[go: up one dir, main page]

JP2010165667A - Additive for electrolyte - Google Patents

Additive for electrolyte Download PDF

Info

Publication number
JP2010165667A
JP2010165667A JP2009271342A JP2009271342A JP2010165667A JP 2010165667 A JP2010165667 A JP 2010165667A JP 2009271342 A JP2009271342 A JP 2009271342A JP 2009271342 A JP2009271342 A JP 2009271342A JP 2010165667 A JP2010165667 A JP 2010165667A
Authority
JP
Japan
Prior art keywords
group
general formula
additive
hydrogen atom
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009271342A
Other languages
Japanese (ja)
Inventor
Bunpei Yoshida
文平 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Chemical Industries Ltd
Original Assignee
Sanyo Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Chemical Industries Ltd filed Critical Sanyo Chemical Industries Ltd
Priority to JP2009271342A priority Critical patent/JP2010165667A/en
Publication of JP2010165667A publication Critical patent/JP2010165667A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an additive for electrolyte forming a negative electrode protection film hardly decomposed even under high-temperature and overcharge conditions to improve the charge and discharge cycle characteristic. <P>SOLUTION: The additive for electrolyte contains a modified polysiloxane containing nitrogen atoms constituting onium salt and the modified polysiloxane (A) prepared by bonding the nitrogen atom with an organic group (a) having a polymerizable unsaturated bond, and preferably, further contains an electrolyte dissociation accelerator (B), a polycarbonate compound (C) having a polymerizable unsaturated bond and a compound (D) having a vinyl ether group or propenyl ether group. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、電解液用添加剤に関する。更に詳しくは、負極保護膜を形成する電解液用添加剤及びそれを含有してなる電解液に関する。   The present invention relates to an additive for electrolytic solutions. More specifically, the present invention relates to an electrolytic solution additive for forming a negative electrode protective film and an electrolytic solution containing the same.

近年、携帯電話やパーソナルコンピューターといった電子製品の電源装置として、繰り返し充放電が可能な二次電池の需要が増加している。その中でも、高電圧化、小型化、軽量化が可能であるという点から、リチウム二次電池の開発が盛んである。従来よりリチウム二次電池の電池特性を向上させる目的で、電解液に、種々の添加剤を混合することが試みられている。例えば、特許文献1及び2においては、電解液として使用されている炭酸エステルが、負極で分解されて充放電サイクル特性が低下することを抑制するために、ビニレンカーボネート(以下、VCと略記する。)やビニルエチレンカーボネート(以下、VECと略記する。)といった二重結合を有するカーボネートを電解液に添加し、VCやVEC等を負極上で電解重合させて負極保護膜を形成することが提案されている。   In recent years, there is an increasing demand for secondary batteries that can be repeatedly charged and discharged as power supply devices for electronic products such as mobile phones and personal computers. Among them, lithium secondary batteries are actively developed because they can be increased in voltage, reduced in size, and reduced in weight. Conventionally, for the purpose of improving the battery characteristics of a lithium secondary battery, attempts have been made to mix various additives into the electrolytic solution. For example, in Patent Documents 1 and 2, vinylene carbonate (hereinafter abbreviated as VC) is used in order to prevent the carbonic acid ester used as the electrolyte from being decomposed at the negative electrode and deteriorating the charge / discharge cycle characteristics. ) And vinyl ethylene carbonate (hereinafter abbreviated as VEC) are added to the electrolytic solution, and VC, VEC, etc. are electropolymerized on the negative electrode to form a negative electrode protective film. ing.

しかしながら、二重結合を有するカーボネートから生成された負極保護膜では耐熱性及び耐電圧性が十分ではなく、高温条件下あるいは過充電条件下で熱的又は電気的に分解されリチウム二次電池熱暴走による発火の原因となっていた。また、特許文献3においては、リチウム二次電池の耐電圧性を高めることを目的として、亜リン酸エステルを非水溶媒として使用することが提案されている。しかしながら、亜リン酸エステルを非水溶媒として使用しても、耐電圧性が十分でないという問題点を有する。   However, the negative electrode protective film produced from carbonates having double bonds is not sufficient in heat resistance and voltage resistance, and is thermally or electrically decomposed under high temperature conditions or overcharge conditions. Caused fire. In Patent Document 3, it is proposed to use a phosphite as a nonaqueous solvent for the purpose of enhancing the voltage resistance of the lithium secondary battery. However, even if phosphite is used as a non-aqueous solvent, there is a problem that the voltage resistance is not sufficient.

特開2003−151621号公報JP 2003-151621 A 特開2003−031259号公報JP 2003-031259 A 特開平9−167635号公報JP 9-167635 A

本発明は、高温下及び過充電条件下でも分解され難い負極保護膜を形成し、充放電サイクル特性を向上させる電解液用添加剤を提供することを目的とする。   An object of the present invention is to provide an additive for an electrolytic solution that forms a negative electrode protective film that is not easily decomposed even under high temperature and overcharge conditions, and improves charge / discharge cycle characteristics.

本発明者らは、上記の目的を達成するべく検討を行った結果、本発明に到達した。すなわち、本発明は、オニウム塩を構成する窒素原子を有する変性ポリシロキサンであって、前記窒素原子が重合性不飽和結合を有する有機基(a)と結合してなる変性ポリシロキサン(A)を含有してなる電解液用添加剤、及び前記電解液用添加剤を含有してなる電解液である。   The inventors of the present invention have reached the present invention as a result of studies to achieve the above object. That is, the present invention provides a modified polysiloxane having a nitrogen atom constituting an onium salt, wherein the nitrogen atom is bonded to an organic group (a) having a polymerizable unsaturated bond. And an electrolyte solution containing the electrolyte solution additive and the electrolyte solution additive.

本発明の電解液用添加剤を電解液に添加すると、高温下及び過充電条件下において、充放電サイクル特性の低下を抑制するという効果を有する。   When the additive for electrolyte solution of the present invention is added to the electrolyte solution, it has an effect of suppressing deterioration of charge / discharge cycle characteristics under high temperature and overcharge conditions.

以下、本発明を更に詳しく説明する。本発明におけるオニウム塩とは、オニウム塩のカチオン部分に窒素原子を1個以上(好ましいのは1個又は2個)有するオニウム塩のことである。前記オニウム塩は、少なくとも1個の窒素原子が重合性不飽和結合を有する有機基(a)と結合している。オニウム塩が前記重合性不飽和結合を有することによって、二次電池の負極表面に保護膜としての高分子を形成しやすくなり、かつ、密着性が良好な保護膜を形成するため、充放電サイクル特性が低下することを抑制するという効果を有する。また、本発明において、重合性不飽和結合は、重合可能なエチレン性不飽和結合を意味する。   Hereinafter, the present invention will be described in more detail. The onium salt in the present invention is an onium salt having one or more (preferably one or two) nitrogen atoms in the cation portion of the onium salt. In the onium salt, at least one nitrogen atom is bonded to an organic group (a) having a polymerizable unsaturated bond. Since the onium salt has the polymerizable unsaturated bond, it becomes easy to form a polymer as a protective film on the negative electrode surface of the secondary battery, and a protective film with good adhesion is formed. This has the effect of suppressing the deterioration of the characteristics. In the present invention, the polymerizable unsaturated bond means a polymerizable ethylenically unsaturated bond.

オニウム塩としては、アミン塩、アミジニウム塩及びアンモニウム塩等が挙げられる。アミン塩としては、1〜3級アミンにプロトンが付加したものの塩が挙げられる。アミジニウム塩としては、イミダゾリニウム塩、イミダゾリウム塩、ピリミジニウム塩及びテトラヒドロピリミジニウム塩等が挙げられる。アンモニウム塩としては、アンモニウムイオン(NH4+)の塩及び第4級アンモニウム塩等が挙げられる。オニウム塩のうち、充放電サイクル特性の観点から好ましいのは、アミジニウム塩及びアンモニウム塩であり、更に好ましいのはイミダゾリウム塩及び第4級アンモニウム塩であり、特に好ましいのはイミダゾリウム塩である。 Examples of onium salts include amine salts, amidinium salts, and ammonium salts. Examples of the amine salt include salts obtained by adding protons to primary to tertiary amines. Examples of amidinium salts include imidazolinium salts, imidazolium salts, pyrimidinium salts, and tetrahydropyrimidinium salts. As the ammonium salt, salts and quaternary ammonium salts such as ammonium ion (NH4 +) and the like. Of the onium salts, amidinium salts and ammonium salts are preferable from the viewpoint of charge / discharge cycle characteristics, imidazolium salts and quaternary ammonium salts are more preferable, and imidazolium salts are particularly preferable.

本発明における変性ポリシロキサン(A)としては、一般式(1)又は一般式(2)で表される化合物が挙げられる。これらのうち、電池出力の観点から好ましいのは一般式(2)で表される変性ポリシロキサンである。   As modified polysiloxane (A) in this invention, the compound represented by General formula (1) or General formula (2) is mentioned. Among these, the modified polysiloxane represented by the general formula (2) is preferable from the viewpoint of battery output.

Figure 2010165667
式中、R1、R2、R3、R4及びR5は、それぞれ独立して、アルキル基、ハロゲン化アルキル基、アリール基、アラルキル基、アルコキシ基及びアリールオキシ基からなる群から選ばれる少なくとも一種であり、Q1はオニウム塩を構成する窒素原子及び重合性不飽和結合を有する基、aは0〜200の数、bは4〜200の数であり、c及びdはそれぞれ独立して0又は1である。また、一般式(1)における[Si(R2)(R3)O]a、[Si(Q1)(R4)O]bの付加形式は、ブロック状でもランダム状でもよい。
Figure 2010165667
In the formula, R1, R2, R3, R4 and R5 are each independently at least one selected from the group consisting of an alkyl group, a halogenated alkyl group, an aryl group, an aralkyl group, an alkoxy group and an aryloxy group, Q1 is a group having a nitrogen atom constituting a onium salt and a polymerizable unsaturated bond, a is a number from 0 to 200, b is a number from 4 to 200, and c and d are each independently 0 or 1 . The addition form of [Si (R 2 ) (R 3 ) O] a and [Si (Q 1 ) (R 4 ) O] b in the general formula (1) may be block or random.

一般式(1)におけるR1,R2,R3,R4及びR5は、電池出力の観点からアルキル基であることが好ましい。アルキル基としてはメチル基、エチル基、プロピル基、ブチル基、ペンチル基及びヘキシル基等が挙げられるが、電池出力の観点から好ましいのはメチル基である。aは、電池出力の観点から好ましくは0〜20である。bは、充放電サイクル特性の観点から好ましくは4〜80である。c及びdは、充放電サイクル特性の観点から好ましくは1である。   R1, R2, R3, R4 and R5 in the general formula (1) are preferably alkyl groups from the viewpoint of battery output. Examples of the alkyl group include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, and a hexyl group. A methyl group is preferable from the viewpoint of battery output. a is preferably 0 to 20 from the viewpoint of battery output. b is preferably from 4 to 80 from the viewpoint of charge / discharge cycle characteristics. c and d are preferably 1 from the viewpoint of charge / discharge cycle characteristics.

Figure 2010165667
式中、R6、R7及びR8は、それぞれ独立して、アルキル基、ハロゲン化アルキル基、アリール基、アラルキル基、アルコキシ基及びアリールオキシ基からなる群より選ばれる少なくとも一種であり、Q2はオニウム塩を構成する窒素原子及び重合性不飽和結合を有する基、eは0〜100の数、fは1〜100の数であって、かつe+fは7〜200である。
また、一般式(2)における[Si(R6)(R7)O]e、[Si(Q2)(R8)O]fの付加形式は、ブロック状でもランダム状でもよい。
Figure 2010165667
In the formula, R6, R7 and R8 are each independently at least one selected from the group consisting of an alkyl group, a halogenated alkyl group, an aryl group, an aralkyl group, an alkoxy group and an aryloxy group, and Q2 is an onium salt. And a group having a polymerizable unsaturated bond, e is a number from 0 to 100, f is a number from 1 to 100, and e + f is 7 to 200.
In addition, the addition form of [Si (R 6 ) (R 7 ) O] e and [Si (Q 2 ) (R 8 ) O] f in the general formula (2) may be block or random.

一般式(2)におけるR6、R7及びR8は、電池出力の観点から好ましいのはアルキル基である。アルキル基としてはメチル基、エチル基、プロピル基、ブチル基、ペンチル基及びヘキシル基等が挙げられるが、電池出力の観点から好ましいのはメチル基である。e及びfは、リチウムイオン安定性及び電解液への溶解性の観点から、好ましくはeとfそれぞれが5〜20、かつe+fが7〜40であり、更に好ましくは、e及びfそれぞれが5〜10、かつe+fが7〜20である。   R6, R7 and R8 in the general formula (2) are preferably alkyl groups from the viewpoint of battery output. Examples of the alkyl group include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, and a hexyl group. A methyl group is preferable from the viewpoint of battery output. From the viewpoint of lithium ion stability and solubility in the electrolytic solution, e and f are preferably 5 to 20 for e and f, and 7 to 40 for e + f, more preferably 5 for each of e and f. -10 and e + f is 7-20.

一般式(1)におけるQ1及び一般式(2)におけるQ2としては、一般式(3)で表される基が挙げられる。   Examples of Q1 in the general formula (1) and Q2 in the general formula (2) include a group represented by the general formula (3).

Figure 2010165667
式中、R9は水素原子、メチル基又はエチル基、A1は重合性不飽和結合を有する有機基(a)、X−はアニオンを表す。
Figure 2010165667
In the formula, R9 represents a hydrogen atom, a methyl group or an ethyl group, A1 represents an organic group (a) having a polymerizable unsaturated bond, and X- represents an anion.

一般式(3)におけるR9としては、水素原子、メチル基及びエチル基が挙げられ、耐熱性及び耐アルカリ性の観点から好ましいのはメチル基及びエチル基であり、更に好ましいのはメチル基である。   Examples of R9 in the general formula (3) include a hydrogen atom, a methyl group, and an ethyl group. From the viewpoint of heat resistance and alkali resistance, a methyl group and an ethyl group are preferable, and a methyl group is more preferable.

一般式(3)におけるA1は重合性不飽和結合を有する有機基(a)であり、有機基(a)は、重合可能なエチレン性不飽和結合を有する有機基である。有機基(a)としては、一般式(5)で表される基、一般式(6)で表される基、(メタ)アクリロイルオキシアルキル基及び(メタ)アクリロイルアルキル基等が挙げられる。これらのうち、充放電サイクル特性の観点から好ましいのは、一般式(5)で表される基、一般式(6)で表される基及び(メタ)アクリロイルオキシアルキル基である。   A1 in the general formula (3) is an organic group (a) having a polymerizable unsaturated bond, and the organic group (a) is an organic group having a polymerizable ethylenically unsaturated bond. Examples of the organic group (a) include a group represented by the general formula (5), a group represented by the general formula (6), a (meth) acryloyloxyalkyl group, and a (meth) acryloylalkyl group. Among these, the group represented by the general formula (5), the group represented by the general formula (6), and the (meth) acryloyloxyalkyl group are preferable from the viewpoint of charge / discharge cycle characteristics.

Figure 2010165667
式中、R12は炭素数1〜3のアルキレン基、Q3、Q4及びQ5は、それぞれ独立して水素原子、炭素数が1〜4のアルキル基、フェニル基、ハロゲン原子、フルオロアルキル基、シアノ基、カルボキシル基、アルコキシ基又はアルコキシカルボニル基である。
Figure 2010165667
In the formula, R12 is an alkylene group having 1 to 3 carbon atoms, Q3, Q4 and Q5 are each independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, a phenyl group, a halogen atom, a fluoroalkyl group, a cyano group. A carboxyl group, an alkoxy group or an alkoxycarbonyl group.

炭素数1〜3のアルキレン基としては、メチレン基、エチレン基、1,2−プロピレン基及び1,3−プロピレン基が挙げられる。これらのうち、電解液との相溶性の観点から好ましいのは、メチレン基及びエチレン基である。
炭素数が1〜4のアルキル基としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、t−ブチル基が挙げられる。
ハロゲン原子としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられる。
フルオロアルキル基としては、メチル基又はエチル基上の水素原子の1〜5個をフッ素原子に置換したものが挙げられ、例えば、フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、フルオロエチル基、ジフルオロエチル基、トリフルオロエチル基、テトラフルオロエチル基及びペンタフルオロエチル基が挙げられる。
アルコキシ基としては、炭素数1〜3のアルコキシ基が挙げられ、例えば、メトキシ基、エトキシ基、n−プロポキシ基及びイソプロポキシ基が挙げられる。
アルコキシカルボニル基としては、アルコキシ基の炭素数が1〜3のものが挙げられ、例えば、メトキシカルボニル基、エトキシカルボニル基、n−プロポキシカルボニル基及びイソプロポキシカルボニル基等が挙げられる。
Examples of the alkylene group having 1 to 3 carbon atoms include a methylene group, an ethylene group, a 1,2-propylene group, and a 1,3-propylene group. Among these, a methylene group and an ethylene group are preferable from the viewpoint of compatibility with the electrolytic solution.
Examples of the alkyl group having 1 to 4 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, and t-butyl group.
Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
Examples of the fluoroalkyl group include those in which 1 to 5 hydrogen atoms on a methyl group or an ethyl group are substituted with fluorine atoms. For example, a fluoromethyl group, a difluoromethyl group, a trifluoromethyl group, a fluoroethyl group, Examples thereof include a difluoroethyl group, a trifluoroethyl group, a tetrafluoroethyl group, and a pentafluoroethyl group.
As an alkoxy group, a C1-C3 alkoxy group is mentioned, For example, a methoxy group, an ethoxy group, n-propoxy group, and an isopropoxy group are mentioned.
Examples of the alkoxycarbonyl group include those having 1 to 3 carbon atoms in the alkoxy group, such as a methoxycarbonyl group, an ethoxycarbonyl group, an n-propoxycarbonyl group, and an isopropoxycarbonyl group.

Q3、Q4及びQ5の好ましい組み合わせとしては、以下の(1)〜(6)が挙げられる。
(1)Q3=水素原子、Q4=水素原子、Q5=フェニル基
(2)Q3=水素原子、Q4=水素原子、Q5=アルコキシカルボニル基
(3)Q3=フェニル基、Q4=水素原子、Q5=フェニル基
(4)Q3=フェニル基、Q4=水素原子、Q5=アルコキシカルボニル基
(5)Q3=アルコキシカルボニル基、Q4=水素原子、Q5=フェニル基
(6)Q3=アルコキシカルボニル基、Q4=水素原子、Q5=アルコキシカルボニル基
これらの組み合わせのうち、更に好ましいのは(2)の組み合わせである。
Preferred combinations of Q3, Q4 and Q5 include the following (1) to (6).
(1) Q3 = hydrogen atom, Q4 = hydrogen atom, Q5 = phenyl group (2) Q3 = hydrogen atom, Q4 = hydrogen atom, Q5 = alkoxycarbonyl group (3) Q3 = phenyl group, Q4 = hydrogen atom, Q5 = Phenyl group (4) Q3 = phenyl group, Q4 = hydrogen atom, Q5 = alkoxycarbonyl group (5) Q3 = alkoxycarbonyl group, Q4 = hydrogen atom, Q5 = phenyl group (6) Q3 = alkoxycarbonyl group, Q4 = hydrogen Atom, Q5 = alkoxycarbonyl group Among these combinations, the combination of (2) is more preferable.

Figure 2010165667
式中、R13は炭素数1〜3のアルキレン基であり、Q6は水素原子又はハロゲン原子であり、Q7、Q8及びQ9は、それぞれ独立して水素原子、炭素数が1〜4のアルキル基、フェニル基、ハロゲン原子、フルオロアルキル基、シアノ基、カルボキシル基、アルコキシ基又はアルコキシカルボニル基である。これらの基の具体例としては、前記R13、Q3、Q4及びQ5で例示した基と同じ基が挙げられる。Q6のうち、充放電サイクル特性及び重合性不飽和結合を有する有機基(a)の安定性の観点から好ましいのは、水素原子、フッ素原子及び塩素原子であり、更に好ましいのは水素原子である。
Q7のうち、充放電サイクル特性の観点から好ましいのは水素原子である。Q8及びQ9のうち、充放電サイクル特性の観点から好ましいのは水素原子及びメチル基であり、更に好ましいのは水素原子である。
Figure 2010165667
In the formula, R13 is an alkylene group having 1 to 3 carbon atoms, Q6 is a hydrogen atom or a halogen atom, Q7, Q8 and Q9 are each independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, A phenyl group, a halogen atom, a fluoroalkyl group, a cyano group, a carboxyl group, an alkoxy group or an alkoxycarbonyl group. Specific examples of these groups include the same groups as those exemplified for R13, Q3, Q4 and Q5. Of Q6, a hydrogen atom, a fluorine atom and a chlorine atom are preferred from the viewpoint of charge / discharge cycle characteristics and the stability of the organic group (a) having a polymerizable unsaturated bond, and a hydrogen atom is more preferred. .
Of Q7, a hydrogen atom is preferable from the viewpoint of charge / discharge cycle characteristics. Of Q8 and Q9, a hydrogen atom and a methyl group are preferable from the viewpoint of charge / discharge cycle characteristics, and a hydrogen atom is more preferable.

Q6、Q7、Q8及びQ9の好ましい組み合わせとしては、以下の(1)〜(12)が挙げられる。
(1)Q6=水素原子、Q7=水素原子、Q8=水素原子、Q9=水素原子
(2)Q6=フッ素原子、Q7=水素原子、Q8=水素原子、Q9=水素原子
(3)Q6=塩素原子、Q7=水素原子、Q8=水素原子、Q9=水素原子
(4)Q6=水素原子、Q7=水素原子、Q8=メチル基、Q9=水素原子
(5)Q6=フッ素原子、Q7=水素原子、Q8=メチル基、Q9=水素原子
(6)Q6=塩素原子、Q7=水素原子、Q8=メチル基、Q9=水素原子
(7)Q6=水素原子、Q7=水素原子、Q8=水素原子、Q9=メチル基
(8)Q6=フッ素原子、Q7=水素原子、Q8=水素原子、Q9=メチル基
(9)Q6=塩素原子、Q7=水素原子、Q8=水素原子、Q9=メチル基
(10)Q6=水素原子、Q7=水素原子、Q8=メチル基、Q9=メチル基
(11)Q6=フッ素原子、Q7=水素原子、Q8=メチル基、Q9=メチル基
(12)Q6=塩素原子、Q7=水素原子、Q8=メチル基、Q9=メチル基
これらの組み合わせのうち、更に好ましいのは(1)の組み合わせである。
Preferred combinations of Q6, Q7, Q8 and Q9 include the following (1) to (12).
(1) Q6 = hydrogen atom, Q7 = hydrogen atom, Q8 = hydrogen atom, Q9 = hydrogen atom (2) Q6 = fluorine atom, Q7 = hydrogen atom, Q8 = hydrogen atom, Q9 = hydrogen atom (3) Q6 = chlorine Atom, Q7 = hydrogen atom, Q8 = hydrogen atom, Q9 = hydrogen atom (4) Q6 = hydrogen atom, Q7 = hydrogen atom, Q8 = methyl group, Q9 = hydrogen atom (5) Q6 = fluorine atom, Q7 = hydrogen atom Q8 = methyl group, Q9 = hydrogen atom (6) Q6 = chlorine atom, Q7 = hydrogen atom, Q8 = methyl group, Q9 = hydrogen atom (7) Q6 = hydrogen atom, Q7 = hydrogen atom, Q8 = hydrogen atom, Q9 = methyl group (8) Q6 = fluorine atom, Q7 = hydrogen atom, Q8 = hydrogen atom, Q9 = methyl group (9) Q6 = chlorine atom, Q7 = hydrogen atom, Q8 = hydrogen atom, Q9 = methyl group (10 Q6 = Hydrogen atom, Q7 = Hydrogen atom, Q8 = Me Q9 = methyl group (11) Q6 = fluorine atom, Q7 = hydrogen atom, Q8 = methyl group, Q9 = methyl group (12) Q6 = chlorine atom, Q7 = hydrogen atom, Q8 = methyl group, Q9 = methyl Group Among these combinations, the combination of (1) is more preferable.

本発明における重合性不飽和結合を有する有機基(a)のうちの(メタ)アクリロイルオキシアルキル基としては、アクリロイルオキシエチル基、アクリロイルオキシプロピル基及びメタクリロイルオキシメチル基等が挙げられる。   Examples of the (meth) acryloyloxyalkyl group in the organic group (a) having a polymerizable unsaturated bond in the present invention include an acryloyloxyethyl group, an acryloyloxypropyl group, and a methacryloyloxymethyl group.

本発明における重合性不飽和結合を有する有機基(a)のうちの(メタ)アクリロイルアルキル基としては、アクリロイルエチル基及びメタクリロイルエチル基等が挙げられる。   Examples of the (meth) acryloylalkyl group in the organic group (a) having a polymerizable unsaturated bond in the present invention include an acryloylethyl group and a methacryloylethyl group.

一般式(3)におけるX−としては、Cl−、Br−、I−、PF6−、BF4−、SbF6−、AsF6−、ClO4−、N(CF3SO2)2−、N(C2F5SO2)2−及びC(CF3SO2)3−等が挙げられる。これらのうち、電池出力の観点から好ましいのは、PF6−、BF4−、SbF6−、AsF6−及びClO4−であり、更に好ましいのはPF6−である。   X- in the general formula (3) includes Cl-, Br-, I-, PF6-, BF4-, SbF6-, AsF6-, ClO4-, N (CF3SO2) 2-, N (C2F5SO2) 2- and C. (CF3SO2) 3- and the like. Of these, PF6-, BF4-, SbF6-, AsF6- and ClO4- are preferable from the viewpoint of battery output, and PF6- is more preferable.

一般式(1)におけるQ1及び一般式(2)におけるQ2としては、一般式(4)で表される基が挙げられる。

Figure 2010165667
式中、R10は炭素数2〜4のアルキレン基、R11は炭素数1〜3のアルキル基、A2は重合性不飽和結合を有する有機基(a)、mは1〜5の数、gは1〜3の整数、Y−はアニオンを表す。 Examples of Q1 in the general formula (1) and Q2 in the general formula (2) include a group represented by the general formula (4).
Figure 2010165667
In the formula, R10 is an alkylene group having 2 to 4 carbon atoms, R11 is an alkyl group having 1 to 3 carbon atoms, A2 is an organic group (a) having a polymerizable unsaturated bond, m is a number of 1 to 5, and g is An integer of 1 to 3, Y- represents an anion.

一般式(4)におけるR10としては、電池出力の観点から好ましいのはエチレン基である。R11としては、電池出力及び充放電サイクル特性の観点から好ましいのはメチル基である。mは、充放電サイクル特性の観点から好ましくは1〜3であり、更に好ましくは1〜2である。gは、電池出力及び充放電サイクル特性の観点から好ましくは1又は2である。   R10 in the general formula (4) is preferably an ethylene group from the viewpoint of battery output. R11 is preferably a methyl group from the viewpoint of battery output and charge / discharge cycle characteristics. From the viewpoint of charge / discharge cycle characteristics, m is preferably 1 to 3, and more preferably 1 to 2. g is preferably 1 or 2 from the viewpoint of battery output and charge / discharge cycle characteristics.

一般式(4)におけるA2としては、前記一般式(3)におけるA1と同様のものが挙げられる。Y−としては、前記一般式(3)におけるX−と同様のものが挙げられる。   As A2 in General formula (4), the thing similar to A1 in the said General formula (3) is mentioned. Examples of Y- include the same as X- in the general formula (3).

一般式(1)で表される変性ポリシロキサンの具体例としては、[N−(2−ブテン酸メチル)イミダゾリウムヘキサフルオロホスファート]変性ポリシロキサン[一般式(1)において、R1、R2、R3、R4及びR5=メチル基、a及びb=5、c及びd=0、Q1が一般式(3)で表される基であって、R9=水素原子、X−がPF6−、A1が一般式(5)で表される基であって、R12がメチレン基、Q3及びQ4が水素原子、Q5がメトキシカルボニル基である化合物]、[N−(3−アクリロイルオキシプロピル)イミダゾリウムヘキサフルオロホスファート]変性ポリシロキサン[一般式(1)において、R1、R2、R3、R4及びR5=メチル基、a及びb=5、c及びd=0、Q1が一般式(3)で表される基であって、R9=水素原子、X−がPF6−、A1がアクリロイルオキシプロピル基である化合物]、[N−(4−ビニルベンジル)イミダゾリウムヘキサフルオロフォスファート]変性ポリシロキサン[一般式(1)において、R1、R2、R3、R4及びR5=メチル基、a及びb=5、c及びd=0、Q1が一般式(3)で表される基であって、R9=水素原子、X−がPF6−、A1が一般式(6)で表される基であって、R18=メチレン基、Q6、Q7、Q8及びQ9=水素原子である化合物]、[N−(3−アクリロイルオキシプロピル)イミダゾリウムテトラフルオロボラート]変性ポリシロキサン[一般式(1)において、R1、R2=メチル基、R3、R4及びR5=エチル基、a及びb=5、c及びd=0、Q1が一般式(3)で表される基であって、R9=メチル基、X−がBF4−、A1がアクリロイルオキシプロピル基である化合物]及び(4−ビニルベンジル)イミダゾリウムテトラフルオロボラート変性ポリシロキサン[一般式(1)において、R1、R2、R3、R4及びR5=メチル基、a及びb=5、c及びd=0、Q1が一般式(3)で表される基であって、R9=メチル基、Y−がBF4−、A1が一般式(6)で表される基であって、R18=メチレン基、Q6、Q7、Q8及びQ9=水素原子である化合物]、[N−(2−ブテン酸メチル)イミダゾリウムヘキサフルオロホスファート]変性ポリシロキサン[一般式(1)において、R1、R2、R3、R4及びR5=メチル基、a及びb=5、c及びd=0、Q1が一般式(4)で表される基であって、R10=エチレン基、R11=メチル基、g=1、m=2、Y−がPF6−、A2が一般式(5)で表される基であって、R12がメチレン基、Q3及びQ4が水素原子、Q5がメトキシカルボニル基である化合物]、[N,N,N−ジ(3,6−ジオキサヘプチル)(3−アクリロイルオキシプロピル)アンモニウムヘキサフルオロホスファート]変性ポリシロキサン[一般式(1)において、R1、R2、R3、R4及びR5=メチル基、a及びb=5、c及びd=0、Q1が一般式(4)で表される基であって、R10=エチレン基、R11=メチル基、g=1、m=2、Y−がPF6−、A2がアクリロイルオキシプロピル基である化合物]、[N,N,N−ジ(3,6−ジオキサヘプチル)(4−ビニルベンジル)アンモニウムヘキサフルオロフォスファート]変性ポリシロキサン[一般式(1)において、R1、R2、R3、R4及びR5=メチル基、a及びb=5、c及びd=0、Q1が一般式(4)で表される基であって、R10=エチレン基、R11=メチル基、g=1、m=2、Y−がPF6−、A2が一般式(6)で表される基であって、R18=メチレン基、Q6、Q7、Q8及びQ9=水素原子である化合物]、N’−[N,N,N−ジ(3,6−ジオキサヘプチル)(3−アクリロイルオキシプロピル)アンモニウムテトラフルオロボラート]変性ポリシロキサン[一般式(1)において、R1、R2=メチル基、R3、R4及びR5=エチル基、a及びb=5、c及びd=0、Q1が一般式(4)で表される基であって、R9=メチル基、Y−がBF4−、A1がアクリロイルオキシプロピル基である化合物]及び[N,N,N−ジ(3,6−ジオキサヘプチル)(4−ビニルベンジル)アンモニウムテトラフルオロボラート]変性ポリシロキサン[一般式(1)において、R1、R2、R3、R4及びR5=メチル基、a及びb=5、c及びd=0、Q1が一般式(4)で表される基であって、R10=エチレン基、R11=メチル基、g=1、m=2、Y−がBF4−、A2が一般式(6)で表される基であって、R13=メチレン基、Q6、Q7、Q8及びQ9=水素原子である化合物]等が挙げられる。   Specific examples of the modified polysiloxane represented by the general formula (1) include [N- (2-butenoic acid methyl) imidazolium hexafluorophosphate] modified polysiloxane [in the general formula (1), R1, R2, R3, R4 and R5 = methyl group, a and b = 5, c and d = 0, Q1 is a group represented by the general formula (3), R9 = hydrogen atom, X- is PF6-, and A1 is A compound represented by the general formula (5), wherein R12 is a methylene group, Q3 and Q4 are hydrogen atoms, and Q5 is a methoxycarbonyl group], [N- (3-acryloyloxypropyl) imidazolium hexafluoro Phosphate] modified polysiloxane [in general formula (1), R1, R2, R3, R4 and R5 = methyl group, a and b = 5, c and d = 0, Q1 is represented by general formula (3) Group R9 = a hydrogen atom, a compound in which X- is PF6- and A1 is an acryloyloxypropyl group], [N- (4-vinylbenzyl) imidazolium hexafluorophosphate] -modified polysiloxane [in the general formula (1) , R1, R2, R3, R4 and R5 = methyl group, a and b = 5, c and d = 0, Q1 is a group represented by the general formula (3), R9 = hydrogen atom, X— PF6-, A1 is a group represented by the general formula (6), and R18 = methylene group, Q6, Q7, Q8 and Q9 = a hydrogen atom], [N- (3-acryloyloxypropyl) imidazo [Rium tetrafluoroborate] modified polysiloxane [in the general formula (1), R1, R2 = methyl group, R3, R4 and R5 = ethyl group, a and b = 5, c and d = 0, Q1 is a general formula 3), wherein R9 = methyl group, X- is BF4-, and A1 is acryloyloxypropyl group] and (4-vinylbenzyl) imidazolium tetrafluoroborate-modified polysiloxane [general In the formula (1), R1, R2, R3, R4 and R5 = methyl group, a and b = 5, c and d = 0, Q1 is a group represented by the general formula (3), and R9 = methyl A group represented by formula (6), wherein R18 = methylene group, Q6, Q7, Q8 and Q9 = hydrogen atom], [N- (2- Methyl butenoate) imidazolium hexafluorophosphate] modified polysiloxane [in general formula (1), R1, R2, R3, R4 and R5 = methyl group, a and b = 5, c and d = 0, Q1 is general Expressed by equation (4) R10 = ethylene group, R11 = methyl group, g = 1, m = 2, Y- is PF6-, A2 is a group represented by the general formula (5), and R12 is methylene. Group, Q3 and Q4 are hydrogen atoms, Q5 is a methoxycarbonyl group], [N, N, N-di (3,6-dioxaheptyl) (3-acryloyloxypropyl) ammonium hexafluorophosphate] modification Polysiloxane [In the general formula (1), R1, R2, R3, R4 and R5 = methyl group, a and b = 5, c and d = 0, Q1 is a group represented by the general formula (4) , R10 = ethylene group, R11 = methyl group, g = 1, m = 2, Y- is PF6-, and A2 is an acryloyloxypropyl group], [N, N, N-di (3,6-di) Oxaheptyl) (4-vinylbenze) ) Ammonium hexafluorophosphate] modified polysiloxane [in the general formula (1), R1, R2, R3, R4 and R5 = methyl group, a and b = 5, c and d = 0, Q1 is the general formula (4) R10 = ethylene group, R11 = methyl group, g = 1, m = 2, Y- is PF6-, A2 is a group represented by the general formula (6), and R18 = Methylene group, Q6, Q7, Q8 and Q9 = compound in which hydrogen atom], N ′-[N, N, N-di (3,6-dioxaheptyl) (3-acryloyloxypropyl) ammonium tetrafluorobo Lat] modified polysiloxane [in general formula (1), R1, R2 = methyl group, R3, R4 and R5 = ethyl group, a and b = 5, c and d = 0, Q1 is represented by general formula (4) Wherein R9 = Compound wherein til group, Y- is BF4-, and A1 is acryloyloxypropyl group] and [N, N, N-di (3,6-dioxaheptyl) (4-vinylbenzyl) ammonium tetrafluoroborate] modified Polysiloxane [In the general formula (1), R1, R2, R3, R4 and R5 = methyl group, a and b = 5, c and d = 0, Q1 is a group represented by the general formula (4) R10 = ethylene group, R11 = methyl group, g = 1, m = 2, Y- is BF4-, A2 is a group represented by the general formula (6), and R13 = methylene group, Q6, Q7, Q8 and Q9 = compounds having a hydrogen atom] and the like.

一般式(2)で表される変性ポリシロキサンの具体例としては、[N−(2−ブテン酸メチル)イミダゾリウムヘキサフルオロホスファート]変性ポリシロキサン[一般式(2)において、R6、R7及びR8=メチル基、e=5、f=5、Q2が一般式(3)で表される基であって、R9=水素原子、X−がPF6−、A1が一般式(5)で表される基であって、R12がメチレン基、Q3及びQ4が水素原子、Q5がメトキシカルボニル基である化合物]、[N−(3−アクリロイルオキシプロピル)イミダゾリウムヘキサフルオロホスファート]変性ポリシロキサン[一般式(2)において、R6、R7及びR8=メチル基、e=5、f=5、Q2が一般式(3)で表される基であって、R9=水素原子、X−がPF6−、A1がアクリロイルオキシプロピル基である化合物]、[N−(4−ビニルベンジル)イミダゾリウムヘキサフルオロフォスファート]変性ポリシロキサン[一般式(2)において、R6、R7及びR8=メチル基、e=5、f=5、Q2が一般式(3)で表される基であって、R9=水素原子、X−がPF6−、A1が一般式(6)で表される基であって、R13=メチレン基、Q6、Q7、Q8及びQ9=水素原子である化合物]、[N,N,N−ジ(3,6−ジオキサヘプチル)(2−ブテン酸メチル)アンモニウムヘキサフルオロホスファート]変性ポリシロキサン[一般式(2)において、R6、R7及びR8=メチル基、e=5、f=5、Q2が一般式(4)で表される基であって、R10=エチレン基、R11=メチル基、g=1、m=2、Y−がPF6−、A2が一般式(5)で表される基であって、R12がメチレン基、Q3及びQ4が水素原子、Q5がメトキシカルボニル基である化合物]、[N,N,N−ジ(3,6−ジオキサヘプチル)(3−アクリロイルオキシプロピル)アンモニウムヘキサフルオロホスファート]変性ポリシロキサン[一般式(2)において、R6、R7及びR8=メチル基、e=5、f=5、Q2が一般式(4)で表される基であって、R10=エチレン基、R11=メチル基、g=1、m=2、Y−がPF6−、A2がアクリロイルオキシプロピル基である化合物]、[N,N,N−ジ(3,6−ジオキサヘプチル)(4−ビニルベンジル)アンモニウムヘキサフルオロボラート]変性ポリシロキサン[一般式(2)において、R6、R7及びR8=メチル基、e=2、f=4、Q2が一般式(4)で表される基であって、R10=エチレン基、R11=メチル基、g=1、m=2、Y−がBF4−、A2が一般式(6)で表される基であって、R13=メチレン基、Q6、Q7、Q8及びQ9=水素原子である化合物]、[N,N,N−(3,6−ジオキサヘプチル)ジ(3−アクリロイルオキシプロピル)アンモニウムヘキサフルオロボラート]変性ポリシロキサン[一般式(2)において、R6、R7=メチル基、R8=エチル基、e=5、f=5、Q2が一般式(4)で表される基であって、R10=エチレン基、R11=メチル基、g=2、n=2、Y−がBF4−、A2がアクリロイルオキシプロピル基である化合物]、[N,N,N−ジ(3,6−ジオキサヘプチル)(4−ビニルベンジル)アンモニウムヘキサフルオロフォスファート]変性ポリシロキサン[一般式(2)において、R6、R7及びR8=メチル基、e=5、f=5、Q2が一般式(4)で表される基であって、R10=エチレン基、R11=メチル基、g=2、n=2,Y−がPF6−、A2が一般式(6)で表される基であって、R13=メチレン基、Q6、Q7、Q8及びQ9=水素原子である化合物]等が挙げられる。   Specific examples of the modified polysiloxane represented by the general formula (2) include [N- (methyl 2-butenoate) imidazolium hexafluorophosphate] modified polysiloxane [in the general formula (2), R6, R7 and R8 = methyl group, e = 5, f = 5, Q2 is a group represented by the general formula (3), R9 = hydrogen atom, X- is PF6-, and A1 is represented by the general formula (5). A compound in which R12 is a methylene group, Q3 and Q4 are hydrogen atoms, and Q5 is a methoxycarbonyl group], [N- (3-acryloyloxypropyl) imidazolium hexafluorophosphate] -modified polysiloxane [general In the formula (2), R6, R7 and R8 = methyl group, e = 5, f = 5, Q2 is a group represented by the general formula (3), R9 = hydrogen atom, X- is PF6-, A1 is Compound that is a loyloxypropyl group], [N- (4-vinylbenzyl) imidazolium hexafluorophosphate] modified polysiloxane [in the general formula (2), R6, R7 and R8 = methyl group, e = 5, f = 5, Q2 is a group represented by the general formula (3), R9 = hydrogen atom, X- is PF6-, A1 is a group represented by the general formula (6), and R13 = methylene group , Q6, Q7, Q8 and Q9 = compounds wherein hydrogen atom], [N, N, N-di (3,6-dioxaheptyl) (methyl 2-butenoate) ammonium hexafluorophosphate] modified polysiloxane [ In general formula (2), R6, R7 and R8 = methyl group, e = 5, f = 5, Q2 is a group represented by general formula (4), R10 = ethylene group, R11 = methyl group, g = 1, m = , Y- is a group represented by PF6-, A2 is a group represented by the general formula (5), R12 is a methylene group, Q3 and Q4 are hydrogen atoms, and Q5 is a methoxycarbonyl group], [N, N, N-di (3,6-dioxaheptyl) (3-acryloyloxypropyl) ammonium hexafluorophosphate] modified polysiloxane [in general formula (2), R6, R7 and R8 = methyl group, e = 5, f = 5, Q2 is a group represented by the general formula (4), R10 = ethylene group, R11 = methyl group, g = 1, m = 2, Y- is PF6-, and A2 is acryloyloxypropyl group. A certain compound], [N, N, N-di (3,6-dioxaheptyl) (4-vinylbenzyl) ammonium hexafluoroborate] modified polysiloxane [in the general formula (2), R6, R7 and R8 = methyl group, e = 2, f = 4, Q2 is a group represented by the general formula (4), and R10 = ethylene group, R11 = methyl group, g = 1, m = 2, Y— Is a group represented by formula (6), wherein R13 = methylene group, Q6, Q7, Q8 and Q9 = hydrogen atoms], [N, N, N- (3, 6-dioxaheptyl) di (3-acryloyloxypropyl) ammonium hexafluoroborate] modified polysiloxane [in general formula (2), R6, R7 = methyl group, R8 = ethyl group, e = 5, f = 5 , Q2 is a group represented by the general formula (4), R10 = ethylene group, R11 = methyl group, g = 2, n = 2, Y- is BF4-, and A2 is an acryloyloxypropyl group ], [N, N, N-di (3,6-dioxaheptyl (4-Vinylbenzyl) ammonium hexafluorophosphate] modified polysiloxane [in general formula (2), R6, R7 and R8 = methyl group, e = 5, f = 5, Q2 is represented by general formula (4) R10 = ethylene group, R11 = methyl group, g = 2, n = 2, Y— is PF6-, A2 is a group represented by the general formula (6), and R13 = methylene group , Q6, Q7, Q8 and Q9 = compounds in which a hydrogen atom is present] and the like.

本発明における変性ポリシロキサンの製造方法については特に制限はなく、通常の方法で製造することができる。例えば、アルキルハライド変性シラン及び加水分解性シランとの混合物を加水分解重縮合することによってアルキルハライド変性ポリシロキサンを合成し、更に重合性不飽和結合を有するイミダゾール誘導体又はアミン誘導体を反応させてオニウム塩及び重合性不飽和結合を有する変性ポリシロキサンを合成した後、必要に応じてオニウム塩の対イオンであるハロゲンイオンをアニオン交換反応する方法が挙げられる。   There is no restriction | limiting in particular about the manufacturing method of the modified polysiloxane in this invention, It can manufacture by a normal method. For example, an alkyl halide-modified polysiloxane is synthesized by hydrolytic polycondensation of a mixture of an alkyl halide-modified silane and a hydrolyzable silane, and further reacted with an imidazole derivative or an amine derivative having a polymerizable unsaturated bond to produce an onium salt. In addition, after synthesizing a modified polysiloxane having a polymerizable unsaturated bond, an anion exchange reaction may be performed with a halogen ion which is a counter ion of an onium salt, if necessary.

前記アルキルハライド変性シランとしては、クロロメチルジメトキシメチルシラン、(2−ブロモエチル)ジメトキシメチルシラン、(3−ブロモプロピル)ジメトキシメチルシラン、(4−ブロモブチル)ジメトキシメチルシラン、ジ(クロロメチル)ジメトキシシラン、ジ(2−ブロモエチル)ジメトキシシラン、ジ(3−ブロモプロピル)ジメトキシシラン、ジ(4−ブロモブチル)ジメトキシシラン、クロロメチルジメチルメトキシシラン、(2-ブロモエチル)ジメチルメトキシシラン、(3−ブロモプロピル)ジメチルメトキシシラン及び(4−ブロモブチル)ジメチルメトキシシラン等が挙げられる。   Examples of the alkyl halide-modified silane include chloromethyldimethoxymethylsilane, (2-bromoethyl) dimethoxymethylsilane, (3-bromopropyl) dimethoxymethylsilane, (4-bromobutyl) dimethoxymethylsilane, di (chloromethyl) dimethoxysilane, Di (2-bromoethyl) dimethoxysilane, di (3-bromopropyl) dimethoxysilane, di (4-bromobutyl) dimethoxysilane, chloromethyldimethylmethoxysilane, (2-bromoethyl) dimethylmethoxysilane, (3-bromopropyl) dimethyl Examples include methoxysilane and (4-bromobutyl) dimethylmethoxysilane.

前記加水分解性シランとしては、ジメトキシジメチルシラン、ジメトキシエチルメチルシラン、ジメトキシジエチルシラン、メトキシエチルジメチルシラン、メトキシジエチルメチルシラン、メトキシトリメチルシラン及びメトキシトリエチルシラン等が挙げられる。   Examples of the hydrolyzable silane include dimethoxydimethylsilane, dimethoxyethylmethylsilane, dimethoxydiethylsilane, methoxyethyldimethylsilane, methoxydiethylmethylsilane, methoxytrimethylsilane, and methoxytriethylsilane.

加水分解重縮合は、公知の加水分解の方法で行うことができるが、通常前記加水分解性基を有する変性シラン1モルに対して、水の使用量は前記変性シラン1分子当りの加水分解性基のモル数に応じて0.3〜3モルであり、好ましいのは0.4〜2.4モルである。また、変性シラン及び水の相溶化剤として、アルコール等の有機溶媒を使用してもよく、有機溶媒の使用量は、前記変性シラン1モルに対し0.2〜100モルを使用することができる。加水分解触媒としては、硫酸、メタンスルホン酸、塩酸、リン酸、ギ酸、酢酸及びトリフルオロ酢酸等の酸性触媒、水酸化ナトリウム、水酸化カリウム及び水酸化マグネシウム等のアルカリ性触媒が挙げられる。触媒の使用量としては、通常、反応溶液の全重量に基づいて0.1〜10重量%である。反応温度は−50〜40℃であり、好ましくは−20〜20℃である。反応時間は、通常1〜10時間である。   Hydrolysis polycondensation can be carried out by a known hydrolysis method, but the amount of water used is usually hydrolyzable per molecule of the modified silane with respect to 1 mol of the modified silane having the hydrolyzable group. Depending on the number of moles of the group, it is 0.3 to 3 moles, preferably 0.4 to 2.4 moles. Moreover, you may use organic solvents, such as alcohol, as a compatibilizing agent of modified silane and water, and the usage-amount of an organic solvent can use 0.2-100 mol with respect to 1 mol of said modified silane. . Examples of the hydrolysis catalyst include acidic catalysts such as sulfuric acid, methanesulfonic acid, hydrochloric acid, phosphoric acid, formic acid, acetic acid and trifluoroacetic acid, and alkaline catalysts such as sodium hydroxide, potassium hydroxide and magnesium hydroxide. The amount of the catalyst used is usually 0.1 to 10% by weight based on the total weight of the reaction solution. The reaction temperature is −50 to 40 ° C., preferably −20 to 20 ° C. The reaction time is usually 1 to 10 hours.

前記重合性不飽和結合を有するイミダゾール誘導体又はアミン誘導体の製造方法については特に制限はなく、通常の方法で製造することができる。例えば、有機溶媒中で、無触媒又は触媒の存在下、イミダゾール誘導体又はアミンと、重合性不飽和結合を有する有機基(a)を有するハロゲン化アルキルを反応させる方法が挙げられる。有機溶媒としては、例えば、ニトリル系有機溶媒(アセトニトリル、プロピオノニトリル及びベンゾニトリル等)、ケトン系有機溶媒(アセトン及びメチルエチルケトン等)、アミド系有機溶媒(ホルムアミド、アセトアミド、ジメチルホルムアミド及びジメチルアセトアミド等)、エーテル系有機溶媒(ジメチルエーテル、テトラヒドロフラン及びジオキサン等)、エステル系有機溶媒(酢酸エチル及びマレイン酸ジエチル等)、硫黄含有有機溶剤(ジメチルスルホキシド及びスルホラン等)、ハロゲン化炭化水素(クロロホルム及びジクロロメタン等)、炭化水素(ヘキサン、ヘプタン、トルエン及びキシレン等)及びこれらの溶媒の二種以上の混合物が挙げられる。触媒としては、アルカリ金属水酸化物(例えば水酸化リチウム、水酸化ナトリウム及び水酸化カリウム等)、アルカリ金属炭酸塩(炭酸水素ナトリウム、炭酸水素カリウム、炭酸ナトリウム及び炭酸カリウム等)及びアルカリ金属水素化物(水素化ナトリウム及び水素化カリウム等)等が挙げられる。反応温度は通常10〜150℃、反応時間は通常0.5〜24時間である。反応終了後は、必要により触媒を中和し、吸着剤で処理して触媒を除去・精製することができる。   There is no restriction | limiting in particular about the manufacturing method of the imidazole derivative or amine derivative which has the said polymerizable unsaturated bond, It can manufacture by a normal method. Examples thereof include a method of reacting an imidazole derivative or amine with an alkyl halide having an organic group (a) having a polymerizable unsaturated bond in an organic solvent in the absence of a catalyst or in the presence of a catalyst. Examples of organic solvents include nitrile organic solvents (acetonitrile, propiononitrile, benzonitrile, etc.), ketone organic solvents (acetone, methyl ethyl ketone, etc.), amide organic solvents (formamide, acetamide, dimethylformamide, dimethylacetamide, etc.) , Ether organic solvents (such as dimethyl ether, tetrahydrofuran and dioxane), ester organic solvents (such as ethyl acetate and diethyl maleate), sulfur-containing organic solvents (such as dimethyl sulfoxide and sulfolane), halogenated hydrocarbons (such as chloroform and dichloromethane) , Hydrocarbons (hexane, heptane, toluene, xylene, etc.) and mixtures of two or more of these solvents. Catalysts include alkali metal hydroxides (for example, lithium hydroxide, sodium hydroxide and potassium hydroxide), alkali metal carbonates (such as sodium bicarbonate, potassium bicarbonate, sodium carbonate and potassium carbonate) and alkali metal hydrides. (Such as sodium hydride and potassium hydride). The reaction temperature is usually 10 to 150 ° C., and the reaction time is usually 0.5 to 24 hours. After completion of the reaction, if necessary, the catalyst can be neutralized and treated with an adsorbent to remove and purify the catalyst.

前記重合性不飽和結合を有する有機基(a)を有するハロゲン化アルキルとしては、例えば、4−ブロモ−2−ブテン酸メチルエステル、4−クロロ−2−ブテン酸メチルエステル、1−ブロモ−4−シアノ−2−ブテン、1−クロロ−4−シアノ−2−ブテン、アクリル酸クロロメチルエステル、アクリル酸ブロモメチルエステル、アクリル酸−2−クロロエチルエステル、アクリル酸−2−ブロモエチルエステル、メタクリル酸クロロメチルエステル、メタクリル酸ブロモメチルエステル、メタクリル酸−2−クロロエチルエステル、メタクリル酸−2−ブロモエチルエステル、4−クロロメチルスチレン、4−(2−クロロエチル)スチレン及び1−(3−クロロプロピル)スチレン等が挙げられる。   Examples of the halogenated alkyl having an organic group (a) having a polymerizable unsaturated bond include 4-bromo-2-butenoic acid methyl ester, 4-chloro-2-butenoic acid methyl ester, and 1-bromo-4. -Cyano-2-butene, 1-chloro-4-cyano-2-butene, acrylic acid chloromethyl ester, acrylic acid bromomethyl ester, acrylic acid-2-chloroethyl ester, acrylic acid-2-bromoethyl ester, methacrylic acid Acid chloromethyl ester, methacrylic acid bromomethyl ester, methacrylic acid-2-chloroethyl ester, methacrylic acid-2-bromoethyl ester, 4-chloromethylstyrene, 4- (2-chloroethyl) styrene and 1- (3-chloro Propyl) styrene and the like.

本発明における電解質塩解離促進剤(B)は、スルホキシド化合物及び/又はエーテル化合物からなり、スルホキシド化合物としては、一般式(7)で表される化合物が挙げられる。   The electrolyte salt dissociation accelerator (B) in the present invention comprises a sulfoxide compound and / or an ether compound, and examples of the sulfoxide compound include compounds represented by the general formula (7).

Figure 2010165667
式中、R14及びR15はそれぞれ独立して炭素数1〜5のアルキル基である。炭素数が1〜5のアルキル基としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基及びt−ブチル基、n−ペンチル基、イソペンチル基及び2,2−ジメチルプロピル基等が挙げられる。これらのうち、電池出力の観点から好ましいのはメチル基である。
Figure 2010165667
In the formula, R14 and R15 are each independently an alkyl group having 1 to 5 carbon atoms. Examples of the alkyl group having 1 to 5 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group and t-butyl group, n-pentyl group, isopentyl group, and 2,2. -A dimethylpropyl group etc. are mentioned. Among these, a methyl group is preferable from the viewpoint of battery output.

スルホキシド化合物の具体例としては、ジメチルスルホキシド、エチルメチルスルホキシド、メチルn−プロピルスルホキシド、ブチルメチルスルホキシド、メチルペンチルスルホキシド、ジエチルスルホキシド、エチルイソプロピルスルホキシド、n−ブチルエチルスルホキシド、エチルn−ペンチルスルホキシド、ジイソプロピルスルホキシド、n−ブチルn−プロピルスルホキシド、イソペンチルn−プロピルスルホキシド、ジn−ブチルスルホキシド、ブチル2,2−ジメチルプロピルスルホキシド及びジイソペンチルスルホキシド等が挙げられる。   Specific examples of the sulfoxide compound include dimethyl sulfoxide, ethyl methyl sulfoxide, methyl n-propyl sulfoxide, butyl methyl sulfoxide, methyl pentyl sulfoxide, diethyl sulfoxide, ethyl isopropyl sulfoxide, n-butyl ethyl sulfoxide, ethyl n-pentyl sulfoxide, diisopropyl sulfoxide. N-butyl n-propyl sulfoxide, isopentyl n-propyl sulfoxide, di-n-butyl sulfoxide, butyl 2,2-dimethylpropyl sulfoxide, diisopentyl sulfoxide and the like.

スルホキシド化合物の製造方法としては、炭素数1〜5のアルキルを有するアルキルスルフィドを、酸化剤で酸化して製造する方法が挙げられる。酸化剤としては、過酸化水素及び過ハロゲン酸塩(過塩素酸ナトリウム、過臭素酸ナトリウム及び過ヨウ素酸ナトリウム等)等が挙げられる。反応温度は通常0〜100℃であり、反応時間は通常1〜10時間である。反応終了後は、酸化剤を還元剤(チオ硫酸ナトリウム及び亜硫酸水素ナトリウム等)で分解した後、吸着剤で処理して除去・精製することができる。   As a manufacturing method of a sulfoxide compound, the method of oxidizing and manufacturing the alkyl sulfide which has a C1-C5 alkyl with an oxidizing agent is mentioned. Examples of the oxidizing agent include hydrogen peroxide and perhalogenates (such as sodium perchlorate, sodium perbromate, and sodium periodate). The reaction temperature is usually 0 to 100 ° C., and the reaction time is usually 1 to 10 hours. After completion of the reaction, the oxidizing agent can be decomposed with a reducing agent (sodium thiosulfate, sodium hydrogensulfite, etc.) and then treated with an adsorbent for removal and purification.

本発明におけるエーテル化合物としては、一般式(8)で示す化合物が挙げられる。
R16−O−(CH2CH2O)n−R17 (8)
式中、R16及びR17は、それぞれ独立して炭素数1〜5のアルキル基、nは1〜10の数である。炭素数が1〜5のアルキル基としては、一般式(7)におけるR14及びR15と同様のものが挙げられる。R16及びR17のうち、電池出力の観点から好ましいのはメチル基である。nは、電解液粘度の観点から好ましくは1又は2である。
As an ether compound in this invention, the compound shown by General formula (8) is mentioned.
R16-O- (CH2CH2O) n-R17 (8)
In the formula, R16 and R17 are each independently an alkyl group having 1 to 5 carbon atoms, and n is a number of 1 to 10. Examples of the alkyl group having 1 to 5 carbon atoms include the same groups as R14 and R15 in the general formula (7). Of R16 and R17, a methyl group is preferable from the viewpoint of battery output. n is preferably 1 or 2 from the viewpoint of the electrolyte solution viscosity.

エーテル化合物の具体例としては、ジメトキシエタン、ジエトキシエタン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、トリエチレングリコールジメチルエーテル、トリエチレングリコールジエチルエーテル、テトラエチレングリコールジメチルエーテル、テトラエチレングリコールジエチルエーテル、ペンタエチレングリコールジメチルエーテル、ペンタエチレングリコールジエチルエーテル、ヘキサエチレングリコールエチルメチルエーテル、ヘキサエチレングリコールn−ブチルイソペンチルエーテル、ヘプタエチレングリコールイソブチルn−プロピルエーテル、ヘプタエチレングリコールエチル2,2−ジメチルプロピルエーテル、オクタエチレングリコールエチルn−プロピルエーテル、オクタエチレングリコールジイソブチルエーテル、ノナエチレングリコールジメチルエーテル、ノナエチレングリコールt−ブチルイソプロピルエーテル、デカエチレングリコールジイソプロピルエーテル及びデカエチレングリコール2,2−ジメチルプロピルイソペンチルエーテル等が挙げられる。   Specific examples of the ether compound include dimethoxyethane, diethoxyethane, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, triethylene glycol dimethyl ether, triethylene glycol diethyl ether, tetraethylene glycol dimethyl ether, tetraethylene glycol diethyl ether, pentaethylene glycol dimethyl ether, penta Ethylene glycol diethyl ether, hexaethylene glycol ethyl methyl ether, hexaethylene glycol n-butylisopentyl ether, heptaethylene glycol isobutyl n-propyl ether, heptaethylene glycol ethyl 2,2-dimethylpropyl ether, octaethylene glycol ethyl n-propyl ether, Kuta ethylene glycol diisobutyl ether, nonaethylene glycol dimethyl ether, nonaethylene glycol t- butyl isopropyl ether, decaethylene glycol diisopropyl ether and decamethylene glycol 2,2-dimethylpropyl isopentyl ether, and the like.

エーテル化合物の製造方法としては、以下の工程を経て製造する方法が挙げられる。
(1):炭素数1〜5の1価アルコールを加圧反応容器に仕込み、無触媒又は触媒の存在下にエチレンオキサイドを吹き込み、常圧又は加圧下に1段階又は多段階でエチレンオキサイドの付加反応を行う。
(2):(1)で得られた炭素数1〜5の1価アルコールのエチレンオキサイド付加物の水酸基をエーテル化剤でエーテル化する。
炭素数1〜5の1価アルコールとエチレンオキサイドの付加反応の触媒としては、アルカリ触媒[例えばアルカリ金属(リチウム、ナトリウム、カリウム及びセシウム等)]の水酸化物、酸[過ハロゲン酸(過塩素酸、過臭素酸及び過ヨウ素酸等)、硫酸、燐酸及び硝酸等(好ましいのは過塩素酸)]及びこれらの塩[好ましいのは2価又は3価の金属(Mg、Ca、Sr、Ba、Zn、Co、Ni、Cu及びAl等)の塩]が挙げられる。反応温度は通常50〜150℃であり、反応時間は通常2〜20時間である。エチレンオキサイドの付加反応終了後は、必要により触媒を中和し、吸着剤で処理して触媒を除去・精製することができる。
炭素数1〜5の1価アルコールのエチレンオキサイド付加物のエーテル化反応の触媒としては、アルカリ触媒[例えばアルカリ金属(リチウム、ナトリウム、カリウム及びセシウム等)]の水酸化物等が挙げられる。エーテル化剤としては、炭素数1〜5の塩化アルキル又は臭化アルキルが挙げられ、例えば、塩化メチル、臭化メチル、塩化エチル、臭化エチル、塩化n−プロピル、臭化n−プロピル、塩化イソプロピル、臭化イソプロピル、塩化n−ブチル、臭化n−ブチル、塩化イソブチル、臭化イソブチル、塩化t−ブチル、臭化t−ブチル、塩化n−ペンチル、臭化n−ペンチル 、塩化イソペンチル、臭化イソペンチル、塩化2,2−ジメチルプロピル及び臭化2,2−ジメチルプロピル等が挙げられる。反応温度は通常50〜100℃であり、反応時間は通常6〜24時間である。炭素数1〜5の1価アルコールのエチレンオキサイド付加物に対するエーテル化剤の当量比は好ましくは1〜2である。またエーテル化反応には、必要により、トルエン、ベンゼン等の溶剤を使用することができる。反応終了後は未反応のエーテル化剤及び溶剤を減圧下で留去し、触媒を中和し、吸着剤で処理して触媒を除去・精製することができる。
As a manufacturing method of an ether compound, the method of manufacturing through the following processes is mentioned.
(1): A monohydric alcohol having 1 to 5 carbon atoms is charged into a pressurized reaction vessel, ethylene oxide is blown in the presence of no catalyst or a catalyst, and ethylene oxide is added in one step or multiple steps under normal pressure or pressure. Perform the reaction.
(2): The hydroxyl group of the ethylene oxide adduct of a monohydric alcohol having 1 to 5 carbon atoms obtained in (1) is etherified with an etherifying agent.
As a catalyst for the addition reaction of a monohydric alcohol having 1 to 5 carbon atoms and ethylene oxide, an alkali catalyst [for example, alkali metal (lithium, sodium, potassium, cesium, etc.)] hydroxide, acid [perhalogen acid (perchlorine Acid, perbromic acid and periodic acid), sulfuric acid, phosphoric acid and nitric acid (preferably perchloric acid)] and salts thereof [preferably divalent or trivalent metals (Mg, Ca, Sr, Ba) , Zn, Co, Ni, Cu and Al). The reaction temperature is usually 50 to 150 ° C., and the reaction time is usually 2 to 20 hours. After completion of the addition reaction of ethylene oxide, the catalyst can be neutralized if necessary and treated with an adsorbent to remove and purify the catalyst.
Examples of the catalyst for the etherification reaction of an ethylene oxide adduct of a monohydric alcohol having 1 to 5 carbon atoms include hydroxides of alkali catalysts [eg, alkali metals (lithium, sodium, potassium, cesium, etc.)]. Examples of the etherifying agent include alkyl chloride or alkyl bromide having 1 to 5 carbon atoms, such as methyl chloride, methyl bromide, ethyl chloride, ethyl bromide, n-propyl chloride, n-propyl bromide, and chloride. Isopropyl, isopropyl bromide, n-butyl chloride, n-butyl bromide, isobutyl chloride, isobutyl bromide, t-butyl chloride, t-butyl bromide, n-pentyl chloride, n-pentyl bromide, isopentyl chloride, odor Isopentyl chloride, 2,2-dimethylpropyl chloride, 2,2-dimethylpropyl bromide and the like. The reaction temperature is usually 50 to 100 ° C., and the reaction time is usually 6 to 24 hours. The equivalent ratio of the etherifying agent to the ethylene oxide adduct of a monohydric alcohol having 1 to 5 carbon atoms is preferably 1-2. In the etherification reaction, a solvent such as toluene or benzene can be used as necessary. After completion of the reaction, the unreacted etherifying agent and solvent can be distilled off under reduced pressure, the catalyst can be neutralized, and the catalyst can be removed and purified by treating with an adsorbent.

スルホキシド化合物及びエーテル化合物のうち、電池容量の観点から好ましいのはエーテル化合物であり、更に好ましいのは揮発性と電解液粘度の観点からジメトキシエタン、ジエトキシエタン、ジエチレングリコールジメチルエーテル及びジエチレングリコールジエチルエーテルである。   Of the sulfoxide compounds and ether compounds, ether compounds are preferable from the viewpoint of battery capacity, and dimethoxyethane, diethoxyethane, diethylene glycol dimethyl ether, and diethylene glycol diethyl ether are more preferable from the viewpoints of volatility and electrolyte viscosity.

本発明におけるスルホキシド化合物及びポリエーテル化合物のドナー数とは、スルホキシド化合物又はポリエーテル化合物と、電解質との親和性を表したものであり、1,2−ジクロロエタン中でのSbCl5に対する配位安定化エンタルピー(kcal/mol)を測定して得られた数字である。代表的な化合物のドナー数は、例えば「V.グートマン著、大瀧仁志、岡田勲訳、『ドナーとアクセプター』学会出版センター、1983年発行」に記載されているものを用いることができる。ドナー数が大きいほど電解質の解離能力が高いことを示す。スルホキシド化合物及びポリエーテル化合物のドナー数は、電池出力の観点から、スルホキシド化合物、ポリエーテル化合物共に好ましいのは16〜40であり、更に好ましいのは20〜30である。本発明におけるスルホキシド化合物のドナー数を高くするには、一般式(7)におけるR14及びR15の炭素数1〜5のアルキル基の炭素数を少なくすればよい。本発明におけるエーテル化合物のドナー数を高くするには、一般式(8)におけるR16及びR17の炭素数1〜5のアルキル基の炭素数を少なくすればよく、またnの数を大きくすればよい。エーテル化合物のドナー数を低くするには、一般式(8)におけるR16及びR17の炭素数1〜5のアルキル基の炭素数を多くすればよく、またnの数を小さくすればよい。なお、ドナー数が16以上であればリチウムイオンとの親和性が一定以上にあり、電池出力が低下することはない。   The number of donors of the sulfoxide compound and the polyether compound in the present invention represents the affinity between the sulfoxide compound or the polyether compound and the electrolyte, and the coordination stabilization enthalpy for SbCl5 in 1,2-dichloroethane. It is a number obtained by measuring (kcal / mol). As the number of donors of typical compounds, for example, those described in “V. Gutmann, Hitoshi Ohtsuki, Isao Okada,“ Donor and Acceptor ”Society Publishing Center, published in 1983” can be used. The larger the number of donors, the higher the dissociation ability of the electrolyte. From the viewpoint of battery output, the number of donors of the sulfoxide compound and the polyether compound is preferably 16 to 40 and more preferably 20 to 30 for both the sulfoxide compound and the polyether compound. In order to increase the donor number of the sulfoxide compound in the present invention, the carbon number of the alkyl group having 1 to 5 carbon atoms of R14 and R15 in the general formula (7) may be decreased. In order to increase the number of donors of the ether compound in the present invention, the number of carbon atoms in the alkyl group having 1 to 5 carbon atoms of R16 and R17 in the general formula (8) may be decreased, and the number of n may be increased. . In order to reduce the number of donors of the ether compound, the number of carbon atoms in the alkyl group having 1 to 5 carbon atoms of R16 and R17 in the general formula (8) may be increased, and the number of n may be decreased. If the number of donors is 16 or more, the affinity with lithium ions is above a certain level, and the battery output does not decrease.

重合性不飽和結合を有するカーボネート化合物(C)としては、炭素数4〜7の鎖状カーボネート化合物(C1)及び炭素数3〜9の環状カーボネート化合物(C2)が挙げられる。これらのうち、充放電サイクル特性の観点から好ましいのは(C2)である。(C1)としては、メチルビニルカーボネート、エチルビニルカーボネート、n−プロピルビニルカーボネート、イソプロピルビニルカーボネート、ジビニルカーボネート、アリルメチルカーボネート、アリルエチルカーボネート、アリルn−プロピルカーボネート、アリルイソプロピルカーボネート及びジアリルカーボネート等が挙げられる。これらは市販品を入手することができる。   Examples of the carbonate compound (C) having a polymerizable unsaturated bond include a chain carbonate compound (C1) having 4 to 7 carbon atoms and a cyclic carbonate compound (C2) having 3 to 9 carbon atoms. Among these, (C2) is preferable from the viewpoint of charge / discharge cycle characteristics. Examples of (C1) include methyl vinyl carbonate, ethyl vinyl carbonate, n-propyl vinyl carbonate, isopropyl vinyl carbonate, divinyl carbonate, allyl methyl carbonate, allyl ethyl carbonate, allyl n-propyl carbonate, allyl isopropyl carbonate, and diallyl carbonate. It is done. These can be obtained commercially.

炭素数3〜9の環状カーボネート化合物(C2)としては、一般式(9)で示される化合物及び一般式(10)で示される化合物が挙げられる。   As a C3-C9 cyclic carbonate compound (C2), the compound shown by the compound shown by General formula (9), and General formula (10) is mentioned.

Figure 2010165667
式中、R18及びR19は、それぞれ独立して水素原子又は炭素数1〜3のアルキル基である。炭素数が1〜3のアルキル基としては、メチル基、エチル基、n−プロピル基及びイソプロピル基が挙げられる。これらのうち、充放電サイクル特性の観点から好ましいのは水素原子である。
Figure 2010165667
In the formula, R18 and R19 are each independently a hydrogen atom or an alkyl group having 1 to 3 carbon atoms. Examples of the alkyl group having 1 to 3 carbon atoms include a methyl group, an ethyl group, an n-propyl group, and an isopropyl group. Among these, a hydrogen atom is preferable from the viewpoint of charge / discharge cycle characteristics.

一般式(9)で示される化合物の具体例としては、ビニレンカーボネート、メチルビニレンカーボネート、エチルビニレンカーボネート、n−プロピルビニレンカーボネート、イソプロピルビニレンカーボネート、ジメチルビニレンカーボネート、ジエチルビニレンカーボネート、ジn−プロピルビニレンカーボネート、ジイソプロピルビニレンカーボネート、エチルメチルビニレンカーボネート、エチルn−プロピルビニレンカーボネート及びエチルイソプロピルビニレンカーボネート等が挙げられる。これらは市販品を入手することができる。   Specific examples of the compound represented by the general formula (9) include vinylene carbonate, methyl vinylene carbonate, ethyl vinylene carbonate, n-propyl vinylene carbonate, isopropyl vinylene carbonate, dimethyl vinylene carbonate, diethyl vinylene carbonate, and di-n-propyl vinylene carbonate. , Diisopropyl vinylene carbonate, ethyl methyl vinylene carbonate, ethyl n-propyl vinylene carbonate, and ethyl isopropyl vinylene carbonate. These can be obtained commercially.

Figure 2010165667
式中、R20及びR21は、それぞれ独立して水素原子又は炭素数2〜3のアルケニル基であり、R20及びR21が共に水素原子となることはない。炭素数が2〜3のアルケニル基としては、ビニル基及びアリル基が挙げられる。これらのうち、充放電サイクル特性の観点から好ましいのは、水素原子及びビニル基である。
Figure 2010165667
In the formula, R20 and R21 are each independently a hydrogen atom or an alkenyl group having 2 to 3 carbon atoms, and R20 and R21 are not both hydrogen atoms. Examples of the alkenyl group having 2 to 3 carbon atoms include a vinyl group and an allyl group. Among these, a hydrogen atom and a vinyl group are preferable from the viewpoint of charge / discharge cycle characteristics.

一般式(10)で示される化合物の具体例としては、ビニルエチレンカーボネート、アリルエチレンカーボネート、ジビニルエチレンカーボネート及びジアリルエチレンカーボネートが挙げられる。これらは市販品を入手することができる。   Specific examples of the compound represented by the general formula (10) include vinyl ethylene carbonate, allyl ethylene carbonate, divinyl ethylene carbonate, and diallyl ethylene carbonate. These can be obtained commercially.

ビニルエーテル基又はプロペニルエーテル基を有する化合物(D)としては、両末端にビニルエーテル基又はプロペニルエーテル基を有する炭素数4〜10の直鎖アルキル化合物(D1)、両末端にビニルエーテル基又はプロペニルエーテル基を有するオリゴエーテル化合物(D2)、及びビニルエーテル基又はプロペニルエーテル基を2つ以上有するシクロヘキサン誘導体(D3)が挙げられる。これらのうち、充放電サイクル特性の観点から好ましいのは(D3)である。   As the compound (D) having a vinyl ether group or a propenyl ether group, a linear alkyl compound having 4 to 10 carbon atoms (D1) having a vinyl ether group or a propenyl ether group at both ends, and a vinyl ether group or a propenyl ether group at both ends. And an oligoether compound (D2) having two or more vinyl ether groups or propenyl ether groups (D3). Among these, (D3) is preferable from the viewpoint of charge / discharge cycle characteristics.

両末端にビニルエーテル基又はプロペニルエーテル基を有する炭素数4〜10の直鎖アルキル化合物(D1)としては、一般式(11)で示される化合物が挙げられる。   As a C4-C10 linear alkyl compound (D1) which has a vinyl ether group or a propenyl ether group at both ends, the compound shown by General formula (11) is mentioned.

R22−CH=CH−O−(CH2)p−O−CH=CH−R23 (11)
式中、R22及びR23は、それぞれ独立して水素原子又はメチル基であり、pは4〜10の数である。これらのうち、充放電サイクル特性の観点から好ましいのは、R22及びR23が水素原子かつpが6〜8である化合物である。
R22-CH = CH-O- (CH2) p-O-CH = CH-R23 (11)
In the formula, R22 and R23 are each independently a hydrogen atom or a methyl group, and p is a number of 4 to 10. Among these, from the viewpoint of charge / discharge cycle characteristics, preferred are compounds in which R22 and R23 are hydrogen atoms and p is 6-8.

一般式(11)で示される化合物の具体例としては、1,4−ブタンジオールジビニルエーテル、1,5−ペンタンジオールジビニルエーテル、1,6−ヘキサンジオールジビニルエーテル、1,7−ヘプタンジオールジビニルエーテル、1,8−オクタンジオールジビニルエーテル、1,9−ノナンジオールジビニルエーテル、1,10−デカンジオールジビニルエーテル、1,4−ブタンジオールプロペニルビニルエーテル、1,5−ペンタンジオールプロペニルビニルエーテル、1,6−ヘキサンジオールプロペニルビニルエーテル、1,7−ヘプタンジオールプロペニルビニルエーテル、1,8−オクタンジオールプロペニルビニルエーテル、1,9−ノナンジオールプロペニルビニルエーテル、1,10−デカンジオールプロペニルビニルエーテル、1,4−ブタンジオールジプロペニルエーテル、1,5−ペンタジオールジプロペニルエーテル、1,6−ヘキサンジオールジプロペニルエーテル、1,7−ヘプタンジオールジプロペニルエーテル、1,8−オクタンジオールジプロペニルエーテル、1,9−ノナンジオールジプロペニルエーテル及び1,10−デカンジオールジプロペニルエーテルが挙げられる。これらは市販品を入手することができる。   Specific examples of the compound represented by the general formula (11) include 1,4-butanediol divinyl ether, 1,5-pentanediol divinyl ether, 1,6-hexanediol divinyl ether, 1,7-heptanediol divinyl ether. 1,8-octanediol divinyl ether, 1,9-nonanediol divinyl ether, 1,10-decanediol divinyl ether, 1,4-butanediol propenyl vinyl ether, 1,5-pentanediol propenyl vinyl ether, 1,6- Hexanediol propenyl vinyl ether, 1,7-heptanediol propenyl vinyl ether, 1,8-octanediol propenyl vinyl ether, 1,9-nonanediol propenyl vinyl ether, 1,10-decanediol propenyl Vinyl ether, 1,4-butanediol dipropenyl ether, 1,5-pentadiol dipropenyl ether, 1,6-hexanediol dipropenyl ether, 1,7-heptanediol dipropenyl ether, 1,8-octanediol dipropenyl ether Examples include ether, 1,9-nonanediol dipropenyl ether and 1,10-decanediol dipropenyl ether. These can be obtained commercially.

両末端にビニルエーテル基又はプロペニルエーテル基を有するオリゴエーテル化合物(D2)としては、一般式(12)で示される化合物が挙げられる。   Examples of the oligoether compound (D2) having a vinyl ether group or a propenyl ether group at both ends include a compound represented by the general formula (12).

R24−CH=CH−O−(C2H4O)q−O−CH=CH−R25 (12)
式中、R24及びR25は、それぞれ独立して水素原子又はメチル基であり、qは1〜5の数である。これらのうち、充放電サイクル特性の観点から好ましいのは、R24及びR25が水素原子かつqが2又は3である化合物である。
R24—CH═CH—O— (C2H4O) q—O—CH═CH—R25 (12)
In formula, R24 and R25 are respectively independently a hydrogen atom or a methyl group, and q is a number of 1-5. Among these, preferred is a compound in which R24 and R25 are hydrogen atoms and q is 2 or 3 from the viewpoint of charge / discharge cycle characteristics.

一般式(12)で示される化合物の具体例としては、エチレングリコールジビニルエーテル、ジエチレングリコールジビニルエーテル、トリエチレングリコールジビニルエーテル、テトラエチレングリコールジビニルエーテル、ペンタエチレングリコールジビニルエーテル、エチレングリコールプロペニルビニルエーテル、ジエチレングリコールプロペニルビニルエーテル、トリエチレングリコールプロペニルビニルエーテル、テトラエチレングリコールプロペニルビニルエーテル、ペンタエチレングリコールプロペニルビニルエーテル、エチレングリコールジプロペニルエーテル、ジエチレングリコールジプロペニルエーテル、トリエチレングリコールジプロペニルエーテル、テトラエチレングリコールジプロペニルエーテル及びペンタエチレングリコールジプロペニルエーテル等が挙げられる。これらは市販品を入手することができる。   Specific examples of the compound represented by the general formula (12) include ethylene glycol divinyl ether, diethylene glycol divinyl ether, triethylene glycol divinyl ether, tetraethylene glycol divinyl ether, pentaethylene glycol divinyl ether, ethylene glycol propenyl vinyl ether, diethylene glycol propenyl vinyl ether. , Triethylene glycol propenyl vinyl ether, tetraethylene glycol propenyl vinyl ether, pentaethylene glycol propenyl vinyl ether, ethylene glycol dipropenyl ether, diethylene glycol dipropenyl ether, triethylene glycol dipropenyl ether, tetraethylene glycol dipropenyl ether and pentaethylene Etc. glycol dipropionate propenyl ether and the like. These can be obtained commercially.

(D3)の具体例としては、シクロヘキシルプロペニルエーテル、1,2−ビス(プロペノキシメチル)シクロヘキサン、1,3−ビス(プロペノキシメチル)シクロヘキサン、1,4−ビス(プロペノキシメチル)シクロヘキサン、1,3,5−トリス(プロペノキシメチル)シクロヘキサン、1,2−ビス(ビニロキシメチル)シクロヘキサン、1,3−ビス(ビニロキシメチル)シクロヘキサン、1,4−ビス(ビニロキシメチル)シクロヘキサン及び1,3,5−トリス(ビニロキシメチル)シクロヘキサン等が挙げられる。これらは市販品を入手することができる。   Specific examples of (D3) include cyclohexylpropenyl ether, 1,2-bis (propenoxymethyl) cyclohexane, 1,3-bis (propenoxymethyl) cyclohexane, 1,4-bis (propenoxymethyl) Cyclohexane, 1,3,5-tris (propenoxymethyl) cyclohexane, 1,2-bis (vinyloxymethyl) cyclohexane, 1,3-bis (vinyloxymethyl) cyclohexane, 1,4-bis (vinyloxymethyl) ) Cyclohexane and 1,3,5-tris (vinyloxymethyl) cyclohexane. These can be obtained commercially.

本発明の電解液用添加剤における電解液用添加剤の全重量に基づく変性ポリシロキサン(A)、電解質解離促進剤(B)、カーボネート化合物(C)、及びビニルエーテル基又はプロペニルエーテル基を有する化合物(D)のそれぞれ好ましい含有量(重量%)は以下の通りである。
(A)の含有量は、充放電サイクル特性及び電池容量の観点から好ましくは0.1〜100重量%であり、更に好ましくは0.8〜8.7重量%である。(B)の含有量は、電池出力の観点から好ましくは0〜97重量%であり、更に好ましくは17.9〜82.3重量%である。(C)の含有量は、電池容量、電池出力及び充放電サイクル特性の観点から好ましくは0〜90重量%であり、更に好ましくは15.9〜71.4重量%である。(D)の含有量は、電池容量、電池出力及び充放電サイクル特性の観点から好ましくは0〜50重量%であり、更に好ましくは0.4〜4.3重量部である。
Modified polysiloxane (A), electrolyte dissociation accelerator (B), carbonate compound (C) based on the total weight of the electrolyte additive in the electrolyte additive of the present invention, and a compound having a vinyl ether group or propenyl ether group The preferred contents (% by weight) of (D) are as follows.
The content of (A) is preferably 0.1 to 100% by weight, and more preferably 0.8 to 8.7% by weight from the viewpoints of charge / discharge cycle characteristics and battery capacity. The content of (B) is preferably 0 to 97% by weight, and more preferably 17.9 to 82.3% by weight from the viewpoint of battery output. The content of (C) is preferably 0 to 90% by weight, more preferably 15.9 to 71.4% by weight from the viewpoint of battery capacity, battery output, and charge / discharge cycle characteristics. The content of (D) is preferably 0 to 50% by weight, and more preferably 0.4 to 4.3 parts by weight from the viewpoint of battery capacity, battery output, and charge / discharge cycle characteristics.

本発明の電解液用添加剤は、二次電池の負極保護膜形成用として有用である。本発明の電解液用添加剤は、初期充電時に二次電池内の負極上で電気二重層を形成し、還元重合されることで保護膜を形成する。負極上に保護膜を形成することによって非水溶媒が負極で分解するのを抑制し、二次電池の出力を増加させ、充放電サイクル特性が低下することを抑制する。   The additive for electrolytic solution of the present invention is useful for forming a negative electrode protective film of a secondary battery. The additive for electrolytic solution of the present invention forms an electric double layer on the negative electrode in the secondary battery during initial charging, and forms a protective film by being subjected to reduction polymerization. By forming a protective film on the negative electrode, the nonaqueous solvent is prevented from being decomposed at the negative electrode, the output of the secondary battery is increased, and the charge / discharge cycle characteristics are prevented from being deteriorated.

本発明の電解液は、非水溶媒、電解質、及び前記電解液用添加剤を含有してなる。   The electrolytic solution of the present invention contains a nonaqueous solvent, an electrolyte, and the additive for electrolytic solution.

非水溶媒としては、通常の電解液に用いられているものが使用でき、例えば、環状又は鎖状炭酸エステル、鎖状カルボン酸エステル、環状又は鎖状エーテル、リン酸エステル、ラクトン化合物、ニトリル化合物、アミド化合物等及びこれらの混合物を用いることができる。環状炭酸エステルとしては、プロピレンカーボネート、エチレンカーボネート及びブチレンカーボネート等が挙げられる。鎖状炭酸エステルとしては、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート、メチル−n−プロピルカーボネート、エチル−n−プロピルカーボネート及びジ−n−プロピルカーボネート等が挙げられる。鎖状カルボン酸エステルとしては、酢酸メチル、酢酸エチル、酢酸プロピル及びプロピオン酸メチル等が挙げられる。環状エーテルとしては、テトラヒドロフラン、テトラヒドロピラン、1,3−ジオキソラン及び1,4−ジオキサン等が挙げられる。鎖状エーテルとしては、ジメトキシメタン及び1,2−ジメトキシエタン等が挙げられる。リン酸エステルとしては、リン酸トリメチル、リン酸トリエチル、リン酸エチルジメチル、リン酸ジエチルメチル、リン酸トリプロピル、リン酸トリブチル、リン酸トリ(トリフルオロメチル)、リン酸トリ(トリクロロメチル)、リン酸トリ(トリフルオロエチル)、リン酸トリ(トリパーフルオロエチル)、2−エトキシ−1,3,2−ジオキサホスホラン−2−オン、2−トリフルオロエトキシ−1,3,2−ジオキサホスホラン−2−オン、2−メトキシエトキシ−1,3,2−ジオキサホスホラン−2−オン等が挙げられる。ラクトン化合物としては、γ−ブチロラクトン及びγ−バレロラクトン等が挙げられる。ニトリル化合物としては、アセトニトリルが挙げられる。アミド化合物としては、ジメチルホルムアミド等が挙げられる。非水溶媒のうち、電池出力及び充放電リサイクル特性の観点から好ましいのは、環状炭酸エステル、鎖状炭酸エステル及びリン酸エステルであり、更に好ましいのは環状炭酸エステルである。   As the non-aqueous solvent, those used in ordinary electrolytic solutions can be used, for example, cyclic or chain carbonate ester, chain carboxylate ester, cyclic or chain ether, phosphate ester, lactone compound, nitrile compound. Amide compounds, etc., and mixtures thereof can be used. Examples of the cyclic carbonate include propylene carbonate, ethylene carbonate and butylene carbonate. Examples of the chain carbonate include dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, methyl-n-propyl carbonate, ethyl-n-propyl carbonate, and di-n-propyl carbonate. Examples of chain carboxylic acid esters include methyl acetate, ethyl acetate, propyl acetate, and methyl propionate. Examples of the cyclic ether include tetrahydrofuran, tetrahydropyran, 1,3-dioxolane, 1,4-dioxane and the like. Examples of the chain ether include dimethoxymethane and 1,2-dimethoxyethane. Examples of phosphate esters include trimethyl phosphate, triethyl phosphate, ethyl dimethyl phosphate, diethyl methyl phosphate, tripropyl phosphate, tributyl phosphate, tri (trifluoromethyl) phosphate, tri (trichloromethyl) phosphate, Tri (trifluoroethyl) phosphate, tri (triperfluoroethyl) phosphate, 2-ethoxy-1,3,2-dioxaphospholan-2-one, 2-trifluoroethoxy-1,3,2- Examples include dioxaphospholan-2-one and 2-methoxyethoxy-1,3,2-dioxaphosphoran-2-one. Examples of the lactone compound include γ-butyrolactone and γ-valerolactone. A nitrile compound includes acetonitrile. Examples of the amide compound include dimethylformamide. Of the nonaqueous solvents, cyclic carbonates, chain carbonates and phosphates are preferable from the viewpoint of battery output and charge / discharge recycling characteristics, and cyclic carbonates are more preferable.

非水溶媒の含有量は、電解液の重量に基づいて、電池出力及び充放電サイクル特性の観点から好ましくは20〜99重量%であり、更に好ましくは58〜93重量%である。   The content of the non-aqueous solvent is preferably 20 to 99% by weight and more preferably 58 to 93% by weight based on the weight of the electrolytic solution from the viewpoint of battery output and charge / discharge cycle characteristics.

本発明の電解液に含まれる電解質としては、通常の電解液に用いられているものが使用でき、例えば、LiPF6、LiBF4、LiSbF6、LiAsF6及びLiClO4等の無機酸のリチウム塩、LiN(CF3SO2)2、LiN(C2F5SO2)2、LiC(CF3SO2)3等の有機酸のリチウム塩が挙げられる。これらのうち、電池出力及び充放電サイクル特性の観点から好ましいのはLiPF6である。   As the electrolyte contained in the electrolytic solution of the present invention, those used in ordinary electrolytic solutions can be used. For example, lithium salts of inorganic acids such as LiPF6, LiBF4, LiSbF6, LiAsF6 and LiClO4, LiN (CF3SO2) 2 , LiN (C2F5SO2) 2, LiC (CF3SO2) 3, and other organic acid lithium salts. Among these, LiPF6 is preferable from the viewpoint of battery output and charge / discharge cycle characteristics.

電解液中の電解質の濃度は、電解液の容量に基づいて、電池出力及び充放電サイクル特性の観点から好ましくは0.01〜3mol/Lであり、更に好ましくは0.05〜1.5mol/Lである。   The concentration of the electrolyte in the electrolytic solution is preferably 0.01 to 3 mol / L, more preferably 0.05 to 1.5 mol / L from the viewpoint of battery output and charge / discharge cycle characteristics, based on the capacity of the electrolytic solution. L.

本発明の電解液用添加剤の添加量は、電解液の全重量に基づいて、好ましいのは0.1〜10重量%であり、更に好ましいのは2〜5重量%である。添加量が0.1重量%未満であると負極保護膜を形成することができず、10重量%を超えると、充電後も電解液中に残留した添加剤が正極で酸化分解されて電池特性が低下するため好ましくない。   The addition amount of the additive for electrolytic solution of the present invention is preferably 0.1 to 10% by weight, more preferably 2 to 5% by weight, based on the total weight of the electrolytic solution. If the added amount is less than 0.1% by weight, a negative electrode protective film cannot be formed. If the added amount exceeds 10% by weight, the additive remaining in the electrolyte after charging is oxidatively decomposed at the positive electrode, resulting in battery characteristics. Is unfavorable because of lowering.

本発明の電解液には、必要に応じてその他の添加剤を添加してもよい。その他の添加剤としては、過充電防止剤、脱水剤及び容量安定化剤等が挙げられる。   You may add another additive to the electrolyte solution of this invention as needed. Examples of other additives include an overcharge inhibitor, a dehydrating agent, and a capacity stabilizer.

過充電防止剤としては、ビフェニル、アルキルビフェニル、ターフェニル、ターフェニルの部分水素化体、シクロヘキシルベンゼン、t−ブチルベンゼン及びt−アミルベンゼン等の芳香族化合物等が挙げられる。過充電防止剤の使用量は、電解液の全重量に基づいて、通常0〜5重量%、好ましいのは1〜3重量%である。   Examples of the overcharge inhibitor include biphenyl, alkylbiphenyl, terphenyl, partially hydrogenated terphenyl, aromatic compounds such as cyclohexylbenzene, t-butylbenzene, and t-amylbenzene. The usage-amount of an overcharge inhibitor is 0-5 weight% normally based on the total weight of electrolyte solution, Preferably it is 1-3 weight%.

脱水剤としては、ゼオライト、シリカゲル及び酸化カルシウム等が挙げられる。脱水剤の使用量は、電解液の全重量に基づいて、通常0〜5重量%、好ましいのは1〜3重量%である。   Examples of the dehydrating agent include zeolite, silica gel and calcium oxide. The usage-amount of a dehydrating agent is 0-5 weight% normally based on the total weight of electrolyte solution, Preferably it is 1-3 weight%.

容量安定化剤としては、フルオロエチレンカーボネート、無水コハク酸、1−メチル−2−ピペリドン、ヘプタン及びフルオロベンゼン等が挙げられる。容量安定化剤の使用量は、電解液の全重量に基づいて、通常0〜5重量%、好ましいのは1〜3重量%である。   Examples of the capacity stabilizer include fluoroethylene carbonate, succinic anhydride, 1-methyl-2-piperidone, heptane, and fluorobenzene. The amount of the capacity stabilizer used is usually 0 to 5% by weight, preferably 1 to 3% by weight, based on the total weight of the electrolytic solution.

本発明の電解液の調製方法については特に限定はなく、非水溶媒に電解質、本発明の電解液用添加剤及びその他の添加剤を溶解させて調製することができる。また、電解液中の水分量が50ppm以下になるように、電解液の調製に際して、各原料はあらかじめ脱水しておくのが好ましい。   The method for preparing the electrolytic solution of the present invention is not particularly limited, and can be prepared by dissolving the electrolyte, the additive for electrolytic solution of the present invention, and other additives in a non-aqueous solvent. Moreover, it is preferable to dehydrate each raw material in advance when preparing the electrolytic solution so that the amount of water in the electrolytic solution is 50 ppm or less.

以下、実施例及び製造例により本発明を更に説明するが、本発明はこれらに限定されるものではない。以下において%は重量%、部は重量部を示す。   Hereinafter, although an example and a manufacture example explain the present invention further, the present invention is not limited to these. In the following, “%” means “% by weight” and “parts” means “parts by weight”.

<製造例1>
正極の作製;
LiCoO2粉末9.0部、ケチェンブラック[アルドリッチ社製]0.5部及びポリフッ化ビニリデン[アルドリッチ社製]0.5部を乳鉢で十分に混合した後、1−メチル−2−ピロリドン[東京化成工業(株)製]7.0部を添加し、更に乳鉢で十分に混合してスラリーを得た。得られたスラリーを、大気中でワイヤーバーを用いて厚さ20μmのアルミニウム電解箔上の片面に塗布し、100℃で15分間乾燥させた後、更に減圧下(10mmHg)、80℃で5分間乾燥して、15.95mmφに打ち抜き、膜厚30μmの正極を作製した。
<Production Example 1>
Production of positive electrode;
After thoroughly mixing 9.0 parts of LiCoO2 powder, 0.5 part of Ketjen Black [manufactured by Aldrich] and 0.5 part of polyvinylidene fluoride [manufactured by Aldrich] in a mortar, 1-methyl-2-pyrrolidone [Tokyo [Made by Kasei Kogyo Co., Ltd.] 7.0 parts was added and further mixed well in a mortar to obtain a slurry. The obtained slurry was applied to one side of an aluminum electrolytic foil having a thickness of 20 μm using a wire bar in the atmosphere, dried at 100 ° C. for 15 minutes, and further under reduced pressure (10 mmHg) at 80 ° C. for 5 minutes. It dried and punched out to 15.95 mm diameter and produced the positive electrode with a film thickness of 30 micrometers.

<製造例2>
負極の作製;
平均粒子径約8〜12μmの黒鉛粉末92.5部、ポリフッ化ビニリデン7.5部及びN−メチルピロリドン[東京化成工業(株)製]200部を乳鉢で十分に混合しスラリーを得た。得られたスラリーを、厚さ20μmの銅箔の片面に塗布し、100℃で15分間乾燥して溶媒を蒸発させた後、16.15mmφに打ち抜き、プレス機で厚さ30μmにして負極を作製した。
<Production Example 2>
Production of negative electrode;
A slurry was obtained by sufficiently mixing 92.5 parts of graphite powder having an average particle size of about 8 to 12 μm, 7.5 parts of polyvinylidene fluoride and 200 parts of N-methylpyrrolidone [manufactured by Tokyo Chemical Industry Co., Ltd.] in a mortar. The obtained slurry was applied to one side of a 20 μm thick copper foil, dried at 100 ° C. for 15 minutes to evaporate the solvent, punched to 16.15 mmφ, and made a negative electrode with a thickness of 30 μm using a press. did.

<製造例3>
二次電池用セルの作製;
2032型コインセル内の両端に、製造例1及び2で得られた正極及び負極を、それぞれの塗布面が向き合うように配置して二次電池用セルを作製した。
<Production Example 3>
Production of secondary battery cells;
A positive battery and a negative electrode obtained in Production Examples 1 and 2 were arranged at both ends in the 2032 type coin cell so that the respective coated surfaces faced to produce a secondary battery cell.

<製造例4>
直鎖ポリシロキサン(以下、Si−1と略記する)の合成;
撹拌機、温度計及び還流管を備えつけた反応容器に、(3−クロロプロピル)メチルジメトキシシラン(アルドリッチ社製)1.52部(8.3mmol)、ジメチルジメトキシシラン(アルドリッチ社製)1.0部(8.3mmol)、トリメチルメトキシシラン(アルドリッチ社製)0.35部(3.3mmol)及びメタノール2.5部を仕込み、−10℃に冷却し、濃硫酸0.05部を添加した。−10℃に冷却したままイオン交換水0.3部を30分間かけて滴下し、加水分解を行った。2時間撹拌した後、室温に戻し、トルエン5部を加えて30分間撹拌後2時間静置した。二層分離したうちの上層を取り出し、溶媒を減圧留去し直鎖ポリシロキサン(Si−1)1.52部(収率72.3%)を得た。
<Production Example 4>
Synthesis of linear polysiloxane (hereinafter abbreviated as Si-1);
In a reaction vessel equipped with a stirrer, a thermometer and a reflux tube, 1.53-part (8.3 mmol) of (3-chloropropyl) methyldimethoxysilane (manufactured by Aldrich), dimethyldimethoxysilane (manufactured by Aldrich) 1.0 Part (8.3 mmol), 0.35 part (3.3 mmol) of trimethylmethoxysilane (manufactured by Aldrich) and 2.5 parts of methanol were cooled to −10 ° C., and 0.05 part of concentrated sulfuric acid was added. While cooling to −10 ° C., 0.3 part of ion-exchanged water was added dropwise over 30 minutes for hydrolysis. After stirring for 2 hours, the temperature was returned to room temperature, 5 parts of toluene was added, and the mixture was stirred for 30 minutes and allowed to stand for 2 hours. The upper layer of the two separated layers was taken out, and the solvent was distilled off under reduced pressure to obtain 1.52 parts of linear polysiloxane (Si-1) (yield 72.3%).

<製造例5>
環状ポリシロキサン(以下、Si−2と略記する)の合成;
撹拌機、温度計及び還流管を備えつけた反応容器に、(3−クロロプロピル)メチルジメトキシシラン(アルドリッチ社製)1.52部(8.3mmol)、ジメチルジメトキシシラン(アルドリッチ社製)1.0部(8.3mmol)及びメタノール2.5部を仕込み、−10℃に冷却し、濃硫酸0.05部を添加した。−10℃に冷却したままイオン交換水0.3部を30分間かけて滴下し、加水分解を行った。2時間撹拌した後、室温に戻し、トルエン5部を加えて2時間撹拌した後、室温に戻し、トルエン5部を加えて30分間撹拌後2時間静置した。二層分離したうちの上層を取り出し、溶媒を減圧留去し環状ポリシロキサン(Si−2)1.32部(収率75.4%)を得た。
<Production Example 5>
Synthesis of cyclic polysiloxane (hereinafter abbreviated as Si-2);
In a reaction vessel equipped with a stirrer, a thermometer and a reflux tube, 1.53-part (8.3 mmol) of (3-chloropropyl) methyldimethoxysilane (manufactured by Aldrich), dimethyldimethoxysilane (manufactured by Aldrich) 1.0 Parts (8.3 mmol) and 2.5 parts of methanol were charged, cooled to −10 ° C., and 0.05 parts of concentrated sulfuric acid was added. While cooling to −10 ° C., 0.3 part of ion-exchanged water was added dropwise over 30 minutes for hydrolysis. After stirring for 2 hours, the temperature was returned to room temperature, 5 parts of toluene was added and stirred for 2 hours, then returned to room temperature, 5 parts of toluene was added, stirred for 30 minutes, and allowed to stand for 2 hours. The upper layer of the two separated layers was taken out, and the solvent was distilled off under reduced pressure to obtain 1.32 parts (yield 75.4%) of cyclic polysiloxane (Si-2).

<製造例6>
N−(4−ビニルベンジル)イミダゾール(以下、Im−1と略記する)の合成;
撹拌機、温度計及び冷却管を備えつけた反応容器に、イミダゾール(アルドリッチ社製)1.0部(14.7mmol)、アセトニトリル10部及び炭酸ナトリウム0.5部を仕込み、クロロメチルスチレン(アルドリッチ社製)2.24部(14.7mmol)を1時間かけて滴下し、滴下後更に1時間撹拌した。溶媒を減圧留去した後、アセトンを溶剤としたアルミナカラム(150mesh、Brockman1,standard grade、アルドリッチ社製)によって精製し、N−(4−ビニルベンジル)イミダゾール(Im−1)2.43部(収率89.8%)を得た。
<Production Example 6>
Synthesis of N- (4-vinylbenzyl) imidazole (hereinafter abbreviated as Im-1);
A reaction vessel equipped with a stirrer, a thermometer, and a cooling tube was charged with 1.0 part (14.7 mmol) of imidazole (manufactured by Aldrich), 10 parts of acetonitrile and 0.5 part of sodium carbonate, and chloromethylstyrene (Aldrich). (Manufactured) 2.24 parts (14.7 mmol) was added dropwise over 1 hour, followed by further stirring for 1 hour. After the solvent was distilled off under reduced pressure, the residue was purified by an alumina column (150 mesh, Blockman 1, standard grade, manufactured by Aldrich) using acetone as a solvent, and 2.43 parts of N- (4-vinylbenzyl) imidazole (Im-1) ( Yield 89.8%) was obtained.

<製造例7>
ジ(3,6−ジオキサヘプチル)(4−ビニルベンジル)アミン(以下、Am−1と略記する)の合成;
撹拌機、温度計及び冷却管を備えつけた反応容器に、ジ(3,6−ジオキサヘプチル)アミン(アルドリッチ社製)1.0部(5.2mmol)、アセトニトリル10部及び炭酸ナトリウム0.5部を仕込み、クロロメチルスチレン(アルドリッチ社製)0.79部(5.2mmol)を1時間かけて滴下し、滴下後更に1時間撹拌した。溶媒を減圧留去した後、アセトンを溶剤としたアルミナカラム(150mesh、Brockman1,standard grade、アルドリッチ社製)によって精製し、ジ(3,6−ジオキサヘプチル)(4-ビニルベンジル)アミン(Am−1)1.12部(収率70.2%)を得た。
<Production Example 7>
Synthesis of di (3,6-dioxaheptyl) (4-vinylbenzyl) amine (hereinafter abbreviated as Am-1);
In a reaction vessel equipped with a stirrer, a thermometer and a condenser, 1.0 part (5.2 mmol) of di (3,6-dioxaheptyl) amine (Aldrich), 10 parts of acetonitrile and 0.5% of sodium carbonate Then, 0.79 part (5.2 mmol) of chloromethylstyrene (manufactured by Aldrich) was added dropwise over 1 hour, followed by further stirring for 1 hour. After the solvent was distilled off under reduced pressure, the residue was purified by an alumina column (150 mesh, Blockman 1, standard grade, manufactured by Aldrich) using acetone as a solvent, and di (3,6-dioxaheptyl) (4-vinylbenzyl) amine (Am -1) 1.12 parts (yield 70.2%) were obtained.

<製造例8>
N−(2−ブテン酸メチル)イミダゾール(以下、Im−2と略記する)の合成;
撹拌機、温度計及び冷却管を備えつけた反応容器に、イミダゾール(アルドリッチ社製)1.0部(14.7mmol)、アセトニトリル10部及び炭酸ナトリウム0.5部を仕込み、4−ブロモ−2−ブテン酸メチルエステル[東京化成工業(株)製]2.63部(14.7mmol)を1時間かけて滴下し、滴下後更に1時間撹拌した。溶媒を減圧留去した後、アセトンを溶剤としたアルミナカラム(150mesh、Brockman1,standard grade、アルドリッチ社製)によって精製し、N−(2−ブテン酸メチル)イミダゾール(Im−2)2.06部(収率91.0%)を得た。
<Production Example 8>
Synthesis of N- (methyl 2-butenoate) imidazole (hereinafter abbreviated as Im-2);
In a reaction vessel equipped with a stirrer, a thermometer and a condenser, 1.0 part (14.7 mmol) of imidazole (manufactured by Aldrich), 10 parts of acetonitrile and 0.5 part of sodium carbonate were charged, and 4-bromo-2- 2.63 parts (14.7 mmol) of butenoic acid methyl ester [manufactured by Tokyo Chemical Industry Co., Ltd.] was added dropwise over 1 hour, followed by further stirring for 1 hour. After the solvent was distilled off under reduced pressure, the residue was purified by an alumina column (150 mesh, Blockman 1, standard grade, manufactured by Aldrich) using acetone as a solvent, and 2.06 parts of N- (methyl 2-butenoate) imidazole (Im-2). (Yield 91.0%) was obtained.

<製造例9>
N−(2−アクリロイルオキシプロピル)イミダゾール(以下、Im−3と略記する)の合成;
撹拌機、温度計及び冷却管を備えつけた反応容器に、イミダゾール(アルドリッチ社製)1.0部(14.7mmol)、アセトニトリル10部及び炭酸ナトリウム0.5部を仕込み、アクリル酸3−クロロプロピル[東京化成工業(株)製]2.01部(14.7mmol)を1時間かけて滴下し、滴下後更に1時間撹拌した。溶媒を減圧留去した後、アセトンを溶剤としたアルミナカラム(150mesh、Brockman1,standard grade、アルドリッチ社製)によって精製し、N−(2−アクリロイルオキシプロピル)イミダゾール(Im−3)2.16部(収率87.6%)を得た。
<Production Example 9>
Synthesis of N- (2-acryloyloxypropyl) imidazole (hereinafter abbreviated as Im-3);
In a reaction vessel equipped with a stirrer, a thermometer and a condenser tube, 1.0 part (14.7 mmol) of imidazole (manufactured by Aldrich), 10 parts of acetonitrile and 0.5 part of sodium carbonate were charged, and 3-chloropropyl acrylate was added. [Tokyo Chemical Industry Co., Ltd.] 2.01 parts (14.7 mmol) was added dropwise over 1 hour, and the mixture was further stirred for 1 hour after the addition. After the solvent was distilled off under reduced pressure, the residue was purified by an alumina column (150 mesh, Blockman 1, standard grade, manufactured by Aldrich) using acetone as a solvent, and 2.16 parts of N- (2-acryloyloxypropyl) imidazole (Im-3). (Yield 87.6%) was obtained.

<製造例10>
N−(4−ビニルベンジル)イミダゾリウムヘキサフルオロフォスファート変性直鎖ポリシロキサン(以下、A−1と略記する)の合成;[一般式(1)において、R1、R2、R3、R4及びR5=メチル基、a及びb=5、c及びd=0、Q1が一般式(3)で表される基であって、R9=水素原子、X−がPF6−、A1が一般式(6)で表される基であって、R13=メチレン基、Q6、Q7、Q8及びQ9=水素原子である化合物]
撹拌機、温度計及び冷却管を備えつけた反応容器に、製造例4で合成した(Si−1)1.0部(0.6mmol)、アセトニトリル10部及び製造例6で合成した(Im−1)0.58部(2.9mmol)を仕込み、攪拌しながら均一に溶解させた後、撹拌下室温で24時間反応させた。次いで反応混合物にLiPF6[東京化成工業(株)製]0.48部(3.2mmol)を加え、更に24時間反応させた。アセトニトリルを減圧(10mmHg)によって除去した後、アセトンを溶剤としたアルミナカラム(150mesh、Brockman1,standard grade、アルドリッチ社製)によって精製し、(A−1)1.50部を得た(収率79.5%)。
<Production Example 10>
Synthesis of N- (4-vinylbenzyl) imidazolium hexafluorophosphate-modified linear polysiloxane (hereinafter abbreviated as A-1); [In the general formula (1), R1, R2, R3, R4 and R5 = A methyl group, a and b = 5, c and d = 0, Q1 is a group represented by the general formula (3), R9 = hydrogen atom, X- is PF6-, and A1 is the general formula (6). A compound represented by R13 = methylene group, Q6, Q7, Q8 and Q9 = hydrogen atom]
In a reaction vessel equipped with a stirrer, a thermometer and a cooling tube, 1.0 part (0.6 mmol) of (Si-1) synthesized in Production Example 4, 10 parts of acetonitrile and Synthesis in Production Example 6 (Im-1) ) 0.58 parts (2.9 mmol) was charged and dissolved uniformly with stirring, and then reacted at room temperature for 24 hours with stirring. Next, 0.48 part (3.2 mmol) of LiPF6 [manufactured by Tokyo Chemical Industry Co., Ltd.] was added to the reaction mixture, and the mixture was further reacted for 24 hours. Acetonitrile was removed by reduced pressure (10 mmHg) and then purified by an alumina column (150 mesh, Blockman1, standard grade, manufactured by Aldrich) using acetone as a solvent to obtain 1.50 parts of (A-1) (yield 79). .5%).

<製造例11>
N,N,N−ジ(3,6−ジオキサヘプチル)(4−ビニルベンジル)アンモニウムヘキサフルオロフォスファート変性直鎖ポリシロキサン(以下、A−2と略記する)の合成;[一般式(1)において、R1、R2、R3、R4及びR5=メチル基、a及びb=5、c及びd=0、Q1が一般式(4)で表される基であって、R10=エチレン基、R11=メチル基、g=1、m=2、Y−がPF6−、A2が一般式(6)で表される基であって、R13=メチレン基、Q6、Q7、Q8及びQ9=水素原子である化合物]
撹拌機、温度計及び冷却管を備えつけた反応容器に、製造例4で合成した(Si−1)1.0部(0.6mmol)、アセトニトリル10部及び製造例7で合成した(Am−1)0.90部(2.9mmol)を仕込み、撹拌しながら均一に溶解させた後、撹拌下室温で24時間反応させた。反応混合物にLiPF6[東京化成工業(株)製]0.48部(3.2mmol)を加え、更に24時間反応させた。アセトニトリルを減圧(10mmHg)によって除去した後、アセトンを溶剤としたアルミナカラム(150mesh、Brockman1,standard grade、アルドリッチ社製)によって精製し、(A−2)1.74部を得た(収率78.6%)。
<Production Example 11>
Synthesis of N, N, N-di (3,6-dioxaheptyl) (4-vinylbenzyl) ammonium hexafluorophosphate-modified linear polysiloxane (hereinafter abbreviated as A-2); [general formula (1 ), R1, R2, R3, R4 and R5 = methyl group, a and b = 5, c and d = 0, Q1 is a group represented by the general formula (4), R10 = ethylene group, R11 = Methyl group, g = 1, m = 2, Y- is PF6-, A2 is a group represented by the general formula (6), R13 = methylene group, Q6, Q7, Q8 and Q9 = hydrogen atom Some compounds]
In a reaction vessel equipped with a stirrer, a thermometer, and a condenser, 1.0 part (0.6 mmol) of (Si-1) synthesized in Production Example 4, 10 parts of acetonitrile, and Synthesis in Production Example 7 (Am-1) ) 0.90 part (2.9 mmol) was charged and dissolved uniformly with stirring, and then reacted at room temperature for 24 hours with stirring. To the reaction mixture, 0.48 part (3.2 mmol) of LiPF6 [manufactured by Tokyo Chemical Industry Co., Ltd.] was added, and the mixture was further reacted for 24 hours. Acetonitrile was removed by reduced pressure (10 mmHg), and then purified by an alumina column (150 mesh, Blockman 1, standard grade, manufactured by Aldrich) using acetone as a solvent to obtain 1.74 parts of (A-2) (yield 78 .6%).

<製造例12>
N−(4−ビニルベンジル)イミダゾリウムヘキサフルオロフォスファイト変性環状ポリシロキサン(以下、A−3と略記する)の合成;[一般式(2)においてR6、R7及びR8=メチル基、e=5、f=5、Q2が一般式(3)で表される基であって、R9=水素原子、X−がPF6−、A1が一般式(6)で表される基であって、R13=メチレン基、Q6、Q7、Q8及びQ9=水素原子である化合物]
撹拌機、温度計及び冷却管を備えつけた反応容器に、製造例5で合成した(Si−2)1.0部(0.6mmol)、アセトニトリル10部及び製造例6で合成した(Im−1)0.65部(3.3mmol)を仕込み、攪拌しながら均一に溶解させた後、撹拌下室温で24時間反応させた。反応混合物にLiPF6[東京化成工業(株)製]0.55部(3.6mmol)を加え、更に24時間反応させた。アセトニトリルを減圧(10mmHg)によって除去した後、アセトンを溶剤としたアルミナカラム(150mesh、Brockman1,standard grade、アルドリッチ社製)によって精製し、(A−3)1.79部を得た(収率88.7%)。
<Production Example 12>
Synthesis of N- (4-vinylbenzyl) imidazolium hexafluorophosphite-modified cyclic polysiloxane (hereinafter abbreviated as A-3); [In the general formula (2), R6, R7 and R8 = methyl group, e = 5 , F = 5, Q2 is a group represented by the general formula (3), R9 = hydrogen atom, X- is PF6-, A1 is a group represented by the general formula (6), and R13 = Methylene group, Q6, Q7, Q8 and Q9 = compound in which hydrogen atom]
In a reaction vessel equipped with a stirrer, a thermometer, and a condenser, 1.0 part (0.6 mmol) of (Si-2) synthesized in Production Example 5, 10 parts of acetonitrile, and Synthesis in Production Example 6 (Im-1 ) 0.65 part (3.3 mmol) was charged and dissolved uniformly with stirring, and then reacted at room temperature for 24 hours with stirring. To the reaction mixture, 0.55 part (3.6 mmol) of LiPF6 [manufactured by Tokyo Chemical Industry Co., Ltd.] was added, and the mixture was further reacted for 24 hours. Acetonitrile was removed under reduced pressure (10 mmHg) and then purified by an alumina column (150 mesh, Blockman 1, standard grade, manufactured by Aldrich) using acetone as a solvent to obtain 1.79 parts of (A-3) (yield 88). .7%).

<製造例13>
N,N,N−ジ(3,6−ジオキサヘプチル)(4−ビニルベンジル)アンモニウムヘキサフルオロフォスファイト変性環状ポリシロキサン(以下、A−4と略記する)の合成;[一般式(2)においてR6、R7及びR8=メチル基、e=5、f=5、Q2が一般式(4)で表される基であって、R10=エチレン基、R11=メチル基、g=1、m=2、Y−がBF4−、A2が一般式(6)で表される基であって、R13=メチレン基、Q6、Q7、Q8及びQ9=水素原子である化合物]
撹拌機、温度計及び冷却管を備えつけた反応容器に、製造例5で合成した(Si−2)1.0部(0.6mmol)、アセトニトリル10部及び製造例7で合成した(Am−1)1.02部(3.3mmol)を仕込み、撹拌しながら均一に溶解させた後、撹拌下室温で24時間反応させた。反応混合物にLiPF6[東京化成工業(株)製]0.55部(3.6mmol)を加え、更に24時間反応させた。アセトニトリルを減圧(10mmHg)によって除去した後、アセトンを溶剤としたアルミナカラム(150mesh、Brockman1,standard grade、アルドリッチ社製)によって精製し、(A−4)2.11部を得た(収率88.6%)。
<Production Example 13>
Synthesis of N, N, N-di (3,6-dioxaheptyl) (4-vinylbenzyl) ammonium hexafluorophosphite modified cyclic polysiloxane (hereinafter abbreviated as A-4); [general formula (2) R6, R7 and R8 = methyl group, e = 5, f = 5, Q2 is a group represented by the general formula (4), R10 = ethylene group, R11 = methyl group, g = 1, m = 2, Compounds in which Y- is BF4-, A2 is a group represented by the general formula (6), and R13 = methylene group, Q6, Q7, Q8 and Q9 = hydrogen atom]
In a reaction vessel equipped with a stirrer, a thermometer and a cooling tube, 1.0 part (0.6 mmol) of (Si-2) synthesized in Production Example 5, 10 parts of acetonitrile, and Synthesis in Production Example 7 (Am-1) ) 1.02 part (3.3 mmol) was charged and dissolved uniformly with stirring, and then reacted at room temperature for 24 hours with stirring. To the reaction mixture, 0.55 part (3.6 mmol) of LiPF6 [manufactured by Tokyo Chemical Industry Co., Ltd.] was added, and the mixture was further reacted for 24 hours. Acetonitrile was removed by reduced pressure (10 mmHg) and then purified by an alumina column (150 mesh, Blockman 1, standard grade, manufactured by Aldrich) using acetone as a solvent to obtain 2.11 parts of (A-4) (yield 88). .6%).

<製造例14>
N−(2−ブテン酸メチル)イミダゾリウムヘキサフルオロフォスファート変性直鎖ポリシロキサン(以下、A−5と略記する)の合成;[一般式(1)において、R1、R2、R3、R4及びR5=メチル基、a及びb=5、c及びd=0、Q1が一般式(4)で表される基であって、R10=エチレン基、R11=メチル基、g=1、m=2、Y−がPF6−、A1が一般式(5)で表される基であって、R12がメチレン基、Q3及びQ4が水素原子、Q5がメトキシカルボニル基である化合物]
撹拌機、温度計及び冷却管を備えつけた反応容器に、製造例4で合成した(Si−1)1.0部(0.6mmol)、アセトニトリル10部及び製造例8で合成した(Im−2)0.45部(3.3mmol)を仕込み、撹拌しながら均一に溶解させた後、撹拌下室温で24時間反応させた。反応混合物にLiPF6[東京化成工業(株)製]0.55部(3.6mmol)を加え、更に24時間反応させた。アセトニトリルを減圧(10mmHg)によって除去した後、アセトンを溶剤としたアルミナカラム(150mesh、Brockman1,standard grade、アルドリッチ社製)によって精製し、(A−5)1.51部を得た(収率85.3%)。
<Production Example 14>
Synthesis of N- (methyl 2-butenoate) imidazolium hexafluorophosphate-modified linear polysiloxane (hereinafter abbreviated as A-5); [In the general formula (1), R1, R2, R3, R4 and R5 = Methyl group, a and b = 5, c and d = 0, Q1 is a group represented by the general formula (4), and R10 = ethylene group, R11 = methyl group, g = 1, m = 2, Compound in which Y- is a group represented by PF6-, A1 is represented by the general formula (5), R12 is a methylene group, Q3 and Q4 are hydrogen atoms, and Q5 is a methoxycarbonyl group.
In a reaction vessel equipped with a stirrer, a thermometer and a cooling tube, 1.0 part (0.6 mmol) of (Si-1) synthesized in Production Example 4, 10 parts of acetonitrile and Synthesis in Production Example 8 (Im-2) ) 0.45 part (3.3 mmol) was charged and dissolved uniformly with stirring, and then reacted at room temperature for 24 hours with stirring. To the reaction mixture, 0.55 part (3.6 mmol) of LiPF6 [manufactured by Tokyo Chemical Industry Co., Ltd.] was added, and the mixture was further reacted for 24 hours. Acetonitrile was removed under reduced pressure (10 mmHg) and then purified by an alumina column (150 mesh, Blockman 1, standard grade, manufactured by Aldrich) using acetone as a solvent to obtain 1.51 parts of (A-5) (yield 85). .3%).

<製造例15>
N−(2−アクリロイルオキシプロピル)イミダゾリウムヘキサフルオロフォスファイト変性環状ポリシロキサン(以下、A−6と略記する。)の合成;[一般式(2)においてR6、R7及びR8=メチル基、e=5、f=5、Q2が一般式(4)で表される基であって、R10=エチレン基、R11=メチル基、g=1、m=2、Y−がPF6−、A2がアクリロイルオキシプロピル基である化合物]
撹拌機、温度計及び冷却管を備えつけた反応容器に、製造例5で合成した(Si−2)1.0部(0.6mmol)、アセトニトリル10部及び製造例9で合成した(Im−3)0.49部(3.3mmol)を仕込み、撹拌しながら均一に溶解させた後、撹拌下室温で24時間反応させた。反応混合物にLiPF6[東京化成工業(株)製]0.55部(3.6mmol)を加え、更に24時間反応させた。アセトニトリルを減圧(10mmHg)によって除去した後、アセトンを溶剤としたアルミナカラム(150mesh、Brockman1,standard grade、アルドリッチ社製)によって精製し、(A−6)1.57部を得た(収率86.9%)。
<Production Example 15>
Synthesis of N- (2-acryloyloxypropyl) imidazolium hexafluorophosphite-modified cyclic polysiloxane (hereinafter abbreviated as A-6); [in the general formula (2), R6, R7 and R8 = methyl group, e = 5, f = 5, Q2 is a group represented by the general formula (4), R10 = ethylene group, R11 = methyl group, g = 1, m = 2, Y- is PF6-, and A2 is acryloyl. Compound that is oxypropyl group]
In a reaction vessel equipped with a stirrer, a thermometer and a cooling tube, 1.0 part (0.6 mmol) of (Si-2) synthesized in Production Example 5, 10 parts of acetonitrile, and Synthesis in Production Example 9 (Im-3) ) 0.49 parts (3.3 mmol) was charged and dissolved uniformly with stirring, and then reacted at room temperature for 24 hours with stirring. To the reaction mixture, 0.55 part (3.6 mmol) of LiPF6 [manufactured by Tokyo Chemical Industry Co., Ltd.] was added, and the mixture was further reacted for 24 hours. Acetonitrile was removed by reduced pressure (10 mmHg) and then purified by an alumina column (150 mesh, Blockman 1, standard grade, manufactured by Aldrich) using acetone as a solvent to obtain 1.57 parts of (A-6) (yield 86 .9%).

<実施例1〜23>
電解液用添加剤の調整;
表1及び表2に記載した電解液用添加剤の各原料を配合して電解液用添加剤(実施例1〜19)を作製した。なお、表1及び表2に記載の各原料は、以下のものを使用した。
(B−1):ジメトキシエタン(ドナー数=24)
(B−2):ジエチレングリコールジエチルエーテル(ドナー数=22)
(B−3):トリエチレングリコールジエチルエーテル(ドナー数=25)
(B−4):デカエチレングリコールジペンチルエーテル(ドナー数=25)
(B−5):ジメチルスルホキシド(ドナー数=30)
(B−6):ジブチルスルホキシド(ドナー数=27)
(C−1):ビニレンカーボネート
(C−2):ジn−プロピルビニレンカーボネート
(C−3):ビニルエチレンカーボネート
(C−4):ジビニルカーボネート
(D−1):1,4−ブタンジオールジビニルエーテル
(D−2):ジエチレングリコールジビニルエーテル
(D−3):1,4−ビス(ビニロキシメチル)シクロヘキサン
<Examples 1 to 23>
Adjustment of electrolyte additives;
Each raw material of the additive for electrolyte solution described in Table 1 and Table 2 was mix | blended, and the additive for electrolyte solution (Examples 1-19) was produced. In addition, the following were used for each raw material described in Table 1 and Table 2.
(B-1): Dimethoxyethane (number of donors = 24)
(B-2): Diethylene glycol diethyl ether (donor number = 22)
(B-3): Triethylene glycol diethyl ether (donor number = 25)
(B-4): Decaethylene glycol dipentyl ether (number of donors = 25)
(B-5): Dimethyl sulfoxide (number of donors = 30)
(B-6): Dibutyl sulfoxide (donor number = 27)
(C-1): Vinylene carbonate (C-2): Di-n-propyl vinylene carbonate (C-3): Vinyl ethylene carbonate (C-4): Divinyl carbonate (D-1): 1,4-butanediol di Vinyl ether (D-2): Diethylene glycol divinyl ether (D-3): 1,4-bis (vinyloxymethyl) cyclohexane

Figure 2010165667
Figure 2010165667

Figure 2010165667
Figure 2010165667

<実施例20〜38>
電解液の調整;
エチレンカーボネート:ジエチルカーボネート=1:1(重量比)混合溶媒に、電解質としてLiPF6を1mol/Lの濃度になるように溶解し、電解質溶液を調整した。得られた電解質溶液に、実施例1〜19で得られた(X−1)〜(X−19)をそれぞれ表3及び表4に示した添加量になるように加え、均一透明になるまで撹拌し、実施例20〜40の電解液を調整した。
<Examples 20 to 38>
Adjustment of the electrolyte;
An electrolyte solution was prepared by dissolving LiPF6 as an electrolyte in a mixed solvent of ethylene carbonate: diethyl carbonate = 1: 1 (weight ratio) to a concentration of 1 mol / L. To the obtained electrolyte solution, (X-1) to (X-19) obtained in Examples 1 to 19 were added so as to have the addition amounts shown in Table 3 and Table 4, respectively, until uniform and transparent. Stirring and adjusting the electrolyte solutions of Examples 20-40.

<比較例1>
前記電解質溶液をそのまま用いて(電解液用添加剤を加えないで)、比較例1の電解液とした。
<Comparative Example 1>
The electrolyte solution of Comparative Example 1 was obtained using the electrolyte solution as it was (without adding an additive for electrolyte solution).

<比較例2>
前記電解質溶液97部に、ビニレンカーボネート(VC)3部を加え、均一透明になるまで撹拌し、比較例2の電解液を調整した。
<Comparative example 2>
To 97 parts of the electrolyte solution, 3 parts of vinylene carbonate (VC) was added and stirred until uniform and transparent to prepare the electrolyte solution of Comparative Example 2.

実施例20〜40及び比較例1〜3で調整した電解液を、それぞれ二次電池用セルに注液後密封し、以下の方法で電池出力、高温下での充放電サイクル特性及び過充電条件下での充放電サイクル特性を測定した。結果を表3及び表4に示す。   The electrolytic solutions prepared in Examples 20 to 40 and Comparative Examples 1 to 3 were sealed after being poured into secondary battery cells, respectively, and the battery output, charge / discharge cycle characteristics under high temperature and overcharge conditions were as follows. The charge / discharge cycle characteristics below were measured. The results are shown in Tables 3 and 4.

<電池出力の評価>
充放電測定装置「バッテリーアナライザー1470型」[東陽テクニカ(株)製]を用いて、SOC(State of charge、満充電状態における容量と所定時点における容量との比)が60%になるように充電を行った後、一定電流で放電し、10秒後の電圧を読み取る。この操作をいくつかの電流値で行い、横軸に電流値、縦軸に10秒後の電圧値をプロットして近似直線を作成し、近似直線が3Vと交差する際の電流値(I3.0Vと表記する)を読み取り、下記式から電池出力を算出する。
電池出力(W)=I3.0V×3.0
<Evaluation of battery output>
Using a charge / discharge measurement device “Battery Analyzer 1470” [manufactured by Toyo Technica Co., Ltd.], charge so that SOC (State of charge, the ratio of the capacity in a fully charged state to the capacity at a predetermined time) is 60%. Then, discharge at a constant current and read the voltage after 10 seconds. This operation is performed with several current values, and the current value is plotted on the horizontal axis and the voltage value after 10 seconds is plotted on the vertical axis to create an approximate line, and the current value (I3. The battery output is calculated from the following formula.
Battery output (W) = I3.0V × 3.0

<高温下での充放電サイクル特性の評価>
セルを50℃の恒温槽に入れた後、充放電測定装置「バッテリーアナライザー1470型」[東陽テクニカ(株)製]を用いて、0.2mA/cm2の電流で電圧0Vから2Vまで充電し、10分間の休止後、0.2mA/cm2の電流で電池電圧を0Vまで放電し、この充放電を繰り返した。この時の初回充電時の電池容量と500サイクル目充電時の電池容量を測定し、下記式から充放電サイクル特性を算出する。数値が大きい程、充放電サイクル特性が良好であることを示す。
高温下での充放電サイクル特性(%)
=(500サイクル目充電時の電池容量/初回充電時の電池容量)×100
<Evaluation of charge / discharge cycle characteristics at high temperature>
After putting the cell in a constant temperature bath at 50 ° C., using a charge / discharge measuring device “Battery Analyzer 1470 type” [manufactured by Toyo Technica Co., Ltd.], the battery is charged from 0 V to 2 V with a current of 0.2 mA / cm 2, After 10 minutes of rest, the battery voltage was discharged to 0 V with a current of 0.2 mA / cm2, and this charge / discharge was repeated. At this time, the battery capacity at the first charge and the battery capacity at the 500th charge are measured, and the charge / discharge cycle characteristics are calculated from the following equation. It shows that charging / discharging cycling characteristics are so favorable that a numerical value is large.
Charging / discharging cycle characteristics at high temperature (%)
= (Battery capacity at 500th cycle charge / Battery capacity at first charge) × 100

<過充電条件下での充放電サイクル特性の評価>
充放電電流を大きくすることで、過充電条件下でのサイクル特性を評価した。充放電測定装置「バッテリーアナライザー1470型」[東陽テクニカ(株)製]を用いて、0.8mA/cm2の電流で電圧0Vから2Vまで充電し、10分間の休止後、0.8mA/cm2の電流で電池電圧を0Vまで放電し、この充放電を繰り返した。この時の初回充電時の電池容量と500サイクル目充電時の電池容量を測定し、下記式から充放電サイクル特性を算出する。数値が大きい程、充放電サイクル特性が良好であることを示す。
過充電条件下での充放電サイクル特性(%)
=(500サイクル目充電時の電池容量/初回充電時の電池容量)×100
<Evaluation of charge / discharge cycle characteristics under overcharge conditions>
The cycle characteristics under overcharge conditions were evaluated by increasing the charge / discharge current. Using a charge / discharge measuring device “Battery Analyzer 1470 type” [manufactured by Toyo Technica Co., Ltd.], the battery was charged from 0 V to 2 V with a current of 0.8 mA / cm 2, and after resting for 10 minutes, 0.8 mA / cm 2 The battery voltage was discharged to 0 V with current, and this charge / discharge was repeated. At this time, the battery capacity at the first charge and the battery capacity at the 500th charge are measured, and the charge / discharge cycle characteristics are calculated from the following equation. It shows that charging / discharging cycling characteristics are so favorable that a numerical value is large.
Charging / discharging cycle characteristics (%) under overcharge conditions
= (Battery capacity at 500th cycle charge / Battery capacity at first charge) × 100

Figure 2010165667
Figure 2010165667

Figure 2010165667
Figure 2010165667

本発明の電解液用添加剤を用いて作製したリチウム二次電池は、電池出力が高く、高温下及び過充電条件下での充放電サイクル特性が優れている。高出力化の原因としては、負極表面でリチウムイオン伝導性の高いポリシリコーン皮膜が形成されているためと考える。高温下及び過充電条件下で充放電サイクル特性が向上する原因としては、保護膜の組成が、耐熱性、耐電圧性に優れるポリシリコーンであるためと考える。   The lithium secondary battery produced using the electrolyte solution additive of the present invention has a high battery output and excellent charge / discharge cycle characteristics under high temperature and overcharge conditions. The reason for the high output is considered to be that a polysilicon film having high lithium ion conductivity is formed on the negative electrode surface. The reason why the charge / discharge cycle characteristics are improved under high temperature and overcharge conditions is considered to be that the composition of the protective film is a polysilicon having excellent heat resistance and voltage resistance.

本発明の電解液用添加剤は、二次電池に添加すると、電池出力及び充放電サイクル特性が向上するため、携帯電話、パーソナルコンピューター及びハイブリッド自動車用二次電池等の電解液用添加剤として有用である。また、正極の保護膜やリチウムイオンキャパシタの電極保護膜へも応用できる。   When the additive for electrolytic solution of the present invention is added to a secondary battery, the battery output and charge / discharge cycle characteristics are improved. Therefore, the additive for electrolytic solution is useful as an additive for electrolytic solution of a secondary battery for mobile phones, personal computers, hybrid vehicles, etc It is. Further, it can be applied to a protective film for a positive electrode and an electrode protective film for a lithium ion capacitor.

Claims (16)

オニウム塩を構成する窒素原子を有する変性ポリシロキサンであって、前記窒素原子が重合性不飽和結合を有する有機基(a)と結合してなる変性ポリシロキサン(A)を含有してなる電解液用添加剤。   An electrolytic solution comprising a modified polysiloxane having a nitrogen atom constituting an onium salt, wherein the nitrogen atom is bonded to an organic group (a) having a polymerizable unsaturated bond. Additives. 更に、電解質解離促進剤(B)を含有してなる請求項1記載の電解液用添加剤。 The electrolyte solution additive according to claim 1, further comprising an electrolyte dissociation accelerator (B). 更に、重合性不飽和結合を有するカーボネート化合物(C)を含有してなる請求項1又は2記載の電解液用添加剤。 Furthermore, the additive for electrolyte solutions containing the carbonate compound (C) which has a polymerizable unsaturated bond. 更に、ビニルエーテル基又はプロペニルエーテル基を有する化合物(D)を含有してなる請求項1〜3のいずれか記載の電解液用添加剤。 Furthermore, the additive for electrolyte solutions in any one of Claims 1-3 formed by containing the compound (D) which has a vinyl ether group or a propenyl ether group. 前記変性ポリシロキサンが、一般式(1)で表される変性ポリシロキサンである請求項1〜4のいずれか記載の電解液用添加剤。
Figure 2010165667
[式中、R1、R2、R3、R4及びR5は、それぞれ独立して、アルキル基、ハロゲン化アルキル基、アリール基、アラルキル基、アルコキシ基及びアリールオキシ基からなる群から選ばれる少なくとも一種の基であり、Q1はオニウム塩を構成する窒素原子及び重合性不飽和結合を有する基、aは0〜200の数、bは4〜200の数であり、c及びdはそれぞれ独立して0又は1である。]
The additive for electrolytic solution according to any one of claims 1 to 4, wherein the modified polysiloxane is a modified polysiloxane represented by the general formula (1).
Figure 2010165667
[Wherein R1, R2, R3, R4 and R5 are each independently at least one group selected from the group consisting of an alkyl group, a halogenated alkyl group, an aryl group, an aralkyl group, an alkoxy group and an aryloxy group. Q1 is a group having a nitrogen atom and a polymerizable unsaturated bond constituting an onium salt, a is a number from 0 to 200, b is a number from 4 to 200, and c and d are each independently 0 or 1. ]
前記変性ポリシロキサンが、一般式(2)で表されるポリシロキサンである請求項1〜4のいずれか記載の電解液用添加剤。
Figure 2010165667
[式中、R6、R7及びR8は、それぞれ独立して、アルキル基、ハロゲン化アルキル基、アリール基、アラルキル基、アルコキシ基及びアリールオキシ基からなる群から選ばれる少なくとも一種であり、Q2はオニウム塩を構成する窒素原子及び重合性不飽和結合を有する基、eは0〜100の数、fは1〜100の数であって、かつe+fは7〜200である。]
The additive for electrolyte solution according to any one of claims 1 to 4, wherein the modified polysiloxane is a polysiloxane represented by the general formula (2).
Figure 2010165667
Wherein R6, R7 and R8 are each independently at least one selected from the group consisting of an alkyl group, a halogenated alkyl group, an aryl group, an aralkyl group, an alkoxy group and an aryloxy group, and Q2 is an onium A group having a nitrogen atom and a polymerizable unsaturated bond constituting the salt, e is a number of 0 to 100, f is a number of 1 to 100, and e + f is 7 to 200. ]
前記オニウム塩が、イミダゾリウム塩及び/又は第4級アンモニウム塩である請求項1〜6いずれか記載の電解液用添加剤。   The additive for an electrolytic solution according to any one of claims 1 to 6, wherein the onium salt is an imidazolium salt and / or a quaternary ammonium salt. 前記一般式(1)におけるQ1又は一般式(2)におけるQ2が、一般式(3)で表される基である請求項5又は6記載の電解液用添加剤。
Figure 2010165667
[式中、R9は水素原子、メチル基又はエチル基、A1は重合性不飽和結合を有する有機基(a)、X−はアニオンを表す。]
The additive for electrolytic solution according to claim 5 or 6, wherein Q1 in the general formula (1) or Q2 in the general formula (2) is a group represented by the general formula (3).
Figure 2010165667
[Wherein R9 represents a hydrogen atom, a methyl group or an ethyl group, A1 represents an organic group (a) having a polymerizable unsaturated bond, and X- represents an anion. ]
前記一般式(1)におけるQ1又は一般式(2)におけるQ2が、一般式(4)で表される基である請求項5又は6記載の電解液用添加剤。
Figure 2010165667
[式中、R10は炭素数2〜4のアルキレン基、R11は炭素数1〜3のアルキル基、A2は重合性不飽和結合を有する有機基(a)、mは1〜5の数、gは1〜3の整数、Y−はアニオンを表す。]
The additive for electrolytic solution according to claim 5 or 6, wherein Q1 in the general formula (1) or Q2 in the general formula (2) is a group represented by the general formula (4).
Figure 2010165667
[Wherein R10 is an alkylene group having 2 to 4 carbon atoms, R11 is an alkyl group having 1 to 3 carbon atoms, A2 is an organic group (a) having a polymerizable unsaturated bond, m is a number of 1 to 5, g Represents an integer of 1 to 3, and Y- represents an anion. ]
前記有機基(a)が、一般式(5)で表される基、一般式(6)で表される基又は(メタ)アクリロイルオキシアルキル基である請求項8又は9記載の電解液用添加剤。
Figure 2010165667
[式中、R12は炭素数1〜3のアルキレン基であり、Q3、Q4及びQ5は、それぞれ独立して水素原子、炭素数1〜4のアルキル基、フェニル基、ハロゲン原子、フルオロアルキル基、シアノ基、カルボキシル基、アルコキシ基又はアルコキシカルボニル基である。]
Figure 2010165667
[式中、R13は炭素数1〜3のアルキレン基であり、Q6は水素原子又はハロゲン原子であり、Q7、Q8及びQ9は、それぞれ独立して水素原子、炭素数が1〜4のアルキル基、フェニル基、ハロゲン原子、フルオロアルキル基、シアノ基、カルボキシル基、アルコキシ基又はアルコキシカルボニル基である。]
The addition for electrolyte solution according to claim 8 or 9, wherein the organic group (a) is a group represented by the general formula (5), a group represented by the general formula (6), or a (meth) acryloyloxyalkyl group. Agent.
Figure 2010165667
[Wherein R12 is an alkylene group having 1 to 3 carbon atoms, and Q3, Q4 and Q5 are each independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, a phenyl group, a halogen atom, a fluoroalkyl group, A cyano group, a carboxyl group, an alkoxy group or an alkoxycarbonyl group; ]
Figure 2010165667
[Wherein R13 is an alkylene group having 1 to 3 carbon atoms, Q6 is a hydrogen atom or a halogen atom, and Q7, Q8 and Q9 are each independently a hydrogen atom and an alkyl group having 1 to 4 carbon atoms. , Phenyl group, halogen atom, fluoroalkyl group, cyano group, carboxyl group, alkoxy group or alkoxycarbonyl group. ]
前記電解質解離促進剤(B)が、ドナー数が16〜40であるスルホキシド化合物及び/又はドナー数が16〜40であるエーテル化合物である請求項2〜10いずれか記載の電解液用添加剤。   The electrolyte solution additive according to any one of claims 2 to 10, wherein the electrolyte dissociation accelerator (B) is a sulfoxide compound having a donor number of 16 to 40 and / or an ether compound having a donor number of 16 to 40. 前記スルホキシド化合物が、一般式(7)で表されるスルホキシド化合物である請求項11記載の電解液用添加剤。
Figure 2010165667
[式中、R14及びR15はそれぞれ独立して炭素数1〜5のアルキル基である。]
The additive for electrolytic solution according to claim 11, wherein the sulfoxide compound is a sulfoxide compound represented by the general formula (7).
Figure 2010165667
[In formula, R14 and R15 are respectively independently a C1-C5 alkyl group. ]
前記エーテル化合物が、一般式(8)で表されるエーテル化合物である請求項11記載の電解液用添加剤。
R16−O−(CH2CH2O)n−R17 (8)
[式中、R16及びR17は、それぞれ独立して炭素数1〜5のアルキル基、nは1〜10の数である。]
The additive for electrolytic solution according to claim 11, wherein the ether compound is an ether compound represented by the general formula (8).
R16-O- (CH2CH2O) n-R17 (8)
[In formula, R16 and R17 are respectively independently a C1-C5 alkyl group, and n is a number of 1-10. ]
前記カーボネート化合物(C)が、一般式(9)で表される化合物及び/又は一般式(10)で表される化合物である請求項3〜13のいずれか記載の電解液用添加剤。
Figure 2010165667
[式中、R18及びR19は、それぞれ独立して水素原子又は炭素数1〜3のアルキル基である。]
Figure 2010165667
[式中、R20及びR21は、それぞれ独立して水素原子又は炭素数2〜3のアルケニル基であり、R20及びR21が共に水素原子となることはない。]
The additive for electrolytic solution according to any one of claims 3 to 13, wherein the carbonate compound (C) is a compound represented by the general formula (9) and / or a compound represented by the general formula (10).
Figure 2010165667
[In formula, R18 and R19 are respectively independently a hydrogen atom or a C1-C3 alkyl group. ]
Figure 2010165667
[Wherein, R20 and R21 are each independently a hydrogen atom or an alkenyl group having 2 to 3 carbon atoms, and R20 and R21 are not both hydrogen atoms. ]
前記化合物(D)が、ビニルエーテル基若しくはプロペニルエーテル基を1つ以上有するシクロヘキサン誘導体、一般式(11)で表される化合物又は一般式(12)で表される化合物である請求項4〜14のいずれか記載の電解液用添加剤。
R22−CH=CH−O−(CH2)p−O−CH=CH−R23 (11)
[式中、R22及びR23は、それぞれ独立して水素原子又はメチル基であり、pは4〜10の数である。]
R24−CH=CH−O−(C2H4O)q−O−CH=CH−R25 (12)
[式中、R24及びR25は、それぞれ独立して水素原子又はメチル基であり、qは1〜5の数である。]
The compound (D) is a cyclohexane derivative having one or more vinyl ether groups or propenyl ether groups, a compound represented by the general formula (11), or a compound represented by the general formula (12). The additive for electrolyte solutions in any one.
R22-CH = CH-O- (CH2) p-O-CH = CH-R23 (11)
[In formula, R22 and R23 are respectively independently a hydrogen atom or a methyl group, and p is a number of 4-10. ]
R24—CH═CH—O— (C2H4O) q—O—CH═CH—R25 (12)
[In formula, R24 and R25 are respectively independently a hydrogen atom or a methyl group, and q is a number of 1-5. ]
非水溶媒、電解質、及び請求項1〜15のいずれか記載の電解液用添加剤を含有してなる電解液。   An electrolytic solution comprising a nonaqueous solvent, an electrolyte, and the additive for electrolytic solution according to claim 1.
JP2009271342A 2008-12-18 2009-11-30 Additive for electrolyte Pending JP2010165667A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009271342A JP2010165667A (en) 2008-12-18 2009-11-30 Additive for electrolyte

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008321958 2008-12-18
JP2009271342A JP2010165667A (en) 2008-12-18 2009-11-30 Additive for electrolyte

Publications (1)

Publication Number Publication Date
JP2010165667A true JP2010165667A (en) 2010-07-29

Family

ID=42581664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009271342A Pending JP2010165667A (en) 2008-12-18 2009-11-30 Additive for electrolyte

Country Status (1)

Country Link
JP (1) JP2010165667A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012111335A1 (en) * 2011-02-18 2012-08-23 三洋化成工業株式会社 Agent for forming electrode protection film
WO2014157533A1 (en) * 2013-03-28 2014-10-02 富士フイルム株式会社 Nonaqueous secondary battery and electrolyte solution for nonaqueous secondary batteries
JP2015050182A (en) * 2013-09-02 2015-03-16 財團法人工業技術研究院Industrial Technology Research Institute Electrolyte solution, lithium battery, and electrochemical carrier structure
CN113381069A (en) * 2021-04-29 2021-09-10 万向一二三股份公司 Lithium ion battery electrolyte with high-temperature stable circulation and lithium ion battery
JP7660813B2 (en) 2021-09-21 2025-04-14 川上 総一郎 Lithium-ion secondary battery
CN119965357A (en) * 2025-02-08 2025-05-09 江西金晖锂电材料股份有限公司 High-rate lithium battery electrolyte based on synergistic effect of borate and phosphate and preparation method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012111335A1 (en) * 2011-02-18 2012-08-23 三洋化成工業株式会社 Agent for forming electrode protection film
WO2014157533A1 (en) * 2013-03-28 2014-10-02 富士フイルム株式会社 Nonaqueous secondary battery and electrolyte solution for nonaqueous secondary batteries
JP2014194875A (en) * 2013-03-28 2014-10-09 Fujifilm Corp Nonaqueous secondary battery, and electrolytic solution for nonaqueous secondary battery use
JP2015050182A (en) * 2013-09-02 2015-03-16 財團法人工業技術研究院Industrial Technology Research Institute Electrolyte solution, lithium battery, and electrochemical carrier structure
CN113381069A (en) * 2021-04-29 2021-09-10 万向一二三股份公司 Lithium ion battery electrolyte with high-temperature stable circulation and lithium ion battery
JP7660813B2 (en) 2021-09-21 2025-04-14 川上 総一郎 Lithium-ion secondary battery
CN119965357A (en) * 2025-02-08 2025-05-09 江西金晖锂电材料股份有限公司 High-rate lithium battery electrolyte based on synergistic effect of borate and phosphate and preparation method thereof

Similar Documents

Publication Publication Date Title
JP5340860B2 (en) Additive for electrolyte
CN102893443B (en) Comprise the Non-aqueous electrolyte and lithium secondary battery of the phosphonate derivative containing silicyl ester group
CN103222102B (en) Nonaqueous electrolytic solution
JP5245404B2 (en) Non-aqueous electrolyte
JP5956680B2 (en) Non-aqueous electrolyte for battery, novel compound, polymer electrolyte, and lithium secondary battery
JP5399556B2 (en) Nonaqueous electrolyte containing cyclic sulfone compound and lithium secondary battery
WO2012053644A1 (en) Cyclic sulfate compound, non-aqueous electrolyte solution containing same, and lithium secondary battery
JP2010044883A (en) Nonaqueous electrolyte and lithium secondary battery
JP6487147B2 (en) Nonaqueous electrolyte for battery and lithium secondary battery
WO2013002186A1 (en) Agent for forming electrode protection film, electrode, electrolyte solution, lithium secondary cell, lithium ion capacitor, and method for forming electrode protection film
JPWO2011129053A1 (en) Electrode protective film forming agent and electrolyte
JP2010165667A (en) Additive for electrolyte
JP5542827B2 (en) Non-aqueous electrolyte for lithium secondary battery containing unsaturated sultone compound, additive for lithium secondary battery, and lithium secondary battery
JP4586388B2 (en) Nonaqueous electrolyte, lithium ion secondary battery, and fluorine-containing ester compound
JP2010118337A (en) Additive for electrolyte
CN114430068B (en) Lithium ion battery electrolyte
CN118867393A (en) Electrolyte additives, non-aqueous electrolytes, lithium-ion batteries, battery modules, battery packs, and electrical devices
WO2025044451A1 (en) Gel monomer, gel electrolyte, and gel battery
JP2010245034A (en) Electrolyte for lithium secondary battery
JPWO2012111335A1 (en) Electrode protective film forming agent
JP2013026180A (en) Electrode protective film forming agent
CN116315105A (en) Electrolyte, secondary battery and electric equipment
CN117936895A (en) Preparation method of electrolyte additive composition and electrolyte composed of the same
JP2012256515A (en) Electrode protective film forming agent
JP2018133183A (en) Additive agent for battery