[go: up one dir, main page]

JP2010163325A - Dispersant composition for hydraulic composition - Google Patents

Dispersant composition for hydraulic composition Download PDF

Info

Publication number
JP2010163325A
JP2010163325A JP2009007348A JP2009007348A JP2010163325A JP 2010163325 A JP2010163325 A JP 2010163325A JP 2009007348 A JP2009007348 A JP 2009007348A JP 2009007348 A JP2009007348 A JP 2009007348A JP 2010163325 A JP2010163325 A JP 2010163325A
Authority
JP
Japan
Prior art keywords
group
ether compound
hydrogen atom
copolymer
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009007348A
Other languages
Japanese (ja)
Other versions
JP5371457B2 (en
Inventor
Koji Koyanagi
幸司 小柳
Keiichiro Sagawa
桂一郎 佐川
Nobuaki Okauchi
伸曉 岡内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2009007348A priority Critical patent/JP5371457B2/en
Publication of JP2010163325A publication Critical patent/JP2010163325A/en
Application granted granted Critical
Publication of JP5371457B2 publication Critical patent/JP5371457B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/26Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B24/2641Polyacrylates; Polymethacrylates
    • C04B24/2647Polyacrylates; Polymethacrylates containing polyether side chains
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/28Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B24/32Polyethers, e.g. alkylphenol polyglycolether
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/40Surface-active agents, dispersants
    • C04B2103/408Dispersants

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dispersant composition for a hydraulic composition excellent in dispersibility of a hydraulic powder such as cement, giving a hardened body of a hydraulic composition with high initial strength. <P>SOLUTION: This dispersant composition for a hydraulic composition contains a copolymer of an unsaturated carboxylic acid-based compound and an ester between a (meth)acrylic acid-based polymer and an alkoxypolyalkyleneglycol in which the average addition mole number (n<SB>A</SB>) of alkyleneoxide is 2-300; and an alkoxypolyalkyleneglycol in which the average addition number (n<SB>B</SB>) of alkyleneoxide is 2-300, at a specific weight ratio, where the ratio (n<SB>A</SB>)/(n<SB>B</SB>) of the average addition mole number is 0.9-1.1. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は水硬性組成物用分散剤組成物及びその製造方法に関する。   The present invention relates to a dispersant composition for a hydraulic composition and a method for producing the same.

コンクリート等の水硬性組成物に対して、流動性を付与するためにナフタレン系、メラミン系、アミノスルホン酸系、ポリカルボン酸系等の混和剤(高性能減水剤等)が用いられている。従来から、ポリカルボン酸系混和剤として、アルコキシポリアルキレングリコール構造を有するモノマーを用いた重合体を水硬性組成物用の混和剤として用いることが提案されている。減水剤等の混和剤については、水硬性組成物に対する流動性の付与、流動性の保持性(流動保持性)、硬化遅延の防止など、種々の性能が求められ、ポリカルボン酸系混和剤についてもこうした観点から改善が提案されている。   In order to impart fluidity to hydraulic compositions such as concrete, admixtures such as naphthalene-based, melamine-based, aminosulfonic acid-based, and polycarboxylic acid-based materials (high performance water reducing agents) are used. Conventionally, it has been proposed to use, as a polycarboxylic acid-based admixture, a polymer using a monomer having an alkoxypolyalkylene glycol structure as an admixture for a hydraulic composition. For admixtures such as water reducing agents, various performances are required such as imparting fluidity to hydraulic compositions, fluidity retention (flow retention), prevention of cure delay, etc. Improvements are also proposed from this perspective.

特許文献1には、特定分子量のポリアルキレングリコール(A)と、ポリアルキレングリコールモノ(メタ)アクリレート/不飽和カルボン酸系共重合体(B)とを特定の重量比で含むセメント混和剤であって、ポリアルキレングリコール(A)の平均分子量(X)とポリアルキレングリコールモノ(メタ)アクリレート/不飽和カルボン酸系共重合体(B)のポリアルキレングリコール鎖部分の平均分子量(Y)が所定の関係を満たすセメント混和剤が記載されている。   Patent Document 1 discloses a cement admixture containing a specific molecular weight polyalkylene glycol (A) and a polyalkylene glycol mono (meth) acrylate / unsaturated carboxylic acid copolymer (B) in a specific weight ratio. The average molecular weight (X) of the polyalkylene glycol (A) and the average molecular weight (Y) of the polyalkylene glycol chain portion of the polyalkylene glycol mono (meth) acrylate / unsaturated carboxylic acid copolymer (B) are predetermined. A cement admixture that satisfies the relationship is described.

また、特許文献2には、セメント用減水剤として用いることができる特定構造のグラフト重合体が記載されている。   Patent Document 2 describes a graft polymer having a specific structure that can be used as a water reducing agent for cement.

特許文献3には、不飽和モノカルボン酸等のモノマーaを含むモノマーから調製されるポリマーAと、一方の末端が通常の反応条件下では反応性のない末端基で終端しており、他方の末端がヒドロキシル官能化またはアミン官能化されているポリマーBと、場合によりアミンCと、を反応させることによって得られる、固体状態にあるポリマーを、水硬性結合剤の分散剤として使用できることが記載されている。   Patent Document 3 discloses a polymer A prepared from a monomer containing a monomer a such as an unsaturated monocarboxylic acid, and one terminal is terminated with a terminal group that is not reactive under normal reaction conditions. It is described that a polymer in the solid state, obtained by reacting a hydroxyl-functionalized or amine-functionalized polymer B and optionally an amine C, can be used as a dispersant for hydraulic binders. ing.

特開2002−12461号公報、JP 2002-12461 A, 特開2006−63303号公報JP 2006-63303 A 特表2005−520900号公報JP 2005-520900 Gazette

本発明の課題は、セメント等の水硬性粉体の分散性に優れ、且つ初期強度の高い水硬性組成物の硬化体が得られる水硬性組成物用分散剤を提供することである。   The subject of this invention is providing the dispersing agent for hydraulic compositions which is excellent in the dispersibility of hydraulic powder, such as cement, and from which the hardening body of a hydraulic composition with high initial strength is obtained.

本発明は、一般式(1)で表される構成単位(A1)と一般式(2)で表される構成単位(A2)を含む共重合体Aと、アルキレンオキサイドの平均付加モル数(nB)が2〜300のアルコキシポリアルキレングリコール(以下、エーテル化合物Bという)とを、エーテル化合物B/共重合体A=0.40〜1.9の重量比で含有し、共重合体Aにおける一般式(1)中のアルキレンオキサイドの平均付加モル数(nA)とエーテル化合物Bにおけるアルキレンオキサイドの平均付加モル数(nB)の比が、(nA)/(nB)で0.9〜1.1である、水硬性組成物用分散剤組成物に関する。 The present invention relates to a copolymer A containing a structural unit (A1) represented by the general formula (1) and a structural unit (A2) represented by the general formula (2), and an average added mole number of alkylene oxide (n B ) is an alkoxy polyalkylene glycol having 2 to 300 (hereinafter referred to as ether compound B) in a weight ratio of ether compound B / copolymer A = 0.40 to 1.9. The ratio of the average added mole number of alkylene oxide (n A ) in the general formula (1) to the average added mole number of alkylene oxide (n B ) in the ether compound B is 0 (n A ) / (n B ). It is related with the dispersing agent composition for hydraulic compositions which is 9-1.1.

Figure 2010163325
Figure 2010163325

〔式中、
11:水素原子又はメチル基、好ましくは水素原子
12:水素原子、メチル基、又はCOOM、好ましくは水素原子
13:水素原子、メチル基、CH2COOM、又はCOOM、好ましくは水素原子又はメチル基
X:炭素数2〜8のオキシアルキレン基、好ましくは炭素数2〜4のオキシアルキレン基
A:Xの平均付加モル数2〜300、好ましくは5〜200、より好ましくは10〜120
Y:炭素数1〜18のアルキル基、好ましくは炭素数1〜4のアルキル基
M:水素原子、アルカリ金属、アルカリ土類金属(1/2原子)、アンモニウム基、アルキルアンモニウム基、置換アルキルアンモニウム基、アルキル基、ヒドロキシアルキル基、又はアルケニル基、好ましくは水素原子、アルカリ金属又はアンモニウム基
を表す。〕
[Where,
R 11 : hydrogen atom or methyl group, preferably hydrogen atom R 12 : hydrogen atom, methyl group, or COOM, preferably hydrogen atom R 13 : hydrogen atom, methyl group, CH 2 COOM, or COOM, preferably hydrogen atom or methyl X: oxyalkylene group having 2 to 8 carbon atoms, preferably an oxyalkylene group n a 2 to 4 carbon atoms: average addition mole number 2 to 300 of X, preferably 5 to 200, more preferably 10 to 120
Y: C1-C18 alkyl group, preferably C1-C4 alkyl group M: Hydrogen atom, alkali metal, alkaline earth metal (1/2 atom), ammonium group, alkylammonium group, substituted alkylammonium Represents a group, an alkyl group, a hydroxyalkyl group or an alkenyl group, preferably a hydrogen atom, an alkali metal or an ammonium group. ]

Figure 2010163325
Figure 2010163325

〔式中、
21:水素原子又はメチル基、好ましくは水素原子
22:水素原子、メチル基、又はCOOM’、好ましくは水素原子
23:水素原子、メチル基、CH2COOM’、又はCOOM’、好ましくは水素原子又はメチル基
M’:水素原子、アルカリ金属、アルカリ土類金属(1/2原子)、アンモニウム基、アルキルアンモニウム基、置換アルキルアンモニウム基、アルキル基、ヒドロキシアルキル基、又はアルケニル基、好ましくは水素原子、アルカリ金属又はアンモニウム基
を表す。〕
[Where,
R 21 : hydrogen atom or methyl group, preferably hydrogen atom R 22 : hydrogen atom, methyl group, or COOM ′, preferably hydrogen atom R 23 : hydrogen atom, methyl group, CH 2 COOM ′, or COOM ′, preferably Hydrogen atom or methyl group M ′: hydrogen atom, alkali metal, alkaline earth metal (1/2 atom), ammonium group, alkylammonium group, substituted alkylammonium group, alkyl group, hydroxyalkyl group, or alkenyl group, preferably Represents a hydrogen atom, an alkali metal or an ammonium group. ]

また、本発明は、上記本発明の水硬性組成物用分散剤組成物の製造方法であって、
アルキレンオキサイドの平均付加モル数(nA)が2〜300のアルコキシポリアルキレングリコール(以下、エーテル化合物Aという)を含む溶媒中で下記一般式(4)で表されるモノマー(a2)を含むモノマーを重合させて少なくとも構成単位(A2)を含むカルボン酸系ポリマーを得る工程と、
前記工程で得られたカルボン酸系ポリマーとエーテル化合物Aの(部分)エステル化反応により共重合体Aを得る工程とを有し、且つ
前記エステル化反応を、未反応のエーテル化合物Aがエーテル化合物Bとして共重合体Aと前記重量比で存在する時点で終了する、
水硬性組成物用分散剤組成物の製造方法に関する。
Further, the present invention is a method for producing a dispersant composition for a hydraulic composition of the present invention,
Monomer containing a monomer (a2) represented by the following general formula (4) in a solvent containing an alkoxypolyalkylene glycol (hereinafter referred to as ether compound A ) having an average addition mole number (n A ) of alkylene oxide of 2 to 300 To obtain a carboxylic acid polymer containing at least the structural unit (A2),
And a step of obtaining a copolymer A by a (partial) esterification reaction of the carboxylic acid polymer obtained in the above step and the ether compound A, and the esterification reaction is carried out by using an unreacted ether compound A as an ether compound. B ends when present in the weight ratio with copolymer A,
The present invention relates to a method for producing a dispersant composition for a hydraulic composition.

Figure 2010163325
Figure 2010163325

〔式中、
41:水素原子又はメチル基、好ましくは水素原子
42:水素原子、メチル基、又はCOOM41、好ましくは水素原子
43:水素原子、メチル基、CH2COOM41、又はCOOM41、好ましくは水素原子又はメチル基
41:水素原子、アルカリ金属、アルカリ土類金属(1/2原子)、アンモニウム基、アルキルアンモニウム基、置換アルキルアンモニウム基、アルキル基、ヒドロキシアルキル基、又はアルケニル基、好ましくは水素原子、アルカリ金属又はアンモニウム基
を表す。〕
[Where,
R 41 : hydrogen atom or methyl group, preferably hydrogen atom R 42 : hydrogen atom, methyl group, or COOM 41 , preferably hydrogen atom R 43 : hydrogen atom, methyl group, CH 2 COOM 41 , or COOM 41 , preferably Hydrogen atom or methyl group M 41 : hydrogen atom, alkali metal, alkaline earth metal (1/2 atom), ammonium group, alkylammonium group, substituted alkylammonium group, alkyl group, hydroxyalkyl group, or alkenyl group, preferably Represents a hydrogen atom, an alkali metal or an ammonium group. ]

また、本発明は、上記本発明の水硬性組成物用分散剤組成物の製造方法であって、
アルキレンオキサイドの平均付加モル数(nA)が2〜300のアルコキシポリアルキレングリコール(以下、エーテル化合物Aという)と少なくとも構成単位(A2)を含むカルボン酸系ポリマーとをエステル化反応させて、共重合体Aを得る工程を有し、且つ
前記エステル化反応を、未反応のエーテル化合物Aがエーテル化合物Bとして共重合体Aと前記重量比で存在する時点で終了する、
水硬性組成物用分散剤組成物の製造方法に関する。
Further, the present invention is a method for producing a dispersant composition for a hydraulic composition of the present invention,
An alkoxypolyalkylene glycol (hereinafter referred to as ether compound A ) having an average added mole number (n A ) of alkylene oxide of 2 to 300 is esterified with a carboxylic acid-based polymer containing at least the structural unit (A2). And a step of obtaining the polymer A, and the esterification reaction is terminated when the unreacted ether compound A is present as the ether compound B in the weight ratio with the copolymer A.
The present invention relates to a method for producing a dispersant composition for a hydraulic composition.

本発明によれば、セメント等の水硬性粉体の分散性に優れ、且つ初期強度の高い水硬性組成物の硬化体が得られる水硬性組成物用分散剤が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the dispersing agent for hydraulic compositions which is excellent in the dispersibility of hydraulic powders, such as cement, and can obtain the hardening body of a hydraulic composition with high initial strength is provided.

共重合体Aは、構成単位として、(I)アルコキシポリアルキレングリコール(エーテル化合物A)と、不飽和カルボン酸系化合物に由来する構成単位(A1)と、(II)不飽和カルボン酸系化合物に由来する構成単位(A2)とを含む。   Copolymer A includes, as structural units, (I) alkoxy polyalkylene glycol (ether compound A), structural unit (A1) derived from unsaturated carboxylic acid compound, and (II) unsaturated carboxylic acid compound. Derived structural unit (A2).

構成単位(A1)を構成するエーテル化合物Aは、ポリアルキレングリコールのモノアルキルエーテルであり、ポリアルキレングリコールは、炭素数2〜8のオキシアルキレン基から構成されることが好ましい。また、アルコキシ基は、炭素数1〜18、更に1〜8が好ましい。エーテル化合物Aは、アルキレンオキサイドの平均付加モル数nAが2〜300であり、5〜200、更に10〜120が好ましい。 The ether compound A constituting the structural unit (A1) is a monoalkyl ether of polyalkylene glycol, and the polyalkylene glycol is preferably composed of an oxyalkylene group having 2 to 8 carbon atoms. The alkoxy group preferably has 1 to 18 carbon atoms, and more preferably 1 to 8 carbon atoms. The ether compound A has an average added mole number n A of alkylene oxide of 2 to 300, preferably 5 to 200, more preferably 10 to 120.

また、構成単位(A1)を構成するモノマーである不飽和カルボン酸系化合物としては、アクリル酸、メタクリル酸、クロトン酸、マレイン酸、イタコン酸、シトラコン酸等が挙げられる。特にアクリル酸、メタクリル酸が好ましい。アクリル酸及び/又はメタクリル酸を含むことが好ましい。これらモノマーは、1種のみを用いてもあるいは2種以上を併用してもよい。   In addition, examples of the unsaturated carboxylic acid compound that is a monomer constituting the structural unit (A1) include acrylic acid, methacrylic acid, crotonic acid, maleic acid, itaconic acid, and citraconic acid. Acrylic acid and methacrylic acid are particularly preferred. It is preferable to contain acrylic acid and / or methacrylic acid. These monomers may be used alone or in combination of two or more.

構成単位(A1)の重量平均分子量は、共重合体Aの重量平均分子量を考慮して決め得るが、150〜10000が好ましい。   Although the weight average molecular weight of a structural unit (A1) can be determined in consideration of the weight average molecular weight of the copolymer A, 150-10000 are preferable.

構成単位(A2)を構成するモノマーである不飽和カルボン酸系化合物としては、例えば、(I)アクリル酸、メタクリル酸、クロトン酸およびこれらの金属塩、アンモニウム塩、アミン塩等の不飽和モノカルボン酸系化合物、(II)マレイン酸、イタコン酸、シトラコン酸、フマル酸、およびこれらの金属塩、アンモニウム塩、アミン塩等の不飽和ジカルボン酸系化合物、(III)さらに無水マレイン酸、無水イタコン酸、無水シトラコン酸等の不飽和ジカルボン酸系化合物の無水物、等が挙げられる。これらの中でも不飽和モノカルボン酸系化合物が好ましく、特にアクリル酸、メタクリル酸及びこれらの塩が好ましい。これらのモノマーは、1種のみを用いてもあるいは2種以上を併用してもよい。   Examples of the unsaturated carboxylic acid compound which is a monomer constituting the structural unit (A2) include (I) unsaturated monocarboxylic acids such as acrylic acid, methacrylic acid, crotonic acid and their metal salts, ammonium salts and amine salts. Acid compounds, (II) maleic acid, itaconic acid, citraconic acid, fumaric acid, and unsaturated dicarboxylic acid compounds such as metal salts, ammonium salts, and amine salts thereof, (III) and maleic anhydride, itaconic anhydride And anhydrides of unsaturated dicarboxylic acid compounds such as citraconic anhydride. Among these, unsaturated monocarboxylic acid compounds are preferable, and acrylic acid, methacrylic acid and salts thereof are particularly preferable. These monomers may be used alone or in combination of two or more.

共重合体Aの全構成単位に占める構成単位(A1)のモル比〔構成単位(A1)/全構成単位〕は、0.01〜0.6であることが好ましく、より好ましくは0.05〜0.5であり、さらに好ましくは0.1〜0.5である。   The molar ratio of the structural unit (A1) to the total structural unit of the copolymer A [structural unit (A1) / total structural unit] is preferably 0.01 to 0.6, more preferably 0.05. It is -0.5, More preferably, it is 0.1-0.5.

構成単位(A1)と構成単位(A2)のモル比〔構成単位(A1)/構成単位(A2)〕は、0.01〜1.5であることが好ましく、より好ましくは0.05〜1であり、さらに好ましくは0.1〜1である。   The molar ratio of the structural unit (A1) to the structural unit (A2) [structural unit (A1) / structural unit (A2)] is preferably 0.01 to 1.5, more preferably 0.05 to 1. More preferably, it is 0.1-1.

また、共重合体Aの全構成単位に占める構成単位(A1)及び構成単位(A2)の合計のモル比〔[構成単位(A1)+構成単位(A2)]/全構成単位〕は、0.5〜1であることが好ましく、より好ましくは0.75〜1である。   The total molar ratio of the structural unit (A1) and the structural unit (A2) to the total structural units of the copolymer A [[structural unit (A1) + structural unit (A2)] / total structural unit] is 0. 0.5 to 1 is preferable, and 0.75 to 1 is more preferable.

共重合体Aの重量平均分子量は、水硬性組成物の分散性の観点から10000〜200000、更に20000〜100000、更に30000〜80000が好ましい。   From the viewpoint of dispersibility of the hydraulic composition, the weight average molecular weight of the copolymer A is preferably 10,000 to 200,000, more preferably 20,000 to 100,000, and more preferably 30,000 to 80,000.

エーテル化合物Bも、ポリアルキレングリコールのモノアルキルエーテルであり、ポリアルキレングリコールは、炭素数2〜8のオキシアルキレン基から構成されることが好ましい。また、アルコキシ基は、炭素数1〜18、更に1〜4が好ましい。エーテル化合物Bは、アルキレンオキサイドの平均付加モル数nBが2〜300であり、5〜200、更に9〜130が好ましい。 The ether compound B is also a monoalkyl ether of polyalkylene glycol, and the polyalkylene glycol is preferably composed of an oxyalkylene group having 2 to 8 carbon atoms. The alkoxy group preferably has 1 to 18 carbon atoms, and more preferably 1 to 4 carbon atoms. The ether compound B has an average added mole number n B of alkylene oxide of 2 to 300, preferably 5 to 200, more preferably 9 to 130.

本発明の水硬性組成物用分散剤組成物では、生産性の観点から、共重合体Aにおけるエーテル化合物A中のアルキレンオキサイドの平均付加モル数(nA)と、エーテル化合物B中のアルキレンオキサイドの平均付加モル数(nB)との比が、(nA)/(nB)で0.9〜1.1であり、0.95〜1.05が好ましいが、上記範囲内にあるならば、必ずしも同一原料である必要はない。 In the dispersant composition for a hydraulic composition of the present invention, from the viewpoint of productivity, the average number of added moles (n A ) of alkylene oxide in the ether compound A in the copolymer A and the alkylene oxide in the ether compound B the ratio of the average addition molar number and (n B) of a 0.9 to 1.1 with (n a) / (n B ), 0.95~1.05 is preferred, within the above range If so, the same raw material is not necessarily required.

本発明の水硬性組成物用分散剤組成物では、水硬性組成物の硬化体の初期強度を高める観点から、共重合体Aとエーテル化合物Bとの重量比が、エーテル化合物B/共重合体Aで0.40〜1.9であり、0.45〜1.5が好ましく、0.50〜1.0がより好ましい。なお、共重合体Aの重量は塩型の場合は酸型に換算して計算する。   In the dispersant composition for a hydraulic composition of the present invention, from the viewpoint of increasing the initial strength of the cured product of the hydraulic composition, the weight ratio of the copolymer A and the ether compound B is such that the ether compound B / copolymer. A is 0.40 to 1.9, 0.45 to 1.5 is preferable, and 0.50 to 1.0 is more preferable. In addition, the weight of the copolymer A is calculated in terms of an acid type in the case of a salt type.

本発明の水硬性組成物用分散剤組成物は、共重合体Aを34〜71重量%、更に40〜69重量%、更に50〜67重量%含有することが好ましい。また、エーテル化合物Bを29〜66重量%、更に31〜60重量%、更に33〜50重量%含有することが好ましい。本発明の水硬性組成物用分散剤組成物中、共重合体Aとエーテル化合物Bの合計は、10〜100重量%、更に30〜95重量%が好ましい。   The dispersant composition for a hydraulic composition of the present invention preferably contains 34 to 71% by weight of copolymer A, more preferably 40 to 69% by weight, and further 50 to 67% by weight. Moreover, it is preferable to contain 29-66 weight% of ether compounds B, Furthermore, 31-60 weight%, Furthermore, 33-50 weight% is contained. In the dispersant composition for a hydraulic composition of the present invention, the total of the copolymer A and the ether compound B is preferably 10 to 100% by weight, more preferably 30 to 95% by weight.

本発明の水硬性組成物用分散剤組成物の製造方法は特に限定されるものではなく、例えば、前述のように、一般式(3)で表されるモノマー(a1)と一般式(4)で表されるモノマー(a2)とを共重合して共重合体Aを合成し、該共重合体Aとエーテル化合物Bとが前記重量比範囲となるように、両成分を混合すればよい(以下、方法1という)。この場合は、共重合体Aとエーテル化合物Bのポリアルキレングリコール鎖部分とが同一構造でないものも容易に製造することができる。また、一般式(3)で表されるモノマー(a1)や一般式(4)で表されるモノマー(a2)として酸型(M31、M41が水素原子)のモノマーを用いて共重合体Aを合成し未中和のまま用いても良いし、さらに塩基で部分的又は完全に中和したものを用いても良い。 The method for producing the dispersant composition for a hydraulic composition of the present invention is not particularly limited. For example, as described above, the monomer (a1) represented by the general formula (3) and the general formula (4) The copolymer (A2) is copolymerized to synthesize a copolymer A, and both components may be mixed so that the copolymer A and the ether compound B are in the weight ratio range ( Hereinafter, the method 1). In this case, the copolymer A and the polyalkylene glycol chain part of the ether compound B can be easily produced even if they do not have the same structure. Further, a copolymer using acid type monomers (M 31 and M 41 are hydrogen atoms) as the monomer (a1) represented by the general formula (3) and the monomer (a2) represented by the general formula (4) A may be synthesized and used without being neutralized, or it may be partially or completely neutralized with a base.

Figure 2010163325
Figure 2010163325

〔式中、
31:水素原子又はメチル基
32:水素原子、メチル基、又はCOOM31
33:水素原子、メチル基、CH2COOM31、又はCOOM31
31:炭素数2〜8のオキシアルキレン基
3A:X31の平均付加モル数2〜300
31:炭素数1〜18のアルキル基
31:水素原子、アルカリ金属、アルカリ土類金属(1/2原子)、アンモニウム基、アルキルアンモニウム基、置換アルキルアンモニウム基、アルキル基、ヒドロキシアルキル基、又はアルケニル基
を表す。〕
[Where,
R 31 : hydrogen atom or methyl group R 32 : hydrogen atom, methyl group, or COOM 31
R 33 : hydrogen atom, methyl group, CH 2 COOM 31 , or COOM 31
X 31 : oxyalkylene group having 2 to 8 carbon atoms n 3A : average added mole number of X 31 2 to 300
Y 31 : alkyl group having 1 to 18 carbon atoms M 31 : hydrogen atom, alkali metal, alkaline earth metal (1/2 atom), ammonium group, alkylammonium group, substituted alkylammonium group, alkyl group, hydroxyalkyl group, Or represents an alkenyl group. ]

Figure 2010163325
Figure 2010163325

〔式中、
41:水素原子又はメチル基
42:水素原子、メチル基、又はCOOM41
43:水素原子、メチル基、CH2COOM41、又はCOOM41
41:水素原子、アルカリ金属、アルカリ土類金属(1/2原子)、アンモニウム基、アルキルアンモニウム基、置換アルキルアンモニウム基、アルキル基、ヒドロキシアルキル基、又はアルケニル基
を表す。〕
[Where,
R 41 : hydrogen atom or methyl group R 42 : hydrogen atom, methyl group, or COOM 41
R 43 : hydrogen atom, methyl group, CH 2 COOM 41 , or COOM 41
M 41 represents a hydrogen atom, an alkali metal, an alkaline earth metal (1/2 atom), an ammonium group, an alkyl ammonium group, a substituted alkyl ammonium group, an alkyl group, a hydroxyalkyl group, or an alkenyl group. ]

モノマー(a1)の具体例及び好ましい化合物は、前述した構成単位(A1)を構成するモノマーと同様である。モノマー(a2)の具体例及び好ましい化合物は、前述した構成単位(A2)を構成するモノマーと同様である。   Specific examples and preferred compounds of the monomer (a1) are the same as the monomers constituting the structural unit (A1) described above. Specific examples and preferred compounds of the monomer (a2) are the same as the monomer constituting the structural unit (A2).

本発明の水硬性組成物用分散剤組成物の別の製造方法として、モノマー(a2)とエーテル化合物Aとのエステル化反応によりモノマー(a1)を製造する際に、エステル化反応を途中で止め、未反応のモノマー(a2)を残し、該モノマー(a2)と生成したモノマー(a1)とを重合させ共重合体Aを製造すると共に前記エーテル化合物Aをエーテル化合物Bとして残存させる方法(以下、方法2−1という)が挙げられる。この方法は、モノマーの製造過程で得られる反応生成物(混合物)として、共重合体Aとエーテル化合物Bを含む本発明の水硬性組成物用分散剤組成物を得るものである。この方法は、エーテル化合物Aとモノマー(a2)とのエステル〔即ちモノマー(a1)〕、未反応のモノマー(a2)及びエーテル化合物Aを含む反応生成物を得る工程(エステル化工程)と、前記未反応エーテル化合物Aの存在下に前記エステル〔即ちモノマー(a1)〕と未反応のモノマー(a2)とを反応させて共重合体Aを製造する工程(重合工程)と、を有する水硬性組成物用分散剤組成物の製造方法であり、エステル化工程で未反応のエーテル化合物Aがエーテル化合物Bとして前記重量比で存在する時点で終了する。具体的には、例えば、エーテル化合物Aと不飽和カルボン酸系化合物とを用いてエステル化反応を行う際に、未反応のポリアルキレングリコール及び不飽和カルボン酸系化合物が残留する条件で反応を停止し、その後、未反応のポリアルキレングリコールがエーテル化合物Bとして残留したまま重合反応を行って共重合体Aを合成し、共重合体Aとエーテル化合物Bとの重量比が前記重量比範囲となるようにすることができる。また、エーテル化合物Bをさらに後から追加添加して、共重合体Aとエーテル化合物Bとの重量比が前記範囲となるように調整してもよい。   As another production method of the dispersant composition for hydraulic composition of the present invention, when producing monomer (a1) by esterification reaction of monomer (a2) and ether compound A, the esterification reaction is stopped halfway. , Leaving the unreacted monomer (a2), polymerizing the monomer (a2) and the produced monomer (a1) to produce a copolymer A and leaving the ether compound A as the ether compound B (hereinafter, Method 2-1). This method is to obtain the dispersant composition for a hydraulic composition of the present invention containing the copolymer A and the ether compound B as a reaction product (mixture) obtained in the monomer production process. This method comprises a step (esterification step) of obtaining a reaction product comprising an ester of an ether compound A and a monomer (a2) [namely, the monomer (a1)], an unreacted monomer (a2) and the ether compound A; A hydraulic composition comprising: a step of producing a copolymer A by reacting the ester [that is, the monomer (a1)] and the unreacted monomer (a2) in the presence of the unreacted ether compound A; This is a production method of a physical dispersant composition, and ends when unreacted ether compound A is present as ether compound B in the esterification step in the weight ratio. Specifically, for example, when an esterification reaction is carried out using ether compound A and an unsaturated carboxylic acid compound, the reaction is stopped under the condition that unreacted polyalkylene glycol and unsaturated carboxylic acid compound remain. Thereafter, a polymerization reaction is performed with the unreacted polyalkylene glycol remaining as the ether compound B to synthesize the copolymer A, and the weight ratio of the copolymer A and the ether compound B falls within the above weight ratio range. Can be. Further, the ether compound B may be further added later and adjusted so that the weight ratio of the copolymer A and the ether compound B falls within the above range.

本発明の水硬性組成物用分散剤組成物を得るための方法として、エーテル化合物Aを含む溶媒中でモノマー(a2)を重合させて少なくとも構成単位(A2)を含むカルボン酸系ポリマーを得る工程と、
前記工程で得られたカルボン酸系ポリマーとエーテル化合物Aの(部分)エステル化反応により共重合体Aを得る工程とを有し、且つ
前記エステル化反応を、未反応のエーテル化合物Aがエーテル化合物Bとして共重合体Aと前記重量比で存在する時点で終了する、
水硬性組成物用分散剤組成物の製造方法(以下、方法2−2という)が挙げられる。また、エーテル化合物Bをさらに後から追加添加して、共重合体Aとエーテル化合物Bとの重量比が前記範囲となるように調整してもよい。
As a method for obtaining a dispersant composition for a hydraulic composition of the present invention, a step of polymerizing a monomer (a2) in a solvent containing an ether compound A to obtain a carboxylic acid polymer containing at least a structural unit (A2) When,
And a step of obtaining a copolymer A by a (partial) esterification reaction of the carboxylic acid polymer obtained in the above step and the ether compound A, and the esterification reaction is carried out by using an unreacted ether compound A as an ether compound. B ends when present in the weight ratio with copolymer A,
The manufacturing method (henceforth method 2-2) of the dispersing agent composition for hydraulic compositions is mentioned. Further, the ether compound B may be further added later and adjusted so that the weight ratio of the copolymer A and the ether compound B falls within the above range.

本発明のセメント混和剤のさらに別の製造方法として、エーテル化合物Aと少なくとも構成単位(A2)を含むカルボン酸系ポリマーのエステル化で重合物を得る際に、エステル化反応を途中で止め、エーテル化合物Aをエーテル化合物Bとして残存させる方法(以下、方法2−3という)が挙げられる。この方法は、エーテル化合物Aと少なくとも構成単位(A2)を含む不飽和カルボン酸系ポリマーとをエステル化反応させて、共重合体Aを得る工程を有し、且つ前記エステル化反応を、未反応のエーテル化合物Aがエーテル化合物Bとして共重合体Aと前記重量比で存在する時点で終了する、水硬性組成物用分散剤組成物の製造方法である。具体的には、例えば、モノマー(a2)を含むモノマーを重合して得られる少なくとも構成単位(A2)を含むカルボン酸系ポリマーのカルボキシル基の少なくとも一部を、エーテル化合物Aで直接エステル化するという、いわゆる「ポリマー後エステル化反応」により共重合体Aを合成し、共重合体Aと残存しているエーテル化合物Aとの重量比が前記重量比範囲となるようにエステル化反応を停止するようにしてもよい。この場合、エーテル化合物Bをさらに後から追加添加して、共重合体Aとエーテル化合物Bとの重量比が前記範囲となるように調整するようにしてもよい。   As yet another method for producing the cement admixture of the present invention, when a polymer is obtained by esterification of a carboxylic acid-based polymer containing the ether compound A and at least the structural unit (A2), the esterification reaction is stopped in the middle. Examples thereof include a method in which compound A remains as ether compound B (hereinafter referred to as method 2-3). This method comprises a step of esterifying an ether compound A and an unsaturated carboxylic acid polymer containing at least the structural unit (A2) to obtain a copolymer A, and the esterification reaction is unreacted. This is a method for producing a dispersant composition for a hydraulic composition, which is completed when the ether compound A is present as the ether compound B in the weight ratio with the copolymer A. Specifically, for example, at least a part of the carboxyl group of the carboxylic acid polymer containing at least the structural unit (A2) obtained by polymerizing the monomer containing the monomer (a2) is directly esterified with the ether compound A. The copolymer A is synthesized by a so-called “polymer post-esterification reaction”, and the esterification reaction is stopped so that the weight ratio of the copolymer A and the remaining ether compound A is within the above weight ratio range. It may be. In this case, the ether compound B may be further added later and adjusted so that the weight ratio of the copolymer A and the ether compound B falls within the above range.

方法2−2のように、エステル化を伴わない条件でモノマー(a2)を含むモノマーをエーテル化合物Aを含む溶媒中で重合し、その混合物にエステル化触媒を加え、エステル化を行うのが、有効分が高く生産性向上、エネルギーコストの抑制の観点から好ましい。エステル化反応で生成する水を反応系外に留去してもよいが、積極的にエーテル化合物Bの残存量を多くするため、反応で生成する水を系外に留去しないことが反応率制御の観点から好ましい。   As in Method 2-2, the monomer containing the monomer (a2) is polymerized in a solvent containing the ether compound A under conditions without esterification, an esterification catalyst is added to the mixture, and esterification is performed. The effective amount is high, which is preferable from the viewpoint of improving productivity and suppressing energy costs. The water produced by the esterification reaction may be distilled out of the reaction system, but in order to actively increase the residual amount of the ether compound B, the reaction rate should not be distilled out of the system. It is preferable from the viewpoint of control.

方法2−2において、モノマー(a2)を含むモノマーをエーテル化合物Aを含む溶媒中で重合する際の反応温度は50〜200℃、更に70〜100℃が好ましい。また、反応に際しては、重合開始剤、連鎖移動剤を用いることが好ましい。   In Method 2-2, the reaction temperature when the monomer containing the monomer (a2) is polymerized in the solvent containing the ether compound A is preferably 50 to 200 ° C, more preferably 70 to 100 ° C. In the reaction, it is preferable to use a polymerization initiator or a chain transfer agent.

水系の重合開始剤としては、過硫酸のアンモニウム塩又はアルカリ金属塩あるいは過酸化水素、2,2’−アゾビス(2−アミジノプロパン)ジヒドロクロライド、2,2’−アゾビス(2−メチルプロピオンアミド)ジハイドレート等の水溶性アゾ化合物が使用される。水系以外の溶剤を用いる溶液重合にはベンゾイルパーオキシド、ラウロイルパーオキシド等のパーオキシド、アゾビスイソブチロニトリル等の脂肪族アゾ化合物等が用いられる。また、重合開始剤と併用して、亜硫酸水素ナトリウム、アミン化合物等の促進剤を使用することもできる。重合温度は、用いる溶媒や重合開始剤により適宜定められるが、通常0〜120℃であり、30℃以上が好ましい。より好ましくは50℃以上である。また、100℃以下が好ましい。より好ましくは95℃以下である。不飽和カルボン酸系化合物に対して0.01〜20モル%の割合で用いることが好ましい。連鎖移動剤としては、メルカプトエタノール、チオグリセロール、チオグリコール酸、2−メルカプトプロピオン酸、3−メルカプトプロピオン酸、チオリンゴ酸、チオグリコール酸オクチル、3−メルカプトプロピオン酸オクチル、2−メルカプトエタンスルホン酸、n−ドデシルメルカプタン、オクチルメルカプタン、ブチルチオグリコレート等のチオール系連鎖移動剤;四塩化炭素、塩化メチレン等のハロゲン化物;イソプロパノール等の第2級アルコール;亜リン酸、次亜リン酸、亜硫酸、亜硫酸水素、亜二チオン酸、メタ重亜硫酸、およびその塩;等が挙げられ、不飽和カルボン酸系化合物に対して0.1〜10モル%の割合で用いることが好ましい。また、反応時間は、エーテル化合物Bの残存量などにもよるが、0.5〜12時間、更に1.5〜6時間が好ましい。   As an aqueous polymerization initiator, persulfuric acid ammonium salt or alkali metal salt or hydrogen peroxide, 2,2′-azobis (2-amidinopropane) dihydrochloride, 2,2′-azobis (2-methylpropionamide) Water-soluble azo compounds such as dihydrate are used. For solution polymerization using a non-aqueous solvent, peroxides such as benzoyl peroxide and lauroyl peroxide, aliphatic azo compounds such as azobisisobutyronitrile, and the like are used. Moreover, accelerators, such as sodium hydrogen sulfite and an amine compound, can also be used in combination with a polymerization initiator. Although superposition | polymerization temperature is suitably determined with the solvent and polymerization initiator to be used, it is 0-120 degreeC normally, and 30 degreeC or more is preferable. More preferably, it is 50 ° C. or higher. Moreover, 100 degrees C or less is preferable. More preferably, it is 95 degrees C or less. It is preferable to use it at a ratio of 0.01 to 20 mol% with respect to the unsaturated carboxylic acid compound. Chain transfer agents include mercaptoethanol, thioglycerol, thioglycolic acid, 2-mercaptopropionic acid, 3-mercaptopropionic acid, thiomalic acid, octyl thioglycolate, octyl 3-mercaptopropionate, 2-mercaptoethanesulfonic acid, thiol chain transfer agents such as n-dodecyl mercaptan, octyl mercaptan, butyl thioglycolate; halides such as carbon tetrachloride and methylene chloride; secondary alcohols such as isopropanol; phosphorous acid, hypophosphorous acid, sulfurous acid, Examples thereof include hydrogen sulfite, dithionite, metabisulfite, and salts thereof, and it is preferably used at a ratio of 0.1 to 10 mol% with respect to the unsaturated carboxylic acid compound. Moreover, although reaction time is based also on the residual amount of the ether compound B, etc., it is 0.5 to 12 hours, Furthermore, 1.5 to 6 hours are preferable.

また、方法2−2及び2−3において、エーテル化合物Aと少なくとも構成単位(A2)を含むカルボン酸系ポリマーとをエステル化する際の反応温度は80〜200℃、更に100〜150℃が好ましい。また、反応に際しては、エステル化触媒、なかでも酸触媒を用いることが好ましい。酸触媒としては、p−トルエンスルホン酸、p−トルエンスルホン酸1水和物、m−キシレンスルホン酸、メタンスルホン酸、硫酸、リン酸、塩酸、等が挙げられ、モノマー(a2)100モルに対して0.1〜100モルの割合で用いることが好ましく、0.5〜50モルがより好ましく、1〜30モルがさらに好ましい。また、反応時間は、エーテル化合物Bの残存量などにもよるが、2〜24時間、更に5〜18時間が好ましい。エステル化反応の進行及び終結は、反応系の酸価の測定、NMRによる構造解析等により、所定のエステル化率で共重合体Aが製造されていること及び共重合体Aとエーテル化合物Bが所定の重量比となっていることを確認して判断できる。   In the methods 2-2 and 2-3, the reaction temperature when esterifying the ether compound A and the carboxylic acid polymer containing at least the structural unit (A2) is 80 to 200 ° C., more preferably 100 to 150 ° C. . In the reaction, it is preferable to use an esterification catalyst, especially an acid catalyst. Examples of the acid catalyst include p-toluenesulfonic acid, p-toluenesulfonic acid monohydrate, m-xylenesulfonic acid, methanesulfonic acid, sulfuric acid, phosphoric acid, hydrochloric acid, and the like. It is preferably used at a ratio of 0.1 to 100 mol, more preferably 0.5 to 50 mol, and further preferably 1 to 30 mol. Moreover, although reaction time is based also on the residual amount of the ether compound B, 2 to 24 hours, and also 5 to 18 hours are preferable. The progress and termination of the esterification reaction are based on the fact that the copolymer A is produced at a predetermined esterification rate by measuring the acid value of the reaction system, structural analysis by NMR, etc., and that the copolymer A and the ether compound B are It can be determined by confirming that the predetermined weight ratio is obtained.

方法2−2及び2−3において、共重合体Aが所定のエステル化率となり、分散剤組成物における共重合体Aとエーテル化合物Bとの重量比が所定の範囲となるための仕込み比としては、エーテル化合物A/少なくとも構成単位(A2)を含むカルボン酸系ポリマー=2/1〜100/1の重量比が好ましく、4/1〜50/1がより好ましく、8/1〜25/1がさらに好ましい。なお、共重合体Aとエーテル化合物Bの重量比を調整するために、後から共重合体A及び/又はエーテル化合物Bを添加しても良い。   In the methods 2-2 and 2-3, as the charging ratio for the copolymer A to have a predetermined esterification rate and the weight ratio of the copolymer A and the ether compound B in the dispersant composition to be in a predetermined range Is preferably a weight ratio of ether compound A / carboxylic acid polymer containing at least the structural unit (A2) = 2/1 to 100/1, more preferably 4/1 to 50/1, and 8/1 to 25/1. Is more preferable. In order to adjust the weight ratio of copolymer A and ether compound B, copolymer A and / or ether compound B may be added later.

本発明の水硬性組成物用分散剤組成物は、共重合体A、エーテル化合物Bの他に、従来のセメント分散剤、水溶性高分子、空気連行剤、セメント湿潤剤、膨張材、防水剤、遅延剤、急結剤、水溶性高分子物質、増粘剤、凝集剤、乾燥収縮低減剤、強度増進剤、硬化促進剤等を併用してもよい。   In addition to copolymer A and ether compound B, the dispersant composition for hydraulic composition of the present invention includes conventional cement dispersant, water-soluble polymer, air entraining agent, cement wetting agent, expansion agent, waterproofing agent. , Retarders, quick setting agents, water-soluble polymer substances, thickeners, flocculants, drying shrinkage reducers, strength enhancers, curing accelerators, and the like may be used in combination.

本発明は、上記本発明の水硬性組成物用分散剤組成物と水硬性粉体と水とを含有する水硬性組成物を提供する。   The present invention provides a hydraulic composition comprising the dispersant composition for a hydraulic composition of the present invention, a hydraulic powder, and water.

水硬性粉体は、水和反応により硬化する物性を有する粉体のことであり、セメント、石膏などが挙げられる。好ましくはセメントであり、普通ポルトランドセメント、ビーライトセメント、中庸熱セメント、早強セメント、超早強セメント、耐硫酸セメント等のセメントであり、またこれらに高炉スラグ、フライアッシュ、シリカヒューム、石粉(炭酸カルシウム粉末)等が添加されたものでもよい。その他、早強セメント、超早強セメント、高ビーライト系セメント、エコセメント等でもよい。なお、これらの粉体に骨材として、砂、砂及び砂利が添加されて最終的に得られる水硬性組成物が、一般にそれぞれモルタル、コンクリートなどと呼ばれている。本発明の混和剤は、生コンクリート、コンクリート振動製品分野の外、セルフレベリング用、耐火物用、プラスター用、石膏スラリー用、軽量又は重量コンクリート用、AE用、補修用、プレパックド用、トレーミー用、グラウト用、地盤改良用、寒中用等の種々のコンクリートの何れの分野においても有用である。   The hydraulic powder is a powder having physical properties that are cured by a hydration reaction, and examples thereof include cement and gypsum. Cement is preferable, and ordinary cements such as Portland cement, Belite cement, medium heat cement, early strong cement, super early strong cement, sulfuric acid resistant cement, etc., and blast furnace slag, fly ash, silica fume, stone powder ( It may be added with calcium carbonate powder). In addition, early strong cement, super early strong cement, high belite cement, eco-cement, etc. may be used. In addition, the hydraulic composition finally obtained by adding sand, sand and gravel as aggregates to these powders is generally called mortar, concrete, etc., respectively. The admixture of the present invention is not only for ready-mixed concrete and concrete vibration products, but also for self-leveling, for refractories, for plaster, for gypsum slurry, for lightweight or heavy concrete, for AE, for repair, for prepacked, for trayy, It is useful in any field of various concrete such as grout, ground improvement, and cold.

水は、通常に用いるものが使用でき、水道水等が挙げられる。   As the water, those usually used can be used, and examples thereof include tap water.

本発明の水硬性組成物は、水/水硬性粉体比(W/P)が65%以下、更に10〜60%、更に12〜57%、更に15〜55%、特に20〜55%であることができる。W/Pは、水硬性組成物中の水(W)と水硬性粉体(P)の重量百分率(重量%)、すなわち、(W/P)×100で算出されるものである。   The hydraulic composition of the present invention has a water / hydraulic powder ratio (W / P) of 65% or less, further 10 to 60%, further 12 to 57%, further 15 to 55%, particularly 20 to 55%. Can be. W / P is calculated by weight percentage (% by weight) of water (W) and hydraulic powder (P) in the hydraulic composition, that is, (W / P) × 100.

また、本発明の水硬性組成物は、骨材を含有することができる。骨材としては、細骨材(S)及び粗骨材(G)が挙げられる。細骨材(S)として、JIS A0203−2302で規定されるものが挙げられる。   Moreover, the hydraulic composition of this invention can contain an aggregate. Examples of the aggregate include fine aggregate (S) and coarse aggregate (G). Examples of the fine aggregate (S) include those defined in JIS A0203-2302.

細骨材としては、川、陸、山、海、石灰砂、珪砂及びこれらの砕砂、高炉スラグ細骨材、フェロニッケルスラグ細骨材、軽量細骨材(人工及び天然)及び再生細骨材等が挙げられる。   Fine aggregates include rivers, land, mountains, sea, lime sand, quartz sand and crushed sand, blast furnace slag fine aggregates, ferronickel slag fine aggregates, lightweight fine aggregates (artificial and natural) and recycled fine aggregates. Etc.

また、粗骨材(G)として、JIS A0203−2303で規定されるものが挙げられる。例えば粗骨材としては、川、陸、山、海、石灰砂利、これらの砕石、高炉スラグ粗骨材、フェロニッケルスラグ粗骨材、軽量粗骨材(人工及び天然)及び再生粗骨材等が挙げられる。   Moreover, what is prescribed | regulated by JIS A0203-2303 is mentioned as a coarse aggregate (G). For example, as coarse aggregate, river, land, mountain, sea, lime gravel, crushed stone, blast furnace slag coarse aggregate, ferronickel slag coarse aggregate, lightweight coarse aggregate (artificial and natural), recycled coarse aggregate, etc. Is mentioned.

本発明の水硬性組成物では、本発明の分散剤組成物は、水硬性粉体100重量部に対して0.01〜10重量部、更に0.05〜3重量部の割合で用いられることが好ましい。   In the hydraulic composition of the present invention, the dispersant composition of the present invention is used in a proportion of 0.01 to 10 parts by weight, and further 0.05 to 3 parts by weight with respect to 100 parts by weight of the hydraulic powder. Is preferred.

また、本発明の水硬性組成物では、本発明の分散剤組成物は、水硬性組成物の流動性の観点から共重合体Aが、水硬性粉体100重量部に対して0.01〜1重量部、更に0.05〜0.5重量部、より更に0.08〜0.3重量部の割合となるように用いられることが好ましい。   Further, in the hydraulic composition of the present invention, the dispersant composition of the present invention is such that the copolymer A is 0.01 to 100 parts by weight of the hydraulic powder from the viewpoint of fluidity of the hydraulic composition. It is preferably used so as to have a ratio of 1 part by weight, further 0.05 to 0.5 part by weight, and further 0.08 to 0.3 part by weight.

また、本発明の水硬性組成物では、本発明の分散剤組成物は、水硬性組成物の流動性と初期強度発現の観点から共重合体Aとエーテル化合物Bの合計が、水硬性粉体100重量部に対して0.02〜1.5重量部、更に0.08〜1.0重量部、より更に0.1〜0.4重量部の割合となるように用いられることが好ましい。   Further, in the hydraulic composition of the present invention, the dispersant composition of the present invention is a hydraulic powder in which the total of copolymer A and ether compound B is from the viewpoint of fluidity and initial strength expression of the hydraulic composition. It is preferably used in a ratio of 0.02 to 1.5 parts by weight, further 0.08 to 1.0 parts by weight, and further 0.1 to 0.4 parts by weight with respect to 100 parts by weight.

本発明の水硬性組成物は、本発明の分散剤組成物、水硬性粉体、水の他に、従来のセメント分散剤、水溶性高分子、空気連行剤、セメント湿潤剤、膨張材、防水剤、遅延剤、急結剤、水溶性高分子物質、増粘剤、凝集剤、乾燥収縮低減剤、強度増進剤、硬化促進剤等を併用してもよい。   The hydraulic composition of the present invention includes, in addition to the dispersant composition of the present invention, hydraulic powder, and water, a conventional cement dispersant, a water-soluble polymer, an air entraining agent, a cement wetting agent, an expanding material, and waterproofing. Agents, retarders, quick setting agents, water-soluble polymer substances, thickeners, flocculants, drying shrinkage reducers, strength enhancers, curing accelerators and the like may be used in combination.

製造例1(共重合体P−2の製造)
温度計、攪拌機、滴下漏斗、窒素導入管および還流冷却器を備えたガラス製反応容器に水1887gを仕込み、攪拌下に反応容器内を窒素置換し、窒素雰囲気下で78℃まで昇温した。次に(1)メトキシポリエチレングリコールモノアクリレート(エチレンオキサイドの平均付加モル数23;65%水溶液)2500gと(2)アクリル酸320gを混合溶解した単量体溶液と、3−メルカプトプロピオン酸14gを水56gに溶解した水溶液、(3)過硫酸アンモニウム13.5gを水100gに溶解した水溶液の3者をそれぞれ滴下ロートで、1.5時間かけて滴下した。滴下終了後、さらに過硫酸アンモニウム6.8gを水50gに溶解させた水溶液をさらに0.5時間かけて滴下した。その後、78℃でさらに1時間熟成を行い重合反応を完結させた。得られた反応物を含む水溶液を48%水酸化ナトリウム水溶液で中和し、pH6.2、重量平均分子量40000の共重合体P−2の水溶液を得た。
Production Example 1 (Production of copolymer P-2)
A glass reaction vessel equipped with a thermometer, a stirrer, a dropping funnel, a nitrogen inlet tube and a reflux condenser was charged with 1887 g of water, the inside of the reaction vessel was purged with nitrogen under stirring, and the temperature was raised to 78 ° C. under a nitrogen atmosphere. Next, (1) a monomer solution in which 2500 g of methoxypolyethylene glycol monoacrylate (average added mole number of ethylene oxide: 23% 65% aqueous solution) and (2) 320 g of acrylic acid were mixed and dissolved, and 14 g of 3-mercaptopropionic acid were added to water. An aqueous solution dissolved in 56 g and (3) an aqueous solution in which 13.5 g of ammonium persulfate was dissolved in 100 g of water were each dropped with a dropping funnel over 1.5 hours. After completion of the dropwise addition, an aqueous solution obtained by further dissolving 6.8 g of ammonium persulfate in 50 g of water was further added dropwise over 0.5 hours. Thereafter, aging was further carried out at 78 ° C. for 1 hour to complete the polymerization reaction. The aqueous solution containing the obtained reaction product was neutralized with a 48% aqueous sodium hydroxide solution to obtain an aqueous solution of copolymer P-2 having a pH of 6.2 and a weight average molecular weight of 40000.

他の共重合体P−1、P−3、P−4についても、モノマー種及び組成を表2のように変更して、同様の手順で重合して得た。   Other copolymers P-1, P-3, and P-4 were also obtained by polymerization in the same procedure with the monomer species and composition changed as shown in Table 2.

製造例2(共重合体P−7を含む混合物の製造)
(2−1)
ポリアクリル酸のメトキシポリエチレングリコール溶液の製造
温度計、攪拌機、窒素導入管及び蒸留用冷却器を備えたガラス製反応容器に、メトキシポリエチレングリコール(エチレンオキサイドの平均付加モル数23)を423g仕込み、攪拌下に反応容器内を窒素置換し、窒素雰囲気下で78℃に昇温した。アクリル酸72.1g、メトキシポリエチレングリコール72.1g、3−メルカプトプロピオン酸3.0g及びアゾビスイソブチロニトリル2.85gを溶解した溶液を、滴下ロートで1.0時間かけて滴下した。滴下終了後、78℃でさらに2時間熟成を行い、数平均分子量26000のポリアクリル酸のメトキシポリエチレングリコール溶液(A−1)を得た。
Production Example 2 (Production of mixture containing copolymer P-7)
(2-1)
Production of methoxypolyethylene glycol solution of polyacrylic acid A glass reaction vessel equipped with a thermometer, stirrer, nitrogen inlet tube and condenser for distillation was charged with 423 g of methoxypolyethylene glycol (average added mole number of ethylene oxide 23) and stirred. The inside of the reaction vessel was replaced with nitrogen below, and the temperature was raised to 78 ° C. in a nitrogen atmosphere. A solution in which 72.1 g of acrylic acid, 72.1 g of methoxypolyethylene glycol, 3.0 g of 3-mercaptopropionic acid and 2.85 g of azobisisobutyronitrile were dissolved was dropped with a dropping funnel over 1.0 hour. After completion of the dropwise addition, aging was further performed at 78 ° C. for 2 hours to obtain a methoxypolyethylene glycol solution (A-1) of polyacrylic acid having a number average molecular weight of 26000.

(2−2)アクリル酸/メトキシポリエチレングリコールアクリレート共重合体の製造
温度計、攪拌機、窒素導入管及び蒸留用冷却器を備えたガラス製反応容器に、ポリアクリル酸のメトキシポリエチレングリコール溶液(A−1)(完全酸型の未中和品)200g、パラトルエンスルホン酸一水和物(PTS)1.8gを仕込み、反応容器内を窒素置換し、窒素雰囲気下で80℃まで加熱し、攪拌により内容物を均一に溶解させた。その後、窒素を反応容器内に吹き込みながら120℃まで昇温し、生成水を系外に留去することなく120℃に維持しエステル化反応を継続した。100℃に達した時点から30分おきに反応物を一部取り出して酸価を測定することにより反応の追跡を行った。エステル化したカルボキシル基の量が25%、即ち、メトキシポリエチレングリコールの反応率が53%となったとき、降温してエステル化反応を終了し、冷却後水を加え、48%水酸化ナトリウム水溶液で中和して、平均分子量31400のアクリル酸/メトキシポリエチレングリコールアクリレート共重合体P−7及びメトキシポリエチレングリコールを含む混合物を得た。重量比(エーテル化合物B/共重合体A)は、0.71であり、共重合体Aにおけるアルキレンオキサイドの平均付加モル数(nA)が23、エーテル化合物Bにおけるアルキレンオキサイドの平均付加モル数(nB)が23、平均付加モル数の比(nA)/(nB)は1.0である。
(2-2) Production of acrylic acid / methoxypolyethylene glycol acrylate copolymer In a glass reaction vessel equipped with a thermometer, a stirrer, a nitrogen inlet tube and a condenser for distillation, a methoxypolyethylene glycol solution of polyacrylic acid (A- 1) (Complete acid type unneutralized product) 200 g and p-toluenesulfonic acid monohydrate (PTS) 1.8 g were charged, the inside of the reaction vessel was purged with nitrogen, heated to 80 ° C. in a nitrogen atmosphere, and stirred. To uniformly dissolve the contents. Thereafter, the temperature was raised to 120 ° C. while blowing nitrogen into the reaction vessel, and the esterification reaction was continued while maintaining the generated water at 120 ° C. without distilling out of the system. The reaction was traced by taking out a part of the reaction product every 30 minutes from the time when the temperature reached 100 ° C. and measuring the acid value. When the esterified carboxyl group amount is 25%, that is, when the reaction rate of methoxypolyethylene glycol is 53%, the temperature is lowered to complete the esterification reaction, and after cooling, water is added, and 48% aqueous sodium hydroxide solution is added. Neutralization gave a mixture containing acrylic acid / methoxypolyethylene glycol acrylate copolymer P-7 having an average molecular weight of 31400 and methoxypolyethylene glycol. The weight ratio (ether compound B / copolymer A) is 0.71, the average added mole number of alkylene oxide in copolymer A (n A ) is 23, and the average added mole number of alkylene oxide in ether compound B. (N B ) is 23, and the ratio (n A ) / (n B ) of the average added mole number is 1.0.

共重合体A及びエーテル化合物Bの重量は、エステル化反応終了後のエステル化したカルボキシル基の量と、合成に用いたポリアクリル酸とメトキシポリエチレングリコールの重量から計算した。   The weights of the copolymer A and the ether compound B were calculated from the amount of esterified carboxyl groups after completion of the esterification reaction and the weights of polyacrylic acid and methoxypolyethylene glycol used for the synthesis.

なお、エステル化したカルボキシル基の量は、下記条件の1H−NMRの結果に基づき、水酸基に隣接するプロトン強度の減少量から算出した。
1H−NMR測定条件]
装置:バリアンMercury400(400MHz)
パルスシーケンス:ノースピン、10Hz
パルス幅:45°
測定温度:20℃
パルス遅延時間:10sec
積算回数:32回
観測データポイント:64000
溶媒:CDCl3(重クロロホルム)(2重量%)
The amount of the esterified carboxyl group was calculated from the decrease in proton intensity adjacent to the hydroxyl group based on the result of 1 H-NMR under the following conditions.
[1 H-NMR measurement conditions]
Device: Varian Mercury 400 (400 MHz)
Pulse sequence: North pin, 10Hz
Pulse width: 45 °
Measurement temperature: 20 ° C
Pulse delay time: 10 sec
Integration count: 32 observations Data points: 64000
Solvent: CDCl 3 (deuterated chloroform) (2% by weight)

他の共重合体P−5を含む混合物、P−6を含む混合物についても、モノマー種及び組成を表2のように変更して、同様の手順で重合して得た。   The mixture containing other copolymer P-5 and the mixture containing P-6 were also obtained by polymerizing in the same procedure with the monomer species and composition changed as shown in Table 2.

製造例3(共重合体P−9を含む混合物の製造)
(3−1)ポリアクリル酸水溶液の製造
温度計、攪拌機、窒素導入管及び蒸留用冷却器を備えたガラス製反応容器に、水を104g仕込み、攪拌下に反応容器内を窒素置換し、窒素雰囲気下で78℃に昇温した。(1)80%アクリル酸水溶液250gと、(2)3−メルカプトプロピオン酸7.4gを16gの水に溶解した水溶液、(3)過硫酸アンモニウム3.2gを12gの水に溶解した水溶液の3者を、それぞれ滴下ロートで1.5時間かけて滴下した。その後、さらに過硫酸アンモニウム1.6gを水5.9gに溶かした水溶液を0.5時間かけて滴下した。滴下終了後、78℃でさらに1時間熟成を行い、数平均分子量36000のポリアクリル酸水溶液(A−2)を得た。
Production Example 3 (Production of mixture containing copolymer P-9)
(3-1) Production of polyacrylic acid aqueous solution 104 g of water was charged into a glass reaction vessel equipped with a thermometer, a stirrer, a nitrogen inlet tube and a condenser for distillation, and the inside of the reaction vessel was purged with nitrogen under stirring. The temperature was raised to 78 ° C. under an atmosphere. (1) 250% 80% acrylic acid aqueous solution, (2) an aqueous solution in which 7.4 g of 3-mercaptopropionic acid is dissolved in 16 g of water, and (3) an aqueous solution in which 3.2 g of ammonium persulfate is dissolved in 12 g of water. Were added dropwise with a dropping funnel over 1.5 hours. Thereafter, an aqueous solution obtained by further dissolving 1.6 g of ammonium persulfate in 5.9 g of water was added dropwise over 0.5 hours. After completion of the dropwise addition, the mixture was further aged at 78 ° C. for 1 hour to obtain a polyacrylic acid aqueous solution (A-2) having a number average molecular weight of 36000.

(3−2)アクリル酸/メトキシポリエチレングリコールアクリレート共重合体の製造(ポリマー部分エステル化)
温度計、攪拌機、窒素導入管及び蒸留用冷却器を備えたガラス製反応容器に、ポリアクリル酸(A−2)(完全酸型の未中和品)50%水溶液144g、メトキシポリエチレングリコール(エチレンオキサイドの付加モル数23モル)413g、パラトルエンスルホン酸一水和物(PTS)5.0gを仕込み、反応容器内を窒素置換し、窒素雰囲気下で80℃まで加熱し、攪拌により内容物を均一に溶解させた。その後、窒素を反応容器内に吹き込みながら120℃まで昇温し、生成水を系外に留去しながら120℃に温度を維持しエステル化反応を継続した。100℃に達した時点から30分おきに反応物を一部取り出して酸価を測定することにより反応追跡を行った。エステル化したカルボキシル基の量が25%、即ち、メトキシポリエチレングリコールの反応率が63%となったとき、降温してエステル化反応を終了し、冷却後水を加え、48%水酸化ナトリウム水溶液で中和して、平均分子量49500のアクリル酸/メトキシポリエチレングリコールアクリレート共重合体P−9及びメトキシポリエチレングリコールを含む混合物を得た。該混合物中の共重合体P−9(共重合体A)とメトキシポリエチレングリコール(エーテル化合物B)の重量比(エーテル化合物B/共重合体A)は0.46であり、共重合体Aにおけるアルキレンオキサイドの平均付加モル数(nA)は23であり、エーテル化合物Bにおけるアルキレンオキサイドの平均付加モル数(nB)は23である。
(3-2) Production of acrylic acid / methoxypolyethylene glycol acrylate copolymer (polymer partial esterification)
In a glass reaction vessel equipped with a thermometer, a stirrer, a nitrogen inlet tube and a condenser for distillation, 144 g of polyacrylic acid (A-2) (completely neutralized non-neutralized product), methoxypolyethylene glycol (ethylene) (Oxide mole number 23 moles) 413g) and paratoluenesulfonic acid monohydrate (PTS) 5.0g were charged, the inside of the reaction vessel was purged with nitrogen, heated to 80 ° C under nitrogen atmosphere, and the contents were stirred. It was dissolved uniformly. Thereafter, the temperature was raised to 120 ° C. while blowing nitrogen into the reaction vessel, and the esterification reaction was continued while maintaining the temperature at 120 ° C. while distilling the produced water out of the system. The reaction was traced by taking out a part of the reaction product every 30 minutes from the time of reaching 100 ° C. and measuring the acid value. When the amount of esterified carboxyl groups was 25%, that is, the reaction rate of methoxypolyethylene glycol was 63%, the temperature was lowered to finish the esterification reaction, and after cooling, water was added, and 48% sodium hydroxide aqueous solution was used. Neutralization gave a mixture containing acrylic acid / methoxypolyethylene glycol acrylate copolymer P-9 having an average molecular weight of 49,500 and methoxypolyethylene glycol. The weight ratio of the copolymer P-9 (copolymer A) and methoxypolyethylene glycol (ether compound B) in the mixture (ether compound B / copolymer A) is 0.46. The average added mole number (n A ) of the alkylene oxide is 23, and the average added mole number (n B ) of the alkylene oxide in the ether compound B is 23.

該混合物中の共重合体A及びエーテル化合物Bの重量は、エステル化反応終了後のエステル化したカルボキシル基の量と、合成に用いたポリアクリル酸とメトキシポリエチレングリコールの重量から計算した。   The weight of copolymer A and ether compound B in the mixture was calculated from the amount of esterified carboxyl groups after completion of the esterification reaction and the weight of polyacrylic acid and methoxypolyethylene glycol used in the synthesis.

他の共重合体P−8を含む混合物についても、モノマー種及び組成を表3のように変更して、同様の手順で重合して得た。   The mixture containing other copolymer P-8 was also obtained by polymerizing in the same procedure with the monomer species and composition changed as shown in Table 3.

下記表1に共重合体の構成単位のモノマー種、組成、分子量等を示す。また、表2にエーテル化合物(エーテル化合物A又はエーテル化合物B)を示す。また、下記表3及び4に共重合体の構成単位のモノマー種、組成、分子量等及び混合物の組成を示す。表1の共重合体と表2のエーテル化合物とを組み合わせて、あるいは表3及び4の混合物を分散剤組成物として用いた。   Table 1 below shows the monomer type, composition, molecular weight and the like of the constituent units of the copolymer. Table 2 shows the ether compounds (ether compound A or ether compound B). Tables 3 and 4 below show the monomer type, composition, molecular weight and the like of the constituent units of the copolymer and the composition of the mixture. The copolymer of Table 1 and the ether compound of Table 2 were combined, or the mixture of Tables 3 and 4 was used as the dispersant composition.

Figure 2010163325
Figure 2010163325

Figure 2010163325
Figure 2010163325

Figure 2010163325
Figure 2010163325

Figure 2010163325
Figure 2010163325

実施例(モルタル試験)
(1)モルタル配合
Example (mortar test)
(1) Mortar combination

Figure 2010163325
Figure 2010163325

表中の成分は以下のものである。
C:普通ポルトランドセメント(太平洋セメント株式会社製)(密度3.16g/cm3
S:細骨材、城陽産山砂(密度2.57g/cm3
W:和歌山市水道水
The components in the table are as follows.
C: Ordinary Portland cement (manufactured by Taiheiyo Cement Co., Ltd.) (density 3.16 g / cm 3 )
S: Fine aggregate, Joyosan sand (density 2.57 g / cm 3 )
W: Wakayama City tap water

(2)モルタルの製造
表5の配合でセメント(C)と砂(S)とをモルタルミキサーにより低速で10秒攪拌、混合し、分散剤組成物とエステル系消泡剤とを添加した水(W)を加え、低速で更に2分攪拌、混合してモルタルを製造した。製造は22℃の条件で行った。なお、エステル系消泡剤は、連行空気の影響を除くために用いたものであり、モルタル1kgあたり0.04gとなるように水(W)に加えた。
(2) Manufacture of mortar Cement (C) and sand (S) were mixed and mixed at a low speed for 10 seconds using a mortar mixer in the formulation shown in Table 5, and water added with a dispersant composition and an ester-based antifoaming agent ( W) was added, and the mixture was further stirred and mixed at low speed for 2 minutes to produce a mortar. The production was carried out at 22 ° C. The ester antifoaming agent was used to remove the influence of entrained air, and was added to water (W) so that the amount was 0.04 g per kg of mortar.

(3)モルタル試験
上記で得られたモルタルのモルタルフローをJIS R 5201に準じて測定(但し、落下運動は加えなかった)し、また、直径5cm×高さ10cmの供試体を作成し、20℃で養生した。24時間後に脱型したモルタルの硬化体の初期強度を圧縮強度試験機により測定した。結果を表6〜10に示す。
(3) Mortar test The mortar flow of the mortar obtained above was measured according to JIS R 5201 (however, no drop motion was added), and a specimen having a diameter of 5 cm and a height of 10 cm was prepared. Cured at ℃. The initial strength of the cured mortar that was demolded after 24 hours was measured with a compressive strength tester. The results are shown in Tables 6-10.

Figure 2010163325
Figure 2010163325

分散剤組成物の添加量は、セメント100重量部に対する重量部である(以下同様)。また、nA/nBは、共重合体Aにおける一般式(1)中の平均付加モル数(nA)とエーテル化合物Bにおける平均付加モル数(nB)の比(nA/nB)である(以下同様)。 The amount of the dispersant composition added is 100 parts by weight of cement (hereinafter the same). N A / n B is the ratio of the average number of added moles (n A ) in the general formula (1) in the copolymer A to the average number of added moles (n B ) in the ether compound B (n A / n B (The same applies hereinafter).

Figure 2010163325
Figure 2010163325

Figure 2010163325
Figure 2010163325

Figure 2010163325
Figure 2010163325

Figure 2010163325
Figure 2010163325

表6〜9では、モルタルフローを一定にするため共重合体Aの添加量を一定としエーテル化合物Bの添加量を変えてB/A重量比を変化させた。   In Tables 6-9, in order to make the mortar flow constant, the addition amount of the copolymer A was made constant, and the addition amount of the ether compound B was changed to change the B / A weight ratio.

表6で0.24重量部のエーテル化合物Bを添加している実施例1−5は初期強度が17.7N/mm2であり、エーテル化合物Bを添加しない比較例1−1の17.0N/mm2よりも初期強度が約4%向上している。一方、表7の比較例2−4はエーテル化合物Bの添加量が実施例1−5と同じであっても、エーテル化合物を添加しない比較例2−1よりも約1%しか初期強度が向上していない。表8の比較例3−4及び比較例3−1も同様である。したがって、初期強度向上の効果は、単にエーテル化合物Bの添加量ではなく、B/A重量比がより本質に近いと考えられる。 In Table 6, Example 1-5 to which 0.24 parts by weight of ether compound B is added has an initial strength of 17.7 N / mm 2 , and 17.0 N of Comparative Example 1-1 to which no ether compound B is added. The initial strength is about 4% higher than / mm 2 . On the other hand, in Comparative Example 2-4 in Table 7, even if the amount of ether compound B added is the same as in Example 1-5, the initial strength is improved by only about 1% compared to Comparative Example 2-1 in which no ether compound is added. Not done. The same applies to Comparative Example 3-4 and Comparative Example 3-1 in Table 8. Therefore, it is considered that the effect of improving the initial strength is not simply the addition amount of the ether compound B but the B / A weight ratio is closer to the essence.

Claims (5)

一般式(1)で表される構成単位(A1)と一般式(2)で表される構成単位(A2)とを含む共重合体Aと、アルキレンオキサイドの平均付加モル数(nB)が2〜300のアルコキシポリアルキレングリコール(以下、エーテル化合物Bという)とを、エーテル化合物B/共重合体A=0.40〜1.9の重量比で含有し、共重合体Aにおける一般式(1)中のアルキレンオキサイドの平均付加モル数(nA)とエーテル化合物Bにおけるアルキレンオキサイドの平均付加モル数(nB)の比が、(nA)/(nB)で0.9〜1.1である、水硬性組成物用分散剤組成物。
Figure 2010163325

1 〔式中、
11:水素原子又はメチル基
12:水素原子、メチル基、又はCOOM
13:水素原子、メチル基、CH2COOM、又はCOOM
X:炭素数2〜8のオキシアルキレン基
A:Xの平均付加モル数2〜300
Y:炭素数1〜18のアルキル基
M:水素原子、アルカリ金属、アルカリ土類金属(1/2原子)、アンモニウム基、アルキルアンモニウム基、置換アルキルアンモニウム基、アルキル基、ヒドロキシアルキル基、又はアルケニル基
を表す。〕
Figure 2010163325

〔式中、
21:水素原子又はメチル基
22:水素原子、メチル基、又はCOOM’
23:水素原子、メチル基、CH2COOM’、又はCOOM’
M’:水素原子、アルカリ金属、アルカリ土類金属(1/2原子)、アンモニウム基、アルキルアンモニウム基、置換アルキルアンモニウム基、アルキル基、ヒドロキシアルキル基、又はアルケニル基
を表す。〕
The copolymer A containing the structural unit (A1) represented by the general formula (1) and the structural unit (A2) represented by the general formula (2), and the average added mole number (n B ) of the alkylene oxide 2 to 300 alkoxy polyalkylene glycol (hereinafter referred to as ether compound B) in a weight ratio of ether compound B / copolymer A = 0.40 to 1.9. The ratio of the average number of moles of alkylene oxide (n A ) in 1) to the average number of moles of alkylene oxide added (n B ) in ether compound B is 0.9 to 1 in terms of (n A ) / (n B ) 1. Dispersant composition for hydraulic composition.
Figure 2010163325

1 [where,
R 11 : hydrogen atom or methyl group R 12 : hydrogen atom, methyl group, or COOM
R 13 : hydrogen atom, methyl group, CH 2 COOM, or COOM
X: oxyalkylene group having 2 to 8 carbon atoms n A : average added mole number of X being 2 to 300
Y: alkyl group having 1 to 18 carbon atoms M: hydrogen atom, alkali metal, alkaline earth metal (1/2 atom), ammonium group, alkylammonium group, substituted alkylammonium group, alkyl group, hydroxyalkyl group, or alkenyl Represents a group. ]
Figure 2010163325

[Where,
R 21 : hydrogen atom or methyl group R 22 : hydrogen atom, methyl group, or COOM ′
R 23 : hydrogen atom, methyl group, CH 2 COOM ′, or COOM ′
M ′ represents a hydrogen atom, an alkali metal, an alkaline earth metal (1/2 atom), an ammonium group, an alkylammonium group, a substituted alkylammonium group, an alkyl group, a hydroxyalkyl group, or an alkenyl group. ]
共重合体Aの全構成単位に占める構成単位(A1)のモル比〔構成単位(A1)/全構成単位〕が、0.01〜0.6である請求項1記載の水硬性組成物用分散剤組成物。   2. The hydraulic composition according to claim 1, wherein the molar ratio of the structural unit (A1) to the total structural unit of the copolymer A [structural unit (A1) / total structural unit] is 0.01 to 0.6. Dispersant composition. 請求項1又は2記載の水硬性組成物用分散剤組成物と水硬性粉体と水とを含有する水硬性組成物。   The hydraulic composition containing the dispersing agent composition for hydraulic compositions of Claim 1 or 2, hydraulic powder, and water. 請求項1又は2記載の水硬性組成物用分散剤組成物の製造方法であって、
アルキレンオキサイドの平均付加モル数(nA)が2〜300のアルコキシポリアルキレングリコール(以下、エーテル化合物Aという)を含む溶媒中で下記一般式(4)で表されるモノマー(a2)を含むモノマーを重合させて少なくとも構成単位(A2)を含むカルボン酸系ポリマーを得る工程と、
前記工程で得られたカルボン酸系ポリマーとエーテル化合物Aの(部分)エステル化反応により共重合体Aを得る工程とを有し、且つ
前記エステル化反応を、未反応のエーテル化合物Aがエーテル化合物Bとして共重合体Aと前記重量比で存在する時点で終了する、
水硬性組成物用分散剤組成物の製造方法。
Figure 2010163325

〔式中、
41:水素原子又はメチル基
42:水素原子、メチル基、又はCOOM41
43:水素原子、メチル基、CH2COOM41、又はCOOz
41:水素原子、アルカリ金属、アルカリ土類金属(1/2原子)、アンモニウム基、アルキルアンモニウム基、置換アルキルアンモニウム基、アルキル基、ヒドロキシアルキル基、又はアルケニル基
を表す。〕
A method for producing a dispersant composition for a hydraulic composition according to claim 1 or 2,
Monomer containing a monomer (a2) represented by the following general formula (4) in a solvent containing an alkoxypolyalkylene glycol (hereinafter referred to as ether compound A ) having an average addition mole number (n A ) of alkylene oxide of 2 to 300 To obtain a carboxylic acid polymer containing at least the structural unit (A2),
And a step of obtaining a copolymer A by a (partial) esterification reaction of the carboxylic acid polymer obtained in the above step and the ether compound A, and the esterification reaction is carried out by using an unreacted ether compound A as an ether compound. B ends when present in the weight ratio with copolymer A,
A method for producing a dispersant composition for a hydraulic composition.
Figure 2010163325

[Where,
R 41 : hydrogen atom or methyl group R 42 : hydrogen atom, methyl group, or COOM 41
R 43 : hydrogen atom, methyl group, CH 2 COOM 41 , or COOz
M 41 represents a hydrogen atom, an alkali metal, an alkaline earth metal (1/2 atom), an ammonium group, an alkyl ammonium group, a substituted alkyl ammonium group, an alkyl group, a hydroxyalkyl group, or an alkenyl group. ]
請求項1又は2記載の水硬性組成物用分散剤組成物の製造方法であって、
アルキレンオキサイドの平均付加モル数(nA)が2〜300のアルコキシポリアルキレングリコール(以下、エーテル化合物Aという)と少なくとも構成単位(A2)を含むカルボン酸系ポリマーとをエステル化反応させて、共重合体Aを得る工程を有し、且つ
前記エステル化反応を、未反応のエーテル化合物Aがエーテル化合物Bとして共重合体Aと前記重量比で存在する時点で終了する、
水硬性組成物用分散剤組成物の製造方法。
A method for producing a dispersant composition for a hydraulic composition according to claim 1 or 2,
An alkoxypolyalkylene glycol (hereinafter referred to as ether compound A ) having an average added mole number (n A ) of alkylene oxide of 2 to 300 is esterified with a carboxylic acid-based polymer containing at least the structural unit (A2). And a step of obtaining the polymer A, and the esterification reaction is terminated when the unreacted ether compound A is present as the ether compound B in the weight ratio with the copolymer A.
A method for producing a dispersant composition for a hydraulic composition.
JP2009007348A 2009-01-16 2009-01-16 Dispersant composition for hydraulic composition Active JP5371457B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009007348A JP5371457B2 (en) 2009-01-16 2009-01-16 Dispersant composition for hydraulic composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009007348A JP5371457B2 (en) 2009-01-16 2009-01-16 Dispersant composition for hydraulic composition

Publications (2)

Publication Number Publication Date
JP2010163325A true JP2010163325A (en) 2010-07-29
JP5371457B2 JP5371457B2 (en) 2013-12-18

Family

ID=42579808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009007348A Active JP5371457B2 (en) 2009-01-16 2009-01-16 Dispersant composition for hydraulic composition

Country Status (1)

Country Link
JP (1) JP5371457B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015003832A (en) * 2013-06-19 2015-01-08 太平洋セメント株式会社 Concrete strength improver, concrete, concrete production method, and method for improving concrete strength
WO2020115788A1 (en) * 2018-12-03 2020-06-11 竹本油脂株式会社 Additive for hydraulic compositions, and hydraulic composition

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105111161B (en) * 2015-09-18 2017-09-19 浙江农林大学暨阳学院 A method for efficiently coupling and tandemly synthesizing 2-phenylbenzoxazole and derivatives thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007065952A1 (en) * 2005-12-08 2007-06-14 Sika Technology Ag Composition and its use for improving the processibility of hydraulically setting compositions

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007065952A1 (en) * 2005-12-08 2007-06-14 Sika Technology Ag Composition and its use for improving the processibility of hydraulically setting compositions

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015003832A (en) * 2013-06-19 2015-01-08 太平洋セメント株式会社 Concrete strength improver, concrete, concrete production method, and method for improving concrete strength
WO2020115788A1 (en) * 2018-12-03 2020-06-11 竹本油脂株式会社 Additive for hydraulic compositions, and hydraulic composition
JPWO2020115788A1 (en) * 2018-12-03 2021-09-27 竹本油脂株式会社 Additives for hydraulic compositions and hydraulic compositions
JP7103691B2 (en) 2018-12-03 2022-07-20 竹本油脂株式会社 Additives for hydraulic compositions and hydraulic compositions

Also Published As

Publication number Publication date
JP5371457B2 (en) 2013-12-18

Similar Documents

Publication Publication Date Title
US9126866B2 (en) Polycarboxylate ethers with branched side chains
RU2586121C2 (en) Dispersant for hydraulic composition
US9446986B2 (en) Dispersant for hydraulically setting systems
JP6240074B2 (en) Comb polymer with delayed alkaline hydrolysis
EP2964586B1 (en) Use of polycarboxylate ethers with branched side chains as dispersants for inorganic binders
WO2006011182A1 (en) Cement dispersant and concrete composition containing the dispersant
JP6875443B2 (en) Use of comb-shaped polymer for rheology control of inorganic binder composition
JP5371457B2 (en) Dispersant composition for hydraulic composition
JP6581369B2 (en) Hydraulic composition, method for improving initial strength of fly ash-containing hydraulic composition, and additive for fly ash-containing hydraulic composition
AU2011231754B2 (en) Additive for hydraulically setting systems having improved processability
JP4717713B2 (en) Dispersant for hydraulic composition
JP4421194B2 (en) Admixture for hydraulic composition
JP5870878B2 (en) Cement admixture and method for producing cement composition using the same
JP5311891B2 (en) Additive composition for hydraulic composition
JP5269627B2 (en) Method for producing graft polymer
JP6180923B2 (en) Admixture for hydraulic composition
WO2024012776A1 (en) Copolymers of carboxylates and polyethers comprising polyether side chains of different length, and use thereof in mineral binder compositions
JP5859347B2 (en) Admixture for hydraulic composition
JP2019151504A (en) Admixture for cement
JP2019151505A (en) Cement admixture and cement composition
JP2014031314A (en) Cement additive and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130917

R151 Written notification of patent or utility model registration

Ref document number: 5371457

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250