[go: up one dir, main page]

JP2010151531A - Sound pressure space differential detection sensor - Google Patents

Sound pressure space differential detection sensor Download PDF

Info

Publication number
JP2010151531A
JP2010151531A JP2008328229A JP2008328229A JP2010151531A JP 2010151531 A JP2010151531 A JP 2010151531A JP 2008328229 A JP2008328229 A JP 2008328229A JP 2008328229 A JP2008328229 A JP 2008328229A JP 2010151531 A JP2010151531 A JP 2010151531A
Authority
JP
Japan
Prior art keywords
diaphragm
sound pressure
package
support
detection sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008328229A
Other languages
Japanese (ja)
Inventor
Kana Kawahigashi
香菜 川東
Minoru Fukushima
実 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Electric Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Electric Works Co Ltd filed Critical Panasonic Electric Works Co Ltd
Priority to JP2008328229A priority Critical patent/JP2010151531A/en
Publication of JP2010151531A publication Critical patent/JP2010151531A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

【課題】 小型化が図れる音圧空間微分検出センサを提供する。
【解決手段】 それぞれ扁平な直方体形状であって厚さ方向を互いに揃えて長手方向を互いに直交させる向きで配置された2個の振動板1と、振動板1を短手方向の両側から間に隙間を空けて挟む挟み部20を各振動板1についてそれぞれ有するパッケージ2と、各振動板1に2個ずつ設けられそれぞれ振動板1の長手方向の中央部であって短手方向の一端ずつとパッケージ2の挟み部20との間に架設された支持体3と、各振動板1の長手方向の両端部の測定点A〜Dについてそれぞれ厚さ方向の変位を検出する変位検出手段(図示せず)とを備える。1枚の振動板1につき1方向の音圧空間微分を検出可能であるから、1方向の音圧空間微分を検出するために複数枚ずつの振動板を用いる場合に比べ、小型化が図れる。
【選択図】図1
PROBLEM TO BE SOLVED: To provide a sound pressure spatial differential detection sensor that can be miniaturized.
SOLUTION: Two diaphragms 1 each having a flat rectangular parallelepiped shape and arranged in a direction in which thickness directions are aligned with each other and their longitudinal directions are orthogonal to each other, and the diaphragm 1 is sandwiched between both sides in a short direction. A package 2 having a sandwiching portion 20 for each diaphragm 1 with a gap between them, and two each of the diaphragms 1 provided at the center of the diaphragm 1 in the longitudinal direction and one end in the lateral direction. Displacement detecting means (not shown) for detecting displacement in the thickness direction at the support 3 laid between the sandwiched portions 20 of the package 2 and the measurement points A to D at both ends in the longitudinal direction of each diaphragm 1. Z)). Since the sound pressure spatial differential in one direction can be detected for one diaphragm 1, the size can be reduced as compared with the case where a plurality of diaphragms are used to detect the sound pressure spatial differential in one direction.
[Selection] Figure 1

Description

本発明は、音圧空間微分検出センサに関するものである。   The present invention relates to a sound pressure spatial differential detection sensor.

従来から、複数個の点でそれぞれ測定された音圧から得られた、所定の点(以下、「対象点」と呼ぶ。)における音圧と、対象点における音圧の2軸方向のそれぞれについての空間勾配(音圧空間微分)と、対象点における音圧の時間勾配(音圧時間微分)とを用いた時空間勾配法により、音源の定位や雑音の除去を行う技術(例えば、特許文献1参照)が知られている。   Conventionally, the sound pressure at a predetermined point (hereinafter referred to as “target point”) obtained from the sound pressure measured at each of a plurality of points, and the two axial directions of the sound pressure at the target point, respectively. Technology for sound source localization and noise removal by the spatiotemporal gradient method using the spatial gradient of the sound (sound pressure spatial differentiation) and the temporal gradient of the sound pressure at the target point (sound pressure temporal differentiation) (for example, patent literature) 1) is known.

また、音源に近いほど単位距離当りの音圧の減衰幅が大きいことを利用し、目標音源からの距離が互いの異なる2個の測定点でそれぞれ測定された音圧の差分をとることにより、目標音源よりも各測定点から離れた騒音源からの音を抑圧し、目標音源からの音が強調された音圧を得る技術(例えば、特許文献2〜4参照)も知られている。
特開2006−58395号公報 特開2007−221651号公報 特開2008−131474号公報 特開2008−154224号公報
In addition, by using the fact that the sound pressure attenuation width per unit distance is larger as it is closer to the sound source, by taking the difference between the sound pressures measured at two different measurement points at different distances from the target sound source, There is also known a technique (for example, see Patent Documents 2 to 4) that suppresses sound from a noise source farther from each measurement point than the target sound source and obtains sound pressure in which the sound from the target sound source is emphasized.
JP 2006-58395 A JP 2007-221651 A JP 2008-131474 A JP 2008-154224 A

従来、上記のような時空間勾配法には、上記2軸方向に2列ずつ並べて格子状に配列された計4個のマイクロホンからなる音圧空間微分検出センサが用いられていた。   Conventionally, in the spatiotemporal gradient method as described above, a sound pressure spatial differential detection sensor made up of a total of four microphones arranged in a lattice in two rows in the two-axis direction has been used.

そして、上記のように音源の定位や雑音の除去を行う装置においては、精度の向上や小型化を可能とするために、音圧空間微分検出センサの構造についても研究されている。   In addition, in the apparatus that performs sound source localization and noise removal as described above, the structure of the sound pressure spatial differential detection sensor has been studied in order to improve accuracy and reduce the size.

本発明は、上記事由に鑑みて為されたものであり、その目的は、小型化が図れる音圧空間微分検出センサを提供することにある。   The present invention has been made in view of the above-mentioned reasons, and an object thereof is to provide a sound pressure spatial differential detection sensor that can be miniaturized.

請求項1の発明は、それぞれ弾性を有する材料からなり扁平な直方体形状の少なくとも1個の振動板と、振動板を短手方向の両側から間に隙間を空けて挟む挟み部を各振動板についてそれぞれ有するパッケージと、各振動板に2個ずつ設けられそれぞれ弾性を有する材料からなり厚さ方向を振動板の厚さ方向に向けた扁平な形状であって振動板の長手方向の中央部において短手方向の一端ずつに一端が連結され他端がパッケージの挟み部に連結された支持体と、各振動板の長手方向の両端部についてそれぞれ厚さ方向の変位を検出する変位検出手段とを備えることを特徴とする。   According to the first aspect of the present invention, at least one diaphragm having a flat rectangular parallelepiped shape made of an elastic material and a sandwiching part that sandwiches the diaphragm from both sides in the lateral direction with a gap between the diaphragms are provided for each diaphragm. Each of the packages and two each provided on each diaphragm are made of an elastic material and have a flat shape with the thickness direction oriented in the thickness direction of the diaphragm, and are short at the longitudinal center of the diaphragm. A support body having one end connected to one end in the hand direction and the other end connected to a sandwiching portion of the package, and a displacement detection means for detecting displacement in the thickness direction at both ends in the longitudinal direction of each diaphragm. It is characterized by that.

この発明によれば、1枚の振動板につき1方向の音圧空間微分を検出可能であるから、1方向の音圧空間微分を検出するために複数枚ずつの振動板を用いる場合に比べ、小型化が図れる。   According to this invention, it is possible to detect a sound pressure spatial differential in one direction per diaphragm, so that a plurality of diaphragms are used in order to detect a sound pressure spatial differential in one direction. Miniaturization can be achieved.

請求項2の発明は、それぞれ弾性を有する材料からなり扁平な直方体形状の少なくとも1個の振動板と、振動板を短手方向の両側から間に隙間を空けて挟む挟み部を各振動板についてそれぞれ有するパッケージと、各振動板に2個ずつ設けられそれぞれ弾性を有する材料からなり厚さ方向を振動板の厚さ方向に向けた扁平な形状であって振動板の長手方向の中央部において短手方向の一端ずつに一端が連結され他端がパッケージの挟み部に連結された支持体と、各支持体に、引張りとねじれによって生じるひずみを検出するひずみ検出手段とを備えることを特徴とする。   According to a second aspect of the present invention, there is provided a flat rectangular parallelepiped-shaped diaphragm made of an elastic material, and a sandwiching portion for sandwiching the diaphragm from both sides in the lateral direction with respect to each diaphragm. Each of the packages and two each provided on each diaphragm are made of an elastic material and have a flat shape with the thickness direction oriented in the thickness direction of the diaphragm, and are short at the longitudinal center of the diaphragm. One end is connected to each end in the hand direction, and the other end is connected to a sandwiching portion of the package, and each support is provided with strain detection means for detecting strain caused by tension and torsion. .

請求項3の発明は、それぞれ弾性を有する材料からなり扁平な直方体形状の少なくとも1個の振動板と、振動板を短手方向の両側から間に隙間を空けて挟む挟み部を各振動板についてそれぞれ有するパッケージと、各振動板が収納される空洞を備えたパッケージのカバーと、各振動板に2個ずつ設けられそれぞれ弾性を有する材料からなり厚さ方向を振動板の厚さ方向に向けた扁平な形状であって振動板の長手方向の中央部において短手方向の一端ずつに一端が連結され他端がパッケージの挟み部に連結された支持体と、各振動板の長手方向の両端部についてそれぞれ厚さ方向の変位を検出する変位検出手段とを備えることを特徴とする。   According to a third aspect of the present invention, there is provided a flat rectangular parallelepiped-shaped diaphragm made of an elastic material, and a sandwiching portion for sandwiching the diaphragm from both sides in the short-side direction with respect to each diaphragm. Each package, a package cover having a cavity in which each diaphragm is accommodated, and two each of the diaphragms made of an elastic material with the thickness direction oriented in the thickness direction of the diaphragm A support having a flat shape and one end connected to one end in the lateral direction at the center of the diaphragm in the longitudinal direction and the other end connected to the sandwiched portion of the package, and both ends in the longitudinal direction of each diaphragm And a displacement detecting means for detecting a displacement in the thickness direction.

請求項4の発明は、請求項1〜3のいずれかの発明において、各支持体において、それぞれ、振動板に連結された一端の幅寸法よりも、パッケージに連結された他端の幅寸法が小さくされていることを特徴とする。   According to a fourth aspect of the present invention, in any one of the first to third aspects, in each support body, the width dimension of the other end connected to the package is larger than the width dimension of the one end connected to the diaphragm. It is characterized by being made small.

この発明によれば、各支持体においてそれぞれパッケージに連結された他端の幅寸法を振動板に連結された一端の幅寸法以上とする場合に比べ、検出可能な音の周波数帯域を広くすることができ、また、支持体がねじれるような振動板の振動である逆相振動を強調し、音圧空間微分を精度よく検出する設計が可能である。   According to the present invention, the frequency band of the detectable sound is widened as compared with the case where the width dimension of the other end connected to the package in each support is equal to or larger than the width dimension of the one end connected to the diaphragm. In addition, it is possible to enhance the anti-phase vibration, which is the vibration of the diaphragm such that the support is twisted, and to accurately detect the sound pressure spatial differential.

請求項5の発明は、請求項1〜4のいずれかの発明において、各支持体の厚さ寸法は、それぞれ連結された振動板の厚さ寸法よりも小さくされていることを特徴とする。   According to a fifth aspect of the present invention, in any one of the first to fourth aspects, the thickness dimension of each support is made smaller than the thickness dimension of the connected diaphragm.

この発明によれば、各支持体の厚さ寸法をそれぞれ振動板の厚さ寸法以上とする場合に比べ、検出可能な音の周波数帯域を広くすることができ、また、支持体がねじれるような振動板の振動である逆相振動を強調し、音圧空間微分を精度よく検出する設計が可能である。   According to the present invention, compared to the case where the thickness dimension of each support is equal to or greater than the thickness dimension of the diaphragm, the detectable frequency band of sound can be widened, and the support can be twisted. It is possible to enhance the anti-phase vibration, which is the vibration of the diaphragm, and to design the sound pressure space differential with high accuracy.

請求項6の発明は、請求項1〜5のいずれかの発明において、各支持体はそれぞれ連結された振動部の材料よりもヤング率が低い材料からなることを特徴とする。   The invention of claim 6 is characterized in that, in any one of the inventions of claims 1 to 5, each support is made of a material having a Young's modulus lower than the material of the connected vibration parts.

この発明によれば、各支持体の材料のヤング率がそれぞれ振動板の材料のヤング率以上である場合に比べ、検出可能な音の周波数帯域を広くすることができ、また、支持体がねじれるような振動板の振動である逆相振動を強調し、音圧空間微分を精度よく検出する設計が可能である。   According to the present invention, compared to the case where the Young's modulus of the material of each support is equal to or greater than the Young's modulus of the material of the diaphragm, the detectable sound frequency band can be widened, and the support is twisted. It is possible to design such that the anti-phase vibration, which is the vibration of the diaphragm, is emphasized and the sound pressure spatial differential is detected with high accuracy.

請求項7の発明は、請求項1〜6のいずれかの発明において、振動板と支持体と挟み部とが2組、振動板の厚さ方向を揃え且つ振動板の長手方向を互いに直交させる向きで設けられていることを特徴とする。   The invention of claim 7 is the invention according to any one of claims 1 to 6, wherein two sets of the diaphragm, the support and the sandwiching portion are aligned, the thickness direction of the diaphragm is aligned, and the longitudinal directions of the diaphragm are orthogonal to each other It is provided in the direction.

この発明によれば、各振動板でそれぞれ厚さ方向に直交する2軸方向のうち長手方向に平行な一方ずつについての音圧空間微分が得られる。   According to the present invention, the sound pressure spatial differentiation can be obtained for each of the diaphragms that is parallel to the longitudinal direction of the two axial directions orthogonal to the thickness direction.

請求項1〜3の発明によれば、それぞれ、1枚の振動板につき1方向の音圧空間微分を検出可能であるから、1方向の音圧空間微分を検出するために複数枚ずつの振動板を用いる場合に比べ、小型化が図れる。   According to the first to third aspects of the invention, it is possible to detect a sound pressure spatial differential in one direction for each diaphragm, and therefore, a plurality of vibrations are detected in order to detect a sound pressure spatial differential in one direction. The size can be reduced as compared with the case of using a plate.

請求項4の発明によれば、各支持体において、それぞれ、振動板に連結された一端の幅寸法よりも、パッケージに連結された他端の幅寸法が小さくされているので、各支持体においてそれぞれパッケージに連結された他端の幅寸法を振動板に連結された一端の幅寸法以上とする場合に比べ、検出可能な音の周波数帯域を広くすることができ、また、支持体がねじれるような振動板の振動である逆相振動を強調し、音圧空間微分を精度よく検出する設計が可能である。   According to the invention of claim 4, in each support body, the width dimension of the other end connected to the package is made smaller than the width dimension of the one end connected to the diaphragm. Compared with the case where the width dimension of the other end connected to the package is equal to or larger than the width dimension of the one end connected to the diaphragm, the frequency band of the detectable sound can be widened, and the support can be twisted. It is possible to design to accurately detect the sound pressure spatial differential by emphasizing anti-phase vibration, which is the vibration of a simple diaphragm.

請求項5の発明によれば、各支持体の厚さ寸法は、それぞれ連結された振動板の厚さ寸法よりも小さくされているので、各支持体の厚さ寸法をそれぞれ振動板の厚さ寸法以上とする場合に比べ、検出可能な音の周波数帯域を広くすることができ、また、支持体がねじれるような振動板の振動である逆相振動を強調し、音圧空間微分を精度よく検出する設計が可能である。   According to the invention of claim 5, since the thickness dimension of each support is smaller than the thickness dimension of the connected diaphragm, the thickness dimension of each support is the thickness of the diaphragm. Compared with the case where the size is larger than the size, the frequency band of the detectable sound can be widened, and the anti-phase vibration, which is the vibration of the diaphragm that twists the support, is emphasized, and the sound pressure spatial differentiation is accurately performed. Design to detect is possible.

請求項6の発明によれば、各支持体はそれぞれ連結された振動部の材料よりもヤング率が低い材料からなるので、各支持体の材料のヤング率がそれぞれ振動板の材料のヤング率以上である場合に比べ、検出可能な音の周波数帯域を広くすることができ、また、支持体がねじれるような振動板の振動である逆相振動を強調し、音圧空間微分を精度よく検出する設計が可能である。   According to the invention of claim 6, since each support is made of a material having a lower Young's modulus than the material of the connected vibration parts, the Young's modulus of the material of each support is equal to or greater than the Young's modulus of the material of the diaphragm. Compared to the case, the frequency band of the detectable sound can be widened, and the anti-phase vibration, which is the vibration of the diaphragm that twists the support, is emphasized, and the sound pressure spatial differential is detected with high accuracy. Design is possible.

請求項7の発明によれば、振動板と支持体と挟み部とが2組、振動板の厚さ方向を揃え且つ振動板の長手方向を互いに直交させる向きで設けられているので、各振動板でそれぞれ厚さ方向に直交する2軸方向のうち長手方向に平行な一方ずつについての音圧空間微分が得られる。   According to the seventh aspect of the present invention, two sets of the diaphragm, the support, and the sandwiching portion are provided in the direction in which the thickness direction of the diaphragm is aligned and the longitudinal directions of the diaphragm are orthogonal to each other. The sound pressure space differential is obtained for each of the two parallel directions in the longitudinal direction of the two axial directions orthogonal to the thickness direction.

以下、本発明を実施するための最良の形態について、図面を参照しながら説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings.

本実施形態は、図1に示すように、それぞれ弾性を有する材料からなり扁平な直方体形状であって厚さ方向を互いに揃えて長手方向を互いに直交させる向きで配置された2個の振動板1と、振動板1を短手方向の両側から間に隙間を空けて挟む挟み部20を各振動板1についてそれぞれ有するパッケージ2と、各振動板1に2個ずつ設けられそれぞれ弾性を有する材料からなり厚さ方向を振動板1の厚さ方向に向けた扁平な直方体形状であって振動板1の長手方向の中央部において短手方向の一端ずつに一端が連結され他端がパッケージ2の挟み部20に連結された支持体3とを備える。パッケージ2は、各振動板1の厚さ方向から見て各振動板1をそれぞれ囲む形状であって各挟み部20をそれぞれ構成するフレーム21と、フレーム21の前面(振動板1に対して音が入射する側の面)に固着されたカバー22を備える。カバー22は、振動板1に一対一に対応し振動板1に入射する音を通過させる2個の長方形状の音穴22aが貫設されている。ここで、音穴22aの寸法形状は振動板1の寸法形状になるべく近いものとし、前方から見て振動板1とフレーム21との間の隙間が音穴22aから露出しないようにすることが、図3に矢印で示すような振動板1の後方への音の回り込みを防ぐためには望ましい。上記のようなパッケージ2において、フレーム21と、各振動板1と、各支持体3とは、それぞれ、1枚の半導体ウェハーに周知の半導体プロセスを施すことで1個の部品として形成することができる。   In the present embodiment, as shown in FIG. 1, two diaphragms 1 each having a flat rectangular parallelepiped shape made of an elastic material and arranged in a direction in which the thickness directions are aligned with each other and the longitudinal directions are orthogonal to each other. And a package 2 having each sandwiching portion 20 for sandwiching the diaphragm 1 from both sides in the short direction with respect to each diaphragm 1, and two each of the diaphragms 1 provided with an elastic material. It is a flat rectangular parallelepiped shape with the thickness direction facing the thickness direction of the diaphragm 1, and one end is connected to one end in the short direction at the center of the longitudinal direction of the diaphragm 1, and the other end is sandwiched between the packages 2. And a support 3 connected to the portion 20. The package 2 has a shape that surrounds each diaphragm 1 when viewed from the thickness direction of each diaphragm 1 and constitutes each sandwiching portion 20, and a front surface of the frame 21 (sounds relative to the diaphragm 1). The cover 22 is fixed to the surface on the side where the light enters. The cover 22 is provided with two rectangular sound holes 22 a corresponding to the diaphragm 1 on a one-to-one basis and allowing sound incident on the diaphragm 1 to pass therethrough. Here, it is assumed that the dimensional shape of the sound hole 22a is as close as possible to the dimensional shape of the diaphragm 1, and that the gap between the diaphragm 1 and the frame 21 is not exposed from the sound hole 22a when viewed from the front. This is desirable in order to prevent the sound from wrapping behind the diaphragm 1 as shown by the arrow in FIG. In the package 2 as described above, the frame 21, each diaphragm 1, and each support 3 can be formed as one component by performing a known semiconductor process on one semiconductor wafer. it can.

また、本実施形態は、各振動板1の長手方向の両端部にそれぞれ設けられた測定点A〜Dについてそれぞれ厚さ方向の変位(以下、単に「変位」と呼ぶ。)を検出する変位検出手段(図示せず)を備える。変位検出手段としては、例えば、一方の電極が振動板1の測定点A〜Dに設けられるとともに他方の電極がパッケージ2において測定点A〜Dに対向する部位に設けられて振動部1の測定点A〜Dの変位に伴って静電容量が変化するコンデンサや、振動板1や支持体3に生じたひずみを検出(つまり電気信号に変換)する圧電素子を用いることができる。さらに具体的には例えば、図4(a)に示すように、ピエゾ抵抗4a〜4dを各支持体3の前後(すなわち厚さ方向)の両側の面に1個ずつ設けて支持体3のねじれによるせん断ひずみを検出してもよいし、図4(b)に示すように、各支持体3の前後一方の面(図では前面)にピエゾ抵抗4e〜4hを振動板1に対する支持体3の突出方向に並べて2個ずつ設けて支持体3の引張りによる垂直ひずみを検出してもよい。   Further, in the present embodiment, displacement detection that detects displacement in the thickness direction (hereinafter simply referred to as “displacement”) at each of measurement points A to D provided at both ends in the longitudinal direction of each diaphragm 1. Means (not shown). As the displacement detecting means, for example, one electrode is provided at the measurement points A to D of the vibration plate 1 and the other electrode is provided at a position facing the measurement points A to D in the package 2 to measure the vibration part 1. A capacitor whose capacitance changes with the displacement of points A to D, or a piezoelectric element that detects strain (that is, converts into an electric signal) generated in the diaphragm 1 or the support 3 can be used. More specifically, for example, as shown in FIG. 4A, one piezoresistor 4 a to 4 d is provided on each of the front and rear surfaces (that is, the thickness direction) of each support 3 to twist the support 3. 4 (b), and piezoresistors 4e to 4h are provided on one of the front and rear surfaces (front surface in the figure) of each support 3 as shown in FIG. Two vertical lines arranged in the protruding direction may be provided to detect the vertical strain due to the tension of the support 3.

ところで、本実施形態における振動板1の振動は、図5(a)に示すように支持体3のねじれにより振動板1が回転するような振動(以下、「逆相振動」と呼ぶ。)と、図5(b)に示すような振動板1自体の弾性変形による振動(以下、「同相振動」と呼ぶ。)とが合成されたものである。逆相振動は振動板1の長手方向の中央に関して反対称な成分であり、同相振動は振動板1の長手方向の中央に関して対称な成分である。例えば、振動板1の長手方向の中央に関して対称な2点をそれぞれ測定点A,Bとし、測定点Aの変位をzとおき、測定点Bの変位をzとおくと、各測定点A,Bについて、変位z,zのうち同相振動による成分は(z+z)/2と表され、逆相振動による成分の大きさは|z−z|/2と表される。図4(a)のようなピエゾ抵抗4a〜4dの配置は逆相振動の検出に適し、図4(b)のようなピエゾ抵抗4e〜4hの配置は同相振動の検出に適している。そして、本実施形態は、図6に示すように、逆相振動の共振周波数である1次共振周波数f1と、同相振動の共振周波数である2次共振周波数f2との間の周波数帯(以下、単に「周波数帯域」と呼ぶ。)の音を検出することができる。つまり、周波数帯域を広くするために、1次共振周波数f1と2次共振周波数f2との差は大きいことが望ましい。 By the way, the vibration of the diaphragm 1 in the present embodiment is a vibration in which the diaphragm 1 is rotated by the torsion of the support 3 as shown in FIG. 5A (hereinafter referred to as “reverse phase vibration”). FIG. 5B is a combination of vibrations caused by elastic deformation of the diaphragm 1 itself (hereinafter referred to as “in-phase vibration”). The antiphase vibration is a component that is anti-symmetric with respect to the longitudinal center of the diaphragm 1, and the in-phase vibration is a component that is symmetric with respect to the longitudinal center of the diaphragm 1. For example, the longitudinal direction of the respective measuring points symmetrical two points with respect to the center A of the diaphragm 1, and B, the displacement of the measurement point A z A Distant, when the displacement of the measurement point B is denoted by z B, each measurement point For A and B, the component due to the in-phase vibration of the displacements z A and z B is expressed as (z A + z B ) / 2, and the magnitude of the component due to the anti-phase vibration is expressed as | z A −z B | / 2. Is done. The arrangement of the piezoresistors 4a to 4d as shown in FIG. 4A is suitable for detecting antiphase vibration, and the arrangement of the piezoresistors 4e to 4h as shown in FIG. 4B is suitable for detecting inphase vibration. In the present embodiment, as shown in FIG. 6, the frequency band between the primary resonance frequency f1 that is the resonance frequency of the antiphase vibration and the secondary resonance frequency f2 that is the resonance frequency of the inphase vibration (hereinafter referred to as “resonance frequency f2”). It is simply called “frequency band”). That is, in order to widen the frequency band, it is desirable that the difference between the primary resonance frequency f1 and the secondary resonance frequency f2 is large.

ここで、2次共振周波数f2は、振動板1の形状及び振動板1の材料のヤング率に依存しており、支持体3の材質や形状の変更によってはほとんど変化しない。つまり、支持体3の材質や形状の変更により1次共振周波数f1を低くすれば、2次共振周波数f2と1次共振周波数f1との差が大きくなることにより、周波数帯域を広くすることができる。   Here, the secondary resonance frequency f <b> 2 depends on the shape of the diaphragm 1 and the Young's modulus of the material of the diaphragm 1, and hardly changes depending on the change in the material and shape of the support 3. That is, if the primary resonance frequency f1 is lowered by changing the material and shape of the support 3, the difference between the secondary resonance frequency f2 and the primary resonance frequency f1 is increased, so that the frequency band can be widened. .

1次共振周波数f1は、支持体3の2本分のねじりばね定数(以下、単に「ねじりばね定数」と呼ぶ。)kと、振動板1の慣性モーメントIとを用いて、次式で表される。   The primary resonance frequency f1 is expressed by the following equation using the torsion spring constant (hereinafter, simply referred to as “torsion spring constant”) k of the support 3 and the inertia moment I of the diaphragm 1. Is done.

Figure 2010151531
すなわち、1次共振周波数f1を低くするには、ねじりばね定数kを小さくすればよい。ここで、図7に示すように、振動板1について、長さ寸法(長手方向の寸法)をL、幅寸法(短手方向の寸法)をW、厚さ寸法をHとおき、振動板1の材料の密度をρとおくと、上記の慣性モーメントIは、次式で表される。
Figure 2010151531
That is, to lower the primary resonance frequency f1, the torsion spring constant k may be reduced. Here, as shown in FIG. 7, regarding the diaphragm 1, the length dimension (longitudinal dimension) is L, the width dimension (short dimension) is W, and the thickness dimension is H. When the density of the material is ρ, the above moment of inertia I is expressed by the following equation.

Figure 2010151531
さらに、図7に示すように、支持体3について、長さ寸法(振動板1に対する連結部と挟み部20に対する連結部との距離)をb、幅寸法(断面の長辺の長さ)をa、厚さ寸法(断面の短辺の長さ)をhとおくと、ねじりばね定数kは、支持体3の剛性率Gを用いて、次式で表される。
Figure 2010151531
Further, as shown in FIG. 7, for the support body 3, the length dimension (distance between the coupling portion with respect to the diaphragm 1 and the coupling portion with respect to the sandwiching portion 20) is b, and the width dimension (long side length of the cross section) is. If a and the thickness dimension (the length of the short side of the cross section) are h, the torsion spring constant k is expressed by the following equation using the rigidity G of the support 3.

Figure 2010151531
上式からもわかるように、支持体3のねじりばね定数kは、支持体3の断面の寸法a,hを小さくすることや、支持体3の材料の剛性率Gを小さくすることによって小さくすることができる。
Figure 2010151531
As can be seen from the above equation, the torsion spring constant k of the support 3 is reduced by reducing the cross-sectional dimensions a and h of the support 3 or by reducing the rigidity G of the material of the support 3. be able to.

一方、振動板1を、それぞれ長さがL/2である2個の片持ち梁の固定端同士が連結されたものと見なすと、これらの片持ち梁の断面2次モーメントはそれぞれ(WH/12)となる。さらに、振動板1のヤング率をEmとおくと、2次共振周波数f2は次式で表される。 On the other hand, when the diaphragm 1 is considered that the fixed ends of two cantilever beams each having a length of L / 2 are connected to each other, the cross-sectional secondary moments of these cantilever beams are each (WH 3 / 12). Further, when the Young's modulus of the diaphragm 1 is Em, the secondary resonance frequency f2 is expressed by the following equation.

Figure 2010151531
ただし、上記の式では振動板1と支持体3との連結部の面積による影響を無視しているが、振動板1と支持体3との連結部の面積が大きくなれば支持体3の連結部付近で振動板1が撓みにくくなることにより2次共振周波数f2は高くなる。
Figure 2010151531
However, in the above formula, the influence of the area of the connecting portion between the diaphragm 1 and the support 3 is ignored. However, if the area of the connecting portion between the diaphragm 1 and the support 3 is increased, the connection of the support 3 is increased. The secondary resonance frequency f <b> 2 increases as the vibration plate 1 becomes difficult to bend near the portion.

ねじりばね定数kを小さくして1次共振周波数f1を低くし周波数帯域を広くするために、支持体3の幅寸法aを小さくすることを考えた場合、上記のように振動板1と支持体3との連結部の面積が小さくなれば振動板1に対する拘束が弱まることで2次共振周波数f2が低くなってしまう。そこで、2次共振周波数f2の低下を抑えつつ1次共振周波数f1を低くして周波数帯域を広くするために、図8(a)〜(c)に示すように、支持体3において、パッケージ2の挟み部20に対する連結部の幅寸法a1を、振動板1に対する連結部の幅寸法a2よりも小さくすることが望ましい。この場合、支持体3は直方体形状とはならないが、支持体3の長さ方向に直交する断面での断面形状はどこでも長方形状となる。振動板1に対する連結部の幅寸法a2を一定とすれば、図9に示すように、挟み部20に対する連結部の幅寸法a1を小さくするほど、2次共振周波数f2と1次共振周波数f1との差を大きくして周波数帯域を広くすることができる。なお、支持体3において、幅寸法を長さ方向の両端部の幅寸法a1,a2のいずれよりも小さくした部位(以下、「絞り部」と呼ぶ。)を長さ方向の中央部に設けた場合であっても、絞り部の幅寸法を小さくするほど周波数帯域を広くすることができる。   In order to reduce the torsion spring constant k, lower the primary resonance frequency f1, and widen the frequency band, when considering reducing the width dimension a of the support 3, the diaphragm 1 and the support are as described above. If the area of the connection part with 3 becomes small, the restraint with respect to the diaphragm 1 will weaken, and the secondary resonance frequency f2 will become low. Therefore, in order to increase the frequency band by lowering the primary resonance frequency f1 while suppressing the decrease in the secondary resonance frequency f2, as shown in FIGS. It is desirable to make the width dimension a1 of the connecting part to the sandwiching part 20 smaller than the width dimension a2 of the connecting part to the diaphragm 1. In this case, the support 3 does not have a rectangular parallelepiped shape, but the cross-sectional shape in a cross section orthogonal to the length direction of the support 3 is a rectangular shape everywhere. If the width a2 of the connecting portion with respect to the diaphragm 1 is constant, as shown in FIG. 9, the secondary resonance frequency f2 and the primary resonance frequency f1 are reduced as the width dimension a1 of the connecting portion with respect to the sandwiching portion 20 is decreased. The frequency difference can be increased to widen the frequency band. In the support 3, a portion (hereinafter referred to as “throttle portion”) having a width dimension smaller than both of the width dimensions a 1 and a 2 at both ends in the length direction is provided in the center portion in the length direction. Even in this case, the frequency band can be widened as the width dimension of the aperture is reduced.

また、ねじりばね定数kを小さくする方法としては、図10に示すように支持体3の厚さ寸法hを振動板1の厚さ寸法Hよりも小さくするという方法もある。この方法であっても、1次共振周波数f1を低くして周波数帯域を広くすることができる。   Further, as a method of reducing the torsion spring constant k, there is a method of making the thickness dimension h of the support 3 smaller than the thickness dimension H of the diaphragm 1 as shown in FIG. Even with this method, the primary resonance frequency f1 can be lowered to widen the frequency band.

さらに、1次共振周波数f1を低くする方法としては、支持体3の材料の剛性率Gを低くするという方法もある。剛性率Gは、ヤング率Eとポアソン比γとを用いて次式で表される。   Further, as a method of lowering the primary resonance frequency f1, there is a method of lowering the rigidity G of the material of the support body 3. The rigidity G is expressed by the following equation using Young's modulus E and Poisson's ratio γ.

Figure 2010151531
振動板1と支持体3を互いに異なる材料で構成し、支持体3の材料のヤング率Eを低く(つまり剛性率Gを低く)すれば、2次共振周波数f2にほとんど影響を与えることなく1次共振周波数f1を低くして周波数帯域を広くすることができる。パッケージ2において挟み部20を構成するフレーム21と振動板1と支持体3とをそれぞれ半導体プロセスを用いて形成する場合において、上記のように振動板1と支持体3とのヤング率Em,Eを互いに異ならせる方法としては、例えば、シリコンウェハの一面上にポリイミドの層を形成し、振動板1とフレーム21との間となる部位のシリコンを除去するとともに、振動板1とフレーム21との間となる部位であって支持体3となる部位以外のポリイミドを除去するという方法がある。すなわち、振動板1とパッケージ2のフレーム21とはそれぞれシリコンの層とポリイミドの層とで構成され、支持体3はポリイミドの層のみで構成されることになるから、支持体3のヤング率Eを振動板1のヤング率Emよりも低くすることができる。
Figure 2010151531
If the diaphragm 1 and the support 3 are made of different materials, and the Young's modulus E of the material of the support 3 is low (that is, the rigidity G is low), the first resonance frequency f2 is hardly affected. The secondary resonance frequency f1 can be lowered to widen the frequency band. In the case where the frame 21, the diaphragm 1, and the support body 3 constituting the sandwiching portion 20 in the package 2 are formed by using a semiconductor process, the Young's modulus Em, E of the diaphragm 1 and the support body 3 as described above. For example, a polyimide layer is formed on one surface of a silicon wafer to remove silicon at a portion between the diaphragm 1 and the frame 21, and the diaphragm 1 and the frame 21 may be made different from each other. There is a method of removing polyimide other than the portion that is between and the portion that becomes the support 3. That is, the diaphragm 1 and the frame 21 of the package 2 are each composed of a silicon layer and a polyimide layer, and the support 3 is composed only of a polyimide layer. Can be made lower than the Young's modulus Em of the diaphragm 1.

さらに、上記各種の手段によって周波数帯域を広くすれば、同時に逆相振動が強調されることになり、従って音圧空間微分の検出精度が上がる(暗騒音に埋もれにくい)という効果がある。   Furthermore, if the frequency band is widened by the above-mentioned various means, the anti-phase vibration is enhanced at the same time, so that the detection accuracy of the sound pressure spatial differential is improved (it is difficult to be buried in background noise).

以下、本実施形態における測定点A〜Dの変位z〜zから、時空間勾配法に用いられる音圧空間微分を得る方法について説明する。 Hereinafter, the displacement z A to z D measurement point A~D in the present embodiment will be described how to obtain a sound pressure space differential used in the spatio-temporal gradient method.

まず、長手方向をx軸方向に向けた振動板1の測定点A,Bの変位z,zを用いて、時空間勾配法に用いられる音圧f(t)と音圧時間微分ft(t)とx軸方向についての音圧空間微分fx(t)とを得る方法について説明する。 First, using the displacements z A and z B of the measurement points A and B of the diaphragm 1 with the longitudinal direction oriented in the x-axis direction, the sound pressure f (t) and the sound pressure time differential ft used in the spatiotemporal gradient method are used. A method for obtaining (t) and the sound pressure spatial differential fx (t) in the x-axis direction will be described.

図11(a)に示すように、振動板1の中心に原点をとる。また、x軸上において原点との距離が互いに等しい2点を測定点A,Bとするとともに、測定点A,B間の距離をd(<L)とおく。また、変位z,zは微小として測定点A,Bのx座標の変化は無視する。さらに、図11(b)に示すように、入射音の到来方向(図11(b)での上方向)をz軸の負の方向とすると、測定点A,Bの座標はそれぞれ(d/2,0,z),(−d/2,0,z)と表される。また、振動板1のy軸周りの回転角であって原点よりもx軸正側(図11(a)(b)での右側)の部位がz軸の正の方向に変位する方向(図11(b)での時計回り方向)を正の向きとする振動板1の回転角(以下、「変位角」と呼ぶ。)をφとおく。変位角φは測定点A,Bの変位z,zを用いてφ=(z−z)/dと近似できる。 As shown in FIG. 11A, the origin is set at the center of the diaphragm 1. Further, two points having the same distance from the origin on the x-axis are set as measurement points A and B, and a distance between the measurement points A and B is set to d (<L). Further, since the displacements z A and z B are minute, changes in the x coordinate of the measurement points A and B are ignored. Furthermore, as shown in FIG. 11 (b), when the incoming direction of the incoming sound (upward in FIG. 11 (b)) is the negative direction of the z axis, the coordinates of the measurement points A and B are (d / 2,0, z A ), (−d / 2,0, z B ). Further, the rotation angle of the diaphragm 1 around the y-axis and the position on the positive side of the x-axis with respect to the origin (the right side in FIGS. 11A and 11B) is displaced in the positive direction of the z-axis (see FIG. A rotation angle (hereinafter referred to as “displacement angle”) of the diaphragm 1 having a positive direction in the clockwise direction in FIG. The displacement angle φ can be approximated as φ = (z A −z B ) / d using the displacements z A and z B of the measurement points A and B.

変位z,zは微小としてz座標の変化による音圧の変化は考えないものとし、時間tに座標(x,y)において振動板1が入射音から受ける力(音圧)をf(x,y,t)とおく。さらに、時空間勾配法による測定の対象となる対象点を原点とし、f(t)=f(0,0,t),fx(t)=fx(0,0,t),fy(t)=fy(0,0,t)とおいてf(x,y,t)=f(t)+fx(t)・x+fy(t)・yと近似する。すると、振動板に働くz軸正方向(図11(b)での下向き)の合力F(t)、並びに、振動板1に対して変位角φの正方向(図11(b)での時計回り方向)に働くモーメントN(t)は次のように表される。 It is assumed that the displacements z A and z B are minute and the change of the sound pressure due to the change of the z coordinate is not considered, and the force (sound pressure) that the diaphragm 1 receives from the incident sound at the coordinates (x, y) at time t is f ( x, y, t). Furthermore, the target point to be measured by the spatiotemporal gradient method is the origin, and f (t) = f (0,0, t), fx (t) = fx (0,0, t), fy (t) = fy (0,0, t) is approximated as f (x, y, t) = f (t) + fx (t) · x + fy (t) · y. Then, the resultant force F (t) in the positive z-axis direction (downward in FIG. 11B) acting on the diaphragm and the positive direction of the displacement angle φ with respect to the diaphragm 1 (clock in FIG. 11B). The moment N (t) acting in the rotation direction is expressed as follows.

Figure 2010151531
また、逆相振動に関する運動方程式は、後述する参考文献1,2によると、変位角φと、上記のモーメントN(t)と、振動板の慣性モーメントIと、支持体3のねじりばね定数kとを用いて、次式のようになる。
Figure 2010151531
Further, according to References 1 and 2, which will be described later, the equation of motion related to the antiphase vibration is as follows: displacement angle φ, the moment N (t), the inertia moment I of the diaphragm, and the torsion spring constant k of the support 3. And the following equation is obtained.

Figure 2010151531
すなわち、x軸方向についての音圧空間微分fx(t)は、次式のように表される。
Figure 2010151531
That is, the sound pressure space differential fx (t) in the x-axis direction is expressed as the following equation.

Figure 2010151531
これと、変位角φを示す式φ=(z−z)/dとにより、x軸方向についての音圧空間微分fx(t)が測定点A,Bの変位z,zの2階時間微分を用いて表される。さらに、長手方向をy軸方向に向けた振動板1の測定点C,Dの変位z,zの2階時間微分を用いて同様の計算を行えば、y軸方向についての音圧空間微分fy(t)が得られる。
Figure 2010151531
With this and the expression φ = (z A −z B ) / d indicating the displacement angle φ, the sound pressure space differential fx (t) in the x-axis direction is the displacement z A , z B of the measurement points A, B. Expressed using second order time differentiation. Further, if the same calculation is performed using second-order time differentiation of the displacements z C and z D of the measurement points C and D of the diaphragm 1 with the longitudinal direction in the y-axis direction, the sound pressure space in the y-axis direction A differential fy (t) is obtained.

さらに、同相振動に関する運動方程式は、参考文献1,2によると、各振動板1のばね定数Kと、変位の同相成分z(t)=(zA+zB+zC+zD)/4と、合力F(t)とを用いて次式で表される。 Further, according to References 1 and 2, the equation of motion related to in-phase vibration is the spring constant K of each diaphragm 1 and the in-phase component of displacement z (t) = (z A + z B + z C + z D ) / 4 and the resultant force F (t) are expressed by the following equation.

Figure 2010151531
すなわち、音圧f(t)=Kz(t)/WLを同相成分z(t)から得ることができる。なお、上記のばね定数Kは、振動板1の真上から加振を行った場合の変位と加振力より、フックの式を用いて求められる。
Figure 2010151531
That is, the sound pressure f (t) = Kz (t) / WL can be obtained from the in-phase component z (t). The spring constant K is obtained by using the hook equation from the displacement and the excitation force when excitation is performed from directly above the diaphragm 1.

さらに、得られた音圧f(t)を時間微分することにより、音圧時間微分ft(t)が得られる。   Furthermore, the sound pressure time derivative ft (t) is obtained by time-differentiating the obtained sound pressure f (t).

上記のようにして得られた音圧f(t)と音圧時間微分ft(t)と音圧空間微分fx(t),fy(t)とは、時空間勾配法による音源の定位や雑音除去に用いることができる。時空間勾配法による音源の定位や雑音除去の技術は周知であるので、説明は省略する。   The sound pressure f (t), sound pressure time derivative ft (t) and sound pressure space derivative fx (t), fy (t) obtained as described above are the sound source localization and noise by the spatiotemporal gradient method. Can be used for removal. Since the technique of sound source localization and noise removal by the spatiotemporal gradient method is well known, description thereof is omitted.

上記構成によれば、1枚の振動板1につき1方向の音圧空間微分fx(t),fy(t)を検出可能であるから、1方向の音圧空間微分fx(t),fy(t)を検出するために複数枚ずつの振動板を用いる場合に比べ、小型化が図れる。   According to the above configuration, the sound pressure spatial differentials fx (t) and fy (t) in one direction can be detected for each diaphragm 1, so the sound pressure spatial differentials fx (t) and fy ( The size can be reduced as compared with the case where a plurality of diaphragms are used to detect t).

また、単位距離当りの音圧の減衰幅は音源に近いほど大きいことにより、振動板1からの距離が近い音源からの音ほど、本実施形態から得られる逆相成分(z−z)/2,(z−z)/2には強く反映されることになるから、本実施形態の逆相成分(z−z)/2,(z−z)/2は、遠い音源からの音が抑制され、近い音源からの音が強調されたものと考えることができる。
<参考文献一覧>
参考文献1:小野 順貴,斎藤 章人,安藤 繁「ヤドリバエを模倣した超小型音源定位セン
サの理論と実験(第2報)」,第19回センシングフォーラム,pp.379-382,2002
参考文献2:N. Ono, A. Saito, and S. Ando, “Bio-mimicry Sound Source Localization with Gimbal Diaphragm”,電気学会論文誌, Vol. 123-E, No.3,pp.92-97, 2003
Further, the sound pressure attenuation width per unit distance is larger as it is closer to the sound source, so that the sound from the sound source closer to the diaphragm 1 has a reverse phase component (z A −z B ) obtained from this embodiment. / 2, (z C −z D ) / 2 is strongly reflected, and the reverse phase component (z A −z B ) / 2 and (z C −z D ) / 2 of this embodiment is It can be considered that the sound from a distant sound source is suppressed and the sound from a close sound source is emphasized.
<List of references>
Reference 1: Junji Ono, Akihito Saito, Shigeru Ando “Theory and Experiments of Localization Sensors for Miniaturized Sound Sources Simulating Drosophila (2nd Report)”, 19th Sensing Forum, pp.379-382,2002
Reference 2: N. Ono, A. Saito, and S. Ando, “Bio-mimicry Sound Source Localization with Gimbal Diaphragm”, IEEJ Transactions, Vol. 123-E, No.3, pp.92-97, 2003

本発明の実施形態の要部を示す平面図である。It is a top view which shows the principal part of embodiment of this invention. 同上を示す分解斜視図である。It is a disassembled perspective view which shows the same as the above. 同上における音の回り込みを示す説明図である。It is explanatory drawing which shows the wraparound of the sound in the same as the above. (a)(b)はそれぞれ同上におけるピエゾ抵抗の配置の例を示す説明図である。(A) (b) is explanatory drawing which shows the example of arrangement | positioning of the piezoresistor in each same as the above. (a)(b)はそれぞれ同上の動作を示す説明図であり、(a)は逆相振動を示し、(b)は同相振動を示す。(A) (b) is explanatory drawing which respectively shows operation | movement same as the above, (a) shows a reverse phase vibration, (b) shows an in-phase vibration. 同上において入射音の周波数と測定点の変位の最大値(すなわち振幅)との関係を示す説明図である。It is explanatory drawing which shows the relationship between the frequency of incident sound and the maximum value (namely, amplitude) of the displacement of a measurement point in the same as the above. 同上におけるパラメータの定義を示す説明図である。It is explanatory drawing which shows the definition of the parameter in the same as the above. (a)〜(c)はそれぞれ同上の異なる変更例を示す平面図である。(A)-(c) is a top view which shows the example of a respectively different change same as the above. 挟み部との連結部での支持体の幅寸法と、1次共振周波数及び2次共振周波数との関係を示す説明図である。It is explanatory drawing which shows the relationship between the width dimension of the support body in a connection part with a clamping part, a primary resonant frequency, and a secondary resonant frequency. 同上の変更例を示す説明図である。It is explanatory drawing which shows the example of a change same as the above. (a)(b)はそれぞれ同上におけるパラメータの定義を示す説明図である。(A) (b) is explanatory drawing which shows the definition of the parameter in each same as the above.

符号の説明Explanation of symbols

1 振動板
2 パッケージ
3 支持体
4a〜4h ピエゾ抵抗(請求項1,3における変位検出手段であり、請求項2における歪み検出手段)
20 挟み部
21 フレーム(請求項3におけるパッケージ)
22 カバー
DESCRIPTION OF SYMBOLS 1 Diaphragm 2 Package 3 Support body 4a-4h Piezoresistor (The displacement detection means in Claim 1, 3 and the distortion detection means in Claim 2)
20 sandwiching part 21 frame (package in claim 3)
22 Cover

Claims (7)

それぞれ弾性を有する材料からなり扁平な直方体形状の少なくとも1個の振動板と、
振動板を短手方向の両側から間に隙間を空けて挟む挟み部を各振動板についてそれぞれ有するパッケージと、
各振動板に2個ずつ設けられそれぞれ弾性を有する材料からなり厚さ方向を振動板の厚さ方向に向けた扁平な形状であって振動板の長手方向の中央部において短手方向の一端ずつに一端が連結され他端がパッケージの挟み部に連結された支持体と、
各振動板の長手方向の両端部についてそれぞれ厚さ方向の変位を検出する変位検出手段とを備えることを特徴とする音圧空間微分検出センサ。
At least one diaphragm having a flat rectangular parallelepiped shape, each made of an elastic material;
A package having a sandwiching portion for each diaphragm with a gap between the diaphragms from both sides in the short direction;
Each diaphragm is provided with two elastic materials, each having a flat shape with the thickness direction directed in the thickness direction of the diaphragm, and one end in the short direction at the center of the diaphragm in the longitudinal direction. A support body having one end connected to the other end and the other end connected to the sandwiched portion of the package;
A sound pressure spatial differential detection sensor comprising: displacement detection means for detecting displacement in the thickness direction at both longitudinal ends of each diaphragm.
それぞれ弾性を有する材料からなり扁平な直方体形状の少なくとも1個の振動板と、
振動板を短手方向の両側から間に隙間を空けて挟む挟み部を各振動板についてそれぞれ有するパッケージと、
各振動板に2個ずつ設けられそれぞれ弾性を有する材料からなり厚さ方向を振動板の厚さ方向に向けた扁平な形状であって振動板の長手方向の中央部において短手方向の一端ずつに一端が連結され他端がパッケージの挟み部に連結された支持体と、
各支持体に、引張りとねじれによって生じるひずみを検出するひずみ検出手段
とを備えることを特徴とする音圧空間微分検出センサ。
At least one diaphragm having a flat rectangular parallelepiped shape, each made of an elastic material;
A package having a sandwiching portion for each diaphragm with a gap between the diaphragms from both sides in the short direction;
Each diaphragm is provided with two elastic materials, each having a flat shape with the thickness direction directed in the thickness direction of the diaphragm, and one end in the short direction at the center of the diaphragm in the longitudinal direction. A support body having one end connected to the other end and the other end connected to the sandwiched portion of the package;
A sound pressure spatial differential detection sensor, wherein each support is provided with strain detection means for detecting strain caused by tension and torsion.
それぞれ弾性を有する材料からなり扁平な直方体形状の少なくとも1個の振動板と、
振動板を短手方向の両側から間に隙間を空けて挟む挟み部を各振動板についてそれぞれ有するパッケージと、
各振動板が収納される空洞を備えたパッケージのカバーと、
各振動板に2個ずつ設けられそれぞれ弾性を有する材料からなり厚さ方向を振動板の厚さ方向に向けた扁平な形状であって振動板の長手方向の中央部において短手方向の一端ずつに一端が連結され他端がパッケージの挟み部に連結された支持体と、
各振動板の長手方向の両端部についてそれぞれ厚さ方向の変位を検出する変位検出手段とを備えることを特徴とする音圧空間微分検出センサ。
At least one diaphragm having a flat rectangular parallelepiped shape, each made of an elastic material;
A package having a sandwiching portion for each diaphragm with a gap between the diaphragms from both sides in the short direction;
A cover of the package with a cavity in which each diaphragm is stored;
Each diaphragm is provided with two elastic materials, each having a flat shape with the thickness direction directed in the thickness direction of the diaphragm, and one end in the short direction at the center of the diaphragm in the longitudinal direction. A support body having one end connected to the other end and the other end connected to the sandwiched portion of the package;
A sound pressure spatial differential detection sensor comprising: displacement detection means for detecting displacement in the thickness direction at both longitudinal ends of each diaphragm.
各支持体において、それぞれ、振動板に連結された一端の幅寸法よりも、パッケージに連結された他端の幅寸法が小さくされていることを特徴とする請求項1〜3のいずれか1項に記載の音圧空間微分検出センサ。   The width dimension of the other end connected to the package is smaller than the width dimension of one end connected to the diaphragm in each support body, respectively. The sound pressure spatial differential detection sensor described in 1. 各支持体の厚さ寸法は、それぞれ連結された振動板の厚さ寸法よりも小さくされていることを特徴とする請求項1〜4のいずれか1項に記載の音圧空間微分検出センサ。   The sound pressure spatial differential detection sensor according to any one of claims 1 to 4, wherein a thickness dimension of each support is smaller than a thickness dimension of the diaphragms connected to each support body. 各支持体はそれぞれ連結された振動部の材料よりもヤング率が低い材料からなることを特徴とする請求項1〜5のいずれか1項に記載の音圧空間微分検出センサ。   The sound pressure spatial differential detection sensor according to claim 1, wherein each of the supports is made of a material having a Young's modulus lower than that of each of the connected vibration parts. 振動板と支持体と挟み部とが2組、振動板の厚さ方向を揃え且つ振動板の長手方向を互いに直交させる向きで設けられていることを特徴とする請求項1〜6のいずれか1項に記載の音圧空間微分検出センサ。   The diaphragm, the support, and the sandwiching portion are provided in two sets, with the thickness direction of the diaphragm aligned and the longitudinal directions of the diaphragm orthogonal to each other. The sound pressure spatial differential detection sensor according to item 1.
JP2008328229A 2008-12-24 2008-12-24 Sound pressure space differential detection sensor Withdrawn JP2010151531A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008328229A JP2010151531A (en) 2008-12-24 2008-12-24 Sound pressure space differential detection sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008328229A JP2010151531A (en) 2008-12-24 2008-12-24 Sound pressure space differential detection sensor

Publications (1)

Publication Number Publication Date
JP2010151531A true JP2010151531A (en) 2010-07-08

Family

ID=42570810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008328229A Withdrawn JP2010151531A (en) 2008-12-24 2008-12-24 Sound pressure space differential detection sensor

Country Status (1)

Country Link
JP (1) JP2010151531A (en)

Similar Documents

Publication Publication Date Title
JP5491080B2 (en) microphone
WO2014169540A1 (en) Non-uniform cross section cantilever beam piezoelectricity acceleration sensor
JP5305028B2 (en) pressure sensor
CN101501505B (en) Combined sensor
US20100089157A1 (en) Micro-Machined Accelerometer
EP2113744A1 (en) Inertia force sensor and composite sensor for detecting inertia force
CN103808961A (en) Cantilever part and resonant acceleration sensor using the same
CN103760381A (en) Integrated quartz vibrating beam accelerometer
US9753057B2 (en) Acceleration sensor
KR102337688B1 (en) Accelerometer and acoustic vector sensor having the same
JP6958533B2 (en) Vibration type sensor device
JP4420038B2 (en) Stress sensitive element
JP2010151531A (en) Sound pressure space differential detection sensor
JP2008170203A (en) Acceleration detection unit and acceleration sensor
JP6044607B2 (en) Vibration sensor device
WO2015033522A1 (en) Strain sensor
JP2008309731A (en) Acceleration detection unit and acceleration sensor
JP2011064651A (en) Acceleration detector
US9964561B2 (en) Acceleration sensor
JP5035184B2 (en) Uniaxial semiconductor acceleration sensor
WO2013089079A1 (en) Acceleration sensor
JP2013145163A (en) Semiconductor pressure sensor and method for manufacturing the same
JP2012042392A (en) Semiconductor pressure sensor
JP2007085800A (en) Semiconductor acceleration sensor
JP5046240B2 (en) Method for manufacturing acceleration sensor

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100715

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120306