cost is reduced.

また、請求項3に記載の発明では、一対の固定子と可動子とが、可動子の往復動方向に複数組配備される。これにより、一対の固定子と可動子を一組配備したリニア式電磁駆動装置に比べ、複数組配備したリニア式電磁駆動装置は、推力が増大すると共に、同じストローク、同じ供給電流値の下で、コイルの銅損が減少するので、効率が向上する。   In the invention according to claim 3, a plurality of pairs of stators and movers are arranged in the reciprocating direction of the mover. As a result, compared to a linear electromagnetic drive device in which a set of a pair of stators and movers is provided, the linear electromagnetic drive device provided in a plurality of sets has an increased thrust, under the same stroke and the same supply current value. Since the copper loss of the coil is reduced, the efficiency is improved.

以下に本発明の実施形態を図面を参照しつつ詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

(第1実施形態)
図1は、本発明の第1実施形態に係るリニア式電磁装置の断面図で、リニア式電磁駆動装置をパルス管冷凍機等の蓄冷型冷凍機の圧縮機に適応したものである。図2は、図1のA−A断面を示す。
(First embodiment)
FIG. 1 is a cross-sectional view of a linear electromagnetic device according to a first embodiment of the present invention, in which a linear electromagnetic driving device is applied to a compressor of a regenerative refrigerator such as a pulse tube refrigerator. FIG. 2 shows an AA cross section of FIG.

図1に示すように、圧縮機100は、リニア式電磁駆動装置1と、モータケース3と、圧縮部40とから構成される。リニア式電磁駆動装置1は、可動子10と、固定子20と、可動子側ヨーク2から構成される。   As shown in FIG. 1, the compressor 100 includes a linear electromagnetic drive device 1, a motor case 3, and a compression unit 40. The linear electromagnetic drive device 1 includes a mover 10, a stator 20, and a mover side yoke 2.

可動子10は、リング形状の強磁性材からなる積層板11を可動子10の軸X方向に多数枚積層して構成した鉄心片12、13と、円筒形状の非磁性材(例えば、アルミニウム、銅等)で、且つ、電気良導材からなる導体14とを備える。導体14の両端面には鉄心片12と、13が固着される。積層板11の両面及び導体14の内周面には絶縁皮膜がコーティングされており、これにより積層した積層板11は互いに電気的に絶縁され、また、導体14の両端面と鉄心片12及び13との当接面と、導体14の内周面とロッド32の外周面の間も電気的に絶縁され、鉄損が減少する。尚、軸Xは、固定子20、シリンダ41、モータケース3の軸でもある。   The mover 10 includes core pieces 12 and 13 formed by laminating a large number of laminated plates 11 made of a ring-shaped ferromagnetic material in the axis X direction of the mover 10, and a cylindrical nonmagnetic material (for example, aluminum, And a conductor 14 made of electrically conductive material. Iron core pieces 12 and 13 are fixed to both end faces of the conductor 14. Both surfaces of the laminated plate 11 and the inner peripheral surface of the conductor 14 are coated with an insulating film, whereby the laminated plate 11 laminated is electrically insulated from each other, and both end surfaces of the conductor 14 and the iron core pieces 12 and 13 are coated. Between the contact surface, the inner peripheral surface of the conductor 14, and the outer peripheral surface of the rod 32 are electrically insulated, and iron loss is reduced. The axis X is also the axis of the stator 20, the cylinder 41, and the motor case 3.

可動子10の内周面は、ロッド32の外周面に固定される。ロッド32には、孔32aが設けられ、強磁性材からなる円柱形状の可動子側ヨーク2が孔32aの内周面に対し所定の間隙を持って挿入される。   The inner peripheral surface of the mover 10 is fixed to the outer peripheral surface of the rod 32. The rod 32 is provided with a hole 32a, and the cylindrical mover side yoke 2 made of a ferromagnetic material is inserted with a predetermined gap from the inner peripheral surface of the hole 32a.

図2に示すように、可動子側ヨーク2は鉄損を抑制するため軸X方向に可動子側ヨーク素片2a、2bに分割され、可動子側ヨーク素片2a、2bの分割面は絶縁皮膜が施され電気的に絶縁される。可動子側ヨーク素片2a、2bの端部はモータケース3の鏡板部3bに固定される。   As shown in FIG. 2, the mover side yoke 2 is divided into mover side yoke pieces 2a and 2b in the direction of the axis X in order to suppress iron loss, and the divided surfaces of the mover side yoke pieces 2a and 2b are insulated. A film is applied and electrically insulated. The end portions of the mover side yoke element pieces 2 a and 2 b are fixed to the end plate portion 3 b of the motor case 3.

固定子20は、可動子10の外周面に対し所定の距離を持って軸X回りに被覆銅線(導線)を巻回したコイル24と、コイル24の両端面側に設けた円筒形状の磁極片22、23と、磁極片22、23の外周面に固着した強磁性材からなる固定子側ヨーク25とから構成され、固定子20の外周面はモータケース3の内周面に固定される。磁極片22、23は、リング形状の強磁性材からなる積層板21を軸X方向に多数枚積層して構成され、磁極片22、23の両面に絶縁皮膜をコーティングする。これにより積層された積層板21は互いに電気的に絶縁され、鉄損が低減される。また、コイル24のリード線(図示せず)の両端はモータケース3に設けたハーメティクシールに接続し、外部に配備した電源装置(図示せず)に接続される。   The stator 20 includes a coil 24 in which a coated copper wire (conductive wire) is wound around an axis X with a predetermined distance from the outer peripheral surface of the mover 10, and cylindrical magnetic poles provided on both end surfaces of the coil 24. It is composed of pieces 22 and 23 and a stator side yoke 25 made of a ferromagnetic material fixed to the outer peripheral surfaces of the magnetic pole pieces 22 and 23, and the outer peripheral surface of the stator 20 is fixed to the inner peripheral surface of the motor case 3. . The magnetic pole pieces 22 and 23 are formed by laminating a large number of laminated plates 21 made of a ring-shaped ferromagnetic material in the direction of the axis X, and coat both surfaces of the magnetic pole pieces 22 and 23 with an insulating film. Thereby, the laminated plates 21 laminated are electrically insulated from each other, and iron loss is reduced. Further, both ends of a lead wire (not shown) of the coil 24 are connected to a hermetic seal provided in the motor case 3 and are connected to a power supply device (not shown) provided outside.

可動子10の外周面10aは鉄心片12、13の外周面から形成され、固定子20の内周面20a(内面)は磁極片22、23の内周面から形成される。そしてコイル24の無通電時、可動子10は中立位置し、この中立位置に於いて可動子10の外周面10aは固定子20の内周面20aに対し所定の間隙51、52(距離)を持って対面する。尚、導体14の外径は固定子20の内径より小さく固定子20に当らなければ良く、コイル24の内径は、可動子10の外径より大きく可動子10に当らなければ良い。本実施形態では、導体14の外径は鉄心片12、13の外径と同じで、コイル24の内径は、磁極片22、23の内径と同じである。   The outer peripheral surface 10 a of the mover 10 is formed from the outer peripheral surfaces of the iron core pieces 12 and 13, and the inner peripheral surface 20 a (inner surface) of the stator 20 is formed from the inner peripheral surfaces of the magnetic pole pieces 22 and 23. When the coil 24 is not energized, the mover 10 is in a neutral position, and at this neutral position, the outer peripheral surface 10a of the mover 10 has a predetermined gap 51, 52 (distance) with respect to the inner peripheral surface 20a of the stator 20. Hold and meet. The outer diameter of the conductor 14 is smaller than the inner diameter of the stator 20 and does not hit the stator 20, and the inner diameter of the coil 24 is larger than the outer diameter of the mover 10 and does not have to hit the mover 10. In this embodiment, the outer diameter of the conductor 14 is the same as the outer diameter of the iron core pieces 12 and 13, and the inner diameter of the coil 24 is the same as the inner diameter of the magnetic pole pieces 22 and 23.

圧縮部40は、ピストン31と、ピストン31の背面31bに同軸に連結されるロッド32とから構成したロッド付ピストン30と、一端にフランジ41aを有し、他端にシリンダヘッド41bを有するシリンダ41とから構成される。フランジ41aは、シリンダ41の内周面とモータ3の円筒部3aの内周面とが同軸になるように円筒部3aの端部に気密に固定される。そして、ロッド32の両端側はそれぞれ2枚一組のフレクシャベアリング33の内径側に固定され、フレクシャベアリング33の外径側はモータケース3の内周面に固定される。フレクシャベアリング33は、薄いバネ鋼からなり、円板形状で、中心に孔を有し、円板面に多数本のスリット(図示せず)が設けられバネの機能と、ロッド32を軸X方向に往復移動可能に支持する軸受の機能を有する。フレクシャベアリング33により、固定子20の内周面と可動子10の外周面との間の所定の間隙と、ピストン31の内周面との間の所定の微小間隙とが確保される。そして、固定子20と可動子10の間隙は磁気ギャップを形成し、ピストン31とシリンダ41の微小間隙はクリアランスシールを形成する。また、4枚のフレクシャベアリング33のバネと、可動子10と固定子20との間の通電時に生じる磁気バネと、ピストンの前面31aと背面31bに作用する作動ガス(例えば、ヘリウム)によるガスバネとを合成したバネと、可動子10とロッド付ピストン30の合計質量とで共振周波数を有する振動系を形成する。   The compression unit 40 includes a piston 31 and a rod-equipped piston 30 that is coaxially connected to the back surface 31b of the piston 31, a cylinder 41 having a flange 41a at one end and a cylinder head 41b at the other end. It consists of. The flange 41a is airtightly fixed to the end of the cylindrical portion 3a so that the inner peripheral surface of the cylinder 41 and the inner peripheral surface of the cylindrical portion 3a of the motor 3 are coaxial. The both ends of the rod 32 are fixed to the inner diameter side of a set of two flexure bearings 33, and the outer diameter side of the flexure bearing 33 is fixed to the inner peripheral surface of the motor case 3. The flexure bearing 33 is made of thin spring steel, has a disk shape, has a hole in the center, and is provided with a plurality of slits (not shown) on the disk surface so that the function of the spring and the rod 32 can be attached to the axis X. It has the function of a bearing that supports reciprocation in the direction. The flexure bearing 33 secures a predetermined gap between the inner peripheral surface of the stator 20 and the outer peripheral surface of the mover 10 and a predetermined minute gap between the inner peripheral surface of the piston 31. The gap between the stator 20 and the mover 10 forms a magnetic gap, and the minute gap between the piston 31 and the cylinder 41 forms a clearance seal. Further, the springs of the four flexure bearings 33, the magnetic spring generated when the movable element 10 and the stator 20 are energized, and the gas spring by the working gas (for example, helium) acting on the front surface 31a and the back surface 31b of the piston. And a total mass of the mover 10 and the piston 30 with the rod form a vibration system having a resonance frequency.

シリンダ41とピストン31で包囲して圧縮室42が形成され、圧縮室42はシリンダヘッド41bに設けた流路41cと、配管43を介在して冷凍発生部(図示せず)に連通される。また、ピストン31の背面31b側は、ピストン31とモータケース3とシリンダ41とによりバッファ室4が形成され、バッファ室4の容積は圧縮室42の掃気容積に比べ十分大きく(例えば、掃気容積の略15倍)設定される。   A compression chamber 42 is formed by being surrounded by the cylinder 41 and the piston 31. The compression chamber 42 is communicated with a flow path 41c provided in the cylinder head 41b and a refrigeration generator (not shown) via a pipe 43. Further, on the back surface 31 b side of the piston 31, the buffer chamber 4 is formed by the piston 31, the motor case 3, and the cylinder 41, and the volume of the buffer chamber 4 is sufficiently larger than the scavenging volume of the compression chamber 42 (for example, the scavenging volume of the scavenging volume). About 15 times).

尚、モータケース3を強磁性材にすることで、固定子側ヨーク25を設けずモータケース3の円筒部3aを固定子側ヨークにしても良い。あるいは、磁極片22と23の外径をモータケース3の内径に等しくなるよう増大し、磁極片22と23の互いの対抗面との間に固定子ヨークを設けても良い。   The motor case 3 may be made of a ferromagnetic material so that the cylindrical portion 3a of the motor case 3 may be a stator side yoke without providing the stator side yoke 25. Alternatively, the outer diameters of the magnetic pole pieces 22 and 23 may be increased to be equal to the inner diameter of the motor case 3, and a stator yoke may be provided between the opposing faces of the magnetic pole pieces 22 and 23.

また、磁極片22、23は、積層板21を積層して構成した1つの円筒体であるが、この円筒体を径方向に分割(例えば、4分割)した柱体を組合わせて構成しても良い。分割することによりコイル24の固定子20への組付が容易になる。   The pole pieces 22 and 23 are one cylindrical body formed by laminating the laminated plates 21. The magnetic pole pieces 22 and 23 are configured by combining column bodies obtained by dividing the cylindrical body in the radial direction (for example, divided into four parts). Also good. By dividing, the assembly of the coil 24 to the stator 20 is facilitated.

また、図1のリニア式電磁駆動装置1の固定子20は、モータケース3の内周面に固定されているが、モータケース3の外周面に固定しても良い。   1 is fixed to the inner peripheral surface of the motor case 3, the stator 20 may be fixed to the outer peripheral surface of the motor case 3.

また、リニア式電磁駆動装置1の固定子20では、磁極片22と23の間にコイル24は1個配備されているが、軸X方向に複数個配備しても良い。同じように、導体14は鉄心片12と13の間に1個配備しているが軸X方向に複数個配備しても良い。   Further, in the stator 20 of the linear electromagnetic drive device 1, one coil 24 is provided between the pole pieces 22 and 23, but a plurality of coils 24 may be provided in the axis X direction. Similarly, one conductor 14 is disposed between the core pieces 12 and 13, but a plurality of conductors 14 may be disposed in the direction of the axis X.

次に、リニア式電磁駆動装置1の作動と効果について説明する。コイル24の供給電流が、前述の共振周波数近傍であると可動体10の往復動の振幅が増大し、リニア式電磁駆動装置1が効率良く作動する。この場合、可動子10の往復動変位の位相は、供給電流の位相より略90度遅れる。そして、コイル24に共振周波数近傍の正弦波の交流電流を供給し、供給直後、モータケース3を軽く叩くと、可動子10が中立位置から僅か移動し、振動し出して直ぐに所定の振幅で往復動し、以下のように作動する。   Next, the operation and effect of the linear electromagnetic drive device 1 will be described. When the supply current of the coil 24 is in the vicinity of the above-described resonance frequency, the amplitude of the reciprocating motion of the movable body 10 increases, and the linear electromagnetic driving device 1 operates efficiently. In this case, the phase of the reciprocating displacement of the mover 10 is delayed by approximately 90 degrees from the phase of the supply current. Then, a sinusoidal alternating current near the resonance frequency is supplied to the coil 24. Immediately after the supply, when the motor case 3 is tapped, the mover 10 moves slightly from the neutral position, vibrates and immediately reciprocates with a predetermined amplitude. It operates as follows.

図3は、コイル24に供給する正弦波の交流電流Iの波形と、コイル電流Iの時間tの微分dI/dtの波形及び可動子10の変位波形を示す。図4は、リニア式電磁装置1の作動の部分断面説明図である。図5は、間隙51、52に生じるコイル24の電流及び導体14の誘導電流による各磁力線を示す図である。図6は、図5の各磁力線を合成した磁力線を示す図である。図4〜6中、コイル24内の丸に点の記号と丸にバツの記号は方向を示し、丸に点の記号は紙面の裏から表の方向を示し、丸にバツの記号は紙面の表から裏の方向を示す。また、2点鎖線はピストン31の前面31aの中立位置を示す。図5及び6中、間隙51、52の実線及び細線の矢印線は磁力線を示し、矢印は磁力線の流れ方向を示す。間隙51は磁極片22と鉄心片12との間に形成される間隙、間隙52は磁極片23と鉄心片13との間の間隙に形成される間隙で、間隙51、52は磁束が通過する磁気ギャップを形成する。   FIG. 3 shows a waveform of a sinusoidal alternating current I supplied to the coil 24, a waveform of the differential dI / dt of the coil current I at time t, and a displacement waveform of the mover 10. FIG. FIG. 4 is a partial cross-sectional explanatory view of the operation of the linear electromagnetic device 1. FIG. 5 is a diagram showing lines of magnetic force generated by the current of the coil 24 generated in the gaps 51 and 52 and the induced current of the conductor 14. FIG. 6 is a diagram showing magnetic field lines obtained by combining the magnetic field lines in FIG. 4 to 6, the symbol of the dot in the circle and the symbol of the cross in the circle indicate the direction, the symbol of the dot in the circle indicates the direction of the front from the back of the page, and the symbol of the cross in the circle indicates the direction of the page. The direction from the front to the back is shown. A two-dot chain line indicates a neutral position of the front surface 31 a of the piston 31. 5 and 6, the solid and thin arrow lines of the gaps 51 and 52 indicate magnetic lines of force, and the arrows indicate the flow direction of the magnetic lines of force. The gap 51 is a gap formed between the magnetic pole piece 22 and the iron core piece 12, the gap 52 is a gap formed in the gap between the magnetic pole piece 23 and the iron core piece 13, and the magnetic flux passes through the gaps 51 and 52. A magnetic gap is formed.

図3に示すように可動子10が中立位置aに位置し上死点cに向かう場合、コイル電流はプラスの最大電流Ia、電流の時間微分(以下、電流微分)dIa/dtは0(電流変化がない状態)で磁束Φbの増減のない状態である。最大電流Iaにより閉ループの最大磁束Φa(図4(a))が生じ、最大磁束Φaにより間隙51、52の軸X方向略全体に亘り略均等にそれぞれ矢印の実線で示す最大密度の磁力線Ma1、Ma2(図5(a))が生じる。電流微分dIa/dtは0であるので導体14には電流が誘導されないので、間隙51、52には誘導電流で生じる磁束による磁力線は生じない(図5(a))。従って、磁力線Ma1、Ma2と、誘導電流に基づく磁力線を合成した磁力線Pa1、Pa2は磁力線Ma1、Ma2となる(図6(a))。そして、合成磁力線Pa1、Pa2は、それぞれ軸X方向略全体に亘り略均等であるので、可動体10に作用する磁気力Fmは発生せず、又、前述の合成バネ力Ksも可動子10が中立位置に位置するので略0である。従って、可動子10の運動状態が継続され、可動子10はB方向、即ち、上死点c方向へ移動する(図4(a)、図6(a))。尚、図4に示すように、磁束Φa、及び、以下に述べる磁束Φb、Φe、Ψb、Ψc、Ψdは、順次磁極片22、空隙51、鉄心片12、可動子側ヨーク2、鉄心片13、空隙52、磁極片23、固定子側ヨーク25を通過し磁極片22戻り一巡して閉ループを形成する。   As shown in FIG. 3, when the mover 10 is located at the neutral position a and moves toward the top dead center c, the coil current is a positive maximum current Ia and the current time derivative (hereinafter, current derivative) dIa / dt is 0 (current). In this state, there is no change in the magnetic flux Φb. The maximum current Ia generates a closed loop maximum magnetic flux Φa (FIG. 4A), and the maximum magnetic flux Φa causes the maximum density magnetic field lines Ma1 indicated by the solid lines of the arrows to be substantially uniform over substantially the entire axis X direction of the gaps 51 and 52, respectively. Ma2 (FIG. 5A) is generated. Since the current differential dIa / dt is 0, no current is induced in the conductor 14, and therefore no magnetic field lines due to the magnetic flux generated by the induced current are generated in the gaps 51 and 52 (FIG. 5A). Therefore, the magnetic lines of force Ma1 and Ma2 and the magnetic lines of force Pa1 and Pa2 obtained by synthesizing the magnetic lines of force based on the induced current become the magnetic lines of force Ma1 and Ma2 (FIG. 6A). Since the combined magnetic lines of force Pa1 and Pa2 are substantially uniform over substantially the entire axis X direction, no magnetic force Fm acting on the movable body 10 is generated, and the above-described combined spring force Ks is also generated by the mover 10. Since it is located in the neutral position, it is substantially zero. Therefore, the movement state of the mover 10 is continued, and the mover 10 moves in the B direction, that is, the top dead center c direction (FIGS. 4A and 6A). As shown in FIG. 4, the magnetic flux Φa and the magnetic fluxes Φb, Φe, Ψb, Ψc, and Ψd described below are sequentially provided with the magnetic pole piece 22, the gap 51, the iron core piece 12, the mover side yoke 2, and the iron core piece 13. , Passing through the gap 52, the magnetic pole piece 23, and the stator side yoke 25, returning to the magnetic pole piece 22 and forming a closed loop.

図3に示すように可動子10が中立位置aと上死点cの間のb点に位置し上死点cに向かう場合、コイル電流はIbでプラス、電流微分dIb/dtはマイナス、磁束Φbは減少状態にあり、コイル電流Ibにより閉ループの磁束Φb(図4(b))が生じる。磁束Φbにより間隙51、52の軸X方向略全体に亘り略均等にそれぞれ矢印の実線で示す磁力線Mb1、Mb2(図5(b))が生じると共に、減少状態の磁束Φbにより導体14に電流Ibと同じ方向の電流が誘導される。この誘導電流により、磁束Φbと同方向の閉ループの磁束Ψbが生じ、磁束Ψbにより間隙51の導体14の端面近傍辺りと、間隙52のコイル24の端面近傍辺りにそれぞれ矢印の細線で示す磁力線Nb1、Nb2(図5(b))が生じる。そして、磁力線Nb1、Nb2を合成した磁束Pb1、Pb2(図6(b))が間隙51、52に生じる。磁力線Mb1、Mb2と、磁力線Nb1、Nb2の方向は同じであるので、合成磁束Pb1、Pb2は、導体14の端面側とコイル24の端面側が密で、両端面から軸X方向の遠方側は疎になり、この疎密が均等になるように中立位置に向う方向の磁気力Fmが可動子10に作用する。そして、磁気力Fmと中立位置に向う方向の合成バネ力Fsにより、上死点cに向い移動している可動体10は減速される(図4(b)、図6(b))。   As shown in FIG. 3, when the mover 10 is located at a point b between the neutral position a and the top dead center c and moves toward the top dead center c, the coil current is positive at Ib, the current differential dIb / dt is negative, and the magnetic flux Φb is in a decreasing state, and a closed-loop magnetic flux Φb (FIG. 4B) is generated by the coil current Ib. Magnetic flux lines Φb generate magnetic field lines Mb1 and Mb2 (FIG. 5B) indicated by solid lines of arrows substantially uniformly over substantially the entire axis X direction of the gaps 51 and 52, respectively, and the current Ib flows in the conductor 14 by the reduced magnetic flux Φb. A current in the same direction is induced. This induced current generates a closed-loop magnetic flux Ψb in the same direction as the magnetic flux Φb. The magnetic flux Ψb causes a magnetic field line Nb1 indicated by a thin arrow line around the end face of the conductor 14 in the gap 51 and around the end face of the coil 24 in the gap 52. , Nb2 (FIG. 5B) is generated. Then, magnetic fluxes Pb1 and Pb2 (FIG. 6B) obtained by synthesizing the magnetic lines of force Nb1 and Nb2 are generated in the gaps 51 and 52. Since the direction of the magnetic force lines Mb1 and Mb2 and the magnetic force lines Nb1 and Nb2 are the same, the combined magnetic fluxes Pb1 and Pb2 are dense on the end face side of the conductor 14 and the end face side of the coil 24 and sparse on the far side in the axis X direction from both end faces. The magnetic force Fm in the direction toward the neutral position acts on the mover 10 so that the density is equalized. The movable body 10 moving toward the top dead center c is decelerated by the magnetic force Fm and the combined spring force Fs in the direction toward the neutral position (FIGS. 4B and 6B).

可動子10は減速されつつ上死点cに至ると、可動体10の速度及び電流Icは0、電流微分dIc/dtはマイナスで絶対値が最大となる(図3)。電流Icは0であるので電流Icによる磁束は生じず(図4(c))、間隙51、52にも電流Icに基づく磁力線は生じない(図5(c))。また、電流微分dIc/dtがマイナスで絶対値が最大であるので導体14にコイル電流Ibと同じ方向の最大誘導電流が生じる。この誘導電流により閉ループの最大磁束Ψcが生じ、間隙51の導体14の端面近傍辺りと、間隙52のコイル24の端面近傍辺りには最大磁束Ψcによる最大密度の磁力線Nc1、Nc2が生じる(図5(c))。そして、間隙51と、間隙52に生じる合成磁力線Pc1、Pc2は磁力線Nc1、Nc2となる(図6(c))が、磁力線Nc1、Nc2による磁気力Fmは発生せず、可動体10には中立位置に向う方向の合成バネ力Fsが作用し、可動子10は中立位置eに向い移動し始める(図4(c)、図6(c))。   When the mover 10 reaches the top dead center c while being decelerated, the speed and current Ic of the movable body 10 are 0, the current differential dIc / dt is negative, and the absolute value is maximum (FIG. 3). Since the current Ic is 0, no magnetic flux is generated by the current Ic (FIG. 4C), and no magnetic field lines based on the current Ic are generated in the gaps 51 and 52 (FIG. 5C). Further, since the current differential dIc / dt is negative and the absolute value is maximum, a maximum induced current in the same direction as the coil current Ib is generated in the conductor 14. This induced current generates a closed loop maximum magnetic flux Ψc, and magnetic field lines Nc1 and Nc2 with the maximum density due to the maximum magnetic flux Ψc are generated near the end face of the conductor 14 in the gap 51 and in the vicinity of the end face of the coil 24 in the gap 52 (FIG. 5). (C)). The combined magnetic lines of force Pc1 and Pc2 generated in the gap 51 and the gap 52 become the magnetic lines of force Nc1 and Nc2 (FIG. 6C), but the magnetic force Fm due to the magnetic lines of force Nc1 and Nc2 is not generated, and the movable body 10 is neutral. The combined spring force Fs in the direction toward the position acts, and the movable element 10 starts to move toward the neutral position e (FIGS. 4C and 6C).

図3に示すように可動子10が上死点cと中立位置eの間のd点に位置し中立位置eに向かう場合、コイル電流はId及び電流微分dId/dtはマイナスで、磁束Φdは増加状態にあり、コイル電流Idにより磁束Φa、Φbに対し反対方向の磁束Φd(図4(d))が生じる。磁束Φdにより間隙51、52の軸X方向略全体に亘り略均等にそれぞれ矢印の実線で示す磁力線Md1、Md2(図5(d))が生じると共に、増加状態の磁束Φdにより導体14に電流Idに対し反対方向の電流が誘導される。この誘導電流により磁束Φdに対し反対方向の磁束Ψd(図4(d))が生じ、磁束Ψdにより間隙51の導体14の端面近傍辺りと、間隙52のコイル24の端面近傍辺りにそれぞれ矢印の細線で示す磁力線Nd1、Nd2(図5(b))が生じる。そして、磁力線Md1、Md2と、磁力線Nd1、Nd2を合成した磁力線Pd1、Pd2(図6(d))が間隙51、52に生じる。磁力線Nb1、Nb2は、磁力線Mb1、Mb2に対して反対方向であるので、導体14の端面側及びコイル24の端面側が疎で、両端面から軸X方向の遠方側は密になり、この疎密が均等になるように中立位置に向う方向の磁気力Fmが可動子10に作用する。そして、磁気力Fmと中立位置に向う方向の合成バネ力Fsにより、可動体10はC方向、即ち、中立位置eに向い移動すると共に可動体10は加速される(図4(d)、図6(d))。   As shown in FIG. 3, when the mover 10 is located at a point d between the top dead center c and the neutral position e and moves toward the neutral position e, the coil current Id and the current differential dId / dt are negative, and the magnetic flux Φd is In the increased state, the coil current Id generates a magnetic flux Φd (FIG. 4D) in the opposite direction to the magnetic fluxes Φa and Φb. Magnetic flux Φd generates magnetic lines of force Md1 and Md2 (FIG. 5D) indicated by solid lines of arrows approximately uniformly over substantially the whole of the gaps 51 and 52 in the direction of the axis X, and the current Id is generated in the conductor 14 by the increased magnetic flux Φd. In contrast, a current in the opposite direction is induced. This induced current generates a magnetic flux ψd (FIG. 4 (d)) in the opposite direction to the magnetic flux Φd. The magnetic flux ψd causes the arrows 51 around the end face of the conductor 14 in the gap 51 and around the end face of the coil 24 in the gap 52. Magnetic field lines Nd1 and Nd2 (FIG. 5B) indicated by thin lines are generated. Magnetic field lines Pd1 and Pd2 (FIG. 6 (d)) obtained by combining the magnetic field lines Md1 and Md2 and the magnetic field lines Nd1 and Nd2 are generated in the gaps 51 and 52. Since the magnetic lines Nb1 and Nb2 are in opposite directions to the magnetic lines Mb1 and Mb2, the end face side of the conductor 14 and the end face side of the coil 24 are sparse, and the distant side in the axis X direction is dense from both end faces. Magnetic force Fm in the direction toward the neutral position acts on the mover 10 so as to be uniform. Then, the movable body 10 is moved toward the C direction, that is, toward the neutral position e by the magnetic force Fm and the combined spring force Fs in the direction toward the neutral position, and the movable body 10 is accelerated (FIG. 4D). 6 (d)).

図3に示すように可動子10が中立位置eに至ると、コイル電流はマイナスで絶対値は最大の電流Ieになり、電流微分dIe/dtは0(電流変化が0の状態)で磁束Φeの増減もなくなる。コイル電流Ieにより最大磁束Φe(図4(e))が生じ、最大磁束Φeにより間隙51、52の軸X方向略全体に亘り略均等にそれぞれ矢印の実線で示す最大密度の磁力線Me1、Me2(図5(e))が生じる。電流微分dIe/dtは0であるので導体14には電流が誘導されず、間隙51、52には誘導電流で生じる磁束による磁力線は生じない。従って、合成磁力線Pe1、Pe2は磁力線Me1、Me2となる(図6(e))。合成磁力線Pe1、Pe2は、それぞれ軸X方向略全体に亘り略均等であるので、可動体10に作用する磁気力Fmは発生せず、又、合成バネ力Fsも略0である。従って、可動子10は運動状態を継続しつつ、可動子10は下死点g方向へ移動する(図4(e)、図6(e))。   As shown in FIG. 3, when the mover 10 reaches the neutral position e, the coil current is negative and the absolute value is the maximum current Ie, the current differential dIe / dt is 0 (the current change is 0), and the magnetic flux Φe. No increase or decrease. The coil current Ie generates a maximum magnetic flux Φe (FIG. 4 (e)), and the maximum magnetic flux Φe causes the maximum density magnetic field lines Me1 and Me2 (shown by solid lines of arrows) to be substantially uniform over substantially the entire axis X direction of the gaps 51 and 52, respectively. FIG. 5 (e)) results. Since the current differential dIe / dt is 0, no current is induced in the conductor 14, and no magnetic force lines are generated in the gaps 51 and 52 due to the magnetic flux generated by the induced current. Therefore, the combined magnetic lines of force Pe1 and Pe2 become magnetic lines of force Me1 and Me2 (FIG. 6E). Since the combined magnetic lines Pe1 and Pe2 are substantially uniform over substantially the entire direction of the axis X, the magnetic force Fm acting on the movable body 10 is not generated, and the combined spring force Fs is also substantially zero. Therefore, the mover 10 moves in the direction of the bottom dead center g while the mover 10 continues to move (FIGS. 4E and 6E).

上述の一連の作動は、可動体10が中立位置aから上死点cに至り、そこから再び中立位置eに戻る半サイクルである。可動体10が中立位置eからf点を経由し下死点gに至り、そこから再びh点を経由して中立位置iに戻る半サイクルも上述した一連の半サイクルの作動と同様になされ、可動子10の1サイクルの作動が終了する。   The series of operations described above is a half cycle in which the movable body 10 reaches the top dead center c from the neutral position a and then returns to the neutral position e again. The half cycle in which the movable body 10 reaches the bottom dead center g from the neutral position e via the point f and then returns to the neutral position i again through the point h is performed in the same manner as the above-described series of half cycle operations. The operation of one cycle of the mover 10 is completed.

以上により、コイル24に正弦波の交流電流を通電すると、間隙51、52の磁力線に疎密が生じ、この疎密を均等にするように可動子10を移動させる磁気力が生じ、この磁気力と、合成バネ力と、可動子10の間勢力とが作用し合い、ロッド32を介して可動子10と一体となったピストン31が往復動する。ピストン31の往復動によって、圧縮室42でヘリウムの圧縮と、膨張が行われる。圧縮されたヘリウムは、流路41c、配管43を通って冷凍発生部(図示せず)に流入し、そこで膨張して冷凍を発生する。膨張したヘリウムは、再び配管43、流路41cを通って圧縮室42の膨張により圧縮室42に流入し圧縮機100の1サイクルが終了する。   As described above, when a sinusoidal alternating current is applied to the coil 24, the magnetic lines of force in the gaps 51 and 52 are sparse, and a magnetic force is generated to move the mover 10 so as to equalize the sparse / dense. The combined spring force and the force of the mover 10 act on each other, and the piston 31 integrated with the mover 10 reciprocates via the rod 32. As the piston 31 reciprocates, the compression chamber 42 compresses and expands helium. The compressed helium flows into the refrigeration generator (not shown) through the flow path 41c and the pipe 43, and expands there to generate refrigeration. The expanded helium flows again into the compression chamber 42 by the expansion of the compression chamber 42 through the pipe 43 and the flow path 41c, and one cycle of the compressor 100 is completed.

以上の作動により、以下の効果を生じる。即ち、リニア式電磁駆動装置1は、永久磁石を有してないので、コイルの無通電時、固定子10と可動子20との間には、磁気による吸引力は発生しない。従って、可動子10の外周面が固定子20の内周面に当接することなく所定の間隙をもって容易に組付でき、可動子10の外周面10aと固定子20の内周面20aとの齧りと、ピストン31とシリンダ41との齧りと、可動子側ヨーク2とロッド32の孔32aとの齧りとによる初期故障が防げ、リニア式電磁駆動装置1の信頼性が向上する。   With the above operation, the following effects are produced. That is, since the linear electromagnetic drive device 1 does not have a permanent magnet, no magnetic attractive force is generated between the stator 10 and the mover 20 when the coil is not energized. Accordingly, the outer peripheral surface of the mover 10 can be easily assembled with a predetermined gap without coming into contact with the inner peripheral surface of the stator 20, and the contact between the outer peripheral surface 10 a of the mover 10 and the inner peripheral surface 20 a of the stator 20. In addition, the initial failure due to the turning of the piston 31 and the cylinder 41 and the turning of the mover side yoke 2 and the hole 32a of the rod 32 can be prevented, and the reliability of the linear electromagnetic drive device 1 is improved.

また、リニア式電磁駆動装置1は永久磁石を有してないので、フレクシャベアリング33には永久磁石のラジアル荷重は常に作用せず、このラジアル荷重分、フレクシャベアリング33に作用する荷重は軽減される。結果、フレクシャベアリング33の耐久性が向上し、これに伴いリニア式電磁駆動装置1の耐久性が向上する。   Further, since the linear electromagnetic drive device 1 does not have a permanent magnet, the radial load of the permanent magnet does not always act on the flexure bearing 33, and the load acting on the flexure bearing 33 is reduced by this radial load. Is done. As a result, the durability of the flexure bearing 33 is improved, and accordingly, the durability of the linear electromagnetic drive device 1 is improved.

また、リニア式電磁駆動装置1は永久磁石(例えば、ネオジウム−鉄−ボロン系の永久磁石)を使用せず永久磁石の代わりに非磁性材で且つ電気良導材(例えば、銅、アルミニュウム等)の導体14を使用しているので、コストの安いリニア式電磁駆動装置1を提供できる。   Further, the linear electromagnetic drive device 1 does not use a permanent magnet (for example, a neodymium-iron-boron permanent magnet), and is a non-magnetic material instead of a permanent magnet and an electrically conductive material (for example, copper, aluminum, etc.). Therefore, the linear electromagnetic drive device 1 can be provided at a low cost.

また、リニア式電磁駆動装置1は、シリンダ41とピストン31とで圧縮室42を形成し、ピストン31を往復動させヘリウムを圧縮して蓄冷型冷凍機の冷凍発生部に供給する。これにより、蓄冷型冷凍機用の圧縮機100のリニア式電磁駆動装置1は、組付が容易で、信頼性、耐久性が向上すると共に、コストが低減する。   Moreover, the linear electromagnetic drive device 1 forms the compression chamber 42 with the cylinder 41 and the piston 31, and reciprocates the piston 31, compresses helium, and supplies it to the refrigeration generating part of the regenerator type refrigerator. Thereby, the linear electromagnetic drive device 1 of the compressor 100 for the regenerator type refrigerator is easy to assemble, and the reliability and durability are improved and the cost is reduced.

さらに、ロッド付ピストン30と一体となった可動子10は、バネ・マスの共振周波数を有する振動系を形成しているので、共振周波数近傍の電流をコイル24に通電して運転することにより、リニア式電磁駆動装置1の効率が向上すると共に圧縮機100の効率も向上する。   Furthermore, since the movable element 10 integrated with the piston 30 with the rod forms a vibration system having a resonance frequency of spring and mass, by operating the coil 24 with a current near the resonance frequency, The efficiency of the linear electromagnetic drive device 1 is improved and the efficiency of the compressor 100 is also improved.

(第2実施形態)
図7は、本発明の第2実施形態に係るリニア式電磁装置の断面図で、リニア式電磁駆動装置をパルス管冷凍機等の蓄冷型冷凍機の圧縮機に適応したものである。図1と同じ部品及び同じ部位の符号は、図1と同じ符号を付す。図7に示すように、圧縮機200は、リニア式電磁駆動装置5と、モータケース3と、圧縮部40とから構成される。リニア式電磁駆動装置5は、一対の可動子と固定子3組、即ち、可動子110と固定子120と、可動子210と固定子220と、可動子310と固定子320と、可動子側ヨーク2から構成される。
(Second Embodiment)
FIG. 7 is a sectional view of a linear electromagnetic device according to the second embodiment of the present invention, in which the linear electromagnetic driving device is applied to a compressor of a regenerative refrigerator such as a pulse tube refrigerator. The same reference numerals as those in FIG. 1 denote the same parts and the same parts as those in FIG. As shown in FIG. 7, the compressor 200 includes a linear electromagnetic drive device 5, a motor case 3, and a compression unit 40. The linear electromagnetic drive device 5 includes a pair of movers and stators, that is, a mover 110 and a stator 120, a mover 210 and a stator 220, a mover 310 and a stator 320, and a mover side. The yoke 2 is configured.

可動子110は、円筒形状の非磁性材で、且つ、電気良導材からなる導体114と、導体114の両端面に固着されリング形状の強磁性材からなる積層板11を多数枚積層して構成した鉄心片112、113とから構成される。積層板11の両面は絶縁皮膜がコーティングされる。可動子110と同じように可動子210は導体214と、鉄心片212、213とから構成され、可動子310は導体314と、鉄心片312、313とから構成される。そして、可動子110、210、310は、順次軸X(可動子110、210、310の軸)方向に積層されロッド32に固定される。導体114、214、314の両端面及び内周面は電気絶縁される。また、ロッド32の孔32aには、強磁性材からなる円柱形状の可動子側ヨーク2が孔32aの内周面に対し所定の間隙を持って挿入され、可動子110、210、310の内周面はロッド32を介在して可動子側ヨーク2の外周面を包囲する。   The mover 110 is formed by laminating a plurality of laminated plates 11 made of a ring-shaped ferromagnetic material fixed to both ends of the conductor 114 and a conductor 114 made of a cylindrical non-magnetic material and electrically conductive material. It is comprised from the comprised iron core piece 112,113. Both surfaces of the laminate 11 are coated with an insulating film. Similar to the mover 110, the mover 210 includes a conductor 214 and iron core pieces 212 and 213, and the mover 310 includes a conductor 314 and iron core pieces 312 and 313. The movers 110, 210, and 310 are sequentially stacked in the direction of the axis X (the axes of the movers 110, 210, and 310) and fixed to the rod 32. Both end surfaces and inner peripheral surfaces of the conductors 114, 214, and 314 are electrically insulated. A cylindrical mover-side yoke 2 made of a ferromagnetic material is inserted into the hole 32a of the rod 32 with a predetermined gap with respect to the inner peripheral surface of the hole 32a, and the inside of the movers 110, 210, 310 is inserted. The peripheral surface surrounds the outer peripheral surface of the mover side yoke 2 with the rod 32 interposed.

固定子120は、可動子110の外周面に対し所定の距離を持って軸X回りに被覆銅線(導線)を巻回したコイル124と、コイル124の両端面側に設けた磁極片122、123と、磁極片122と、123の外周側の端面に固着した強磁性材からなる固定子側ヨーク125とから構成される。磁極片122、123は、リング形状の強磁性材からなる積層板21を軸X方向に多数枚積層して構成され、磁極片122、123の両面は絶縁皮膜がコーティングされる。固定子120と同じように、固定子220はコイル224と、磁極片222、223と、固定子側ヨーク225とから構成され、固定子320はコイル324と、磁極片322、323と、固定子側ヨーク325とから構成される。固定子120、220、320は軸X方向に積層されモータケース3の内周面に固定される。そして中立位置に於いて、可動子110、210、310の各外周面110a、210a、310aは、それぞれ固定子120、220、320の各内周面120a、220a、320aに所定の間隙を持って対面する。この間隙は、磁気ギャップを形成する。   The stator 120 includes a coil 124 in which a coated copper wire (conductive wire) is wound around the axis X at a predetermined distance from the outer peripheral surface of the mover 110, and magnetic pole pieces 122 provided on both end surfaces of the coil 124. 123, a magnetic pole piece 122, and a stator side yoke 125 made of a ferromagnetic material fixed to the outer peripheral end face of 123. The pole pieces 122 and 123 are configured by laminating a large number of laminated plates 21 made of a ring-shaped ferromagnetic material in the axis X direction, and both sides of the pole pieces 122 and 123 are coated with an insulating film. Similar to the stator 120, the stator 220 includes a coil 224, magnetic pole pieces 222 and 223, and a stator side yoke 225, and the stator 320 includes a coil 324, magnetic pole pieces 322 and 323, and a stator And a side yoke 325. The stators 120, 220, and 320 are stacked in the direction of the axis X and fixed to the inner peripheral surface of the motor case 3. In the neutral position, the outer peripheral surfaces 110a, 210a, 310a of the movers 110, 210, 310 have predetermined gaps with the inner peripheral surfaces 120a, 220a, 320a of the stators 120, 220, 320, respectively. Face to face. This gap forms a magnetic gap.

可動子110、210、310の各外周面110a、210a、310aは、図1の可動子1の外周面10aと同じように形成される。また、固定子120、220、320の各内周面120a、220a、320aは、図1の固定子20の内周面20aと同じように形成される。その他の構成は、図1の圧縮機100と同じでる。   Each outer peripheral surface 110a, 210a, 310a of the mover 110, 210, 310 is formed in the same manner as the outer peripheral surface 10a of the mover 1 in FIG. The inner peripheral surfaces 120a, 220a, and 320a of the stators 120, 220, and 320 are formed in the same manner as the inner peripheral surface 20a of the stator 20 in FIG. Other configurations are the same as those of the compressor 100 of FIG.

次に、リニア式電磁駆動装置5の作動と効果について説明する。各一対の可動子110と固定子120と、可動子210と固定子220と、可動子310と固定子320の作動は、図1の一対の可動子10と固定子20の作動と同じである。そして、コイル124、324は、同位相、同振幅の交流電流を電源装置(図示せず)から供給し、コイル224にはコイル124の電流と同じ振幅で、コイル124の電流に対し位相が180度ずれた電流を供給する。これにより、コイル124及び導体114よってそれぞれ生じる磁束と、コイル224及び導体214によってそれぞれ生じる磁束は、鉄心片113、212及び磁極片123、222に於いて打消し合うことなく同じ方向に流れる。同様に、コイル224及び導体214によってそれぞれ生じる磁束と、コイル324及び導体314によってそれぞれ生じる磁束とは、鉄心片213、312及び磁極片223、322に於いて打消し合うことなく同じ方向に流れる。従って、リニア式電磁駆動装置5は、図1のリニア式電磁駆動装置1を3組設けた場合と等価であるので、リニア式電磁駆動装置1に比べて3倍の推力が得られる。   Next, the operation and effect of the linear electromagnetic drive device 5 will be described. The operation of each pair of mover 110 and stator 120, mover 210 and stator 220, mover 310 and stator 320 is the same as the operation of the pair of mover 10 and stator 20 in FIG. . The coils 124 and 324 supply an alternating current having the same phase and the same amplitude from a power supply device (not shown), and the coil 224 has the same amplitude as the current of the coil 124 and a phase of 180 with respect to the current of the coil 124. Supply a current that is off. Thus, the magnetic flux generated by the coil 124 and the conductor 114 and the magnetic flux generated by the coil 224 and the conductor 214 respectively flow in the same direction without canceling each other in the iron core pieces 113 and 212 and the magnetic pole pieces 123 and 222. Similarly, the magnetic flux generated by the coil 224 and the conductor 214 and the magnetic flux generated by the coil 324 and the conductor 314, respectively, flow in the same direction without canceling out in the iron core pieces 213 and 312 and the magnetic pole pieces 223 and 322. Therefore, the linear electromagnetic drive device 5 is equivalent to the case where three sets of the linear electromagnetic drive devices 1 of FIG. 1 are provided, and therefore, a thrust three times that of the linear electromagnetic drive device 1 can be obtained.

また、電源装置(図示せず)からの供給電流値が同一で、コイル24(図1)と、コイル124,224、324の線径、巻数、全長が同一の下では、リニア式電磁駆動装置5の銅損は、リニア式電磁駆動装置1の3分の1になるので、リニア式電磁駆動装置5の効率が向上する。他の効果は、図1のリニア式電磁駆動装置1と同じである。   In addition, a linear electromagnetic driving device is used under the condition that the supply current value from the power supply device (not shown) is the same and the coil 24 (FIG. 1) and the coils 124, 224, and 324 have the same wire diameter, number of turns, and total length. Since the copper loss of 5 is one third of that of the linear electromagnetic drive device 1, the efficiency of the linear electromagnetic drive device 5 is improved. Other effects are the same as those of the linear electromagnetic drive device 1 of FIG.

本発明の第1実施形態に係るリニア式電磁装置の断面図である。1 is a cross-sectional view of a linear electromagnetic device according to a first embodiment of the present invention. 図1のA−A断面図である。It is AA sectional drawing of FIG. リニア式電磁駆動装置のコイルに通電する電流波形を示す図である。It is a figure which shows the electric current waveform which supplies with electricity to the coil of a linear electromagnetic drive device. 図1のリニア式電磁装置の作動の部分断面説明図である。FIG. 2 is a partial cross-sectional explanatory view of the operation of the linear electromagnetic device in FIG. 1. 図1のコイルの電流及び導体の誘導電流によって生じる間隙の各磁力線を示す図である。It is a figure which shows each magnetic force line of the gap | interval produced by the electric current of the coil of FIG. 1, and the induced current of a conductor. 図5の間隙に生じる各磁力線を合成した磁力線を示す図である。It is a figure which shows the magnetic force line which synthesize | combined each magnetic force line which arises in the gap | interval of FIG. 本発明の第2実施形態に係るリニア式電磁装置の断面図である。It is sectional drawing of the linear electromagnetic device which concerns on 2nd Embodiment of this invention.

1、5 リニア式電磁駆動装置
2 可動子側ヨーク
10、110、210、310 可動子
10a、110a、210a、310a 外周面
12、13、112、113、212、213、312、313 鉄心片
14、114、214、314 導体
20、120、220、310 固定子
20a、120a、220a、320a 内周面(内面)
22、23、122、123、222、223、322、323 磁極片
24、124、224、324 コイル
25、125、225、325 固定子側ヨーク
31 ピストン
41 シリンダ
51、52 間隙(距離)
X 軸
1, 5 Linear type electromagnetic drive device 2 Movable element side yoke 10, 110, 210, 310 Movable element 10a, 110a, 210a, 310a Outer peripheral surface 12, 13, 112, 113, 212, 213, 312, 313 Iron core piece 14, 114, 214, 314 Conductor 20, 120, 220, 310 Stator 20a, 120a, 220a, 320a Inner peripheral surface (inner surface)
22, 23, 122, 123, 222, 223, 322, 323 Magnetic pole piece 24, 124, 224, 324 Coil 25, 125, 225, 325 Stator side yoke 31 Piston 41 Cylinder 51, 52 Gap (distance)
X axis

Claims (3)

内周面と外周面を形成し非磁性材で且つ電気良導材の導体と、前記導体の軸方向の両側に設けられ磁性材である鉄心片と、を有する可動子と、
前記可動子の軸回りに導線を巻回したコイルと、前記コイルの前記軸方向の両側に設けられ磁性材である磁極片と、前記磁極片を互いに連結する磁性材である固定子側ヨークと、を有する固定子と、
前記鉄心片の内周面側に配備した磁性材である可動子側ヨークと、を備え、
前記可動子の外周面と前記外周面に対面する前記固定子の内面との間に所定の距離を有するリニア式電磁駆動装置。
A mover having an inner peripheral surface and an outer peripheral surface, a nonmagnetic material and a conductor of electrically conductive material, and iron core pieces that are magnetic materials provided on both sides in the axial direction of the conductor;
A coil in which a conducting wire is wound around the axis of the mover; a magnetic pole piece that is a magnetic material provided on both sides of the coil in the axial direction; and a stator side yoke that is a magnetic material that connects the magnetic pole pieces to each other; A stator having
A mover side yoke that is a magnetic material provided on the inner peripheral surface side of the iron core piece, and
A linear electromagnetic driving device having a predetermined distance between an outer peripheral surface of the mover and an inner surface of the stator facing the outer peripheral surface.
前記可動子は、シリンダに往復動可能に挿設されるピストンを備えることを特徴とする請求項1に記載のリニア式電磁駆動装置。 2. The linear electromagnetic drive device according to claim 1, wherein the mover includes a piston inserted into a cylinder so as to be reciprocally movable. 一対の前記固定子と前記可動子とは、複数組同軸に設けられる、ことを特徴とする請求項1又は2のいずれかに記載のリニア式電磁駆動装置。 The linear electromagnetic drive device according to claim 1, wherein a plurality of pairs of the stator and the movable element are provided coaxially.
JP2009017620A 2009-01-29 2009-01-29 Linear electromagnetic drive Expired - Fee Related JP5391706B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009017620A JP5391706B2 (en) 2009-01-29 2009-01-29 Linear electromagnetic drive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009017620A JP5391706B2 (en) 2009-01-29 2009-01-29 Linear electromagnetic drive

Publications (2)

Publication Number Publication Date
JP2010178484A true JP2010178484A (en) 2010-08-12
JP5391706B2 JP5391706B2 (en) 2014-01-15

Family

ID=42708881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009017620A Expired - Fee Related JP5391706B2 (en) 2009-01-29 2009-01-29 Linear electromagnetic drive

Country Status (1)

Country Link
JP (1) JP5391706B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107387363A (en) * 2017-09-04 2017-11-24 青岛浩宇宏机电技术有限公司 A kind of linear reciprocating mechanism and motion pump
WO2018143677A1 (en) * 2017-02-01 2018-08-09 Lg Electronics Inc. Transverse flux reciprocating motor and reciprocating compressor including the same
WO2018147623A1 (en) * 2017-02-07 2018-08-16 Lg Electronics Inc. Transverse flux type reciprocating motor and reciprocating compressor having a transverse flux type reciprocating motor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5648285U (en) * 1980-08-19 1981-04-28
JPH10227282A (en) * 1997-02-14 1998-08-25 Sanyo Electric Co Ltd Liner compressor
JP3499447B2 (en) * 1998-08-11 2004-02-23 松下電器産業株式会社 Linear compressor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5648285U (en) * 1980-08-19 1981-04-28
JPH10227282A (en) * 1997-02-14 1998-08-25 Sanyo Electric Co Ltd Liner compressor
JP3499447B2 (en) * 1998-08-11 2004-02-23 松下電器産業株式会社 Linear compressor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018143677A1 (en) * 2017-02-01 2018-08-09 Lg Electronics Inc. Transverse flux reciprocating motor and reciprocating compressor including the same
US10784734B2 (en) 2017-02-01 2020-09-22 Lg Electronics Inc. Transverse flux reciprocating motor and reciprocating compressor including a transverse flux reciprocating motor
WO2018147623A1 (en) * 2017-02-07 2018-08-16 Lg Electronics Inc. Transverse flux type reciprocating motor and reciprocating compressor having a transverse flux type reciprocating motor
US11131296B2 (en) 2017-02-07 2021-09-28 Lg Electronics Inc. Transverse flux type reciprocating motor and reciprocating compressor having a transverse flux type reciprocating motor
CN107387363A (en) * 2017-09-04 2017-11-24 青岛浩宇宏机电技术有限公司 A kind of linear reciprocating mechanism and motion pump

Also Published As

Publication number Publication date
JP5391706B2 (en) 2014-01-15

Similar Documents

Publication Publication Date Title
US8624448B2 (en) Electrodynamic linear oscillating motor
US6879064B2 (en) Linear motor and linear-motor based compressor
US6946754B2 (en) Linear motor and linear compressor
CN201110257Y (en) Moving magnetic exciter
Xue et al. Model, analysis, and application of tubular linear switched reluctance actuator for linear compressors
JP4184273B2 (en) Electric converter, linear compressor and wireless transmission antenna
JP2007291991A (en) Vibration type compressor
JP2014117149A (en) Linear drive device and piston pump device
JP2010200522A (en) Reciprocation driving mechanism, and cold storage type refrigerator using the reciprocation driving mechanism and compressor
CN103762816A (en) Moving-magnetic-type linear motor used for stirling cryocooler
JP2004056972A (en) Linear actuator
JP5391706B2 (en) Linear electromagnetic drive
JP2009065755A (en) Vibration type motor and vibration type compressor using the same
JP2016025818A (en) Electric generator
JP5098499B2 (en) Linear compressor for regenerative refrigerator
JP2010213431A (en) Linear electromagnetic device
JP3624109B2 (en) Compressor for cryogenic refrigerator and armature coil used therefor
US8049375B2 (en) Electromagnetic transducer apparatus
JP4022140B2 (en) Linear actuator
JP2004056988A (en) Moving coil type linear motor, compressor and refrigerator
JP2012205398A (en) Linear drive device and linear generator
JP2009065754A (en) Vibration type motor
JP2009213210A (en) Vibrating motor
JP2005009397A (en) Vibration type compressor
CN113890299B (en) Engine system for generating power based on electrified coil and permanent magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130702

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130917

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130930

R151 Written notification of patent or utility model registration

Ref document number: 5391706

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees