JP2010165528A - Aluminum alloy wire - Google Patents
Aluminum alloy wire Download PDFInfo
- Publication number
- JP2010165528A JP2010165528A JP2009006127A JP2009006127A JP2010165528A JP 2010165528 A JP2010165528 A JP 2010165528A JP 2009006127 A JP2009006127 A JP 2009006127A JP 2009006127 A JP2009006127 A JP 2009006127A JP 2010165528 A JP2010165528 A JP 2010165528A
- Authority
- JP
- Japan
- Prior art keywords
- wire
- alloy
- conductor
- layer
- aluminum alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910000838 Al alloy Inorganic materials 0.000 title claims abstract description 134
- 239000010410 layer Substances 0.000 claims abstract description 85
- 239000004020 conductor Substances 0.000 claims abstract description 80
- 238000005260 corrosion Methods 0.000 claims abstract description 70
- 230000007797 corrosion Effects 0.000 claims abstract description 70
- 239000011247 coating layer Substances 0.000 claims abstract description 63
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 62
- 239000010949 copper Substances 0.000 claims abstract description 32
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 32
- 229910052802 copper Inorganic materials 0.000 claims abstract description 29
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 24
- 229910000990 Ni alloy Inorganic materials 0.000 claims abstract description 22
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 21
- 239000000956 alloy Substances 0.000 claims abstract description 21
- 229910000881 Cu alloy Inorganic materials 0.000 claims abstract description 19
- 239000000463 material Substances 0.000 claims description 38
- 229910052751 metal Inorganic materials 0.000 claims description 17
- 239000002184 metal Substances 0.000 claims description 17
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 9
- 229910052718 tin Inorganic materials 0.000 claims description 9
- 239000011701 zinc Substances 0.000 claims description 9
- 229910052725 zinc Inorganic materials 0.000 claims description 7
- 229910001297 Zn alloy Inorganic materials 0.000 claims description 5
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 4
- 230000002093 peripheral effect Effects 0.000 claims description 3
- 238000000748 compression moulding Methods 0.000 claims description 2
- 229910001128 Sn alloy Inorganic materials 0.000 claims 1
- 238000005491 wire drawing Methods 0.000 description 16
- 238000000034 method Methods 0.000 description 15
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 10
- 239000000470 constituent Substances 0.000 description 10
- 230000000694 effects Effects 0.000 description 10
- 229910052749 magnesium Inorganic materials 0.000 description 10
- 239000000203 mixture Substances 0.000 description 9
- 229910052710 silicon Inorganic materials 0.000 description 8
- 239000007779 soft material Substances 0.000 description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 7
- 239000000654 additive Substances 0.000 description 7
- 230000000996 additive effect Effects 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 7
- 238000005266 casting Methods 0.000 description 7
- 239000013078 crystal Substances 0.000 description 7
- 239000012535 impurity Substances 0.000 description 7
- 230000007423 decrease Effects 0.000 description 6
- NWONKYPBYAMBJT-UHFFFAOYSA-L zinc sulfate Chemical compound [Zn+2].[O-]S([O-])(=O)=O NWONKYPBYAMBJT-UHFFFAOYSA-L 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- 229910052742 iron Inorganic materials 0.000 description 5
- 229910052748 manganese Inorganic materials 0.000 description 5
- 150000002739 metals Chemical class 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- 229910052709 silver Inorganic materials 0.000 description 5
- 239000011780 sodium chloride Substances 0.000 description 5
- 229910052726 zirconium Inorganic materials 0.000 description 5
- 230000006835 compression Effects 0.000 description 4
- 238000007906 compression Methods 0.000 description 4
- 230000006872 improvement Effects 0.000 description 4
- 239000011810 insulating material Substances 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 229910001369 Brass Inorganic materials 0.000 description 3
- 230000032683 aging Effects 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 239000010951 brass Substances 0.000 description 3
- 229910052804 chromium Inorganic materials 0.000 description 3
- 238000009749 continuous casting Methods 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 239000000446 fuel Substances 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000007747 plating Methods 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 238000005096 rolling process Methods 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 239000007921 spray Substances 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 238000002788 crimping Methods 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 238000007772 electroless plating Methods 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 238000009713 electroplating Methods 0.000 description 2
- 238000005098 hot rolling Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 238000001000 micrograph Methods 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000013585 weight reducing agent Substances 0.000 description 2
- 229910018084 Al-Fe Inorganic materials 0.000 description 1
- 229910018192 Al—Fe Inorganic materials 0.000 description 1
- 229910018191 Al—Fe—Si Inorganic materials 0.000 description 1
- 229910000521 B alloy Inorganic materials 0.000 description 1
- 229910017518 Cu Zn Inorganic materials 0.000 description 1
- 229910017755 Cu-Sn Inorganic materials 0.000 description 1
- 229910017752 Cu-Zn Inorganic materials 0.000 description 1
- 229910017927 Cu—Sn Inorganic materials 0.000 description 1
- 229910017943 Cu—Zn Inorganic materials 0.000 description 1
- 229910002549 Fe–Cu Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910000861 Mg alloy Inorganic materials 0.000 description 1
- 229910003023 Mg-Al Inorganic materials 0.000 description 1
- 229910018104 Ni-P Inorganic materials 0.000 description 1
- 229910018536 Ni—P Inorganic materials 0.000 description 1
- 229910018605 Ni—Zn Inorganic materials 0.000 description 1
- 229910018594 Si-Cu Inorganic materials 0.000 description 1
- 229910008465 Si—Cu Inorganic materials 0.000 description 1
- 229910007610 Zn—Sn Inorganic materials 0.000 description 1
- 238000003483 aging Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 1
- TVZPLCNGKSPOJA-UHFFFAOYSA-N copper zinc Chemical compound [Cu].[Zn] TVZPLCNGKSPOJA-UHFFFAOYSA-N 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000007712 rapid solidification Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 239000010944 silver (metal) Substances 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 229910021642 ultra pure water Inorganic materials 0.000 description 1
- 239000012498 ultrapure water Substances 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Non-Insulated Conductors (AREA)
- Insulated Conductors (AREA)
Abstract
【課題】耐食性に優れるアルミニウム合金線、アルミニウム合金撚り線、この合金撚り線を導体とする絶縁電線、この絶縁電線を具える端子付き電線を提供する。
【解決手段】自動車用電線の導体に用いられるアルミニウム合金線であって、銅や銅合金からなる端子部材が取り付けられる合金線の端部の外面に被覆層を具える。被覆層は、最外層がニッケル又はニッケル合金から構成される。アルミニウム合金と銅や銅合金との間では電池が形成されることで、アルミニウム合金が腐食する。一方、銅とニッケルとの電位差が小さいことで、銅とニッケルとの間で電池が作られ難くなる。従って、アルミニウム合金線の表面にニッケル又はニッケル合金が存在することで、アルミニウム合金と端子部材との間での電食を低減することができる。
【選択図】図2An aluminum alloy wire excellent in corrosion resistance, an aluminum alloy stranded wire, an insulated wire using the alloy stranded wire as a conductor, and an electric wire with a terminal including the insulated wire are provided.
An aluminum alloy wire used for a conductor of an automobile electric wire, and a coating layer is provided on an outer surface of an end portion of an alloy wire to which a terminal member made of copper or copper alloy is attached. The outermost layer of the coating layer is made of nickel or a nickel alloy. A battery is formed between the aluminum alloy and copper or copper alloy, and the aluminum alloy is corroded. On the other hand, since the potential difference between copper and nickel is small, it becomes difficult to make a battery between copper and nickel. Therefore, the presence of nickel or a nickel alloy on the surface of the aluminum alloy wire can reduce electrolytic corrosion between the aluminum alloy and the terminal member.
[Selection] Figure 2
Description
本発明は、電線の導体に用いられるアルミニウム合金線及びアルミニウム合金撚り線、この合金線などを導体とする絶縁電線、この絶縁電線と端子部材とを具える端子付き電線に関するものである。特に、耐食性に優れるアルミニウム合金線及び端子付き電線に関するものである。 The present invention relates to an aluminum alloy wire and an aluminum alloy stranded wire used for a conductor of an electric wire, an insulated wire using the alloy wire as a conductor, and an electric wire with a terminal including the insulated wire and a terminal member. In particular, the present invention relates to an aluminum alloy wire and a terminal-attached electric wire having excellent corrosion resistance.
従来、自動車や飛行機などの搬送機器、ロボットなどの産業機器の電線は、その端部において、絶縁層を除去して導体を露出させ、この導体部分に端子を取り付けて利用されている。電線の導体や端子の構成材料は、導電性に優れた銅や銅合金といった銅系材料が主流である。 Conventionally, electric wires of transport equipment such as automobiles and airplanes and industrial equipment such as robots are used by removing an insulating layer and exposing a conductor at an end thereof, and attaching a terminal to the conductor. Copper-based materials such as copper and copper alloys, which are excellent in conductivity, are the mainstream as constituent materials for conductors and terminals of electric wires.
昨今、自動車の高性能化や高機能化が急速に進められてきており、車載される各種電気機器、制御機器などの増加に伴い、これらの機器に使用される電線も増加傾向にある。一方、近年、環境保全のため、自動車や飛行機などの燃費の向上が望まれている。軽量化すると、燃費を向上できる。そこで、電線の軽量化のために、比重が銅の約1/3であるアルミニウムやその合金を導体に用いることが検討されている(特許文献1)。 In recent years, the performance and functionality of automobiles have been rapidly increased, and with the increase of various electric devices and control devices mounted on the vehicle, the number of electric wires used for these devices is also increasing. On the other hand, in recent years, improvement of fuel consumption of automobiles, airplanes and the like is desired for environmental protection. When the weight is reduced, fuel consumption can be improved. Therefore, in order to reduce the weight of the electric wire, use of aluminum having a specific gravity of about 1/3 of copper or an alloy thereof as a conductor has been studied (Patent Document 1).
アルミニウム合金線を導体とした電線に対して、耐食性を向上することが望まれている。 It is desired to improve the corrosion resistance of an electric wire using an aluminum alloy wire as a conductor.
上述のように端子は、銅や銅合金からなるものが多い。そのため、導体の構成材料がアルミニウム合金である場合、導体の構成材料と端子の構成材料とが異種の金属であることから、アルミニウム合金からなる導体と銅などからなる端子との間で電池が形成され、アルミニウム合金が腐食する。 As described above, the terminal is often made of copper or a copper alloy. Therefore, when the constituent material of the conductor is an aluminum alloy, a battery is formed between the conductor made of an aluminum alloy and the terminal made of copper or the like because the constituent material of the conductor and the constituent material of the terminal are different metals. And the aluminum alloy corrodes.
特許文献1では、上記電食を低減するために、端子において導体が溶接される箇所を除く部分に錫メッキを施すことを提案している。しかし、特許文献1では、導体に対して、耐食性を向上するための構成が検討されていない。また、本発明者らが調べたところ、経年劣化により、端子に施された錫が母材の銅と合金化すると、アルミニウム合金の腐食が進行し易いとの知見を得た。そのため、導体自体が耐食性に優れることが望まれる。 In Patent Document 1, in order to reduce the electrolytic corrosion, it is proposed that tin plating is performed on a portion of the terminal excluding the portion where the conductor is welded. However, Patent Document 1 does not discuss a configuration for improving the corrosion resistance of a conductor. Further, as a result of investigation by the present inventors, it was found that corrosion of an aluminum alloy is likely to proceed when tin applied to a terminal is alloyed with copper as a base material due to aging. Therefore, it is desired that the conductor itself is excellent in corrosion resistance.
そこで、本発明の目的は、自動車用電線の導体に好適であり、耐食性に優れるアルミニウム合金線、及びアルミニウム合金撚り線を提供することにある。また、本発明の他の目的は、上記合金線や撚り線を導体とした耐食性に優れる絶縁電線、及び端子付き電線を提供することにある。 Then, the objective of this invention is suitable for the conductor of the electric wire for motor vehicles, and is providing the aluminum alloy wire and aluminum alloy strand wire which are excellent in corrosion resistance. Another object of the present invention is to provide an insulated wire excellent in corrosion resistance using the alloy wire or stranded wire as a conductor, and a wire with terminal.
アルミニウム合金線の耐食性を向上するには、アルミニウム合金と、端子部材の構成材料である銅や銅合金とで電池が形成されないようにすることが効果的である。そこで、アルミニウム合金と銅や銅合金との間で電池が形成されることを抑制するために、本発明は、アルミニウム合金線の表面に、銅や銅合金との電位差が小さい素材からなる層を具えることを提案する。 In order to improve the corrosion resistance of the aluminum alloy wire, it is effective to prevent a battery from being formed by the aluminum alloy and copper or a copper alloy which is a constituent material of the terminal member. Therefore, in order to suppress the formation of a battery between an aluminum alloy and copper or copper alloy, the present invention provides a layer made of a material having a small potential difference from copper or copper alloy on the surface of the aluminum alloy wire. Suggest to prepare.
本発明のアルミニウム合金線(以下、Al合金線と呼ぶ)は、自動車用電線の導体に用いられるものであり、このAl合金線の外面の少なくとも一部に被覆層を具える。この被覆層の最外層は、ニッケル又はニッケル合金から構成されている。 The aluminum alloy wire (hereinafter referred to as “Al alloy wire”) of the present invention is used as a conductor of an automobile electric wire, and includes a coating layer on at least a part of the outer surface of the Al alloy wire. The outermost layer of the coating layer is made of nickel or a nickel alloy.
本発明Al合金線は、異種の金属、特に、アルミニウムよりも貴な銅や銅合金といった金属からなる端子部材が接続されても、Al合金線の外面(表面)の少なくとも一部に具えるニッケル層又はニッケル合金層と上記端子部材との間で電池が形成され難い。従って、本発明Al合金線は、上記ニッケル層やニッケル合金層の存在により、端子部材との間での電食を低減することができ、耐食性に優れる。そのため、本発明Al合金線は、耐食性に優れることが望まれる自動車用電線の導体に好適に利用することができる。以下、本発明をより詳細に説明する。 The Al alloy wire of the present invention is nickel which is provided on at least a part of the outer surface (surface) of the Al alloy wire even when a terminal member made of a metal such as copper or copper alloy, which is more precious than aluminum, is connected. It is difficult to form a battery between the layer or the nickel alloy layer and the terminal member. Therefore, the Al alloy wire of the present invention can reduce electrolytic corrosion with the terminal member due to the presence of the nickel layer or nickel alloy layer, and is excellent in corrosion resistance. Therefore, the Al alloy wire of the present invention can be suitably used for a conductor of an automotive electric wire that is desired to have excellent corrosion resistance. Hereinafter, the present invention will be described in more detail.
[Al合金線及びAl合金撚り線]
《組成》
本発明Al合金線を構成するAl合金は、添加元素を含有し、残部がAl及び不可避的不純物からなる種々の組成のものが利用できる。添加元素は、例えば、Fe、Mg、Si、Cu、Zn、Ni、Mn、Ag、Cr及びZrから選択される1種以上が挙げられる。添加元素の好ましい合計含有量は0.005質量%以上5.0質量%以下、より好ましくは0.1質量%以上2.0質量%以下である。各元素の好ましい含有量は、質量%で、Fe:0.005%以上2.2%以下、Mg:0.05%以上1.0%以下、Mn,Ni,Zr,Zn,Cr及びAg:合計で0.005%以上0.2%以下、Cu:0.05%以上0.5%以下、Si:0.04%以上1.0%以下である。これらの添加元素は、1種でも2種以上を組み合わせて含有していてもよい。このような合金として、例えば、Al-Fe合金、Al-Fe-Mg合金、Al-Fe-Si合金、Al-Fe-Mg-(Mn,Ni,Zr,Ag)合金、Al-Fe-Cu合金、Al-Fe-Cu-(Mg,Si)合金、Al-Mg-Si-Cu合金などが挙げられる。
[Al alloy wire and Al alloy stranded wire]
"composition"
As the Al alloy constituting the Al alloy wire of the present invention, those having various compositions containing an additive element and the balance of Al and inevitable impurities can be used. Examples of the additive element include one or more selected from Fe, Mg, Si, Cu, Zn, Ni, Mn, Ag, Cr, and Zr. A preferable total content of additive elements is 0.005% by mass or more and 5.0% by mass or less, and more preferably 0.1% by mass or more and 2.0% by mass or less. The preferred content of each element is mass%, Fe: 0.005% to 2.2%, Mg: 0.05% to 1.0%, Mn, Ni, Zr, Zn, Cr, and Ag: 0.005% to 0.2% in total Cu: 0.05% to 0.5%, Si: 0.04% to 1.0%. These additive elements may be contained alone or in combination of two or more. Examples of such alloys include Al-Fe alloys, Al-Fe-Mg alloys, Al-Fe-Si alloys, Al-Fe-Mg- (Mn, Ni, Zr, Ag) alloys, and Al-Fe-Cu alloys. Al-Fe-Cu- (Mg, Si) alloy, Al-Mg-Si-Cu alloy, and the like.
Al合金の具体的な組成として、例えば、以下の(1)〜(6)が挙げられる。
(1) 質量%で、Feを0.90%以上1.20%以下、Mgを0.10%以上0.25%以下含有し、残部がAl及び不可避的不純物。
(2) 質量%で、Feを1.01%以上2.2%以下、Mgを0.05%以上0.5%以下、Mn,Ni,Zr,及びAgから選択される1種以上の元素を合計で0.005%以上0.2%以下含有し、残部がAl及び不可避的不純物。
(3) 質量%で、Feを1.01%以上2.2%以下、Cuを0.05%以上0.5%以下含有し、残部がAl及び不可避的不純物。
(4) 質量%で、Feを1.0%以上2.2%以下、Cuを0.05%以上0.5%以下含有し、更にMgを0.1%以上0.5%以下及びSiを0.04%以上0.3%以下の少なくとも1種を含有し、残部がAl及び不可避的不純物。
(5) 質量%で、Mgを0.2%以上1.0%以下、Siを0.1%以上1.0%以下、Cuを0.1%以上0.5%以下含有し、残部がAl及び不可避的不純物。
(6) 質量%で、Mgを0.2%以上1.0%以下、Siを0.1%以上1.0%以下、Cuを0.1%以上0.5%以下含有し、残部がAl及び不可避的不純物。但し、Mg及びSiの質量比Mg/Siが0.8≦Mg/Si≦2.7を満たす。
Specific examples of the Al alloy include the following (1) to (6).
(1) By mass%, Fe is 0.90% or more and 1.20% or less, Mg is 0.10% or more and 0.25% or less, and the balance is Al and inevitable impurities.
(2) By mass%, Fe is 1.01% or more and 2.2% or less, Mg is 0.05% or more and 0.5% or less, and one or more elements selected from Mn, Ni, Zr, and Ag are combined in a total of 0.005% or more and 0.2%. Contains below, the balance being Al and inevitable impurities.
(3) By mass%, Fe contains 1.01% or more and 2.2% or less, Cu contains 0.05% or more and 0.5% or less, and the balance is Al and inevitable impurities.
(4) Containing at least one of Fe by 1.0% to 2.2%, Cu by 0.05% to 0.5%, Mg by 0.1% to 0.5%, and Si by 0.04% to 0.3% by mass. Contains, the balance being Al and inevitable impurities.
(5) By mass%, Mg is 0.2% to 1.0%, Si is 0.1% to 1.0%, Cu is 0.1% to 0.5%, the balance being Al and inevitable impurities.
(6) By mass%, Mg is 0.2% to 1.0%, Si is 0.1% to 1.0%, Cu is 0.1% to 0.5%, the balance being Al and inevitable impurities. However, the mass ratio Mg / Si of Mg and Si satisfies 0.8 ≦ Mg / Si ≦ 2.7.
Feは、強度に優れるAl合金線が得られ、含有量が高いほどAl合金の強度が高まるが、導電率や靭性が低下し易く、伸線加工時などで断線が生じ易くなるため、Fe:2.2質量%以下が好ましい。Mn,Ni,Zr,Crは、導電率の低下が大きいものの、強度の向上効果が高い元素であり、Ag,Znは、導電率の低下が少なく、強度の向上効果をある程度有する。Cuは、導電率の低下が少なく、強度を向上することができる。Mgは、導電率の低下が大きいものの、強度の向上効果が高く、特にSiと同時に含有することで、強度をより向上できる。また、MgとSiを含有する場合に時効を行うと、時効硬化による強度の向上が期待できる。 Fe has an Al alloy wire with excellent strength.The higher the content, the higher the strength of the Al alloy, but the electrical conductivity and toughness tend to decrease, and wire breakage tends to occur during wire drawing, so Fe: 2.2 mass% or less is preferable. Mn, Ni, Zr, and Cr are elements that have a high effect of improving the strength, although the decrease in conductivity is large. Ag and Zn have a small effect of reducing the conductivity and have a certain effect on improving the strength. Cu has little decrease in conductivity and can improve strength. Although Mg has a large decrease in electrical conductivity, the effect of improving the strength is high, and in particular, the strength can be further improved by containing it together with Si. In addition, when aging is performed when Mg and Si are contained, an improvement in strength due to age hardening can be expected.
更に、上記Al合金は、Ti及びBの少なくとも一方を含有すると、鋳造時のAl合金の結晶組織を微細にする効果があり、微細な結晶組織による強度の向上が期待できる。この微細化効果を十分に得るには、質量割合で、Tiを100ppm以上500ppm以下、Bを10ppm以上50ppm以下含有することが好ましい。 Furthermore, when the Al alloy contains at least one of Ti and B, there is an effect of making the crystal structure of the Al alloy at the time of casting fine, and an improvement in strength due to the fine crystal structure can be expected. In order to sufficiently obtain this fine effect, it is preferable that Ti is contained in a mass ratio of 100 ppm to 500 ppm and B is contained in an amount of 10 ppm to 50 ppm.
《特性》
上記組成のAl合金から構成されると共に後述するように伸線後に適宜軟化処理を施すことで、導電率:58%IACS以上、伸び:10%以上といった導電性及び靭性に優れるAl合金線とすることができる。添加元素の種類や量、軟化条件にもよるが、本発明Al合金線は、導電率:59%IACS以上、伸び:25%以上を満たすこともできる。靭性に優れることで、導体における端子部材との境界近傍で導体が破断し難く、本発明Al合金線は、端子付き電線の導体に好適に利用することができる。また、本発明Al合金線は、引張強さが110MPa以上200MPa以下であると、高靭性と高強度とを両立することができて好ましい。添加元素(種類や含有量)、製造条件(伸線加工時の加工度(断面減少率)、軟化条件など)を適宜調整することで、導電率、伸び、引張強さが上記特定の範囲を満たすAl合金線が得られる。
"Characteristic"
It is composed of an Al alloy having the above composition and, as will be described later, by appropriately performing a softening treatment after drawing, an Al alloy wire having excellent conductivity and toughness such as conductivity: 58% IACS or more and elongation: 10% or more is obtained. be able to. Although depending on the kind and amount of additive elements and softening conditions, the Al alloy wire of the present invention can also satisfy electrical conductivity: 59% IACS or more and elongation: 25% or more. By being excellent in toughness, the conductor hardly breaks in the vicinity of the boundary between the conductor and the terminal member, and the Al alloy wire of the present invention can be suitably used for the conductor of the electric wire with terminal. The Al alloy wire of the present invention preferably has a tensile strength of 110 MPa or more and 200 MPa or less because both high toughness and high strength can be achieved. By appropriately adjusting additive elements (type and content), manufacturing conditions (working degree during wire drawing (cross-sectional reduction rate), softening conditions, etc.), conductivity, elongation, and tensile strength are within the above specified ranges. A satisfying Al alloy wire is obtained.
《断面積》
本発明Al合金線は、伸線加工時の加工度を適宜調整することで断面積を変化させることができる。後述するように断面積が小さい場合に耐食性の向上効果が大きい。自動車用電線の導体では、パワーケーブル用導体が最も大きな断面積を有しており、100mm2(100sq)程度である。一方、信号線用導体では、断面積が50mm2以下のものが多い。従って、本発明Al合金線や撚り線、圧縮線材を用いた導体の断面積が8mm2(8sq)以下(例えば、Al合金線の断面形状を円形状とする場合、線径(直径)が3.2mm以下)、更には断面積が3mm2(3sq)以下、取り分け断面積が1mm2(1sq)以下の場合、被覆層が存在することによる耐食性の向上効果が顕著である。
<Cross-sectional area>
The Al alloy wire of the present invention can change the cross-sectional area by appropriately adjusting the degree of processing at the time of wire drawing. As described later, when the cross-sectional area is small, the effect of improving the corrosion resistance is large. Among the conductors for automobile wires, the power cable conductor has the largest cross-sectional area, which is about 100 mm 2 (100 sq). On the other hand, many signal line conductors have a cross-sectional area of 50 mm 2 or less. Therefore, the cross-sectional area of the conductor using the Al alloy wire, stranded wire, and compressed wire of the present invention is 8 mm 2 (8 sq) or less (for example, when the cross-sectional shape of the Al alloy wire is circular, the wire diameter (diameter) is 3.2. mm or less), and further, when the cross-sectional area is 3 mm 2 (3 sq) or less, and especially when the cross-sectional area is 1 mm 2 (1 sq) or less, the effect of improving the corrosion resistance due to the presence of the coating layer is remarkable.
《断面形状》
本発明Al合金線は、伸線加工時のダイス形状によって種々の断面形状を有することができる。断面円形状が代表的であり、その他、楕円形状、矩形や六角形などの多角形状などの断面形状が挙げられる。形状は特に問わない。
"Cross-sectional shape"
The Al alloy wire of the present invention can have various cross-sectional shapes depending on the die shape at the time of wire drawing. A cross-sectional circular shape is typical, and other cross-sectional shapes such as an elliptical shape, a polygonal shape such as a rectangle or a hexagon are listed. The shape is not particularly limited.
《線材の形態》
<単線>
上記本発明Al合金線は、単線のまま利用することができる。
<撚り線>
上記本発明Al合金線を複数用意して撚り合わせた撚り線とすることもできる。細径のAl合金線(単線)であっても撚り合わせることで、強度の高い線材とすることができる。撚り合わせ本数は、特に問わない。例えば、7,11,19,37本が挙げられる。また、本発明Al合金撚り線は、撚り合わせた後、圧縮成形した圧縮線材とすると、単に撚り合わせた状態よりも線径が小さい線材とすることができる。
《Wire form》
<Single wire>
The Al alloy wire of the present invention can be used as it is.
<Stranded wire>
A plurality of the above-described Al alloy wires of the present invention can be prepared and twisted together. Even a thin Al alloy wire (single wire) can be made into a high strength wire by twisting together. The number of twists is not particularly limited. For example, 7,11,19,37 are mentioned. In addition, when the Al alloy stranded wire of the present invention is a compression wire that is compression-molded after being twisted, the wire diameter can be made smaller than that of a simply twisted state.
[被覆層]
《組成》
本発明Al合金線の外面に具える被覆層は、少なくとも最外層がニッケル(Ni)又はニッケル合金からなる。Niは、銅や銅合金との電位差が小さく、銅や銅合金との間で電池を作り難いことで、Al合金と銅や銅合金との間での電食を低減できる。ニッケル合金は、Ni-P合金、Ni-B合金、Ni-Zn合金などが挙げられる。
[Coating layer]
"composition"
In the coating layer provided on the outer surface of the Al alloy wire of the present invention, at least the outermost layer is made of nickel (Ni) or a nickel alloy. Ni has a small potential difference from copper or copper alloy, and it is difficult to make a battery with copper or copper alloy, so that electrolytic corrosion between Al alloy and copper or copper alloy can be reduced. Examples of the nickel alloy include Ni-P alloy, Ni-B alloy, Ni-Zn alloy and the like.
被覆層は、ニッケル又はニッケル合金のみからなる単層でもよいし、ニッケル又はニッケル合金からなる最外層とAl合金線との間に別の材質からなる中間層を具える多層構造、即ち、Al合金線の直上に設けられた中間層と、この中間層の上に設けられた上記最外層とを具える構成でもよい。中間層の構成材料は、銅(Cu)、銅合金、亜鉛(Zn)、及び亜鉛合金から選択される少なくとも1種の金属が挙げられる。これらの金属は、Al合金とニッケルやニッケル合金との双方になじみがよく、Al合金とニッケルやニッケル合金との間に存在されることで、最外層とAl合金線との間を密着させ易い。中間層は、1層でも2層以上でもよい。銅合金は、Cu-Sn合金、Cu-Zn合金、亜鉛合金は、Zn-Sn合金が挙げられる。 The coating layer may be a single layer made only of nickel or nickel alloy, or a multilayer structure including an intermediate layer made of another material between the outermost layer made of nickel or nickel alloy and the Al alloy wire, that is, an Al alloy. A configuration including an intermediate layer provided immediately above the line and the outermost layer provided on the intermediate layer may be employed. Examples of the constituent material of the intermediate layer include at least one metal selected from copper (Cu), copper alloy, zinc (Zn), and zinc alloy. These metals are familiar to both Al alloys and nickel and nickel alloys, and are present between Al alloys and nickel or nickel alloys, making it easy to adhere between the outermost layer and Al alloy wires. . The intermediate layer may be one layer or two or more layers. Examples of the copper alloy include a Cu—Sn alloy and a Cu—Zn alloy, and examples of the zinc alloy include a Zn—Sn alloy.
なお、上記Al合金線の外面に上記金属による被覆層に加えて樹脂層を具えることでも、Al合金の露出部分を無くすことができるため、電食を低減できる。例えば、Al合金線の周面に上記被覆層を具え、端面に樹脂層を具える構成とすることができる。或いは、上記被覆層を具えていないAl合金線であっても、端子部材の表面においてAl合金線と直接接触しない箇所の少なくとも一部、好ましくは当該箇所の全域にニッケル、ニッケル合金、錫、錫合金、亜鉛、及び亜鉛合金から選択される少なくとも1種の金属、好ましくはニッケル又はニッケル合金からなる耐食層を設けたり、Al合金線の端部と端子部材との間に上記金属からなる薄板を存在させたり、Al合金線の端部を上記金属からなる有底筒状体で覆ってもよい。上記被覆層を具えるAl合金線に対して、更に、表面に上記耐食層を具える端子部材を利用すると、Al合金線の電食をより効果的に低減することができる。特に、耐食層がニッケルやニッケル合金からなる場合、線材と端子部材との間で実質的に電池が形成されないことで、Al合金線の電食を更に効果的に低減することができる。また、耐食層が錫からなる場合、耐食層が経時的に劣化しても、Al合金線自体にニッケル層又はニッケル合金層を具えることで、Al合金線が腐食し難い。 Note that by providing a resin layer on the outer surface of the Al alloy wire in addition to the coating layer made of the metal, the exposed portion of the Al alloy can be eliminated, so that electrolytic corrosion can be reduced. For example, it can be set as the structure which provides the said coating layer in the surrounding surface of Al alloy wire, and provides the resin layer in an end surface. Alternatively, even if it is an Al alloy wire that does not have the coating layer, at least a part of the surface of the terminal member that is not in direct contact with the Al alloy wire, preferably nickel, nickel alloy, tin, tin over the entire region At least one metal selected from an alloy, zinc, and a zinc alloy, preferably a corrosion-resistant layer made of nickel or a nickel alloy, or a thin plate made of the above metal between the end of an Al alloy wire and a terminal member You may make it exist or you may cover the edge part of Al alloy wire with the bottomed cylindrical body which consists of the said metal. When a terminal member having the corrosion-resistant layer on the surface is further used for the Al alloy wire having the coating layer, the electrolytic corrosion of the Al alloy wire can be more effectively reduced. In particular, when the corrosion-resistant layer is made of nickel or a nickel alloy, the electrolytic corrosion of the Al alloy wire can be further effectively reduced by substantially not forming a battery between the wire and the terminal member. Further, when the corrosion-resistant layer is made of tin, even if the corrosion-resistant layer deteriorates with time, the Al alloy wire is hardly corroded by providing the Al alloy wire itself with a nickel layer or a nickel alloy layer.
《厚さ》
最外層の厚さは、0超15μm以下といった非常に薄くても、耐食性の向上に十分に効果がある。15μm超と厚いと、端子部材を取り付ける際に被覆層が剥離し易くなる。被覆層が多層構造である場合、合計厚さは15μm以下が好ましい。被覆層が多層構造である場合、合計厚さが15μm超と厚いと、端子部材を取り付ける際に被覆層が剥離し易くなる。一方、被覆層が薄過ぎるとピンホールが出来易くなる。ピンホールが存在すると、ピンホール部分で電食が加速的に進む。そのため、被覆層がニッケル又はニッケル合金からなる単層の場合、厚さは1μm以上15μm以下が好ましい。被覆層が多層構造である場合、下層にピンホールが存在しても、その上の層によりピンホールが埋められるため、各層は薄くてもよく、合計厚さは1μm以上15μm以下がより好ましく、各層の厚さは0μm超10μm以下が好ましい。
"thickness"
Even if the thickness of the outermost layer is very thin, such as more than 0 and 15 μm or less, it is sufficiently effective for improving the corrosion resistance. If it is thicker than 15 μm, the coating layer is easily peeled off when the terminal member is attached. When the coating layer has a multilayer structure, the total thickness is preferably 15 μm or less. When the coating layer has a multilayer structure, if the total thickness is thicker than 15 μm, the coating layer is easily peeled off when the terminal member is attached. On the other hand, if the coating layer is too thin, pinholes are easily formed. When pinholes exist, electrolytic corrosion proceeds at the pinholes at an accelerated rate. Therefore, when the coating layer is a single layer made of nickel or a nickel alloy, the thickness is preferably 1 μm or more and 15 μm or less. When the coating layer has a multilayer structure, even if pinholes are present in the lower layer, the pinholes are filled with the upper layer, so each layer may be thin, and the total thickness is more preferably 1 μm or more and 15 μm or less, The thickness of each layer is preferably more than 0 μm and 10 μm or less.
《被覆領域》
上記被覆層は、Al合金線の外面の少なくとも一部、特に、端子部材が取り付けられるAl合金線の端部においてその周方向の領域の少なくとも一部に設けられていることが好ましい。Al合金線を絶縁電線の導体として利用する場合、絶縁電線の端部は絶縁層が除去され、露出されたAl合金線(導体)に端子部材が取り付けられる。この露出箇所のうち、端子部材で覆われる箇所(端子部材に直接接触する箇所)は、Al合金線が大気(特に、大気中の水分の溶存酸素など)に接触し難いことから、Al合金線が腐食し難い。一方、上記露出箇所のうち、端子部材に覆われず、かつ絶縁層にも覆われていない端子部材近傍の箇所(以下、導体露出箇所と呼ぶ)は、端子部材の構成金属との間で電池を形成して、Al合金線が腐食し易い。そのため、Al合金線の端部において、少なくとも導体露出箇所となり得る領域は、上記被覆層を具えることが好ましく、当該端部においてその周方向の全域に上記被覆層を具えていてもよい。他方、Al合金線において端子部材が取り付けられず、端子部材から十分に離れた箇所は、通常、絶縁層で覆われるため、上記被覆層が無くてもよい。また、端子部材が取り付けられるAl合金線の端部において、その周方向だけでなく、端面にも上記被覆層が設けられていると、Al合金の露出部分を無くすことができるため、端子部材の構成金属との間で電池が形成されることを効果的に低減することができる。
<Coating area>
The coating layer is preferably provided on at least a part of the outer surface of the Al alloy wire, in particular, at least a part of the circumferential region at the end of the Al alloy wire to which the terminal member is attached. When an Al alloy wire is used as a conductor of an insulated wire, the insulating layer is removed from the end of the insulated wire, and a terminal member is attached to the exposed Al alloy wire (conductor). Of these exposed locations, the locations covered with the terminal members (locations that are in direct contact with the terminal members) are difficult for Al alloy wires to contact the atmosphere (especially dissolved oxygen in the atmosphere). Is difficult to corrode. On the other hand, among the exposed portions, a portion in the vicinity of the terminal member that is not covered by the terminal member and not covered by the insulating layer (hereinafter referred to as a conductor exposed portion) is a battery between the constituent metals of the terminal member. The Al alloy wire is easily corroded. Therefore, it is preferable that at least a region that can be exposed to the conductor in the end portion of the Al alloy wire includes the coating layer, and the end layer may include the coating layer in the entire circumferential direction. On the other hand, since the terminal member is not attached to the Al alloy wire and the portion sufficiently separated from the terminal member is usually covered with an insulating layer, the coating layer may not be provided. In addition, in the end portion of the Al alloy wire to which the terminal member is attached, not only the circumferential direction but also the end surface is provided with the coating layer, the exposed portion of the Al alloy can be eliminated. It can reduce effectively that a battery is formed between constituent metals.
《形成方法》
被覆層は、めっき法、CVD法やPVD法といった蒸着法などの種々の形成方法が利用できる。電気めっきや無電解めっき、溶融めっきといっためっき法は、被覆層を容易に形成することができる。また、中間層のZn層の形成には、ジンケート処理やダブルジンケート処理などを好適に利用することができる。被覆層の構成材料に応じて適宜形成方法を選択するとよい。被覆層の形成時期は、後述する。
<Formation method>
For the coating layer, various forming methods such as a plating method, a vapor deposition method such as a CVD method and a PVD method can be used. Plating methods such as electroplating, electroless plating, and hot dipping can easily form a coating layer. In addition, zincate treatment, double zincate treatment, or the like can be suitably used for forming the intermediate Zn layer. A formation method may be appropriately selected according to the constituent material of the coating layer. The formation time of the coating layer will be described later.
[絶縁電線]
上記Al合金線(単線)やAl合金撚り線、圧縮線材は、電線用導体に好適に利用することができる。用途に応じて、このまま導体として使用することもできるし、この導体の外周に絶縁材料により形成した絶縁層を具える絶縁電線として使用することもできる。絶縁材料は、適宜選択することができる。例えば、ポリ塩化ビニル(PVC)やノンハロゲン樹脂、難燃性に優れる材料などが挙げられる。絶縁層の厚さは、所望の絶縁強度を考慮して適宜選択することができ、特に限定されない。
[Insulated wire]
The Al alloy wire (single wire), the Al alloy twisted wire, and the compressed wire can be suitably used as a conductor for electric wires. Depending on the application, it can be used as a conductor as it is, or can be used as an insulated wire having an insulating layer formed of an insulating material on the outer periphery of the conductor. The insulating material can be selected as appropriate. For example, polyvinyl chloride (PVC), a non-halogen resin, a material excellent in flame retardancy, and the like can be given. The thickness of the insulating layer can be appropriately selected in consideration of desired insulating strength, and is not particularly limited.
[端子付き電線]
Al合金線やAl合金撚り線、圧縮線材を導体とした絶縁電線であって、例えば、導体の全周(端面を含んでもよい)に亘って上記被覆層を具える場合、この絶縁電線の端部において絶縁層を剥がして導体部分を露出させ、この露出させた導体部分に、外部機器などの接続対象に接続できるように端子部材を取り付けることで、本発明端子付き電線が得られる。或いは、Al合金線やAl合金撚り線、圧縮線材であって、その外周に上記ニッケルなどの被覆層を具えていないものを導体とした絶縁電線の場合、この絶縁電線の端部において絶縁層を剥がして、導体部分を露出させ、この露出させた導体部分に上記被覆層を設けてから端子部材を取り付けることで、或いは露出させた導体部分に端子部材を取り付けてから、端子部材に覆われずに露出されている導体露出箇所を覆うように上記被覆層を設けることで、本発明端子付き電線が得られる。
[Wire with terminal]
An insulated wire having a conductor made of an Al alloy wire, an Al alloy stranded wire, or a compressed wire, for example, when the covering layer is provided over the entire circumference of the conductor (which may include an end face), the end of the insulated wire The insulating layer is peeled off at the portion to expose the conductor portion, and a terminal member is attached to the exposed conductor portion so as to be connected to a connection target such as an external device, whereby the electric wire with terminal of the present invention is obtained. Alternatively, in the case of an insulated wire using an Al alloy wire, an Al alloy stranded wire, or a compressed wire material that does not have a coating layer such as nickel on the outer periphery thereof, an insulating layer is provided at the end of the insulated wire. The conductor part is exposed by peeling off, and the terminal layer is attached after the covering layer is provided on the exposed conductor part, or after the terminal member is attached to the exposed conductor part, the terminal member is not covered. An electric wire with a terminal of the present invention is obtained by providing the covering layer so as to cover the exposed conductor portion exposed to the wire.
上記端子付き電線は、複数の絶縁電線に対して一つの端子部材を共有するような電線群を含んでいてもよい。複数の絶縁電線は、結束具などにより一纏まりに束ねることで、ハンドリング性に優れる。このような端子付き電線は、軽量化が望まれている種々の分野、特に、燃費の向上のために更なる軽量化が望まれている自動車に好適に利用することができる。端子部材は、電線の端部にかしめる(圧着する)ことで装着される圧着端子を好適に利用することができる。 The said electric wire with a terminal may contain the electric wire group which shares one terminal member with respect to a some insulated wire. A plurality of insulated wires are excellent in handling property by being bundled together by a binding tool or the like. Such a terminal-attached electric wire can be suitably used in various fields in which weight reduction is desired, particularly in automobiles in which further weight reduction is desired in order to improve fuel consumption. As the terminal member, a crimp terminal attached by crimping (crimping) on the end of the electric wire can be preferably used.
[製造方法]
上記被覆層を具える本発明Al合金線は、例えば、鋳造→熱間圧延→(ビレット鋳造材の場合:均質化処理)→冷間伸線加工→(適宜、軟化処理)→被覆層形成という工程により形成することができる。
[Production method]
The Al alloy wire of the present invention comprising the coating layer is, for example, casting → hot rolling → (in the case of billet cast material: homogenization treatment) → cold wire drawing → (appropriate softening treatment) → coating layer formation It can be formed by a process.
鋳造は、ビレット鋳造でもよいが、急冷凝固により結晶粒や晶析出物を微細化して微細組織を有する鋳造材が得られる連続鋳造が好ましい。連続鋳造により、結晶の微細化による強度の向上や、微細な晶析出物の分散による靭性の向上を図ることができる。急冷には、水冷銅鋳型や強制水冷機構などを利用するとよい。冷却速度は、600〜700℃において20℃/sec以上が好ましい。 The casting may be billet casting, but continuous casting is preferred in which a cast material having a microstructure is obtained by refining crystal grains and crystal precipitates by rapid solidification. By continuous casting, it is possible to improve strength by refining crystals and toughness by dispersing fine crystal precipitates. For rapid cooling, a water-cooled copper mold or a forced water cooling mechanism may be used. The cooling rate is preferably 20 ° C./sec or more at 600 to 700 ° C.
TiやBを添加する場合、溶湯を鋳型に注湯する直前に添加すると、Tiなどの局所的な沈降を抑制して、Tiなどが均等に混合された鋳造材を製造することができて好ましい。 When adding Ti or B, adding just before pouring the molten metal into the mold is preferable because it suppresses local sedimentation of Ti and the like and can produce a cast material in which Ti and the like are evenly mixed. .
上記鋳造工程と圧延工程とは、連続的に行うと、鋳造材に蓄積される熱を利用して熱間圧延を容易に行えて、エネルギー効率がよい上に、バッチ式の鋳造方法と比較して、鋳造圧延材の生産性に優れる。 When the above casting process and rolling process are carried out continuously, it is possible to easily perform hot rolling using the heat accumulated in the cast material, and it is energy efficient and compared with a batch casting method. In addition, it is excellent in productivity of cast rolled material.
伸線加工工程において、加工度は、所望の線径に応じて適宜選択することができる。得られた伸線材は、所望の本数を用意して撚り合わせ、撚り線とすることもできる。 In the wire drawing step, the degree of processing can be appropriately selected according to the desired wire diameter. As for the obtained wire drawing material, a desired number can be prepared and twisted together to form a stranded wire.
軟化処理は、結晶組織の微細化、及び加工硬化によって高めた線材の強度を極端に低下させることなく軟化して、線材の靭性を高めるために行う。軟化処理の条件は、適宜選択するとよく、例えば、処理後の線材(単線材又は撚り線)の伸びが10%以上となるような条件により行う。軟化処理には、連続処理又はバッチ処理のいずれも利用できる。 The softening treatment is performed in order to increase the toughness of the wire by softening without extremely reducing the strength of the wire that has been increased by refinement of the crystal structure and work hardening. The conditions for the softening treatment may be appropriately selected. For example, the softening treatment is performed under such a condition that the elongation of the treated wire (single wire or stranded wire) is 10% or more. For the softening treatment, either continuous treatment or batch treatment can be used.
撚り線は、複数の伸線材又は軟材を撚り合わせることで得られ、圧縮線材は、この撚り線を圧縮成形することで得られる。撚り線や圧縮線材の場合、上記軟化処理は、撚り合わせ前の線材のみに施してもよいし、撚り合わせ前後の双方で行ってもよいし、撚り合わせ前の伸線材に施さず、撚り線や圧縮線材にのみ施してもよい。 The stranded wire is obtained by twisting together a plurality of wire drawing materials or soft materials, and the compression wire material is obtained by compression molding the stranded wire. In the case of a stranded wire or a compressed wire, the softening treatment may be performed only on the wire before twisting, or may be performed both before and after twisting, or not on the wire drawing material before twisting. Or may be applied only to the compressed wire.
伸線材や軟材、これらを撚り合わせた撚り線、圧縮線材に被覆層を形成することで、本発明Al合金線やAl合金撚り線が得られる。被覆層は、伸線材などの全長に亘って形成してもよいし、上述のように端子部材が取り付けられる端部のみに形成してもよい。撚り線や圧縮線材の場合、撚り合わされた状態で被覆層を形成してもよいが、撚り合わせる前の線材(伸線材、軟材)に被覆層を形成しておくと、撚り合せた線材間に被覆層が存在することにより、耐食性の向上効果を高められる。また、長尺な伸線材や軟材、これらを撚り合わせた撚り線、圧縮線材を切断して、所定長のAl合金線やAl合金撚り線を作製する場合、Al合金線やAl合金線の端面に被覆層を有していないものが得られる。この場合、別途、端面に被覆層を設けてもよい。軟化処理を行う場合であって、軟化処理時の加熱温度よりも融点が低い材料からなる被覆層を具えるときには、軟化処理後に被覆層を形成する。軟化処理時の加熱温度よりも融点が高い材料からなる被覆層を具えるときには、軟化処理の前後のいずれでも、被覆層を形成することができる。 The Al alloy wire of the present invention and the Al alloy stranded wire can be obtained by forming a coating layer on a wire drawing material, a soft material, a stranded wire obtained by twisting these together, or a compression wire. The covering layer may be formed over the entire length of the wire drawing material or the like, or may be formed only at the end portion to which the terminal member is attached as described above. In the case of a stranded wire or a compressed wire, the coating layer may be formed in a twisted state, but if a coating layer is formed on the wire (drawn wire, soft material) before being twisted, the space between the twisted wires The presence of the coating layer increases the effect of improving corrosion resistance. Also, when creating long-length Al alloy wires or Al alloy stranded wires by cutting long drawn or soft wires, stranded wires that are twisted together, or compressed wires, What has no coating layer on the end face is obtained. In this case, you may provide a coating layer in an end surface separately. When a softening process is performed and a covering layer made of a material having a melting point lower than the heating temperature during the softening process is provided, the covering layer is formed after the softening process. When a coating layer made of a material having a melting point higher than the heating temperature during the softening treatment is provided, the coating layer can be formed either before or after the softening treatment.
本発明Al合金線、本発明Al合金撚り線、本発明絶縁電線、及び本発明端子付き電線は、耐食性に優れる。 The Al alloy wire of the present invention, the twisted Al alloy wire of the present invention, the insulated wire of the present invention, and the electric wire with terminal of the present invention are excellent in corrosion resistance.
(試験例1)
Al合金線を導体とする絶縁電線の端部に圧着端子を取り付けた端子付き電線を作製して腐食試験を行い、耐食性を評価した。
(Test Example 1)
A terminal-attached electric wire with a crimp terminal attached to the end of an insulated electric wire using an Al alloy wire as a conductor was prepared and subjected to a corrosion test to evaluate the corrosion resistance.
試料のうち、電線は、鋳造→圧延→伸線→被覆層の形成→撚り線→軟化→絶縁層の形成という手順で作製した。具体的には、ベースとして純アルミニウム(99.7質量%以上Al)を用意して溶解し、得られた溶湯(溶融アルミニウム)に表1に示す添加元素を表1に示す含有量となるように投入して、Al合金溶湯を作製する。成分調整を行ったAl合金溶湯は、適宜、水素ガス除去処理や、異物除去処理を行うことが望ましい。 Among the samples, the electric wire was produced by the procedure of casting → rolling → drawing → formation of coating layer → twisted wire → softening → formation of insulating layer. Specifically, pure aluminum (99.7% by mass or more Al) is prepared and melted as a base, and the obtained molten metal (molten aluminum) is charged with the additive elements shown in Table 1 to the contents shown in Table 1. Then, an Al alloy molten metal is produced. It is desirable that the Al alloy molten metal whose components have been adjusted is appropriately subjected to a hydrogen gas removal treatment or a foreign matter removal treatment.
ベルト-ホイール式の連続鋳造圧延機を用いて、用意したAl合金溶湯に鋳造及び熱間圧延を連続的に施し、φ9.5mmのワイヤーロッド(連続鋳造圧延材)を作製する。 Using a belt-wheel type continuous casting and rolling machine, the prepared molten Al alloy is continuously cast and hot-rolled to produce a φ9.5 mm wire rod (continuously cast rolled material).
上記ワイヤーロッドに冷間伸線加工を施して、線径φ0.3mmの伸線材を作製した。 The wire rod was subjected to cold wire drawing to produce a wire drawing material having a wire diameter of φ0.3 mm.
上記伸線材に公知の電気めっき法、無電解めっき法、ジンケート処理、ダブルジンケート処理により、表1に示す組成の被覆層を施し、伸線材の全周面及び端面に被覆層を有する被覆線材を作製する。表1に示す被覆層は、欄の左側がAl合金線側、欄の右側が最外側であり、()内は光学顕微鏡の観察像を利用して測定した厚さを示し、「-」は、被覆層を有していないことを示す。なお、ジンケート処理、ダブルジンケート処理によるZn層は、せいぜい数十ナノオーダーの厚さであり、この厚さは、例えば、TEM(透過型電子顕微鏡)による観察像を利用して測定することができる。 A coated wire having the composition shown in Table 1 is applied to the wire drawing material by a known electroplating method, electroless plating method, zincate treatment, and double zincate treatment, and a coated wire material having a coating layer on the entire peripheral surface and end surface of the wire drawing material. Make it. In the coating layer shown in Table 1, the left side of the column is the Al alloy wire side, the right side of the column is the outermost side, () indicates the thickness measured using an observation image of an optical microscope, ``-'' , Indicating that it does not have a coating layer. Note that the zinc layer by the zincate treatment and the double zincate treatment has a thickness of several tens of nanometers at most, and this thickness can be measured using an observation image by a TEM (transmission electron microscope), for example. .
上記被覆線材を複数本撚り合わせて、撚り線を作製する。ここでは、内側3本、外側8本の合計11本の被覆線材を撚り合わせた。 A plurality of the above-mentioned covered wire materials are twisted together to produce a stranded wire. Here, a total of 11 covered wires, 3 inside and 8 outside, were twisted together.
得られた撚り線(断面積:約0.77mm2)に350℃×3時間の軟化処理(バッチ処理、還元ガス雰囲気)を施して軟材を作製する。なお、得られた軟材について、軟材を構成する各被覆線材の導電率、伸び、引張強さを調べたところ、いずれの被覆線材も、導電率:58%IACS以上、伸び:10%以上、引張強さ:110〜200MPaであった。得られた軟材の外周に、絶縁材料(ここでは、ハロゲンフリー絶縁材料)により、絶縁層(厚さ0.2mm)を形成して、絶縁電線を作製する。この絶縁電線の端部に圧着端子を取り付けて、図1に示す端子付き電線を作製する。 The obtained stranded wire (cross-sectional area: about 0.77 mm 2 ) is subjected to softening treatment (batch treatment, reducing gas atmosphere) at 350 ° C. for 3 hours to produce a soft material. Regarding the obtained soft material, the electrical conductivity, elongation, and tensile strength of each coated wire constituting the soft material were examined. As for all the coated wires, conductivity: 58% IACS or more, elongation: 10% or more Tensile strength: 110 to 200 MPa. An insulating layer (thickness 0.2 mm) is formed on the outer periphery of the obtained soft material with an insulating material (here, a halogen-free insulating material) to produce an insulated wire. A crimp terminal is attached to the end portion of the insulated wire to produce a terminal-attached wire shown in FIG.
端子付き電線10は、複数のAl合金線を撚り合わせてなる導体11と、導体11の外周を覆う絶縁層12とを具え、一端側の絶縁層12が剥ぎ取られて露出された導体11に端子部材(圧着端子)20が取り付けられている。端子部材20は、銅合金板の両縁側に適宜切り込みを入れてできた切片を折り曲げて形成したものであり、一端側の両切片22a,22bの縁が接するように二つ折りにされてなる平坦な雄端子部22を有する。また、電線10の絶縁層12部分を挟持するように、端子部材20の他端側の両切片21a,21bが折り曲げられている。端子部材20において上記絶縁層部分の挟持箇所と雄端子部22との間の中間部には、絶縁層12から露出された導体11が縦添えされ、この導体11を挟持するように両切片23a,23bが折り曲げられている。従って、露出された導体11の大部分は、切片23a,23bに覆われており、端面及びその近傍が切片23a,23bから露出した状態である。試料No.1-1〜1-7は、この露出部分に被覆層を具えており、Al合金の露出が実質的にゼロになっている。 The terminal-attached electric wire 10 includes a conductor 11 formed by twisting a plurality of Al alloy wires, and an insulating layer 12 covering the outer periphery of the conductor 11, and the insulating layer 12 on one end side is peeled off to expose the conductor 11. A terminal member (crimp terminal) 20 is attached. The terminal member 20 is formed by bending a piece formed by appropriately making cuts on both edge sides of the copper alloy plate, and is flattened so that the edges of both pieces 22a and 22b on one end side are in contact with each other. A male terminal portion 22 is provided. Further, both pieces 21a and 21b on the other end side of the terminal member 20 are bent so as to sandwich the insulating layer 12 portion of the electric wire 10. In the terminal member 20, a conductor 11 exposed from the insulating layer 12 is vertically attached to an intermediate portion between the sandwiched portion of the insulating layer portion and the male terminal portion 22, and both pieces 23a are sandwiched so as to sandwich the conductor 11. 23b is bent. Therefore, most of the exposed conductor 11 is covered with the segments 23a and 23b, and the end surface and the vicinity thereof are exposed from the segments 23a and 23b. Samples Nos. 1-1 to 1-7 have a coating layer on the exposed portion, and the exposure of the Al alloy is substantially zero.
耐食性は、以下のように評価した。耐食性の試験として、塩水噴霧試験が知られているが、この試験の試料のように、異種金属で構成され、電食が生じ得る試料に塩水噴霧試験を適用すると、電食による試料の損傷が大き過ぎて、耐食性の評価が実質的にできない。そこで、このような電食が生じ得る試料に対して耐食性を適切に評価するために、腐食の進行が比較的緩やかに行われる環境を模擬した、以下の試験方法を採用した。 Corrosion resistance was evaluated as follows. The salt spray test is known as a corrosion resistance test. However, if the salt spray test is applied to a sample that is composed of dissimilar metals and can undergo electrolytic corrosion, such as the sample in this test, the sample may be damaged by electrolytic corrosion. It is too large to evaluate the corrosion resistance substantially. Therefore, in order to appropriately evaluate the corrosion resistance of a sample in which such electrolytic corrosion can occur, the following test method simulating an environment where the progress of corrosion is performed relatively slowly was adopted.
まず、NaCl(電解質)を超純水(溶媒)に溶かして、濃度が26質量%の中性水溶液(200g)を作製する。また、平均粒径が100μm程度のシリカ(SiO2)の粉末:100gを用意する。用いた電解質、溶媒、シリカ粉末はいずれも市販品である。 First, NaCl (electrolyte) is dissolved in ultrapure water (solvent) to prepare a neutral aqueous solution (200 g) having a concentration of 26% by mass. Further, 100 g of silica (SiO 2 ) powder having an average particle diameter of about 100 μm is prepared. The electrolyte, solvent, and silica powder used are all commercially available products.
用意したシリカの粉末を濾紙上に載せ、用意した上記水溶液(26%NaCl)をシリカの粉末の上から滴下した後、150℃に加熱した恒温槽中に入れて乾燥し、NaClが付着した粉末を得る(Cl-付着量:35000ppm)。得られた粉末を試料の一部が目視により確認できる程度に、試料(特に、電線と端子部材との接合部分)に満遍なく振り掛けて(厚さ1mm以下)、60℃、95%RHに設定した恒温恒湿槽に入れ、6日間(144時間)保持する。6日後、恒温恒湿槽から試料を取り出し、腐食状況を調べた。具体的には、図1において、絶縁層12が除去されて導体11が露出された部分であって、切片23a,23bで挟持されている箇所付近を切断し(B-B切断)、この断面を観察して、残存率(%)={(残存しているAl合金線の面積)/(作製したAl合金線の面積)}×100を求め、この残存率により耐食性を評価する。面積は、断面写真に画像処理などを施すことで容易に求められる。上記残存率が高いほど、耐食性が高いと言える。その結果を表2に示す。なお、塩水噴霧試験を行ったところ、残存するAl合金線の面積の測定が困難なほど、試料の損傷が酷かった。 The prepared silica powder is placed on a filter paper, and the prepared aqueous solution (26% NaCl) is dropped from above the silica powder, then placed in a thermostatic chamber heated to 150 ° C., dried, and the NaCl adheres. the obtained (Cl - deposition amount: 35,000 ppm). Sprinkle the obtained powder evenly over the sample (especially the joint between the wire and the terminal member) to the extent that a part of the sample can be visually confirmed (thickness 1 mm or less), and set to 60 ° C and 95% RH. Put in a thermo-hygrostat and hold for 6 days (144 hours). Six days later, the sample was taken out from the thermo-hygrostat and the corrosion state was examined. Specifically, in FIG. 1, the portion where the insulating layer 12 is removed and the conductor 11 is exposed, and the vicinity of the portion sandwiched between the sections 23a and 23b is cut (BB cutting), and this cross section is observed. Then, the residual rate (%) = {(the area of the remaining Al alloy wire) / (the area of the produced Al alloy wire)} × 100 is obtained, and the corrosion resistance is evaluated based on the residual rate. The area can be easily obtained by performing image processing or the like on the cross-sectional photograph. It can be said that the higher the residual ratio, the higher the corrosion resistance. The results are shown in Table 2. In addition, when the salt spray test was conducted, the sample was so severely damaged that it was difficult to measure the area of the remaining Al alloy wire.
表2に示すように、最外層にニッケル又はニッケル合金からなる被覆層を具えるAl合金線を導体とした試料は、残存率が高く、耐食性に優れることが分かる。図2(A)は、試料No.1-3のB-B断面の顕微鏡写真、図2(B)は、試料No.1-100のB-B断面の顕微鏡写真、図2(C)は、被覆電線の断面の顕微鏡写真である。図2(A)〜(C)において、白っぽい領域がAl合金からなる部分であり、図2(A),(B)は、導体の一部を示す。なお、図2(C)の写真は、断面外形が円形状となるように撚り線に圧縮加工を施した圧縮線材を導体とした被覆電線を示す。図2(B)に示すように、上記被覆層を具えていない試料No.1-100は、Al合金線が腐食して欠損し、外形が崩れており、耐食性に劣ることが分かる。これに対して、上記被覆層を具えている試料No.1-3は、Al合金線が十分に残っており、耐食性に優れることが分かる。 As shown in Table 2, it can be seen that a sample using a conductor made of an Al alloy wire having a coating layer made of nickel or a nickel alloy as the outermost layer has a high residual rate and is excellent in corrosion resistance. Fig. 2 (A) is a micrograph of the BB cross section of sample No. 1-3, Fig. 2 (B) is a micro photo of the BB cross section of sample No. 1-100, and Fig. 2 (C) is the coated wire. It is a microscope picture of a section. 2A to 2C, the whitish region is a portion made of an Al alloy, and FIGS. 2A and 2B show a part of the conductor. Note that the photograph in FIG. 2 (C) shows a covered electric wire using a compressed wire obtained by compressing a stranded wire as a conductor so that the cross-sectional outer shape is circular. As shown in FIG. 2 (B), it can be seen that Sample No. 1-100, which does not have the coating layer described above, is inferior in corrosion resistance because the Al alloy wire is corroded and lost, and the outer shape is broken. On the other hand, it can be seen that Sample No. 1-3 provided with the coating layer has a sufficient Al alloy wire remaining and is excellent in corrosion resistance.
また、表2に示すように、被覆層にZnなどからなる中間層を具える場合、耐食性により優れていた。この理由は、中間層を具えることで、ニッケル又はニッケル合金からなる最外層が形成し易く、この最外層が十分に存在したためであると考えられる。 Further, as shown in Table 2, when the coating layer was provided with an intermediate layer made of Zn or the like, it was superior in corrosion resistance. The reason for this is considered to be that the outermost layer made of nickel or a nickel alloy is easily formed by providing the intermediate layer, and this outermost layer is sufficiently present.
更に、全周面にのみ被覆層を具え、端面に被覆層を具えない被覆線材を作製し、この被覆線材を用いて上述のように端子付き電線を作製して、上述のNaClが付着した粉末を用いた腐食試験を行い、耐食性を評価した。その結果、線材の端面にも被覆層を具える試料の方が、耐食性に優れていることを確認した。 Further, a coated wire material having a coating layer only on the entire peripheral surface and not having a coating layer on the end surface is produced. Using this coated wire material, an electric wire with a terminal is produced as described above, and the above-mentioned NaCl is adhered. A corrosion test was conducted to evaluate the corrosion resistance. As a result, it was confirmed that the sample having the coating layer on the end face of the wire rod was superior in corrosion resistance.
(試験例2)
導体が同一組成のAl合金線からなり、導体断面積が異なる絶縁電線を複数用意し、これらの絶縁電線を用いて、試験例1と同様にして端子付き電線を作製し、試験例1と同様にして耐食性を評価した。その結果を表3に示す。
(Test Example 2)
Prepare multiple insulated wires with conductors consisting of Al alloy wires with the same composition and different conductor cross-sectional areas, and use these insulated wires to make a terminal-attached wire in the same way as in Test Example 1, and as in Test Example 1. Thus, the corrosion resistance was evaluated. The results are shown in Table 3.
この試験では、表3に示す電線サイズを有する導体であって、導体を構成するAl合金線として被覆層を具えるものを用いた絶縁電線の試料No.2-1,2-2,2-3と、被覆層を具えていないものを用いた絶縁電線の試料No.2-110,2-120,2-130,2-200とを作製して、耐食性を比較した。導体は、試験例1と同様にして種々の線径の伸線材を用意し、適宜な本数を撚り合わせた後、圧縮加工し、更に軟化処理を施すことで作製した圧縮線材を利用した。例えば、試料No.2-1の導体は、試験例1と同様にして線径φ0.3mmの伸線材に被覆層を形成したものを合計11本撚り合せた後、試料No.2-200の導体は、試験例1と同様にして線径φ0.32mmの伸線材を用意し、この伸線材を合計128本撚り合わせた後、圧縮加工することで作製した圧縮線材を利用した。被覆層は、試験例1と同様に形成した。 In this test, sample Nos. 2-1, 2-2, 2- of insulated wires using conductors having the wire sizes shown in Table 3 and having a coating layer as an Al alloy wire constituting the conductors. 3 and sample Nos. 2-110, 2-120, 2-130, and 2-200 of insulated wires using those that did not have a coating layer were produced and their corrosion resistance was compared. As the conductor, wire rods with various wire diameters were prepared in the same manner as in Test Example 1, and after twisting an appropriate number of wires, the wire rods were compressed and then subjected to a softening treatment, and then used. For example, the conductor of sample No. 2-1 was twisted a total of 11 conductors with a wire diameter of φ0.3 mm formed in the same manner as in Test Example 1, and then the sample No. 2-200 As the conductor, a wire drawing material having a wire diameter of φ0.32 mm was prepared in the same manner as in Test Example 1, and after a total of 128 wires were twisted, a compression wire produced by compressing was used. The coating layer was formed in the same manner as in Test Example 1.
この試験結果により、Al合金線を導体とし、この導体の端部に端子部材が取り付けられた端子付き電線では、導体の断面積が大きければ、具体的には8mm2超であれば、最外層にニッケル又はニッケル合金からなる被覆層を具えていなくても、ある程度耐食性が高いことが分かる。一方、導体の断面積が8mm2以下である場合、最外層にニッケル又はニッケル合金からなる被覆層を具えることで、耐食性を高められることが分かる。このような結果になったのは、太いAl合金線では、銅や銅合金からなる端子部材が取り付けられる端部において、銅や銅合金の露出面積に対するAl合金の露出面積の比(以下、Al露出比と呼ぶ)が相対的に大きくなることから、電食が生じ難くなり、細いAl合金線では、Al露出比が小さくなる(銅などの露出面積が多くなる)ことから、電食が比較的進行し易くなったためであると考えられる。 The test results, and the conductor of Al alloy wire, the end wire with terminals to the terminal members attached to the conductor, the larger the cross-sectional area of the conductor, in particular if the 8 mm 2, greater than the outermost layer Even if it does not have a coating layer made of nickel or a nickel alloy, it can be seen that the corrosion resistance is somewhat high. On the other hand, when the cross-sectional area of the conductor is 8 mm 2 or less, it can be seen that the corrosion resistance can be improved by providing the outermost layer with a coating layer made of nickel or a nickel alloy. The result is that, in a thick Al alloy wire, the ratio of the exposed area of the Al alloy to the exposed area of the copper or copper alloy (hereinafter referred to as Al) at the end where the terminal member made of copper or copper alloy is attached. Electrolytic corrosion is less likely to occur because the exposure ratio is relatively large), and the Al exposure ratio is small for thin Al alloy wires (the exposed area of copper and the like is increased). This is thought to be because it became easier to proceed.
面積が異なる複数の黄銅板及びアルミニウム合金板(1.05質量%Fe-0.15質量%Mg-Al)を用意し、両板の一端を導線で繋ぐと共に、両板を0.5質量%濃度のNaCl水溶液に含浸する。この状態で、上記導線に電流計を取り付けて腐食電流を測定する。測定した電流値をアルミニウム合金板の面積で除して電流密度を求めた。図3に、黄銅に対するアルミニウム合金の面積比(Al露出比)と上記電流密度との関係を示す。図3から、面積比(Al露出比)が大きいほど、即ち、銅合金に対してアルミニウム合金の露出面積が大きいほど、電流密度が小さくなっていることが分かる。また、図3から、この面積比と電流密度との関係は比例的な関係ではなく、当該面積比が小さくなると電流密度が急激に大きくなることが分かる。この結果からも、特に、8mm2以下といった細いAl合金線の外面に上記ニッケルなどからなる被覆層を具えることで、Al合金線の電食をより効果的に低減することができると言える。 Prepare multiple brass plates and aluminum alloy plates (1.05 mass% Fe-0.15 mass% Mg-Al) with different areas, connect one end of both plates with a conductor, and impregnate both plates with 0.5 mass% NaCl aqueous solution To do. In this state, an ammeter is attached to the conducting wire and the corrosion current is measured. The current density was determined by dividing the measured current value by the area of the aluminum alloy plate. FIG. 3 shows the relationship between the area ratio of aluminum alloy to brass (Al exposure ratio) and the current density. FIG. 3 shows that the current density decreases as the area ratio (Al exposure ratio) increases, that is, as the exposed area of the aluminum alloy relative to the copper alloy increases. In addition, FIG. 3 shows that the relationship between the area ratio and the current density is not a proportional relationship, and that the current density increases rapidly as the area ratio decreases. From this result, it can be said that the electrolytic corrosion of the Al alloy wire can be more effectively reduced by providing the coating layer made of nickel or the like on the outer surface of the thin Al alloy wire of 8 mm 2 or less.
(試験例3)
端子部材(圧着端子)として、その表面に耐食層を具えるものを用意し、この圧着端子を取り付けた端子付き電線を作製し、試験例1と同様にして耐食性を評価した。その結果を表4に示す。
(Test Example 3)
A terminal member (crimp terminal) having a corrosion-resistant layer on its surface was prepared, and a terminal-attached electric wire to which this crimp terminal was attached was prepared, and the corrosion resistance was evaluated in the same manner as in Test Example 1. The results are shown in Table 4.
この試験では、絶縁電線の導体として、試験例2で作製した試料No.2-1と同様の軟材を利用した。圧着端子として、その表面のうち、導体との接触箇所以外の箇所に少なくとも錫(Sn)又はニッケル(Ni)による耐食層を具えるものを利用した。試料No.3-2は、錫による耐食層を具える圧着端子を熱処理した後、絶縁電線に取り付けて作製した試料であり、上記熱処理により圧着端子の経年劣化を模擬した。 In this test, the same soft material as Sample No. 2-1 produced in Test Example 2 was used as the conductor of the insulated wire. As the crimp terminal, one having a corrosion-resistant layer made of at least tin (Sn) or nickel (Ni) at a portion other than the contact portion with the conductor was used. Sample No. 3-2 was prepared by heat-treating a crimp terminal having a corrosion-resistant layer of tin and then attaching it to an insulated wire, and simulated the aging of the crimp terminal by the heat treatment.
表4に示すように、耐食層を具える端子部材(圧着端子)を具えると、耐食性を高め易いことが分かる。特に、耐食層がニッケルから構成されている場合、アルミニウム合金線からなる導体の外周に設けられた被覆層と上記耐食層との間で実質的に電池が形成されないことから、上記導体の耐食性の向上効果が顕著である。また、耐食層が錫から構成されている場合では、経時的に端子部材(特に耐食層)が劣化しても、アルミニウム合金線からなる導体が腐食し難いことが分かる。 As shown in Table 4, it can be seen that when a terminal member (crimp terminal) having a corrosion-resistant layer is provided, the corrosion resistance can be easily improved. In particular, when the corrosion-resistant layer is made of nickel, a battery is not substantially formed between the coating layer provided on the outer periphery of the conductor made of an aluminum alloy wire and the corrosion-resistant layer. The improvement effect is remarkable. Further, when the corrosion resistant layer is made of tin, it can be seen that the conductor made of the aluminum alloy wire is hardly corroded even if the terminal member (particularly the corrosion resistant layer) deteriorates with time.
なお、上述した実施形態は、本発明の要旨を逸脱することなく、適宜変更することが可能であり、上述した構成に限定されるものではない。例えば、Al合金線の組成、被覆層の組成及び厚さ、端子部材の組成を適宜変化させてもよい。また、撚り合わせる線材の大きさや形状、撚り本数を変更してもよい。 The above-described embodiment can be appropriately changed without departing from the gist of the present invention, and is not limited to the above-described configuration. For example, the composition of the Al alloy wire, the composition and thickness of the coating layer, and the composition of the terminal member may be appropriately changed. Moreover, you may change the magnitude | size and shape of a wire to twist together, and the number of twists.
本発明端子付き電線は、耐食性に優れる上に、軽量であることから、例えば、自動車の他、飛行機などの輸送機器、ロボットなどの産業機器の配線に好適に利用することができる。本発明絶縁電線は、上記本発明端子付き電線の構成材料に好適に利用することができる。本発明アルミニウム合金線及び本発明アルミニウム撚り線は、上記本発明絶縁電線の導体に好適に利用することができる。 The electric wire with terminal of the present invention is excellent in corrosion resistance and lightweight, and therefore can be suitably used for, for example, wiring of automobiles, transportation equipment such as airplanes, and industrial equipment such as robots. The insulated wire of the present invention can be suitably used as a constituent material for the above-described wire with a terminal of the present invention. The aluminum alloy wire of the present invention and the aluminum strand wire of the present invention can be suitably used for the conductor of the above insulated wire of the present invention.
10 端子付き電線 11 導体 12 絶縁層 20 端子部材
21a,21b,22a,22b,23a,23b 切片 22 雄端子部
10 Electric wire with terminal 11 Conductor 12 Insulation layer 20 Terminal material
21a, 21b, 22a, 22b, 23a, 23b Section 22 Male terminal
Claims (9)
前記合金線の外面の少なくとも一部に被覆層を具えており、
前記被覆層の最外層がニッケル又はニッケル合金から構成されていることを特徴とするアルミニウム合金線。 An aluminum alloy wire used for conductors of automobile wires,
A coating layer is provided on at least a part of the outer surface of the alloy wire;
An aluminum alloy wire, wherein the outermost layer of the coating layer is made of nickel or a nickel alloy.
前記中間層は、銅、銅合金、亜鉛、及び亜鉛合金から選択される少なくとも1種の金属から構成されていることを特徴とする請求項1に記載のアルミニウム合金線。 The coating layer comprises an intermediate layer provided immediately above the alloy wire, and the outermost layer provided on the intermediate layer,
2. The aluminum alloy wire according to claim 1, wherein the intermediate layer is made of at least one metal selected from copper, copper alloy, zinc, and zinc alloy.
前記導体は、請求項1〜4のいずれか1項に記載のアルミニウム合金線、複数の当該アルミニウム合金線を撚り合わせた撚り線、及び撚り線を圧縮成形した圧縮線材のいずれかであることを特徴とする絶縁電線。 An insulated wire having a conductor made of an aluminum alloy and an insulating layer on the outer periphery of the conductor,
The conductor is any one of the aluminum alloy wire according to any one of claims 1 to 4, a stranded wire obtained by twisting a plurality of the aluminum alloy wires, and a compressed wire material obtained by compression-molding a stranded wire. Characterized insulated wire.
前記絶縁電線において絶縁層が除去されて導体が露出された箇所であって、端子部材に覆われていない箇所の外面の少なくとも一部に前記被覆層を具えることを特徴とする端子付き電線。 The insulated wire according to claim 7, and a terminal member made of copper or a copper alloy attached to an end of the insulated wire,
An electric wire with a terminal, wherein the covering layer is provided on at least a part of an outer surface of a portion of the insulated wire where the insulating layer is removed and the conductor is exposed and is not covered with the terminal member.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009006127A JP2010165528A (en) | 2009-01-14 | 2009-01-14 | Aluminum alloy wire |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009006127A JP2010165528A (en) | 2009-01-14 | 2009-01-14 | Aluminum alloy wire |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2010165528A true JP2010165528A (en) | 2010-07-29 |
Family
ID=42581543
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009006127A Pending JP2010165528A (en) | 2009-01-14 | 2009-01-14 | Aluminum alloy wire |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2010165528A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101903234B1 (en) * | 2015-08-17 | 2018-10-01 | 히타치 긴조쿠 가부시키가이샤 | Battery terminal and method for manufacturing battery terminal |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5066171U (en) * | 1973-10-18 | 1975-06-14 | ||
JPH06203639A (en) * | 1993-01-06 | 1994-07-22 | Furukawa Electric Co Ltd:The | Electric cable conductor used for wiring and manufacture thereof |
JP2005108608A (en) * | 2003-09-30 | 2005-04-21 | Auto Network Gijutsu Kenkyusho:Kk | Connection structure of aluminum wire and copper terminal |
JP2008038207A (en) * | 2006-08-07 | 2008-02-21 | Hitachi Cable Ltd | Conductive aluminum alloy wiring material and wiring material using the same |
JP2010157363A (en) * | 2008-12-26 | 2010-07-15 | Misuzu:Kk | Conductor of electric wire for motor vehicle |
-
2009
- 2009-01-14 JP JP2009006127A patent/JP2010165528A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5066171U (en) * | 1973-10-18 | 1975-06-14 | ||
JPH06203639A (en) * | 1993-01-06 | 1994-07-22 | Furukawa Electric Co Ltd:The | Electric cable conductor used for wiring and manufacture thereof |
JP2005108608A (en) * | 2003-09-30 | 2005-04-21 | Auto Network Gijutsu Kenkyusho:Kk | Connection structure of aluminum wire and copper terminal |
JP2008038207A (en) * | 2006-08-07 | 2008-02-21 | Hitachi Cable Ltd | Conductive aluminum alloy wiring material and wiring material using the same |
JP2010157363A (en) * | 2008-12-26 | 2010-07-15 | Misuzu:Kk | Conductor of electric wire for motor vehicle |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101903234B1 (en) * | 2015-08-17 | 2018-10-01 | 히타치 긴조쿠 가부시키가이샤 | Battery terminal and method for manufacturing battery terminal |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6408530B2 (en) | Sheathed wire | |
JP4787885B2 (en) | Wire harness for wire harness and wire harness for automobile | |
CN105705665B (en) | Copper alloy wire, copper alloy twisted wire, covered electric cable, harness and copper alloy wire manufacturing method | |
JP2010157416A (en) | Aluminum alloy wire | |
CN104995322A (en) | Copper alloy wire, copper-alloy strand wire, coated electric wire, and electric wire with terminal | |
KR102362938B1 (en) | Aluminum alloy wire, aluminum alloy stranded wire, insulated wire, and terminal-attached wire | |
US11594346B2 (en) | Aluminum alloy wire, aluminum alloy strand wire, covered electrical wire, and terminal-equipped electrical wire | |
JP5365998B2 (en) | Electric wire with terminal and terminal member | |
CN111263824A (en) | Stranded conductor for insulated wire, flexible wire and cable | |
JP2010165529A (en) | Aluminum alloy wire | |
JPWO2020039711A1 (en) | Manufacturing method of coated electric wire, electric wire with terminal, copper alloy wire, copper alloy stranded wire, and copper alloy wire | |
JP2015133324A (en) | aluminum alloy wire | |
JP2010165528A (en) | Aluminum alloy wire | |
JP6840347B2 (en) | Manufacturing method of aluminum alloy wire |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20111227 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130809 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131007 |
|
A02 | Decision of refusal |
Effective date: 20131029 Free format text: JAPANESE INTERMEDIATE CODE: A02 |