[go: up one dir, main page]

JP2010177552A - Nitride semiconductor growth substrate having polar plane - Google Patents

Nitride semiconductor growth substrate having polar plane Download PDF

Info

Publication number
JP2010177552A
JP2010177552A JP2009020271A JP2009020271A JP2010177552A JP 2010177552 A JP2010177552 A JP 2010177552A JP 2009020271 A JP2009020271 A JP 2009020271A JP 2009020271 A JP2009020271 A JP 2009020271A JP 2010177552 A JP2010177552 A JP 2010177552A
Authority
JP
Japan
Prior art keywords
semipolar
plane
nitride semiconductor
sapphire substrate
buffer layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009020271A
Other languages
Japanese (ja)
Inventor
Hisao Ishii
久夫 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electro Mechanics Co Ltd
Original Assignee
Samsung Electro Mechanics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electro Mechanics Co Ltd filed Critical Samsung Electro Mechanics Co Ltd
Priority to JP2009020271A priority Critical patent/JP2010177552A/en
Priority to KR20090014472A priority patent/KR101068865B1/en
Publication of JP2010177552A publication Critical patent/JP2010177552A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nitride semiconductor growth substrate such that a (11-22) plane of sapphire is semipolar not to be influenced by a piezoelectric field as well as a nonpolar plane and thereby while a light emitting element is suitably formed, defects in crystal growth on A, M and R nonpolar planes can be solved. <P>SOLUTION: In the nitride semiconductor growth substrate with the semipolar plane, an AlN, GaN, or AlGaN buffer layer is formed on a principal plane of a sapphire substrate having a semipolar plane. The semipolar plane is the (11-22) plane. After the principal plane of the sapphire substrate having the (11-22) semipolar plane is subjected to unevenness processing, the AlN, GaN, or AlGaN buffer layer is formed. A semiconductor element structure is formed on the AlN, GaN, or AlGaN buffer layer formed on the principal plane of the sapphire substrate having the (11-22) semipolar plane. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、サファイア基板の半極性面、特に(11−22)面を有効利用する窒化物系半導体エピタキシャル基板及びそれを用いた発光素子に関するものである。   The present invention relates to a nitride-based semiconductor epitaxial substrate that effectively uses a semipolar plane of a sapphire substrate, particularly a (11-22) plane, and a light-emitting device using the same.

窒化アルミニウム(以下、AlNという。)、窒化ガリウム(以下、GaNという。)、窒化インジウム(以下、InNという。)、あるいは、それらの混晶である窒化アルミニウムガリウム又は窒化アルミニウムガリウムインジウム(以下、AlxGa1−x−yInyN(0≦x≦1、0≦y≦1、0≦x+y≦1)という。)などの窒化物系半導体は受発光素子や電子走行素子に用いることができるため、近年、その結晶成長や半導体装置への応用について、幅広く研究がなされており、発光ダイオード、レーザダイオードに関しては、既に実用化されているものもある。   Aluminum nitride (hereinafter referred to as AlN), gallium nitride (hereinafter referred to as GaN), indium nitride (hereinafter referred to as InN), or a mixed crystal thereof, such as aluminum gallium nitride or aluminum gallium indium nitride (hereinafter referred to as AlxGa1). Since nitride semiconductors such as -x-yInyN (referred to as 0≤x≤1, 0≤y≤1, 0≤x + y≤1) can be used for light emitting / receiving elements and electron transit elements, A wide range of research has been conducted on crystal growth and application to semiconductor devices, and some light-emitting diodes and laser diodes have already been put into practical use.

ところで、窒化物系半導体の大型のバルク単結晶が提供できない現状では、一般的には、エピタキシャル基板として(0001)サファイア(以下C面サファイアという)が採用され、 このエピタキシャル成長の方法としては、有機金属気相成長(MOVPE) 法、分子線エピタキシー(MBE)法、ハライド気相成長(HVPE)法などがあるが、実用化の面で最も一般的なのはMOVPE法が利用されている。   By the way, in the present situation where a large bulk single crystal of a nitride-based semiconductor cannot be provided, in general, (0001) sapphire (hereinafter referred to as C-plane sapphire) is adopted as an epitaxial substrate. There are a vapor phase growth (MOVPE) method, a molecular beam epitaxy (MBE) method, a halide vapor phase epitaxy (HVPE) method, and the MOVPE method is most commonly used in terms of practical use.

しかしながら、発光ダイオードやレーザダイオードなどの発光装置の場合、C軸配向したサファイア結晶を用いると、多重量子井戸構造など、ヘテロ接合により構成する活性層には上記ピエゾ電界が生じ、バンド構造が変化することによりキャリアの再結合確率を低減し、このため、輝度向上が妨げられ、成長条件を最適化しても限界があることから高輝度の発光装置の作製は困難であるといわれている。   However, in the case of a light-emitting device such as a light-emitting diode or a laser diode, when a C-axis oriented sapphire crystal is used, an active layer composed of a heterojunction, such as a multiple quantum well structure, generates the piezoelectric field and changes the band structure. Accordingly, the recombination probability of carriers is reduced, which prevents improvement in luminance, and it is said that it is difficult to manufacture a high-luminance light-emitting device because there is a limit even if growth conditions are optimized.

このように、窒化物系半導体におけるピエゾ電界の問題は、半導体装置の特性に大きな影響を与えるが、このピエゾ電界による問題が存在しない結晶成長方法として、(11−20)配向(以下、A軸配向という。)、もしくは、(10−10)配向させればよいことが非特許文献1において既に報告されている。   As described above, the problem of the piezo electric field in the nitride-based semiconductor greatly affects the characteristics of the semiconductor device. However, as a crystal growth method in which the problem due to the piezo electric field does not exist, (11-20) orientation (hereinafter referred to as the A-axis) It is already reported in Non-Patent Document 1 that the alignment may be performed) or (10-10) alignment.

窒化物系半導体を(10−10)配向させる方法については、現在有効なものが無い一方で、窒化物系半導体を(11−20)配向させる方法としては、(1−102)サファイア基板(以下、R面サファイア基板という。)を用いる方法が非特許文献2に、及び、(11−20)4H−SiC基板上にAlNを成長する方法が非特許文献3に記載されている。しかしながら、これらの中で、後者の方法は、現状の(11−20)4H-SiC基板自体の作製技術において大型化が難しく、量産性が悪いため適さない。   While there is currently no effective method for orienting a nitride-based semiconductor in (10-10) orientation, a method for orienting a nitride-based semiconductor in (11-20) orientation includes a (1-102) sapphire substrate (hereinafter referred to as “1-102”). , R-plane sapphire substrate) is described in Non-Patent Document 2, and a method of growing AlN on a (11-20) 4H—SiC substrate is described in Non-Patent Document 3. However, among these methods, the latter method is not suitable because it is difficult to increase the size and the mass productivity is poor in the current manufacturing technique of the (11-20) 4H—SiC substrate itself.

他方、無極性サファイア基板は既に8インチ基板が現状でも製造可能であり、基板口径の問題はない。また、シリコンを用いた半導体装置と同様の半導体装置製造プロセスが利用可能な点や、SOS(シリコン・オン・サファイア)装置と結びつけた応用が可能な点を考慮すると、工業的な魅力は大きい。従って、量産性、コストの面から考えて無極性サファイア基板上に窒化物系半導体を成長させる方法が最も有利であると考えられていたが、その後の研究で 無極性サファイア基板上に窒化物計半導体を成長させる場合、その大きな格子定数差や、サファイアが無極性であることに起因する多量の貫通転位、及び、積層欠陥が導入されてしまうという問題、及び、半導体装置の製造に必要な急峻な界面の形成を困難にする劣悪な結晶形態の問題が存在していることが、明らかになった(特許文献1)。   On the other hand, the non-polar sapphire substrate can already be manufactured as an 8-inch substrate, and there is no problem of the substrate diameter. Further, considering the fact that a semiconductor device manufacturing process similar to a semiconductor device using silicon can be used, and that it can be applied in conjunction with an SOS (silicon on sapphire) device, the industrial attractiveness is great. Therefore, it was thought that the method of growing a nitride-based semiconductor on a nonpolar sapphire substrate was most advantageous from the viewpoint of mass productivity and cost. When a semiconductor is grown, the large lattice constant difference, a large amount of threading dislocations due to the nonpolarity of sapphire, and stacking faults are introduced, and the steepness necessary for manufacturing a semiconductor device. It has become clear that there is a problem of poor crystal morphology that makes it difficult to form a smooth interface (Patent Document 1).

特開2006-232640号公報JP 2006-232640

Japanese Journal of Applied Physics, Vol.39 (2000) 413-416Japanese Journal of Applied Physics, Vol.39 (2000) 413-416 Japanese Journal of Applied Physics, Vol. 42 (2003) L818-820Japanese Journal of Applied Physics, Vol. 42 (2003) L818-820 Applied Physics Letters Vol. 83, (2003) 5208-5210Applied Physics Letters Vol. 83, (2003) 5208-5210

そこで、本発明者は、サファイアがGaNと同様のウルツ型結晶構造を持つことに鑑み、鋭意研究の結果、その(11−22)面が半極性となって、無極性面と同様ピエゾ電界の受けず、発光素子を形成するに適当であるだけでなく、A,M及びR無極性面上の結晶成長の欠点を解決できることに着目し、本発明を完成するに至った。   In view of the fact that sapphire has a wurtzite crystal structure similar to that of GaN, the present inventor has intensively studied and as a result, the (11-22) plane is semipolar, and the piezo electric field is similar to that of the nonpolar plane. Accordingly, the present invention has been completed by paying attention to not only being suitable for forming a light emitting element but also capable of solving the disadvantages of crystal growth on nonpolar surfaces of A, M and R.

本発明は、半極性面、特に(11−22)半極性面を有するサファイヤ基板の主面上に、AlN, GaN又はAlGaNバッファ層を形成してなることを特徴とする半極性面を有する窒化物半導体成長基板を提供することにある。   The present invention relates to a nitridation having a semipolar plane, characterized in that an AlN, GaN or AlGaN buffer layer is formed on a main surface of a sapphire substrate having a semipolar plane, particularly a (11-22) semipolar plane. It is to provide a physical semiconductor growth substrate.

また、本発明は、(11−22)半極性面を有するサファイヤ基板の主面上に、形成したAlN又はAlGaNバッファ層上に半導体素子構造を形成してなる窒化物半導体発光素子を提供するものである。   The present invention also provides a nitride semiconductor light emitting device in which a semiconductor device structure is formed on an AlN or AlGaN buffer layer formed on a main surface of a sapphire substrate having a (11-22) semipolar plane. It is.

本発明においては、ピエゾ電界による影響を受けにくい半導体素子構造を形成できる。また、バッファ層はA軸方向に成長させると、C軸方向成長では受けやすい結晶欠陥を減少させることができるため、横方向成長方法を採用し、欠陥密度を10exp6/cm2以下に低減するのがよい。   In the present invention, it is possible to form a semiconductor element structure that is not easily affected by the piezoelectric field. In addition, if the buffer layer is grown in the A-axis direction, crystal defects that are easily affected by the C-axis direction growth can be reduced. Therefore, the lateral growth method is adopted to reduce the defect density to 10exp6 / cm2 or less. Good.

本発明の窒化物半導体を製造するには、サファイア単結晶バルクから、図1に示す(11−22)半極性面を有するサファイヤ基板を切り出すか又は図2に示すサファイア基板C面に(11−22)半極性面を形成する切り込みを入れる工程と、
サファイヤ基板の(11−22)半極性面を有する主面上に、AlN,GaN又はAlGaNバッファ層を形成する工程と、
該バッファ層上に、上記窒化物系半導体素子構造を形成する工程によって行われるのがよい。
In order to manufacture the nitride semiconductor of the present invention, a sapphire substrate having a (11-22) semipolar plane shown in FIG. 1 is cut out from a sapphire single crystal bulk, or (11−) on a sapphire substrate C plane shown in FIG. 22) making a cut to form a semipolar surface;
Forming an AlN, GaN or AlGaN buffer layer on a main surface having a (11-22) semipolar surface of a sapphire substrate;
It may be performed by a step of forming the nitride semiconductor device structure on the buffer layer.

AlN,GaN又はAlGaNバッファ層は(11−22)半極性面上で選択的に横方向に成長させる工程で形成するのが好ましい。 The AlN, GaN or AlGaN buffer layer is preferably formed by a step of selectively growing laterally on the (11-22) semipolar plane.

本発明は、低貫通転位密度で、かつ、表面平坦性の優れた、ピエゾ電界の影響を受けない窒化物系半導体を半極性面サファイア基板に成長ことを可能とし、高性能の発光ダイオード、レーザダイオードが作製可能なエピタキシャル基板の提供を可能とする。 The present invention makes it possible to grow a nitride-based semiconductor that has a low threading dislocation density and excellent surface flatness and is not affected by a piezo electric field on a semipolar plane sapphire substrate. An epitaxial substrate capable of producing a diode can be provided.

サファイア(11−22)面を説明する斜視図である。It is a perspective view explaining a sapphire (11-22) surface. C面サファイア基板上に(11−22)面を形成する断面図である。It is sectional drawing which forms a (11-22) surface on a C surface sapphire substrate. 本発明のエピタキシャル基板上に形成した半導体装置を説明する断面図である。It is sectional drawing explaining the semiconductor device formed on the epitaxial substrate of this invention. 本発明の半極性サファイア基板上に凹凸を設け、エピタキシャル基板を形成する方法について説明する断面図である。It is sectional drawing explaining the method of providing an unevenness | corrugation on the semipolar sapphire substrate of this invention, and forming an epitaxial substrate.

以下、本発明の実施の形態について図面を用いて詳細に説明する。
半極性面サファイア基板上に、GaN層を形成したGaN/GaInN多重量子井戸構造発光装置を試作した。図3に示すように、半極性面を主面とするサファイア基板1上に、MOVPE法により、n型GaNバッファ層(30μm)2、n型GaNクラッド層(450nm)3、GaN/InGaN多重量子井戸構造活性層4、p型AlGaNクラッド層(50nm)5、p型GaN層(200nm)6を順次積層している。これに、反応性イオンエッチングによるメサ加工、及び、p側電極7とn側電極8の形成を行い、発光装置を形成している。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
A GaN / GaInN multiple quantum well structure light emitting device in which a GaN layer is formed on a semipolar plane sapphire substrate was fabricated. As shown in FIG. 3, an n-type GaN buffer layer (30 μm) 2, an n-type GaN cladding layer (450 nm) 3, a GaN / InGaN multiple quantum are formed on a sapphire substrate 1 having a semipolar plane as a main surface by MOVPE. A well structure active layer 4, a p-type AlGaN cladding layer (50 nm) 5 and a p-type GaN layer (200 nm) 6 are sequentially stacked. Then, mesa processing by reactive ion etching and formation of the p-side electrode 7 and the n-side electrode 8 are performed to form a light emitting device.

貫通転位密度の低減のひとつの手法として、選択横方向成長が利用できる(Applied Physics Letters, Vol. 81 (2002) 1201-1203)。図4に示すように、(11−22)面を主面とするサファイア基板1上に、MOVPE法によりGaN層11を成長した後、既存のフォトリソグラフィー技術、及び、ウエットエッチング技術により、SiO2からなるマスク12を形成し、その後、MOVPE法により、再成長GaN層13を再成長している。この方法によりマスク12が貫通転位が再成長層に伝搬するのを防止し、貫通転位密度を低減することができる。   Selective lateral growth can be used as one method for reducing the threading dislocation density (Applied Physics Letters, Vol. 81 (2002) 1201-1203). As shown in FIG. 4, after the GaN layer 11 is grown by the MOVPE method on the sapphire substrate 1 having the (11-22) plane as a main surface, it is made of SiO 2 by an existing photolithography technique and a wet etching technique. A mask 12 is formed, and then the regrowth GaN layer 13 is regrown by the MOVPE method. By this method, the mask 12 can prevent the threading dislocations from propagating to the regrowth layer, and the threading dislocation density can be reduced.

すなわち、(11−22)面サファイア基板1の表面にマスク12を介して周期的な凹凸溝加工が施され、溝部11c、及び、テラス部11bが形成されている。その上に、第1の下地層13、第2の下地層14を順次成長され、その後、最後に窒化物系半導体層15が成長されている。窒化物系半導体層15は選択横方向成長して、半極性サファイア基板1に形成された周期的な凹凸溝構造を埋め込み、エピタキシャル基板10としてもよい。   In other words, periodic uneven groove processing is performed on the surface of the (11-22) plane sapphire substrate 1 through the mask 12 to form the groove 11c and the terrace 11b. On top of this, a first underlayer 13 and a second underlayer 14 are successively grown, and then a nitride-based semiconductor layer 15 is finally grown. The nitride-based semiconductor layer 15 may be selectively grown in the lateral direction, and a periodic uneven groove structure formed in the semipolar sapphire substrate 1 may be embedded to form the epitaxial substrate 10.

次に、マスク12は、フォトリソグラフィー技術と蒸着技術等を用いて半極性サファイア基板1上に、ライン・アンド・スペースのマスク12を形成する(図4(a))。   Next, as the mask 12, a line-and-space mask 12 is formed on the semipolar sapphire substrate 1 by using a photolithography technique and a vapor deposition technique (FIG. 4A).

次に、エッチングにより半極性サファイア基板1表面のマスク開口部11aの一部を除去し、溝部11cを形成する。マスク部11bはエッチングされないため、テラス部11bとなり、周期的な凹凸溝構造が形成される(図4(b))。   Next, a part of the mask opening 11a on the surface of the semipolar sapphire substrate 1 is removed by etching to form a groove 11c. Since the mask part 11b is not etched, it becomes the terrace part 11b, and a periodic uneven groove structure is formed (FIG. 4B).

次に、半極性サファイア基板1表面からマスク12を除去する。このようにして、周期的な凹凸溝構造を有する半極性サファイア基板1を得る(図4(c))。   Next, the mask 12 is removed from the surface of the semipolar sapphire substrate 1. In this way, the semipolar sapphire substrate 1 having a periodic uneven groove structure is obtained (FIG. 4C).

次に、MOVPE法により上記半極性サファイア基板1上に窒化物系半導体層15を成長する。膜厚や組成を制御して第1の下地層13、第2の下地層14を順次積層してやることで、その上には、表面が平坦で比較的結晶性の良いA軸配向した窒化物系半導体層15を成長することができる(図4(d))。   Next, a nitride-based semiconductor layer 15 is grown on the semipolar sapphire substrate 1 by the MOVPE method. By controlling the film thickness and composition and sequentially laminating the first underlayer 13 and the second underlayer 14, an A-axis oriented nitride system having a flat surface and relatively good crystallinity is formed thereon. The semiconductor layer 15 can be grown (FIG. 4D).

V/III比は、成長時のIII族原料である有機金属の供給量に対する、V族原料であるアンモニア(以下、NH3という。)の供給量の比であり、V/III比によって成長速度の異方性が変化する。また、C軸配向した窒化物系半導体のV/III比と異なるので、窒化物系半導体層15の結晶が横方向成長を確保するように留意する必要がある。   The V / III ratio is the ratio of the supply amount of ammonia (hereinafter referred to as NH3), which is a Group V material, to the supply amount of organic metal, which is a Group III material during growth, and the growth rate depends on the V / III ratio. Anisotropy changes. In addition, since it is different from the V / III ratio of the C-axis-oriented nitride-based semiconductor, it is necessary to pay attention so that the crystal of the nitride-based semiconductor layer 15 ensures lateral growth.

なお、上記のサファイア基板に形成した周期的な凹凸溝加工の寸法については、マスク
部では、窒化物系半導体層15中に貫通転位が多く生成してしまうので、なるべくその幅は小さい方がよい。
As for the size of the periodic concavo-convex groove processing formed on the sapphire substrate, since a large number of threading dislocations are generated in the nitride-based semiconductor layer 15 in the mask portion, the width should be as small as possible. .

マスク開口部11aは、エッチングにより溝部11cが形成される。その側壁から選択横方向成長が始まり、貫通転位が横方向に伝搬するので膜厚方向に伸びる転位を減少させることができ、窒化物系半導体層15の貫通転位密度の低減に寄与する。   In the mask opening 11a, a groove 11c is formed by etching. The selective lateral growth starts from the side wall, and the threading dislocations propagate in the lateral direction, so that the dislocations extending in the film thickness direction can be reduced, which contributes to the reduction of the threading dislocation density of the nitride-based semiconductor layer 15.

マスク開口部11aの幅は、あまりに広いと窒化物系半導体層15の初期成長ドメインが、溝の底部からも成長するため膜厚方向に成長し、貫通転位密度の低減が困難となるので、半極性サファイア基板1上に成長させたA軸配向の窒化物系半導体層15の場合は、溝部11cを用いることが可能である。これは、成長方位依存性により、溝部11cの底からの成長よりも、選択横方向成長しているドメインの成長を促進することの方が優位だからである。   If the width of the mask opening 11a is too wide, the initial growth domain of the nitride-based semiconductor layer 15 grows also from the bottom of the trench and grows in the film thickness direction, which makes it difficult to reduce the threading dislocation density. In the case of the A-axis-oriented nitride-based semiconductor layer 15 grown on the polar sapphire substrate 1, the groove 11c can be used. This is because, due to the growth orientation dependence, it is more advantageous to promote the growth of the domain that is growing in the selected lateral direction than the growth from the bottom of the groove 11c.

また、エッチング法により形成する半極性サファイア基板4表面の周期的な凹凸溝構造の深さは、転位密度の低減の効果を十分にえるためには選択横方向成長を確保できるのが良い。   In addition, the depth of the periodic concavo-convex groove structure on the surface of the semipolar sapphire substrate 4 formed by the etching method should ensure selective lateral growth in order to sufficiently obtain the effect of reducing the dislocation density.

以上のようにして成長したA軸配向の窒化物系半導体15は、表面平坦性に優れ、結晶性の改善による発光特性の向上がフォトルミネセンス法などにより観察される。このようにしてエピタキシャル基板10が作製される。   The A-axis-oriented nitride-based semiconductor 15 grown as described above is excellent in surface flatness, and an improvement in light emission characteristics due to improvement in crystallinity is observed by a photoluminescence method or the like. In this way, the epitaxial substrate 10 is manufactured.

なお、上記実施例ではサファイア基板上に凹凸溝加工を施したが、窒化物系半導体層を形成し、その上で周期的な凹凸溝加工を施し、その側壁から選択横方向成長を始め、貫通転位を横方向に伝搬させ、膜厚方向に伸びる転位を減少させるようにしてもよい。このようにすることで、窒化物系半導体層に形成された周期的な凹凸溝構造を埋め込むように成長させることが可能である。   In the above embodiment, the concavo-convex grooves were formed on the sapphire substrate, but the nitride-based semiconductor layer was formed, and the concavo-convex grooves were periodically formed on the sapphire substrate. Dislocations may be propagated in the lateral direction and dislocations extending in the film thickness direction may be reduced. By doing in this way, it is possible to grow so as to bury the periodic uneven groove structure formed in the nitride-based semiconductor layer.

1 エピタキシャル基板
11a マスク開口部
11b テラス部
11c 溝部
12 マスク
13 第1の下地層
14 第2の下地層
15 窒化物系半導体層
DESCRIPTION OF SYMBOLS 1 Epitaxial substrate 11a Mask opening part 11b Terrace part 11c Groove part 12 Mask 13 1st foundation layer 14 2nd foundation layer 15 Nitride type semiconductor layer

Claims (7)

半極性面を有するサファイヤ基板の主面上に、AlN, GaN又はAlGaNバッファ層を形成してなることを特徴とする半極性面を有する窒化物半導体成長基板。   A nitride semiconductor growth substrate having a semipolar surface, wherein an AlN, GaN or AlGaN buffer layer is formed on a main surface of a sapphire substrate having a semipolar surface. 半極性面が(11−22)面である請求項1記載の窒化物半導体成長基板。   The nitride semiconductor growth substrate according to claim 1, wherein the semipolar plane is a (11-22) plane. (11−22)半極性面を有するサファイヤ基板の主面上に、凹凸加工を施した後、AlN, GaN又はAlGaNバッファ層を形成してなる請求項1記載の窒化物半導体成長基板。   (11-22) The nitride semiconductor growth substrate according to claim 1, wherein an AlN, GaN, or AlGaN buffer layer is formed on the main surface of the sapphire substrate having a semipolar surface, after being subjected to unevenness processing. (11−22)半極性面を有するサファイヤ基板の主面上に、形成したAlN又はAlGaNバッファ層上に半導体素子構造を形成してなる窒化物半導体発光素子。   (11-22) A nitride semiconductor light emitting device formed by forming a semiconductor device structure on an AlN or AlGaN buffer layer formed on a main surface of a sapphire substrate having a semipolar plane. 上記半導体素子構造のn型窒化物半導体層が貫通転移密度10exp6/cm2以下の単層からなることを特徴とする請求項2記載の窒化物半導体発光素子。   3. The nitride semiconductor light emitting device according to claim 2, wherein the n-type nitride semiconductor layer of the semiconductor device structure is formed of a single layer having a threading transition density of 10exp6 / cm <2> or less. サファイア単結晶から(11−22)半極性面を有するサファイヤ基板を切り出すか又はサファイア基板に(11−22)半極性面を形成する工程と、
サファイヤ基板の(11−22)半極性面を有する主面上に、AlN,GaN又はAlGaNバッファ層を形成する工程と、
該バッファ層上に、上記窒化物系半導体素子構造を形成する工程とからなる窒化物半導体発光素子の製造方法。
Cutting a sapphire substrate having a (11-22) semipolar plane from a sapphire single crystal or forming a (11-22) semipolar plane on a sapphire substrate;
Forming an AlN, GaN or AlGaN buffer layer on a main surface having a (11-22) semipolar surface of a sapphire substrate;
A method of manufacturing a nitride semiconductor light emitting device comprising the step of forming the nitride semiconductor device structure on the buffer layer.
(11−22)半極性面上で凹凸加工を施した後、AlN, GaN又はAlGaNバッファ層を選択的に横方向に成長させる工程を含むことを特徴とする請求項5に記載のエピタキシャル基板の製造方法。
(11-22) The epitaxial substrate according to claim 5, further comprising a step of selectively growing an AlN, GaN or AlGaN buffer layer in a lateral direction after performing uneven processing on a semipolar surface. Production method.
JP2009020271A 2009-01-30 2009-01-30 Nitride semiconductor growth substrate having polar plane Pending JP2010177552A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009020271A JP2010177552A (en) 2009-01-30 2009-01-30 Nitride semiconductor growth substrate having polar plane
KR20090014472A KR101068865B1 (en) 2009-01-30 2009-02-20 Nitride semiconductor growth substrate and light emitting device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009020271A JP2010177552A (en) 2009-01-30 2009-01-30 Nitride semiconductor growth substrate having polar plane

Publications (1)

Publication Number Publication Date
JP2010177552A true JP2010177552A (en) 2010-08-12

Family

ID=42708179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009020271A Pending JP2010177552A (en) 2009-01-30 2009-01-30 Nitride semiconductor growth substrate having polar plane

Country Status (2)

Country Link
JP (1) JP2010177552A (en)
KR (1) KR101068865B1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102208497A (en) * 2011-04-22 2011-10-05 中山大学 Preparation method of semi-polarity or nonpolar GaN composite substrate on silicon substrate
KR101539073B1 (en) * 2013-11-28 2015-07-24 주식회사 루미스탈 METHOD FOR MANUFACTURING SEMI-POLAR GaN TEMPLATE
CN105679903A (en) * 2016-01-18 2016-06-15 厦门市三安光电科技有限公司 Semi-polarity LED epitaxial structure and preparation method therefor
CN106981548A (en) * 2017-04-01 2017-07-25 中蕊(武汉)光电科技有限公司 A kind of deep ultraviolet LED epitaxial structure and preparation method thereof
JP2020061510A (en) * 2018-10-12 2020-04-16 株式会社小糸製作所 Substrate for semiconductor growth, semiconductor device, semiconductor light emitting device, and method for manufacturing semiconductor device
WO2020090814A1 (en) * 2018-11-02 2020-05-07 株式会社小糸製作所 Substrate for semiconductor growth, semiconductor element, semiconductor light emitting element and method for producing substrate for semiconductor growth

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005101566A (en) * 2003-08-19 2005-04-14 Nichia Chem Ind Ltd Semiconductor device, light emitting device, and method of manufacturing substrate
WO2008007522A1 (en) * 2006-06-19 2008-01-17 National University Corporation Chiba University Semiconductor element, optical switching element and quantum cascade laser element
JP2008252069A (en) * 2007-03-06 2008-10-16 Sanyo Electric Co Ltd Method for fabricating semiconductor laser element, and the semiconductor laser element

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1984545A4 (en) * 2006-02-17 2013-05-15 Univ California PROCESS FOR THE PRODUCTION OF N-TYPE SEMIPOLAR OPTOELECTRONIC DEVICES (AL, IN, GA, B)
JP5353113B2 (en) * 2008-01-29 2013-11-27 豊田合成株式会社 Method for producing group III nitride compound semiconductor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005101566A (en) * 2003-08-19 2005-04-14 Nichia Chem Ind Ltd Semiconductor device, light emitting device, and method of manufacturing substrate
WO2008007522A1 (en) * 2006-06-19 2008-01-17 National University Corporation Chiba University Semiconductor element, optical switching element and quantum cascade laser element
JP2008252069A (en) * 2007-03-06 2008-10-16 Sanyo Electric Co Ltd Method for fabricating semiconductor laser element, and the semiconductor laser element

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102208497A (en) * 2011-04-22 2011-10-05 中山大学 Preparation method of semi-polarity or nonpolar GaN composite substrate on silicon substrate
KR101539073B1 (en) * 2013-11-28 2015-07-24 주식회사 루미스탈 METHOD FOR MANUFACTURING SEMI-POLAR GaN TEMPLATE
CN105679903A (en) * 2016-01-18 2016-06-15 厦门市三安光电科技有限公司 Semi-polarity LED epitaxial structure and preparation method therefor
CN106981548A (en) * 2017-04-01 2017-07-25 中蕊(武汉)光电科技有限公司 A kind of deep ultraviolet LED epitaxial structure and preparation method thereof
JP2020061510A (en) * 2018-10-12 2020-04-16 株式会社小糸製作所 Substrate for semiconductor growth, semiconductor device, semiconductor light emitting device, and method for manufacturing semiconductor device
WO2020075849A1 (en) * 2018-10-12 2020-04-16 株式会社小糸製作所 Substrate for semiconductor growth, semiconductor element, semiconductor light-emitting element, and method for producing semiconductor element
WO2020090814A1 (en) * 2018-11-02 2020-05-07 株式会社小糸製作所 Substrate for semiconductor growth, semiconductor element, semiconductor light emitting element and method for producing substrate for semiconductor growth
JP2020070221A (en) * 2018-11-02 2020-05-07 株式会社小糸製作所 Substrate for growing semiconductor, semiconductor device, semiconductor light-emitting device and manufacturing method of substrate for growing semiconductor
JP7350477B2 (en) 2018-11-02 2023-09-26 株式会社小糸製作所 Method for manufacturing semiconductor growth substrate, semiconductor element, semiconductor light emitting device, and semiconductor growth substrate

Also Published As

Publication number Publication date
KR20100088503A (en) 2010-08-09
KR101068865B1 (en) 2011-09-30

Similar Documents

Publication Publication Date Title
JP4903189B2 (en) Method of growing semipolar nitride single crystal thin film and method of manufacturing nitride semiconductor light emitting device using the same
US9105755B2 (en) Method of manufacturing a nitride semiconductor epitaxial substrate
JP4696285B2 (en) R-plane sapphire substrate, epitaxial substrate and semiconductor device using the same, and manufacturing method thereof
JP2001185493A (en) Method of manufacturing group III nitride compound semiconductor and group III nitride compound semiconductor device
JP2001181096A (en) Method of manufacturing group III nitride compound semiconductor and group III nitride compound semiconductor device
JP2005019872A (en) Nitride semiconductor manufacturing method, semiconductor wafer, and semiconductor device
JPWO2010023846A1 (en) Semiconductor substrate and manufacturing method thereof
JP2010510655A (en) Light emitting diode and laser diode using N-plane GaN, InN and AlN and their alloys
US8878211B2 (en) Heterogeneous substrate, nitride-based semiconductor device using same, and manufacturing method thereof
JP2001267692A (en) Nitride based semiconductor element and manufacturing method
JP2010177552A (en) Nitride semiconductor growth substrate having polar plane
JP5460751B2 (en) Semiconductor device
KR101028585B1 (en) Heterogeneous substrate, nitride based semiconductor device using same and manufacturing method thereof
JP4883931B2 (en) Manufacturing method of semiconductor laminated substrate
JP3934320B2 (en) GaN-based semiconductor device and manufacturing method thereof
JP4016062B2 (en) Nitride semiconductor structure, manufacturing method thereof, and light emitting device
JP2001345281A (en) Method of manufacturing nitride-based iii group compound semiconductor and nitride-based iii group compound semiconductor element
JP6001124B2 (en) Method for manufacturing nitride semiconductor epitaxial substrate and method for manufacturing nitride semiconductor device
JP4140595B2 (en) Gallium nitride compound semiconductor
JP5059205B2 (en) Wafer and crystal growth method
JP4158760B2 (en) GaN-based semiconductor film and method for manufacturing the same
JP6290321B2 (en) Method for manufacturing nitride semiconductor epitaxial substrate and method for manufacturing nitride semiconductor device
JP3987879B2 (en) Nitride semiconductor light emitting device and manufacturing method thereof
JP5080820B2 (en) Nitride semiconductor structure, manufacturing method thereof, and light emitting device
CN1972044A (en) Semiconductor device and method of fabricating the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100930

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20101021

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20101029

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20101101

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20101104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101124

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120127

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130903

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140304