[go: up one dir, main page]

JP2010176984A - Lighting system - Google Patents

Lighting system Download PDF

Info

Publication number
JP2010176984A
JP2010176984A JP2009017107A JP2009017107A JP2010176984A JP 2010176984 A JP2010176984 A JP 2010176984A JP 2009017107 A JP2009017107 A JP 2009017107A JP 2009017107 A JP2009017107 A JP 2009017107A JP 2010176984 A JP2010176984 A JP 2010176984A
Authority
JP
Japan
Prior art keywords
light
color temperature
illumination
illumination light
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009017107A
Other languages
Japanese (ja)
Other versions
JP5406542B2 (en
Inventor
Minoru Maehara
稔 前原
Kazuyoshi Kadotani
和佳 門谷
Kenichiro Tanaka
健一郎 田中
Ichiro Tanimura
一郎 谷村
Takuya Shinoda
卓哉 信田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Electric Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Electric Works Co Ltd filed Critical Panasonic Electric Works Co Ltd
Priority to JP2009017107A priority Critical patent/JP5406542B2/en
Priority to CN201010105463.6A priority patent/CN101839435B/en
Priority to US12/696,002 priority patent/US8330378B2/en
Publication of JP2010176984A publication Critical patent/JP2010176984A/en
Application granted granted Critical
Publication of JP5406542B2 publication Critical patent/JP5406542B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

【課題】照明光の光色及び照度を容易に調整できる照明装置を提供する。
【解決手段】操作入力受付手段(コントローラ1の操作部11,可変抵抗器,A/D変換器)で受け付ける操作入力に応じて、決定手段(コントローラ1の制御信号生成部,電源ユニット2の制御信号入力部20及び駆動信号変換部23)が、所定の色温度未満の範囲では操作入力の変化(操作部11の操作量)に対応して照明光の色温度並びに光量が連動して増減するように照明光源3の各発光素子3R,3G,3Bの光量を決定し、前記所定の色温度以上の範囲では光量を所定範囲内に収めつつ操作入力の変化に対応して照明光の色温度が増減するように照明光源3の各発光素子3R,3G,3Bの光量を決定する。故に、人が各色毎に各別に光量を調整していた従来例に比較して照明光の光色(色温度)及び照度(光量)を容易に調整することができる。
【選択図】 図1
An illumination device capable of easily adjusting the light color and illuminance of illumination light.
According to an operation input received by an operation input receiving means (the operation unit 11 of the controller 1, a variable resistor, an A / D converter), a determining means (control signal generation unit of the controller 1, control of the power supply unit 2) When the signal input unit 20 and the drive signal conversion unit 23) are below a predetermined color temperature, the color temperature and the amount of light of the illumination light increase or decrease in association with the change of the operation input (the operation amount of the operation unit 11). Thus, the light quantity of each light emitting element 3R, 3G, 3B of the illumination light source 3 is determined, and the color temperature of the illumination light corresponding to the change of the operation input while keeping the light quantity within the predetermined range in the range above the predetermined color temperature. The light quantity of each light emitting element 3R, 3G, 3B of the illumination light source 3 is determined so that increases or decreases. Therefore, the light color (color temperature) and illuminance (light quantity) of the illumination light can be easily adjusted as compared with the conventional example in which the person adjusts the light quantity separately for each color.
[Selection] Figure 1

Description

本発明は、照明光の光色を可変とした照明装置に関するものである。   The present invention relates to an illumination device in which the light color of illumination light is variable.

従来より、昼白色の蛍光ランプのような明るく青白い光(色温度の高い光)は人の気分をさわやかにするが、照度が低すぎると陰気で寒々しい感じになってしまい、一方、白熱ランプのような赤っぽい光(色温度の低い光)は、照度が低いとおだやかな雰囲気になり、照度が高すぎると暑苦しく、不快感を与える、という心理効果(クルーゾフ効果)が知られている(図7参照)。そして、かかる心理効果に着目し、照明光の光色(色温度)を可変とした照明装置が種々提供されている。   Traditionally, bright and pale light (light with high color temperature) like a daylight fluorescent lamp refreshes people's mood. It is known that the reddish light (light with low color temperature) has a mild effect when the illuminance is low, and is too hot and uncomfortable when the illuminance is too high (Krusov effect). (See FIG. 7). And paying attention to such a psychological effect, various illumination devices in which the light color (color temperature) of illumination light is variable are provided.

例えば特許文献1には、赤色発光ダイオード、緑色発光ダイオード、青色発光ダイオードを有する照明ユニットと、照明ユニットの各色の発光ダイオードを駆動し且つその光量(照度)を調整するコントロールユニットとを備え、コントロールユニットに各色毎に設けられている操作部を各々操作することで各色(赤,緑,青)の光量を各別に調整して照明光(混色光)の光色(色温度)を可変とした照明装置が記載されている。   For example, Patent Document 1 includes a lighting unit having a red light emitting diode, a green light emitting diode, and a blue light emitting diode, and a control unit that drives the light emitting diodes of each color of the lighting unit and adjusts the amount of light (illuminance). The light intensity (color temperature) of the illumination light (mixed color light) is made variable by adjusting the light quantity of each color (red, green, blue) separately by operating the operation part provided for each color in the unit. A lighting device is described.

特開2008−293946号公報JP 2008-293946 A

しかしながら、特許文献1に記載されている従来例では、使用者自らがコントロールユニットの3つの操作部を操作して赤色、緑色、青色の光量を各別に調整することで混色光の色温度を設定しなければならず、好みの光色(色温度)に設定することが容易ではなかった。しかも、図7に示すように同じ色温度であっても照度(光量)によって心理効果が異なるため、使用者が所望の心理効果を得ようとしても光色(色温度)と照度(光量)を適切に調整することは非常に困難である。   However, in the conventional example described in Patent Document 1, the user himself / herself operates the three operation units of the control unit to adjust the light amounts of red, green, and blue to set the color temperature of the mixed color light. Therefore, it is not easy to set a desired light color (color temperature). Moreover, as shown in FIG. 7, the psychological effect varies depending on the illuminance (light quantity) even at the same color temperature, so that the light color (color temperature) and the illuminance (light quantity) are changed even if the user tries to obtain the desired psychological effect. It is very difficult to adjust properly.

本発明は上記事情に鑑みて為されたものであり、その目的は、照明光の光色及び照度を容易に調整することができる照明装置を提供することにある。   This invention is made | formed in view of the said situation, The objective is to provide the illuminating device which can adjust the light color and illumination intensity of illumination light easily.

請求項1の発明は、上記目的を達成するために、互いに異なる色の光を放射する複数の発光素子を有する照明光源と、これら複数の発光素子を個別且つ任意の光量で発光させる発光素子駆動手段と、人による操作入力を受け付ける操作入力受付手段と、照明光源から照射される照明光の色温度並びに光量が操作入力受付手段で受け付ける操作入力に応じた色温度並びに光量となるように照明光源の各発光素子の光量を決定する決定手段とを備え、発光素子駆動手段は、それぞれの発光素子を決定手段が決定した光量で発光させ、決定手段は、所定の色温度未満の範囲では操作入力の変化に対応して照明光の色温度並びに光量が連動して増減するように照明光源の各発光素子の光量を決定し、前記所定の色温度以上の範囲では光量を所定範囲内に収めつつ操作入力の変化に対応して照明光の色温度が増減するように照明光源の各発光素子の光量を決定することを特徴とする。   In order to achieve the above object, the invention according to claim 1 is an illumination light source having a plurality of light emitting elements that emit light of different colors, and a light emitting element drive that causes each of the plurality of light emitting elements to emit light individually and in an arbitrary amount of light. Means, an operation input receiving means for receiving an operation input by a person, and an illumination light source so that the color temperature and the light amount of the illumination light emitted from the illumination light source become the color temperature and the light amount according to the operation input received by the operation input receiving means. Determining means for determining the light quantity of each light emitting element, and the light emitting element driving means causes each light emitting element to emit light with the light quantity determined by the determining means, and the determining means performs an operation input within a range below a predetermined color temperature. The light amount of each light emitting element of the illumination light source is determined so that the color temperature and the light amount of the illumination light increase or decrease in response to the change of the light amount. Wherein the color temperature of the corresponding to the illumination light to the change of the operation input to determine the quantity of the respective light emitting elements of the illumination light source to increase or decrease while videos.

請求項1の発明によれば、操作入力受付手段で受け付ける操作入力に応じて、決定手段が、所定の色温度未満の範囲では操作入力の変化に対応して照明光の色温度並びに光量が連動して増減するように照明光源の各発光素子の光量を決定し、前記所定の色温度以上の範囲では光量を所定範囲内に収めつつ操作入力の変化に対応して照明光の色温度が増減するように照明光源の各発光素子の光量を決定するので、人が各色毎に各別に光量を調整していた従来例に比較して照明光の光色及び照度を容易に調整することができる。   According to the invention of claim 1, in accordance with the operation input received by the operation input receiving means, the determining means is linked with the color temperature and the light amount of the illumination light corresponding to the change of the operation input in the range below the predetermined color temperature. The light intensity of each light emitting element of the illumination light source is determined so as to increase or decrease, and the color temperature of the illumination light increases or decreases in response to the change of the operation input while keeping the light intensity within the predetermined range in the range above the predetermined color temperature. Thus, since the light quantity of each light emitting element of the illumination light source is determined, the light color and illuminance of the illumination light can be easily adjusted as compared with the conventional example in which a person adjusts the light quantity separately for each color. .

請求項2の発明は、請求項1の発明において、決定手段は、照明光の色度が黒体軌跡にほぼ沿って変化するように照明光源の各発光素子の光量を決定することを特徴とする。   The invention of claim 2 is characterized in that, in the invention of claim 1, the determining means determines the light quantity of each light emitting element of the illumination light source so that the chromaticity of the illumination light changes substantially along the black body locus. To do.

請求項2の発明によれば、照明光の光色を色温度で指定することができる。   According to invention of Claim 2, the light color of illumination light can be designated with color temperature.

請求項3の発明は、請求項1又は2の発明において、決定手段は、前記所定の色温度未満の範囲では操作入力の変化量と正の相関関係を持って照明光の色温度並びに光量が連動して増減するように照明光源の各発光素子の光量を決定し、前記所定の色温度以上の範囲では操作入力の変化量と照明光の逆数色温度の差とが比例関係を保つように照明光の色温度が増減し且つ照明光の光量が所定範囲内に収まるように照明光源の各発光素子の光量を決定することを特徴とする。   According to a third aspect of the present invention, in the first or second aspect of the present invention, the determining means has a positive correlation with the amount of change in the operation input in a range below the predetermined color temperature, and the color temperature and light amount of the illumination light are The light quantity of each light emitting element of the illumination light source is determined so as to increase or decrease in conjunction, and the change amount of the operation input and the difference between the reciprocal color temperature of the illumination light keep a proportional relationship in the range above the predetermined color temperature. The light amount of each light emitting element of the illumination light source is determined so that the color temperature of the illumination light increases and decreases and the light amount of the illumination light is within a predetermined range.

請求項3の発明によれば、操作入力の変化量と実際に認識される色温度変化との間に違和感が生じにくくなる。   According to the third aspect of the present invention, a sense of incongruity is unlikely to occur between the change amount of the operation input and the actually recognized color temperature change.

本発明によれば、照明光の光色及び照度を容易に調整することができる。   According to the present invention, the light color and illuminance of illumination light can be easily adjusted.

本発明の実施形態1を示し、(a)は全体構成図、(b)は電源ユニットのブロック図、(c)はLED駆動部の回路構成図である。1 shows Embodiment 1 of the present invention, where (a) is an overall configuration diagram, (b) is a block diagram of a power supply unit, and (c) is a circuit configuration diagram of an LED drive unit. (a),(b)は同上における操作部の操作量と色温度の関係を説明する説明図である。(A), (b) is explanatory drawing explaining the relationship between the operation amount of the operation part in the same as the above, and color temperature. 同上の動作説明図である。It is operation | movement explanatory drawing same as the above. 同上における電源ユニットの別構成を示すブロック図である。It is a block diagram which shows another structure of the power supply unit in the same as the above. 本発明の実施形態2を示し、(a)は全体構成図、(b)は電源ユニットのブロック図である。Embodiment 2 of this invention is shown, (a) is a whole block diagram, (b) is a block diagram of a power supply unit. 同上における電源ユニットの別構成を示すブロック図である。It is a block diagram which shows another structure of the power supply unit in the same as the above. 照明光の色温度と照度に対する心理効果(クルーゾフ効果)を説明するための説明図である。It is explanatory drawing for demonstrating the psychological effect (Krusov effect) with respect to the color temperature and illumination intensity of illumination light.

(実施形態1)
本実施形態の照明装置は、図1(a)に示すように照明光源3と、コントローラ1と、電源ユニット2とで構成されている。照明光源3は、赤色系(R)、緑色系(G)、青色系(B)の3色の発光素子(発光ダイオード)3R,3G,3Bを有している。但し、3色の発光素子は発光ダイオード以外の発光素子、例えば、有機EL素子であっても構わない。ここで、各色の発光素子3R,3G,3Bの光色の色度座標がそれぞれ(xR,yR),(xG,yG),(xB,yB)であり、各発光素子3R,3G,3Bの光量がそれぞれYR,YG,YBであるとすれば、混色光である照明光の光色の色度座標(x0,y0)及び光量Y0は、下記の数1で表される。
(Embodiment 1)
The illuminating device of this embodiment is comprised by the illumination light source 3, the controller 1, and the power supply unit 2, as shown to Fig.1 (a). The illumination light source 3 includes light emitting elements (light emitting diodes) 3R, 3G, and 3B of three colors of red (R), green (G), and blue (B). However, the three color light emitting elements may be light emitting elements other than the light emitting diodes, for example, organic EL elements. Here, the chromaticity coordinates of the light colors of the light emitting elements 3R, 3G, and 3B of the respective colors are (x R , y R ), (x G , y G ), and (x B , y B ), respectively. If the light amounts of 3R, 3G, and 3B are Y R , Y G , and Y B , respectively, the chromaticity coordinates (x 0 , y 0 ) and the light amount Y 0 of the light color of the illumination light that is mixed color light are as follows: It is represented by the number 1.

Figure 2010176984
Figure 2010176984

ここにおいて、発光ダイオードからなる発光素子3R,3G,3Bについては光量YR,YG,YBを変えても光色(光の波長)が変化しないので、発光素子3R,3G,3Bの光量YR,YG,YBの比率を変化させることで混色として得られる照明光の光色を変えることができ、また、各発光素子3R,3G,3Bの光量YR,YG,YBの比率を保った状態で光量YR,YG,YBを変化させれば、同一の光色において照明光の光量を変えることができる。発光ダイオードからなる発光素子3R,3G,3Bの光量YR,YG,YBは給電量によって決まるから、後述するように電源ユニット2から各発光素子3R,3G,3Bに供給する給電量を増減することで照明光の光色並びに光量を調節することができる。ここで、照明光の色度が黒体軌跡にほぼ沿って変化するように照明光源の各発光素子3R,3G,3Bの光量YR,YG,YBを決定することにより、照明光の光色を色温度で指定することができる。 Here, for the light emitting elements 3R, 3G, and 3B made of light emitting diodes, the light color (wavelength of light) does not change even if the light amounts Y R , Y G , and Y B are changed, and therefore the light amounts of the light emitting elements 3R, 3G, and 3B. By changing the ratio of Y R , Y G , Y B , the light color of the illumination light obtained as a mixed color can be changed, and the light amounts Y R , Y G , Y B of the light emitting elements 3R, 3G, 3B can be changed. If the light amounts Y R , Y G , Y B are changed while maintaining the ratio, the amount of illumination light can be changed in the same light color. Since the light amounts Y R , Y G , Y B of the light emitting elements 3R, 3G, 3B made of light emitting diodes are determined by the power supply amount, the power supply amount supplied from the power supply unit 2 to the light emitting elements 3R, 3G, 3B as described later. By increasing / decreasing, the light color and amount of illumination light can be adjusted. Here, by determining the light amounts Y R , Y G , Y B of the light emitting elements 3R, 3G, 3B of the illumination light source so that the chromaticity of the illumination light changes substantially along the black body locus, Light color can be specified by color temperature.

電源ユニット2は、図1(b)に示すように、コントローラ1から制御信号が入力される制御信号入力部20と、コントローラ1を通じて給電される交流電圧を所望の直流電圧に変換する交流/直流変換部21と、緑色系の発光素子3Gを駆動する緑系LED駆動部22Gと、赤色系の発光素子3Rを駆動する赤系LED駆動部22Rと、青色系の発光素子3Bを駆動する青系LED駆動部22Bと、制御信号入力部20に入力される制御信号を、緑系LED駆動部22G、赤系LED駆動部22R、青系LED駆動部22Bに与えるべき駆動信号に変換する駆動信号変換部23とを備えている。   As shown in FIG. 1B, the power supply unit 2 includes a control signal input unit 20 that receives a control signal from the controller 1, and an AC / DC that converts an AC voltage fed through the controller 1 into a desired DC voltage. Conversion unit 21, green LED driving unit 22G for driving green light emitting element 3G, red LED driving unit 22R for driving red light emitting element 3R, and blue system for driving blue light emitting element 3B Drive signal conversion for converting the control signals input to the LED drive unit 22B and the control signal input unit 20 into drive signals to be supplied to the green LED drive unit 22G, the red LED drive unit 22R, and the blue LED drive unit 22B Part 23.

3つの駆動部22G,22R,22Bは全て共通の構成を有するものであって、図1(c)に示すように交流/直流変換部21の高電位側の出力端と発光素子3のアノードとの間に挿入された限流抵抗Rと、発光素子3のカソードにソースが接続されるとともにドレインが交流/直流変換部21の低電位側の出力端(グランド)に接続された電界効果トランジスタからなるスイッチング素子Q1と、駆動信号変換部23から出力される駆動信号を波形整形する波形整形回路とで構成される。この波形整形回路は従来周知のものであって、コレクタが交流/直流変換部21の高電位側の出力端に接続され且つエミッタがスイッチング素子Q1のゲートに接続されたPNP型のバイポーラトランジスタTr1並びにコレクタがスイッチング素子Q1のゲートに接続され且つエミッタがグランドに接続されたNPN型のバイポーラトランジスタTr2からなり、並列接続された2つのトランジスタTr1,Tr2のベースに入力される駆動信号を波形整形してスイッチング素子Q1のゲートに出力する。ここで、駆動信号変換部23ではオンデューティ比が可変である一定周期の矩形波信号からなる駆動信号を出力することにより、駆動部22G,22R,22Bのスイッチング素子Q1をPWM(パルス幅変調)制御して発光素子3G,3R,3Bへの給電量を調節している。   The three drive units 22G, 22R, and 22B all have a common configuration. As shown in FIG. 1C, the output terminal on the high potential side of the AC / DC conversion unit 21, the anode of the light emitting element 3, and A current limiting resistor R inserted between the source and the cathode of the light emitting element 3 and a field effect transistor having a drain connected to the output terminal (ground) on the low potential side of the AC / DC converter 21. And a waveform shaping circuit that shapes the drive signal output from the drive signal conversion unit 23. This waveform shaping circuit is well known in the art, and includes a PNP bipolar transistor Tr1 having a collector connected to the output terminal on the high potential side of the AC / DC converter 21 and an emitter connected to the gate of the switching element Q1. The NPN type bipolar transistor Tr2 has a collector connected to the gate of the switching element Q1 and an emitter connected to the ground. The drive signal input to the bases of the two transistors Tr1 and Tr2 connected in parallel is waveform-shaped. Output to the gate of the switching element Q1. Here, the drive signal conversion unit 23 outputs a drive signal composed of a rectangular wave signal having a constant cycle with a variable on-duty ratio, whereby the switching element Q1 of the drive units 22G, 22R, and 22B is PWM (pulse width modulation). The amount of power supplied to the light emitting elements 3G, 3R, 3B is adjusted by controlling.

コントローラ1は箱形の合成樹脂成形品からなるハウジング10を有し、ハウジング10の前面に円筒形状の操作部11と電源スイッチの操作釦12が配設されている(図1(a)参照)。電源スイッチ(図示せず)はタンブラスイッチや押釦スイッチからなり、交流電源ACから電源ユニット2への給電経路を開閉するものである。ハウジング10内には操作部11の操作によって抵抗値が変化する可変抵抗器(図示せず)、可変抵抗器の抵抗値をA/D変換するA/D変換器(図示せず)、A/D変換器でデジタル値に変換された抵抗値に基づいて制御信号を生成する制御信号生成部(図示せず)が収納されている。   The controller 1 has a housing 10 made of a box-shaped synthetic resin molded product, and a cylindrical operation section 11 and a power switch operation button 12 are disposed on the front surface of the housing 10 (see FIG. 1A). . The power switch (not shown) includes a tumbler switch and a push button switch, and opens and closes a power feeding path from the AC power supply AC to the power supply unit 2. Inside the housing 10 are a variable resistor (not shown) whose resistance value is changed by operating the operation unit 11, an A / D converter (not shown) for A / D converting the resistance value of the variable resistor, A / A control signal generation unit (not shown) that generates a control signal based on the resistance value converted into a digital value by the D converter is housed.

操作部11はハウジング10に対して約315度(7/4π)の範囲で回動自在に設けられており、前面に形成されているマーク11aが6時の位置にあるときに可変抵抗器の抵抗値が最小値となり、当該マーク11aが4時の位置と5時の位置の中間位置(4時半の位置)にあるときに可変抵抗器の抵抗値が最大値となる。そして、6時の位置と4時半の位置との間で操作部11が時計回り及び反時計回りに回動するときに可変抵抗器の抵抗値が直線的に変化し、当該抵抗値に基づいて操作部11の操作量(マーク11aの位置)を知ることができる。   The operation unit 11 is provided so as to be rotatable within a range of about 315 degrees (7 / 4π) with respect to the housing 10, and when the mark 11 a formed on the front surface is at the 6 o'clock position, The resistance value becomes the minimum value, and the resistance value of the variable resistor becomes the maximum value when the mark 11a is at an intermediate position between the 4 o'clock position and the 5 o'clock position (position at 4:30). Then, when the operation unit 11 rotates clockwise and counterclockwise between the 6 o'clock position and the 4:30 position, the resistance value of the variable resistor changes linearly, based on the resistance value. Thus, the operation amount of the operation unit 11 (the position of the mark 11a) can be known.

制御信号生成部は、可変抵抗器の抵抗値の最小値から最大値までの値と一対一に対応するオンデューティ比を有した制御信号(PWM信号)を生成して電源ユニット2に出力する。ここで、操作部11の操作量、すなわち、制御信号のオンデューティ比が照明光源3の照明光の光色(色温度)に対応しているが、照明光の色温度の変化量と人が知覚する光色の変化量とは一致しない。つまり、相対的に低い色温度(例えば、2800K)における色温度の変化量と相対的に高い色温度(例えば、4500K)における色温度の変化量とが等しい(例えば、100K)場合であっても、前者の色温度変化は容易に認識されるが、後者の色温度変化は認識され難い。よって、単純に操作部11の操作量と色温度の変化量に相関関係を持たせると、実際に認識される色温度変化との間に違和感が生じて使い勝手が悪くなってしまう。   The control signal generation unit generates a control signal (PWM signal) having an on-duty ratio that has a one-to-one correspondence with a value from the minimum value to the maximum value of the resistance value of the variable resistor, and outputs the control signal to the power supply unit 2. Here, the operation amount of the operation unit 11, that is, the on-duty ratio of the control signal corresponds to the light color (color temperature) of the illumination light of the illumination light source 3. It does not match the perceived change in light color. That is, even when the amount of change in color temperature at a relatively low color temperature (for example, 2800K) is equal to the amount of change in color temperature at a relatively high color temperature (for example, 4500K) (for example, 100K). The former color temperature change is easily recognized, but the latter color temperature change is difficult to recognize. Therefore, if the operation amount of the operation unit 11 and the change amount of the color temperature are simply correlated, a sense of incongruity occurs between the actually recognized change in the color temperature and the usability is deteriorated.

ここで、色温度の変化に対して、色温度の逆数を百万(106)倍した値である逆数色温度(単位はMK-1<毎メガケルビン>あるいはミレッド)の差分が等しければ、人には光色の変化がほぼ同じと感じられることが知られている。そこで本実施形態では、図2(b)に直線イで示すように、操作入力の変化量(操作部11の操作量の差分)と逆数色温度(制御信号のオンデューティ比)の差分とが比例関係を保って変化するように操作部11の操作量(角度〔deg〕)と逆数色温度との対応関係を設定している。具体的には、図2(a)に示すように操作部11の操作量が一定の差分(約36〔deg〕)で変化したときに、逆数色温度の差分がほぼ一定の値(約50±3)となるように各操作量(抵抗値)に対応する逆数色温度が設定してある。 Here, if the difference of the reciprocal color temperature (unit: MK −1 <per megakelvin> or mired) is equal to the change of the color temperature, the reciprocal of the color temperature is a million (10 6 ) times. It is known that humans feel that the change in light color is almost the same. Therefore, in this embodiment, as indicated by a straight line A in FIG. 2B, the difference between the change amount of the operation input (the difference in the operation amount of the operation unit 11) and the difference between the reciprocal color temperature (the on-duty ratio of the control signal) are obtained. The correspondence between the operation amount (angle [deg]) of the operation unit 11 and the reciprocal color temperature is set so as to change while maintaining a proportional relationship. Specifically, as shown in FIG. 2A, when the operation amount of the operation unit 11 is changed by a constant difference (about 36 [deg]), the difference of the reciprocal color temperature is a substantially constant value (about 50). The reciprocal color temperature corresponding to each operation amount (resistance value) is set to be ± 3).

電源ユニット2においては、コントローラ1の制御信号生成部から出力される制御信号が、制御信号入力部20によってオンデューティ比(逆数色温度)に対応した電圧レベルの直流電圧信号に変換され、さらに当該直流電圧信号が、駆動信号変換部23にて各色系のLED駆動部22G,22R,22Bに対する駆動信号に変換される。駆動信号変換部23はマイコンとメモリを有しており、直流電圧信号の信号レベル(逆数色温度)、当該逆数色温度から逆算される色温度、色温度に対応する照明光の光色の色度座標(x0,y0)、当該色度座標と対応する各発光素子3R,3G,3Bの光量YR,YG,YBの比率、並びに各発光素子3R,3G,3Bの光量YR,YG,YBの対応関係を表した変換テーブルがメモリに格納され、当該変換テーブルに基づいてマイコンにより直流電圧信号を駆動信号に変換する。 In the power supply unit 2, the control signal output from the control signal generation unit of the controller 1 is converted into a DC voltage signal having a voltage level corresponding to the on-duty ratio (reciprocal color temperature) by the control signal input unit 20. The DC voltage signal is converted by the drive signal conversion unit 23 into drive signals for the LED drive units 22G, 22R, and 22B of the respective colors. The drive signal conversion unit 23 includes a microcomputer and a memory, and the signal level (reciprocal color temperature) of the DC voltage signal, the color temperature calculated backward from the reciprocal color temperature, and the color of the illumination light corresponding to the color temperature. The degree coordinates (x 0 , y 0 ), the ratio of the light amounts Y R , Y G , Y B of the light emitting elements 3R, 3G, 3B corresponding to the chromaticity coordinates, and the light amount Y of the light emitting elements 3R, 3G, 3B A conversion table representing the correspondence relationship between R 1 , Y G , and Y B is stored in the memory, and a DC voltage signal is converted into a drive signal by a microcomputer based on the conversion table.

ところで、照明光の光色と光量を互いに独立して調節することが可能ではあるが、従来技術で説明したように、同じ色温度であっても照度(光量)によって心理効果が異なるため、使用者が所望の心理効果(クルーゾフ効果)を得ようとしても光色(色温度)と照度(光量)を適切に調整することは非常に困難である。一方、クルーゾフ効果を考慮すると、心理効果の面から快適な照明環境を実現するためには、光色の色温度が高くなるにつれて光量が増大するような特性とすることが望ましく、特に低い色温度の領域(白熱ランプの光色である約2800K以下の領域)では、白熱ランプを調光したときに得られる照度(光量)と光色(色温度)の特性を模擬することが好ましい。また、中程度及び高い色温度の領域においては、色温度の上昇とともに光量を増大させてもよいが、一般的な照明用途においては定格程度の光量が得られれば十分であり、それ以上に光量を増大することは省エネルギの観点から好ましくないので、所定の色温度(例えば、2800K)以上の領域では光量を一定とすることが望ましい。さらに、高い色温度の領域においては3色の発光素子3R,3G,3Bのうちで青色系の発光素子3Bの光量YBの比率が高くなるが、青色系の発光素子3Bの発光効率が他の発光素子3R,3Gに比べて低いため、照明光の光量Y0を一定に保ったままで光色(色温度)を上昇させることは難しい場合が有る。故に、所定の色温度(例えば、2800K)以上の領域では色温度の上昇に伴って光量を減少させることが好ましい。 By the way, although it is possible to adjust the light color and the light amount of the illumination light independently of each other, as described in the prior art, the psychological effect differs depending on the illuminance (light amount) even at the same color temperature. Even if a person tries to obtain a desired psychological effect (Krusov effect), it is very difficult to appropriately adjust the light color (color temperature) and the illuminance (light amount). On the other hand, considering the Krusov effect, in order to realize a comfortable lighting environment from the viewpoint of psychological effect, it is desirable to have a characteristic that the light quantity increases as the color temperature of the light color increases, especially the low color temperature In this region (region of about 2800 K or less which is the light color of the incandescent lamp), it is preferable to simulate the characteristics of illuminance (light amount) and light color (color temperature) obtained when the incandescent lamp is dimmed. In medium and high color temperature regions, the amount of light may be increased as the color temperature is increased. However, in general lighting applications, it is sufficient if a light amount of the rated level is obtained. Is not preferable from the viewpoint of energy saving. Therefore, it is desirable to make the light quantity constant in an area of a predetermined color temperature (for example, 2800 K) or more. Further, in the high color temperature region, the ratio of the light amount Y B of the blue light emitting element 3B among the three color light emitting elements 3R, 3G, 3B is high, but the light emission efficiency of the blue light emitting element 3B is other than that. Therefore, it may be difficult to increase the light color (color temperature) while keeping the amount of illumination light Y 0 constant. Therefore, it is preferable to reduce the amount of light as the color temperature increases in an area of a predetermined color temperature (for example, 2800 K) or higher.

以上の観点から、本実施形態では、図3に曲線ロで示すように所定の色温度(本実施形態では約2800K)未満の範囲では操作部11の操作量に対応して照明光の色温度並びに光量が連動して増減し、2800K以上の色温度の範囲では光量を所定範囲(定格の光量を100%としたときにZ%〜Y%の範囲。但し、Yは110%〜120%程度,Zは80%〜90%程度とする。)内に収めつつ操作部11の操作量に対応して照明光の色温度が増減するように各発光素子3R,3G,3Bの光量YR,YG,YBを決定している。尚、図3においては操作部11の操作量を45度(1/4π)ずつ区切ったときの各操作量と対応する特性曲線ロの値(位置)を矢印で示している。但し、図3に示した特性曲線ロは一例であって、所定の色温度(例えば2800K)未満の色温度の範囲では点線ハで囲まれた三角形の領域内で色温度−光量特性を設定すればよく、同じく所定の色温度以上の範囲では点線ニで囲まれた長方形の領域内で色温度−光量特性を設定すればよい。また、色温度の下限値及び上限値は、図3に示した値(約1500K及び10000K)に限定されるものではない。 From the above viewpoint, in the present embodiment, the color temperature of the illumination light corresponds to the operation amount of the operation unit 11 in a range less than a predetermined color temperature (about 2800 K in the present embodiment) as indicated by a curve B in FIG. In addition, the amount of light increases or decreases in a linked manner, and in the color temperature range of 2800K or higher, the amount of light is within a predetermined range (Z% to Y% when the rated light amount is 100%. However, Y is about 110% to 120%. , Z is about 80% to 90%.) The amount of light Y R of each light emitting element 3R, 3G, 3B is adjusted so that the color temperature of the illumination light increases or decreases in accordance with the operation amount of the operation unit 11 while being within the range. Y G and Y B are determined. In FIG. 3, the values (positions) of characteristic curves B corresponding to the respective operation amounts when the operation amount of the operation unit 11 is divided by 45 degrees (1 / 4π) are indicated by arrows. However, the characteristic curve B shown in FIG. 3 is an example, and the color temperature-light quantity characteristic is set within a triangular area surrounded by a dotted line C in a color temperature range below a predetermined color temperature (for example, 2800 K). Similarly, the color temperature-light quantity characteristic may be set within a rectangular area surrounded by a dotted line D in a range of a predetermined color temperature or higher. Further, the lower limit value and the upper limit value of the color temperature are not limited to the values shown in FIG. 3 (about 1500K and 10,000K).

而して、コントローラ1の操作部11が6時の位置から10時半の位置までの間で操作される場合、操作部11の操作量(マーク11aの位置)に応じて照明光の色温度が最小値(約1500K)から所定の色温度(2800K)の範囲で増減し且つ色温度が高いほど照明光の光量Y0が大きくなり、操作部11が10時半の位置から4時半の位置までの間で操作される場合、操作部11の操作量に応じて照明光の色温度が所定の色温度(2800K)から最大値(10000K)の範囲で増減し且つ色温度が高いほど照明光の光量Y0が小さくなるように、駆動信号変換部23で制御信号から駆動信号に変換される。 Thus, when the operation unit 11 of the controller 1 is operated from the 6 o'clock position to the 10:30 position, the color temperature of the illumination light according to the operation amount of the operation unit 11 (the position of the mark 11a). Increases / decreases in the range from the minimum value (about 1500 K) to a predetermined color temperature (2800 K), and the higher the color temperature, the larger the amount of illumination light Y 0 , and the operation unit 11 moves from the 10:30 position to 4:30. When the operation is performed until the position, the color temperature of the illumination light increases or decreases in a range from the predetermined color temperature (2800K) to the maximum value (10000K) according to the operation amount of the operation unit 11, and the higher the color temperature, the more illumination is performed. The drive signal conversion unit 23 converts the control signal into a drive signal so that the amount of light Y 0 becomes small.

上述のように本実施形態によれば、操作入力受付手段(コントローラ1の操作部11,可変抵抗器,A/D変換器)で受け付ける操作入力に応じて、決定手段(コントローラ1の制御信号生成部,電源ユニット2の制御信号入力部20及び駆動信号変換部23)が、所定の色温度未満の範囲では操作入力の変化(操作部11の操作量)に対応して照明光の色温度並びに光量が連動して増減するように照明光源3の各発光素子3R,3G,3Bの光量を決定し、前記所定の色温度以上の範囲では光量を所定範囲内に収めつつ操作入力の変化に対応して照明光の色温度が増減するように照明光源3の各発光素子3R,3G,3Bの光量を決定するので、人が各色毎に各別に光量を調整していた従来例に比較して照明光の光色(色温度)及び照度(光量)を容易に調整することができる。ここで、照明光の色温度が所定の色温度(2800K)以上の範囲においては、操作部11の操作量の差分と逆数色温度(制御信号のオンデューティ比)の差分との間に比例関係を保つように操作部11の操作量と色温度を対応付けているので、操作部11の操作量の差分と、実際に認識される色温度変化との間に違和感が生じないことから使い勝手が向上するという利点もある。   As described above, according to the present embodiment, the determination means (the control signal generation of the controller 1 is generated according to the operation input received by the operation input reception means (the operation unit 11 of the controller 1, the variable resistor, the A / D converter). The control signal input unit 20 and the drive signal conversion unit 23) of the power supply unit 2 in the range below the predetermined color temperature, the color temperature of the illumination light corresponding to the change in the operation input (the operation amount of the operation unit 11) The light quantity of each light emitting element 3R, 3G, 3B of the illumination light source 3 is determined so that the light quantity increases or decreases in association with the change of the operation input while keeping the light quantity within the predetermined range in the range above the predetermined color temperature. Then, since the light quantity of each light emitting element 3R, 3G, 3B of the illumination light source 3 is determined so that the color temperature of the illumination light is increased or decreased, compared with the conventional example in which a person adjusts the light quantity separately for each color. Illumination light color (color temperature) and illuminance ( The amount) can be easily adjusted. Here, in the range where the color temperature of the illumination light is equal to or higher than the predetermined color temperature (2800 K), there is a proportional relationship between the difference of the operation amount of the operation unit 11 and the difference of the reciprocal color temperature (control signal on-duty ratio). Since the operation amount of the operation unit 11 and the color temperature are associated with each other so as to maintain the same, there is no sense of incongruity between the difference in the operation amount of the operation unit 11 and the color temperature change that is actually recognized. There is also an advantage of improvement.

尚、制御信号のオンデューティ比を逆数色温度ではなく色温度に対応させる場合においては、図2(a)に曲線イ’で示すように操作部11の操作量に対して制御信号のオンデューティ比(色温度)が略指数関数的に変化するような対応関係によって、コントローラ1の制御信号生成部が制御信号を生成すればよい。   When the on-duty ratio of the control signal is made to correspond to the color temperature instead of the reciprocal color temperature, the on-duty of the control signal with respect to the operation amount of the operation unit 11 as shown by a curve i ′ in FIG. The control signal generation unit of the controller 1 may generate the control signal based on a correspondence relationship in which the ratio (color temperature) changes approximately exponentially.

また、図4は電源ユニット2の別の構成を示すブロック図である。この構成においては、制御信号入力部20から出力される直流電圧信号を各色系のLED駆動部22G,22R,22Bに対する駆動信号に変換する駆動信号変換部23の機能が各LED駆動部22G,22R,22Bに搭載され、駆動信号変換部23が省略されている。   FIG. 4 is a block diagram showing another configuration of the power supply unit 2. In this configuration, the function of the drive signal conversion unit 23 that converts the DC voltage signal output from the control signal input unit 20 into a drive signal for the LED drive units 22G, 22R, and 22B of each color system is the LED drive unit 22G, 22R. , 22B, and the drive signal converter 23 is omitted.

(実施形態2)
本実施形態の照明装置は、図5に示すように実施形態1におけるコントローラ1のハウジング10内に電源ユニット2を内蔵した点に特徴があり、基本的な構成は実施形態1と共通である。よって、実施形態1と共通の構成要素には同一の符号を付して説明を省略する。
(Embodiment 2)
The illumination device of the present embodiment is characterized in that the power supply unit 2 is built in the housing 10 of the controller 1 in the first embodiment as shown in FIG. 5, and the basic configuration is the same as that of the first embodiment. Therefore, the same code | symbol is attached | subjected to the same component as Embodiment 1, and description is abbreviate | omitted.

本実施形態においては、操作部11の操作によって抵抗値が変化する可変抵抗器(図示せず)、可変抵抗器の抵抗値をA/D変換するA/D変換器(図示せず)、A/D変換器でデジタル値に変換された抵抗値に基づいて逆数色温度(又は色温度)に対応した直流電圧信号を生成するコントローラ入力部24が制御信号入力部20の代わりにハウジング10内に収納されている。但し、コントローラ入力部24から出力される直流電圧信号は実施形態1における制御信号入力部20から出力される直流電圧信号と共通である。また図5(b)では実施形態1で図示を省略していた電源スイッチSWを図示している。   In the present embodiment, a variable resistor (not shown) whose resistance value is changed by operation of the operation unit 11, an A / D converter (not shown) for A / D converting the resistance value of the variable resistor, A A controller input unit 24 that generates a DC voltage signal corresponding to the reciprocal color temperature (or color temperature) based on the resistance value converted into a digital value by the / D converter is provided in the housing 10 instead of the control signal input unit 20. It is stored. However, the DC voltage signal output from the controller input unit 24 is common to the DC voltage signal output from the control signal input unit 20 in the first embodiment. FIG. 5B illustrates the power switch SW that is not illustrated in the first embodiment.

而して、実施形態1ではコントローラ1と電源ユニット2を別々に設置して給電用の電線と制御信号伝送用の電線で接続する必要があるが、本実施形態ではコントローラ1の設置のみで電線の配線が省略できるという利点がある。   Thus, in the first embodiment, it is necessary to install the controller 1 and the power supply unit 2 separately and connect them with a power supply wire and a control signal transmission wire. There is an advantage that the wiring can be omitted.

また、図6はコントローラ1の別の構成を示すブロック図である。この構成においては、コントローラ入力部24から出力される直流電圧信号を各色系のLED駆動部22G,22R,22Bに対する駆動信号に変換する駆動信号変換部23の機能が各LED駆動部22G,22R,22Bに搭載され、駆動信号変換部23が省略されている。   FIG. 6 is a block diagram showing another configuration of the controller 1. In this configuration, the function of the drive signal conversion unit 23 that converts the DC voltage signal output from the controller input unit 24 into a drive signal for the LED drive units 22G, 22R, and 22B of each color system is the LED drive unit 22G, 22R, The drive signal conversion unit 23 is omitted.

1 コントローラ
2 電源ユニット
3 照明光源
3R 赤色系の発光素子
3G 緑色系の発光素子
3B 青色系の発光素子
11 操作部(操作入力受付手段)
20 制御信号入力部(決定手段)
22G 緑系LED駆動部(発光素子駆動手段)
22R 赤系LED駆動部(発光素子駆動手段)
22B 青系LED駆動部(発光素子駆動手段)
23 駆動信号変換部(決定手段)
DESCRIPTION OF SYMBOLS 1 Controller 2 Power supply unit 3 Illumination light source 3R Red light emitting element 3G Green light emitting element 3B Blue light emitting element 11 Operation part (operation input reception means)
20 Control signal input unit (decision means)
22G Green LED driving unit (light emitting element driving means)
22R Red LED drive unit (light emitting element drive means)
22B Blue LED drive unit (light emitting element drive means)
23 Drive signal converter (determining means)

Claims (3)

互いに異なる色の光を放射する複数の発光素子を有する照明光源と、これら複数の発光素子を個別且つ任意の光量で発光させる発光素子駆動手段と、人による操作入力を受け付ける操作入力受付手段と、照明光源から照射される照明光の色温度並びに光量が操作入力受付手段で受け付ける操作入力に応じた色温度並びに光量となるように照明光源の各発光素子の光量を決定する決定手段とを備え、発光素子駆動手段は、それぞれの発光素子を決定手段が決定した光量で発光させ、決定手段は、所定の色温度未満の範囲では操作入力の変化に対応して照明光の色温度並びに光量が連動して増減するように照明光源の各発光素子の光量を決定し、前記所定の色温度以上の範囲では光量を所定範囲内に収めつつ操作入力の変化に対応して照明光の色温度が増減するように照明光源の各発光素子の光量を決定することを特徴とする照明装置。   An illumination light source having a plurality of light emitting elements that emit light of different colors, a light emitting element driving unit that emits the plurality of light emitting elements individually and at an arbitrary light amount, an operation input receiving unit that receives an operation input by a person, Determining means for determining the light quantity of each light emitting element of the illumination light source so that the color temperature and the light quantity of the illumination light emitted from the illumination light source become the color temperature and the light quantity according to the operation input received by the operation input receiving means; The light emitting element driving unit causes each light emitting element to emit light with the light amount determined by the determining unit, and the determining unit interlocks the color temperature and the light amount of the illumination light corresponding to the change of the operation input in a range below the predetermined color temperature. The light amount of each light emitting element of the illumination light source is determined so as to increase or decrease, and the color of the illumination light corresponding to the change of the operation input while keeping the light amount within the predetermined range in the range above the predetermined color temperature Degrees illumination device, wherein a determined light quantity of each light emitting element of the illumination light source to increase or decrease. 決定手段は、照明光の色度が黒体軌跡にほぼ沿って変化するように照明光源の各発光素子の光量を決定することを特徴とする請求項1記載の照明装置。   2. The illumination device according to claim 1, wherein the determining means determines the light amount of each light emitting element of the illumination light source so that the chromaticity of the illumination light changes substantially along the black body locus. 決定手段は、前記所定の色温度未満の範囲では操作入力の変化量と正の相関関係を持って照明光の色温度並びに光量が連動して増減するように照明光源の各発光素子の光量を決定し、前記所定の色温度以上の範囲では操作入力の変化量と照明光の逆数色温度の差とが比例関係を保つように照明光の色温度が増減し且つ照明光の光量が所定範囲内に収まるように照明光源の各発光素子の光量を決定することを特徴とする請求項1又は2記載の照明装置。   The determining means adjusts the light amount of each light emitting element of the illumination light source so that the color temperature and the light amount of the illumination light have a positive correlation with the change amount of the operation input in the range below the predetermined color temperature, and increase or decrease in conjunction with the change. The color temperature of the illumination light increases and decreases and the light amount of the illumination light is within a predetermined range so that the change amount of the operation input and the difference of the reciprocal color temperature of the illumination light maintain a proportional relationship in the range above the predetermined color temperature. The lighting device according to claim 1, wherein the light amount of each light emitting element of the illumination light source is determined so as to be within the light source.
JP2009017107A 2009-01-28 2009-01-28 Lighting device Active JP5406542B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2009017107A JP5406542B2 (en) 2009-01-28 2009-01-28 Lighting device
CN201010105463.6A CN101839435B (en) 2009-01-28 2010-01-28 Illumination device and controller thereof
US12/696,002 US8330378B2 (en) 2009-01-28 2010-01-28 Illumination device and method for controlling a color temperature of irradiated light

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009017107A JP5406542B2 (en) 2009-01-28 2009-01-28 Lighting device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013093988A Division JP5663055B2 (en) 2013-04-26 2013-04-26 Lighting device and lighting device

Publications (2)

Publication Number Publication Date
JP2010176984A true JP2010176984A (en) 2010-08-12
JP5406542B2 JP5406542B2 (en) 2014-02-05

Family

ID=42707728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009017107A Active JP5406542B2 (en) 2009-01-28 2009-01-28 Lighting device

Country Status (1)

Country Link
JP (1) JP5406542B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012178255A (en) * 2011-02-25 2012-09-13 Mitsubishi Electric Corp Light source lighting device, lighting apparatus, and dimming system
EP2538755A2 (en) 2011-06-22 2012-12-26 Panasonic Corporation Lighting device
JP2013026024A (en) * 2011-07-21 2013-02-04 Mitsubishi Electric Corp Light source lighting system and illumination system
WO2014136409A1 (en) * 2013-03-04 2014-09-12 パナソニック株式会社 Illumination control device
JP2014212082A (en) * 2013-04-19 2014-11-13 パナソニック株式会社 Lighting apparatus
JP2014212083A (en) * 2013-04-19 2014-11-13 パナソニック株式会社 Lighting apparatus
US9241386B2 (en) 2013-09-25 2016-01-19 Panasonic Intellectual Property Management Co., Ltd. Lighting apparatus and illumination system using the same
CN115050310A (en) * 2022-05-25 2022-09-13 中仪英斯泰克进出口有限公司 4KLED display screen color temperature control system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0878167A (en) * 1994-08-31 1996-03-22 Matsushita Electric Works Ltd Lighting system
JP2001185371A (en) * 1999-12-28 2001-07-06 Avix Inc Dimmable LED lighting equipment
JP2008210855A (en) * 2007-02-23 2008-09-11 Matsushita Electric Works Ltd LED control system
JP2008305759A (en) * 2007-06-11 2008-12-18 Rohm Co Ltd LED lighting device and driving method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0878167A (en) * 1994-08-31 1996-03-22 Matsushita Electric Works Ltd Lighting system
JP2001185371A (en) * 1999-12-28 2001-07-06 Avix Inc Dimmable LED lighting equipment
JP2008210855A (en) * 2007-02-23 2008-09-11 Matsushita Electric Works Ltd LED control system
JP2008305759A (en) * 2007-06-11 2008-12-18 Rohm Co Ltd LED lighting device and driving method thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012178255A (en) * 2011-02-25 2012-09-13 Mitsubishi Electric Corp Light source lighting device, lighting apparatus, and dimming system
EP2538755A2 (en) 2011-06-22 2012-12-26 Panasonic Corporation Lighting device
US8853966B2 (en) 2011-06-22 2014-10-07 Panasonic Corporation Lighting device and illumination apparatus including same
EP2538755A3 (en) * 2011-06-22 2016-12-21 Panasonic Intellectual Property Management Co., Ltd. Lighting device
JP2013026024A (en) * 2011-07-21 2013-02-04 Mitsubishi Electric Corp Light source lighting system and illumination system
WO2014136409A1 (en) * 2013-03-04 2014-09-12 パナソニック株式会社 Illumination control device
JP2014212082A (en) * 2013-04-19 2014-11-13 パナソニック株式会社 Lighting apparatus
JP2014212083A (en) * 2013-04-19 2014-11-13 パナソニック株式会社 Lighting apparatus
US9241386B2 (en) 2013-09-25 2016-01-19 Panasonic Intellectual Property Management Co., Ltd. Lighting apparatus and illumination system using the same
CN115050310A (en) * 2022-05-25 2022-09-13 中仪英斯泰克进出口有限公司 4KLED display screen color temperature control system

Also Published As

Publication number Publication date
JP5406542B2 (en) 2014-02-05

Similar Documents

Publication Publication Date Title
CN101839435B (en) Illumination device and controller thereof
JP2010176986A (en) Color temperature variable lighting system and controller used in same
EP2672786B1 (en) Illumination controller and illumination system including same
JP5406542B2 (en) Lighting device
US10674576B2 (en) Illumination system including tunable light engine
US11388796B2 (en) Systems and methods for controlling color temperature and brightness of LED lighting using two wires
US8988005B2 (en) Illumination control through selective activation and de-activation of lighting elements
US20130328503A1 (en) Illumination controller and illumination system including same
US20190110343A1 (en) A method of controlling a lighting arrangement, a lighting control circuit and a lighting system
US10721801B1 (en) Systems and methods for controlling color temperature and brightness of LED lighting using two wires
JP2010176985A (en) Lighting system
JP2011171006A (en) Lighting system
US11259377B2 (en) Color temperature and intensity configurable lighting fixture using de-saturated color LEDs
JP5454189B2 (en) Power supply circuit and lighting device
JP2011150878A (en) Led lighting device and illumination device
JP5663055B2 (en) Lighting device and lighting device
JP6064227B2 (en) lighting equipment
US20150319816A1 (en) Single-wire dimming method
JP5807208B2 (en) Color temperature variable lighting device
JP5971603B2 (en) Color temperature variable lighting device
CN114651529A (en) Light emitting diode LED based lighting device arranged to emit specific emitted light following a Planckian locus in color space
US20250031288A1 (en) Load Control Device for a Light-Emitting Diode Light Source
CN112135387A (en) A system for adjusting the color temperature and brightness of an LED light source
JP6501181B2 (en) Lighting apparatus and lighting apparatus using the same
JP2014212082A (en) Lighting apparatus

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100715

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111122

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131101

R150 Certificate of patent or registration of utility model

Ref document number: 5406542

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150