JP2010140969A - 積層モジュール構造 - Google Patents
積層モジュール構造 Download PDFInfo
- Publication number
- JP2010140969A JP2010140969A JP2008313587A JP2008313587A JP2010140969A JP 2010140969 A JP2010140969 A JP 2010140969A JP 2008313587 A JP2008313587 A JP 2008313587A JP 2008313587 A JP2008313587 A JP 2008313587A JP 2010140969 A JP2010140969 A JP 2010140969A
- Authority
- JP
- Japan
- Prior art keywords
- module
- cooler
- semiconductor module
- case
- semiconductor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 claims abstract description 132
- 238000001816 cooling Methods 0.000 claims abstract description 51
- 230000017525 heat dissipation Effects 0.000 claims description 7
- 238000000465 moulding Methods 0.000 claims description 4
- 238000003825 pressing Methods 0.000 claims description 4
- 238000005219 brazing Methods 0.000 description 15
- 238000006243 chemical reaction Methods 0.000 description 14
- 239000000498 cooling water Substances 0.000 description 14
- 239000000463 material Substances 0.000 description 13
- 229910052782 aluminium Inorganic materials 0.000 description 12
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 12
- 229920005989 resin Polymers 0.000 description 12
- 239000011347 resin Substances 0.000 description 12
- 238000004519 manufacturing process Methods 0.000 description 11
- 238000000034 method Methods 0.000 description 11
- 238000007789 sealing Methods 0.000 description 10
- 238000003780 insertion Methods 0.000 description 9
- 230000037431 insertion Effects 0.000 description 9
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 7
- 229910000639 Spring steel Inorganic materials 0.000 description 7
- 239000004519 grease Substances 0.000 description 6
- 238000007747 plating Methods 0.000 description 6
- 238000005304 joining Methods 0.000 description 5
- 230000001681 protective effect Effects 0.000 description 5
- 230000007797 corrosion Effects 0.000 description 4
- 238000005260 corrosion Methods 0.000 description 4
- 229910000679 solder Inorganic materials 0.000 description 4
- 230000006835 compression Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 230000001976 improved effect Effects 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 230000000630 rising effect Effects 0.000 description 3
- 229920001187 thermosetting polymer Polymers 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 230000008602 contraction Effects 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 238000001879 gelation Methods 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 230000008646 thermal stress Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910000906 Bronze Inorganic materials 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052790 beryllium Inorganic materials 0.000 description 1
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 description 1
- 239000010974 bronze Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000011231 conductive filler Substances 0.000 description 1
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000009501 film coating Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 230000002040 relaxant effect Effects 0.000 description 1
- 230000001846 repelling effect Effects 0.000 description 1
- 239000003566 sealing material Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 230000008093 supporting effect Effects 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L24/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L24/33—Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/13—Discrete devices, e.g. 3 terminal devices
- H01L2924/1304—Transistor
- H01L2924/1305—Bipolar Junction Transistor [BJT]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/13—Discrete devices, e.g. 3 terminal devices
- H01L2924/1304—Transistor
- H01L2924/1305—Bipolar Junction Transistor [BJT]
- H01L2924/13055—Insulated gate bipolar transistor [IGBT]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/30—Technical effects
- H01L2924/35—Mechanical effects
- H01L2924/351—Thermal stress
Landscapes
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Abstract
【課題】冷却性能を確保しつつ、半導体モジュールの高精度の位置決めが可能な積層モジュール構造を提供することを課題とする。
【解決手段】積層モジュール構造1は、半導体モジュール2と、半導体モジュール2を冷却する冷却器3と、を有するモジュールユニット6を複数積層してなり、冷却器3は、内部にばね部材33を有し、半導体モジュール2は、位置決め部材5によって積層モジュール構造1の外郭をなすインバータケース4内の所定位置に位置決めされ、半導体モジュール2が位置決め部材5により位置決めされつつ、モジュールユニット6が積層される際に、隣接するモジュールユニット6・6の一方のモジュールユニット6における半導体モジュール2と他方のモジュールユニット6における冷却器3とがばね部材33により圧接される。
【選択図】図2
【解決手段】積層モジュール構造1は、半導体モジュール2と、半導体モジュール2を冷却する冷却器3と、を有するモジュールユニット6を複数積層してなり、冷却器3は、内部にばね部材33を有し、半導体モジュール2は、位置決め部材5によって積層モジュール構造1の外郭をなすインバータケース4内の所定位置に位置決めされ、半導体モジュール2が位置決め部材5により位置決めされつつ、モジュールユニット6が積層される際に、隣接するモジュールユニット6・6の一方のモジュールユニット6における半導体モジュール2と他方のモジュールユニット6における冷却器3とがばね部材33により圧接される。
【選択図】図2
Description
本発明は、積層モジュール構造に関する。
近年、ハイブリッド車、電気自動車等の電気自動車では、大出力・大容量の交流モータを搭載する要請が強いため、バッテリ電源からの直流電力を交流電力に変換して交流モータに供給するインバータ装置も大電流化が求められている。また、大電流・大出力のインバータ装置に用いられる半導体モジュールは発熱も大きいため、その冷却性を確保する両面放熱性の半導体モジュールが多く用いられている。
このような両面放熱性半導体モジュールを複数積層して組み付ける際に、半導体モジュールと冷却器とを交互に積層し、半導体モジュールを両側から冷却する技術が広く知られている。また、半導体モジュールと冷却器との密着性を高めて冷却性を向上するために、積層後に積層方向一側又は両側から圧力をかける方法は公知となっている。
このような両面放熱性半導体モジュールを複数積層して組み付ける際に、半導体モジュールと冷却器とを交互に積層し、半導体モジュールを両側から冷却する技術が広く知られている。また、半導体モジュールと冷却器との密着性を高めて冷却性を向上するために、積層後に積層方向一側又は両側から圧力をかける方法は公知となっている。
例えば、特許文献1には、一対のヘッダに連結される二つの冷却チューブの間に半導体モジュールを介装し、U字ばねでこれらを挟圧するとともに、当該U字ばねによる挟圧によって、前記ヘッダにおける冷却チューブとの連結部は、冷却チューブよりも容易に変形可能とする技術が開示されている。これにより、ヘッダ側の変形により、装置の製造寸法のばらつきに関わらず、半導体モジュールと冷却チューブとの密着性を確保でき、組み付け性に優れる積層モジュール構造を実現する。
しかしながら、特許文献1に開示される積層モジュール構造では、ヘッダ側の変形により、半導体モジュールとヘッダとの位置関係にずれが生じ得るため、半導体モジュールと当該半導体モジュールに接続される制御基板、バスバとの位置決めが困難となる。係る位置決めに不具合が生じた場合、組み付け性に劣るという点で不利となる。
特開2002−26215号公報
しかしながら、特許文献1に開示される積層モジュール構造では、ヘッダ側の変形により、半導体モジュールとヘッダとの位置関係にずれが生じ得るため、半導体モジュールと当該半導体モジュールに接続される制御基板、バスバとの位置決めが困難となる。係る位置決めに不具合が生じた場合、組み付け性に劣るという点で不利となる。
本発明は、冷却性能を確保しつつ、半導体モジュールの高精度の位置決めが可能な積層モジュール構造を提供することを課題とする。
請求項1に記載のように、半導体モジュールと、該半導体モジュールを冷却する冷却器と、を有するモジュールユニットを複数積層してなる積層モジュール構造であって、前記冷却器は、内部に弾性部材を有し、前記半導体モジュールは、位置決め部材によって前記積層モジュール構造の所定位置に位置決めされ、前記半導体モジュールが前記位置決め部材により位置決めされつつ、前記モジュールユニットが積層される際に、隣接する一方のモジュールユニットにおける前記半導体モジュールと他方のモジュールユニットにおける前記冷却器とが前記弾性部材により圧接される。
請求項2に記載のように、前記モジュールユニットは、前記半導体モジュールを格納する半導体モジュールケースを含むとともに、前記冷却器の剛性は前記半導体モジュールケースの剛性より低く設定され、前記モジュールユニットを積層する際に、前記半導体モジュールケースが前記位置決め部材と当接するように前記積層方向に加圧することにより、前記冷却器が前記積層方向に変形し、前記半導体モジュールケースが位置決めされることが好ましい。
請求項3に記載のように、前記積層モジュール構造は、前記半導体モジュールは、両面放熱性のモジュールからなるとともに、前記弾性部材は、前記積層方向両側に向けた弾性力を発生させ、前記半導体モジュールは、前記弾性部材の弾性力により、積層方向両側において冷却器と圧接されることが好ましい。
請求項4に記載のように、前記積層モジュール構造は、前記弾性部材は、プレス成型により成型され、所定のばね定数を有する板ばねを有することが好ましい。
本発明によれば、冷却性能を確保しつつ、半導体モジュールを高精度に位置決めできる。
以下では、本発明に係る積層モジュール構造の実施の一形態である積層モジュール構造1について説明する。積層モジュール構造1は、複数の半導体モジュール2・2・・・を積層してなる構造体であり、大電流・大出力のインバータ装置として利用される。
半導体モジュール2は、電力変換用のパワーモジュールであり、半導体素子としてIGBT(絶縁ゲート型バイポーラトランジスタ)を有する。半導体モジュール2からは、制御用の制御ピンと、大電流端子とが突出されており、積層モジュール構造1の組み付け時に前記制御ピンには制御基板、前記大電流端子にはバスバモジュールがそれぞれ接続される。
また、半導体モジュール2は両面放熱の半導体モジュール構造を有し、その両面側から冷却可能に構成されている。
また、半導体モジュール2は両面放熱の半導体モジュール構造を有し、その両面側から冷却可能に構成されている。
半導体モジュール2の積層方向両側には、冷却器3・3が密着して配置されており、半導体モジュール2からの発熱は冷却器3・3によって両面側から冷却される構成である。
冷却器3は、アルミニウム等の熱伝導性に優れる金属製の部材からなり、その内部に冷却水を流通させることによって、半導体モジュール2からの発熱を連続的に冷却している。
冷却器3は、アルミニウム等の熱伝導性に優れる金属製の部材からなり、その内部に冷却水を流通させることによって、半導体モジュール2からの発熱を連続的に冷却している。
以上のように構成される積層モジュール構造1においては、その製造時の組み付け性を確保する観点から、半導体モジュール2・2・・・の位置決め精度を高くする必要があるとともに、高い発熱性を有する半導体モジュール2・2・・・の使用時の冷却性能を確保する観点から、半導体モジュール2・2・・・から冷却器3・3・・・側への熱伝達性を良好にする必要がある。
そこで、本実施形態では、上記のような課題を解決する積層モジュール構造の一例として、積層モジュール構造1を提案している。
そこで、本実施形態では、上記のような課題を解決する積層モジュール構造の一例として、積層モジュール構造1を提案している。
以下では、図1を参照して、積層モジュール構造1について詳細に説明する。
図1に示すように、積層モジュール構造1は、インバータケース4内にモジュールユニット6・6・・・を複数積層してなる。インバータケース4は、積層モジュール構造1の外郭をなす部材であり、モジュールユニット6・6・・・を内部に収容するとともに、モジュールユニット6・6・・・の位置決めを行うためのケースである。インバータケース4には、各モジュールユニット6を位置決めする位置決め部材5・5・・・が所定位置にケース内側に向けて突出して設けられている。
また、隣接する二つの位置決め部材5・5間の積層方向への間隔は、モジュールユニット6の体格(積層方向幅)より狭く設定されており、インバータケース4内にモジュールユニット6・6・・・を積層して収容する際は、所定の外力を加え、加圧しつつ挿入する必要がある。
図1に示すように、積層モジュール構造1は、インバータケース4内にモジュールユニット6・6・・・を複数積層してなる。インバータケース4は、積層モジュール構造1の外郭をなす部材であり、モジュールユニット6・6・・・を内部に収容するとともに、モジュールユニット6・6・・・の位置決めを行うためのケースである。インバータケース4には、各モジュールユニット6を位置決めする位置決め部材5・5・・・が所定位置にケース内側に向けて突出して設けられている。
また、隣接する二つの位置決め部材5・5間の積層方向への間隔は、モジュールユニット6の体格(積層方向幅)より狭く設定されており、インバータケース4内にモジュールユニット6・6・・・を積層して収容する際は、所定の外力を加え、加圧しつつ挿入する必要がある。
なお、インバータケース4は、ダイキャストにより鋳造成型されるアルミニウム製の薄肉製品であり、位置決め部材5・5・・・は、その強度を確保するためにインバータケース4の内側面に向けて一体的に成型されているリブである。
このように、位置決め部材5・5・・・は、インバータケース4を製造する際に補強用のリブとして同時に設けられているため、位置決め部材5・5・・・をインバータケース4に別途後付けする必要がない。さらに、位置決め部材5・5・・・は、インバータケース4と一体成型されているため、位置決め部材5・5・・・の設置位置の精度を向上できる。
このように、位置決め部材5・5・・・は、インバータケース4を製造する際に補強用のリブとして同時に設けられているため、位置決め部材5・5・・・をインバータケース4に別途後付けする必要がない。さらに、位置決め部材5・5・・・は、インバータケース4と一体成型されているため、位置決め部材5・5・・・の設置位置の精度を向上できる。
以下では、図2及び図3を参照して、積層モジュール構造1を構成する一つのユニットであるモジュールユニット6について詳細に説明する。
図2に示すように、モジュールユニット6は、半導体モジュール2、冷却器3、半導体モジュール2を内部に格納する半導体モジュールケース10、冷却器3と半導体モジュールケース10とを連通する冷却水パイプ15等を具備する。
図2に示すように、モジュールユニット6は、半導体モジュール2、冷却器3、半導体モジュール2を内部に格納する半導体モジュールケース10、冷却器3と半導体モジュールケース10とを連通する冷却水パイプ15等を具備する。
図2に示すように、半導体モジュール2は、半導体素子20、ヒートスプレッタ21・21、絶縁層22・22等を封止樹脂層23で封止してなるモジュールである。
半導体素子20は平板状のパワー半導体素子(IGBT)であり、その両面(図示において上下二面)にヒートスプレッタ21・21がはんだ層24・24によってはんだ付けされている。
ヒートスプレッタ21は、半導体素子20に大電流を通電するための電極及び配線であり、はんだ層24を介して半導体素子20と電気的に接続されている。また、ヒートスプレッタ21は、銅、アルミニウム、銀、金、又はこれらを含む合金等の熱伝導性に優れ、かつ、低電気抵抗の金属製の部材である。
絶縁層22は、エポキシ系の樹脂からなる樹脂層であり、ヒートスプレッタ21と半導体モジュールケース10の内壁とを電気的に絶縁するとともに、ヒートスプレッタ21と半導体モジュールケース10の内壁とを接着するための部材である。また、絶縁層22には、セラミックス、シリコン等の高熱伝導フィラーが含まれており、高い熱伝導性を有する部材として構成されている。なお、絶縁層22は、全体を樹脂材料とする本実施形態のものに限定されず、半導体モジュールケース10内壁に絶縁素材を薄膜コーティングしたもの等、十分な絶縁性及び接着性を実現するものであれば良い。
封止樹脂層23は、エポキシ系の熱硬化性樹脂からなる封止層であり、半導体モジュールケース10内の熱応力を緩和するための部材である。より具体的には、半導体素子20の発熱の一部を吸収・拡散するとともに、線膨張係数の異なる部材間を接合している絶縁層22・22、及びはんだ層24・24にかかる熱応力を緩和し、これらの長寿命化を図っている。
以上のように、半導体モジュール2では、半導体素子20からの発熱を、半導体素子20両面から半導体モジュール2の外側へ向けて、半導体素子20→はんだ層24→ヒートスプレッタ21→絶縁層22の順に伝導して外部へ放熱するとともに、その一部を封止樹脂層23に放熱・拡散する。
半導体素子20は平板状のパワー半導体素子(IGBT)であり、その両面(図示において上下二面)にヒートスプレッタ21・21がはんだ層24・24によってはんだ付けされている。
ヒートスプレッタ21は、半導体素子20に大電流を通電するための電極及び配線であり、はんだ層24を介して半導体素子20と電気的に接続されている。また、ヒートスプレッタ21は、銅、アルミニウム、銀、金、又はこれらを含む合金等の熱伝導性に優れ、かつ、低電気抵抗の金属製の部材である。
絶縁層22は、エポキシ系の樹脂からなる樹脂層であり、ヒートスプレッタ21と半導体モジュールケース10の内壁とを電気的に絶縁するとともに、ヒートスプレッタ21と半導体モジュールケース10の内壁とを接着するための部材である。また、絶縁層22には、セラミックス、シリコン等の高熱伝導フィラーが含まれており、高い熱伝導性を有する部材として構成されている。なお、絶縁層22は、全体を樹脂材料とする本実施形態のものに限定されず、半導体モジュールケース10内壁に絶縁素材を薄膜コーティングしたもの等、十分な絶縁性及び接着性を実現するものであれば良い。
封止樹脂層23は、エポキシ系の熱硬化性樹脂からなる封止層であり、半導体モジュールケース10内の熱応力を緩和するための部材である。より具体的には、半導体素子20の発熱の一部を吸収・拡散するとともに、線膨張係数の異なる部材間を接合している絶縁層22・22、及びはんだ層24・24にかかる熱応力を緩和し、これらの長寿命化を図っている。
以上のように、半導体モジュール2では、半導体素子20からの発熱を、半導体素子20両面から半導体モジュール2の外側へ向けて、半導体素子20→はんだ層24→ヒートスプレッタ21→絶縁層22の順に伝導して外部へ放熱するとともに、その一部を封止樹脂層23に放熱・拡散する。
半導体モジュールケース10は、半導体モジュール2を内部に格納するケース部材であり、アルミニウム、銅等の熱伝導性に優れた金属製の部材である。
図2に示すように、半導体モジュールケース10は、半導体モジュール2を格納するケース部11と、ケース部11の開口面を閉塞する保護プレート12と、ケース部11より側方に突出して設けられる支持部13とからなる。
ケース部11は、一面(図示において上面)が開口する箱状の部位であり、その内部空間の形状は半導体モジュール2の形状に応じて形成されている。このケース部11内に半導体モジュール2が格納される。
保護プレート12は、ケース部11の開口面(図示において上面)を塞ぐ平板状の部材であり、ケース部11、支持部13と同様にアルミニウム等の熱伝導性に優れた金属製の部材である。
支持部13は、ケース部11の側部から側方に延出して設けられる部位である。支持部13は、半導体モジュールケース10をインバータケース4に対して位置決めし、支持するための部位である。支持部13を位置決め部材5に向かって積層方向一側から(図示において下側から)圧接することによって、半導体モジュールケース10の位置決め、ひいては半導体モジュール2の位置決めを行う。支持部13の両端部には、冷却水を流通するための水路14・14が設けられている。この水路14は、冷却水パイプ15を介して冷却器3と接続されている。
図2に示すように、半導体モジュールケース10は、半導体モジュール2を格納するケース部11と、ケース部11の開口面を閉塞する保護プレート12と、ケース部11より側方に突出して設けられる支持部13とからなる。
ケース部11は、一面(図示において上面)が開口する箱状の部位であり、その内部空間の形状は半導体モジュール2の形状に応じて形成されている。このケース部11内に半導体モジュール2が格納される。
保護プレート12は、ケース部11の開口面(図示において上面)を塞ぐ平板状の部材であり、ケース部11、支持部13と同様にアルミニウム等の熱伝導性に優れた金属製の部材である。
支持部13は、ケース部11の側部から側方に延出して設けられる部位である。支持部13は、半導体モジュールケース10をインバータケース4に対して位置決めし、支持するための部位である。支持部13を位置決め部材5に向かって積層方向一側から(図示において下側から)圧接することによって、半導体モジュールケース10の位置決め、ひいては半導体モジュール2の位置決めを行う。支持部13の両端部には、冷却水を流通するための水路14・14が設けられている。この水路14は、冷却水パイプ15を介して冷却器3と接続されている。
図2に示すように、冷却水パイプ15は、半導体モジュールケース10に設けられる水路14と冷却器3とを連通する冷却水通路である。冷却水パイプ15と半導体モジュールケース10及び冷却器3との接続部位は、ろう付け、溶接等の適宜の接合処理、又はO−リング、ガスケット等の適宜のシール材によってシールされており、冷却水の漏水が防止されている。
冷却器3は、内部空間を二つに分割し、それぞれの内部空間に冷却フィン31等を収容する二層構造を有する中空状の部材であり、前記二つに分割された内部空間に冷却水を流通させることで冷却フィン31・31を冷却するための部材である。
図2及び図3に示すように、冷却器3は、冷却器ケース30と、冷却フィン31・31と、内部を二層に分割するための中板32、冷却フィン31と中板32との間に介装されるばね部材33・33とからなる。
冷却器ケース30は、冷却器3の外郭をなす部材であり、アルミニウム等の熱伝導性に優れる金属製の部材からなる。冷却器ケース30内に冷却フィン31・31、中板32、ばね部材33・33を収容し、その内部空間は、中板32によって対称に分割されている。冷却器ケース30の両端部には、冷却水を冷却器ケース30内部に導入する又は内部から排出するための開口35・35がそれぞれ形成される。冷却器ケース30は、半導体モジュールケース10に間接的に接触した状態に置かれており、半導体モジュール2からの熱は、この冷却器ケース30に伝達される。また、冷却器ケース30は、薄肉製品であり、その剛性は半導体モジュールケース10の剛性より低く設定されている。このため、冷却器ケース30は、モジュールユニット6を積層する際に、半導体モジュールケース10より積層方向に向けて変形しやすい構造を有する。
冷却フィン31は、冷却器3における冷却水との熱交換部であり、アルミニウム等の熱伝導性に優れる金属製の部材からなる。冷却フィン31は、プレス成型等により波形形状に成型される薄板状の部材である。冷却フィン31は冷却器ケース30内において分割される二つの内部空間にそれぞれ一つづつ配され、冷却器ケース30外周部の内壁とそれぞれろう付けされている。このようにして、冷却器ケース30に伝達された熱が、冷却フィン31を介して冷却水に伝達される。
中板32は、冷却器ケース30の内部空間を二つに分割する仕切り部材であり、アルミニウム等の熱伝導性に優れた金属製の部材からなる平板状の部材である。中板32の両端部には、開口35から導入される冷却水が通過可能な通路32a・32aが穿設されている。中板32は、両端部において冷却器ケース30とろう付けされている。
ばね部材33は、冷却器3に所定のばね特性を付与する弾性部材であり、Fe系(SUS含む)、ベリリウム鋼、リン青銅等の熱伝導性及び耐食性に優れるばね鋼材からなる。ばね部材33は、冷却フィン31と中板32との間に挿入されるとともに、冷却フィン31の端部とろう付けされている。このばね部材33により、冷却器3から半導体モジュールケース10に向けて弾性力(ばね反力)が付与されている。
図2及び図3に示すように、冷却器3は、冷却器ケース30と、冷却フィン31・31と、内部を二層に分割するための中板32、冷却フィン31と中板32との間に介装されるばね部材33・33とからなる。
冷却器ケース30は、冷却器3の外郭をなす部材であり、アルミニウム等の熱伝導性に優れる金属製の部材からなる。冷却器ケース30内に冷却フィン31・31、中板32、ばね部材33・33を収容し、その内部空間は、中板32によって対称に分割されている。冷却器ケース30の両端部には、冷却水を冷却器ケース30内部に導入する又は内部から排出するための開口35・35がそれぞれ形成される。冷却器ケース30は、半導体モジュールケース10に間接的に接触した状態に置かれており、半導体モジュール2からの熱は、この冷却器ケース30に伝達される。また、冷却器ケース30は、薄肉製品であり、その剛性は半導体モジュールケース10の剛性より低く設定されている。このため、冷却器ケース30は、モジュールユニット6を積層する際に、半導体モジュールケース10より積層方向に向けて変形しやすい構造を有する。
冷却フィン31は、冷却器3における冷却水との熱交換部であり、アルミニウム等の熱伝導性に優れる金属製の部材からなる。冷却フィン31は、プレス成型等により波形形状に成型される薄板状の部材である。冷却フィン31は冷却器ケース30内において分割される二つの内部空間にそれぞれ一つづつ配され、冷却器ケース30外周部の内壁とそれぞれろう付けされている。このようにして、冷却器ケース30に伝達された熱が、冷却フィン31を介して冷却水に伝達される。
中板32は、冷却器ケース30の内部空間を二つに分割する仕切り部材であり、アルミニウム等の熱伝導性に優れた金属製の部材からなる平板状の部材である。中板32の両端部には、開口35から導入される冷却水が通過可能な通路32a・32aが穿設されている。中板32は、両端部において冷却器ケース30とろう付けされている。
ばね部材33は、冷却器3に所定のばね特性を付与する弾性部材であり、Fe系(SUS含む)、ベリリウム鋼、リン青銅等の熱伝導性及び耐食性に優れるばね鋼材からなる。ばね部材33は、冷却フィン31と中板32との間に挿入されるとともに、冷却フィン31の端部とろう付けされている。このばね部材33により、冷却器3から半導体モジュールケース10に向けて弾性力(ばね反力)が付与されている。
以上のように構成されるモジュールユニット6・6・・・を、インバータケース4内に積層方向一側に向けて積層することによって、積層モジュール構造1が構成される。モジュールユニット6・6・・・は、積層モジュール構造1の外郭をなすインバータケース4内に予め設けられる位置決め部材5・5・・・によって位置決めされる。
このとき、冷却器3は、内部にばね部材33を具備し、積層状態において、冷却器3に隣接する半導体モジュール2に対してばね反力を発生し、半導体モジュール2と冷却器3とを圧接するとともに、冷却器3と位置決め部材5とで半導体モジュール2を圧接することとなる。
これにより、半導体モジュール2と冷却器3との密着性を確保できるとともに、半導体モジュール2を高精度に位置決めできる。
このとき、冷却器3は、内部にばね部材33を具備し、積層状態において、冷却器3に隣接する半導体モジュール2に対してばね反力を発生し、半導体モジュール2と冷却器3とを圧接するとともに、冷却器3と位置決め部材5とで半導体モジュール2を圧接することとなる。
これにより、半導体モジュール2と冷却器3との密着性を確保できるとともに、半導体モジュール2を高精度に位置決めできる。
また、積層モジュール構造1では、インバータケース4内にて、積層方向一側から(図示において下側から)モジュールユニット6・6・・・を位置決めしつつ積層する際に、半導体モジュールケース10及び冷却器3が積層方向に荷重を受け、これら二つのうち剛性の低い冷却器3側が収縮し、冷却器3内のばね部材33が積層方向の荷重を受けて収縮する。これにより、ばね部材33にばね反力が発生して、冷却器3と半導体モジュールケース10との間に所定の圧接力が付与されている。このとき、半導体モジュール2、冷却器3の製造寸法にばらつきが生じた場合でも、ばね部材33の収縮により、そのばらつきが吸収される。つまり、積層時に、ばね部材33の収縮量が前記製造寸法のばらつきに応じて変化することによって半導体モジュール2・2・・・間の距離を同一に調整している。
以下では、図4及び図5を参照して、モジュールユニット6を製造するモジュールユニット製造工程S10について説明する。
モジュールユニット製造工程S10は、半導体モジュールケース10と冷却器ケース30とのろう付け、冷却器ケース30と冷却フィン31・31及び中板32とのろう付け、並びに半導体モジュールケース10と冷却水パイプ15と冷却器ケース30とのろう付けを行うろう付け工程S11と、半導体モジュールケース10内に半導体モジュール2を格納する格納工程S12とを含む。
モジュールユニット製造工程S10は、半導体モジュールケース10と冷却器ケース30とのろう付け、冷却器ケース30と冷却フィン31・31及び中板32とのろう付け、並びに半導体モジュールケース10と冷却水パイプ15と冷却器ケース30とのろう付けを行うろう付け工程S11と、半導体モジュールケース10内に半導体モジュール2を格納する格納工程S12とを含む。
図4に示すように、ろう付け工程S11では、(1)半導体モジュールケース10下面と冷却器ケース30上面との間、冷却器ケース30と冷却フィン31・31端部及び中板32との間、並びに半導体モジュールケース10と冷却水パイプ15と冷却器ケース30とのそれぞれの接続部分にろう材が供給され(図中に矢印で示す各箇所)、(2)それらのろう材が溶融する所定温度まで加熱された後、冷却することによってこれらが一括してろう付けされる。
このとき、半導体モジュールケース10、冷却器3とを同一の鋼材(本実施形態ではアルミニウム)で構成することにより、ろう付け時の熱収縮の違いに起因する反り・歪み等の要因を抑制できる。
このろう付け工程S11により、半導体モジュールケース10と冷却器3とがろう付けされ、ろう層40により一体化される。これにより、半導体モジュールケース10と冷却器3との間の熱伝導性を向上することができる。つまり、半導体モジュール2の冷却性能を向上できる。
このとき、半導体モジュールケース10、冷却器3とを同一の鋼材(本実施形態ではアルミニウム)で構成することにより、ろう付け時の熱収縮の違いに起因する反り・歪み等の要因を抑制できる。
このろう付け工程S11により、半導体モジュールケース10と冷却器3とがろう付けされ、ろう層40により一体化される。これにより、半導体モジュールケース10と冷却器3との間の熱伝導性を向上することができる。つまり、半導体モジュール2の冷却性能を向上できる。
図5に示すように、格納工程S12では、半導体モジュール2を構成する各部材が半導体モジュールケース10内に格納される。より具体的には、(1)半導体モジュールケース10のケース部11内に、下方から絶縁層22、ヒートスプレッタ21・21がはんだ付けされた半導体素子20の順に載置され、(2)ケース部11内に封止樹脂層23を形成するエポキシ系の熱硬化性樹脂23aを充填し、(3)ケース部11上方から絶縁層22が接着された保護プレート12を加圧しながら設置した状態で、(4)熱硬化性樹脂23aが硬化する温度(ゲル化温度)まで加熱された後、冷却することによって半導体モジュール2が形成されるとともに、半導体モジュール2が半導体モジュールケース10内に格納される。
このとき、絶縁層22と封止樹脂層23とは、同じエポキシ系の樹脂で構成されているため、前記ゲル化温度等を調整することにより、絶縁層22と封止樹脂層23とを一体化させることができ、密着強度を向上することができる。また、同様の理由により、絶縁層22の接着及び封止樹脂層23を構成する熱硬化性樹脂23aの充填を同時に行うことができ、加工コストを抑制できる。
このとき、絶縁層22と封止樹脂層23とは、同じエポキシ系の樹脂で構成されているため、前記ゲル化温度等を調整することにより、絶縁層22と封止樹脂層23とを一体化させることができ、密着強度を向上することができる。また、同様の理由により、絶縁層22の接着及び封止樹脂層23を構成する熱硬化性樹脂23aの充填を同時に行うことができ、加工コストを抑制できる。
以上のように、ろう付け工程S11及び格納工程S12を経て、モジュールユニット6が製造される。
以下では、図6〜図8を参照して、積層モジュール構造1を製造する積層モジュール製造工程S20について説明する。積層モジュール製造工程S20では、モジュールユニット製造工程S10によって製造された複数のモジュールユニット6・6・・・を用いる。
積層モジュール製造工程S20は、一つ目のモジュールユニット6をインバータケース4内側面の位置決め部材5に当接するようにインバータケース4内に挿入する第一ユニット挿入工程S21と、二つ目以降のモジュールユニット6を同じくインバータケース4内側面の位置決め部材5に当接するようにインバータケース4内に加圧しつつ挿入するユニット挿入工程S22と、一つ目のモジュールユニット6に冷却器3を取り付ける冷却器取付工程S23とを具備する。
積層モジュール製造工程S20は、一つ目のモジュールユニット6をインバータケース4内側面の位置決め部材5に当接するようにインバータケース4内に挿入する第一ユニット挿入工程S21と、二つ目以降のモジュールユニット6を同じくインバータケース4内側面の位置決め部材5に当接するようにインバータケース4内に加圧しつつ挿入するユニット挿入工程S22と、一つ目のモジュールユニット6に冷却器3を取り付ける冷却器取付工程S23とを具備する。
図6に示すように、第一ユニット挿入工程S21では、モジュールユニット6の支持部13と位置決め部材5とが当接するようにインバータケース4内にモジュールユニット6を挿入する。つまり、モジュールユニット6において冷却器3が配置されている側と反対側を端部として、一つ目のモジュールユニット6がインバータケース4内に挿入される。
これにより、端部に配置されるモジュールユニット6がインバータケース4内において高精度に位置決めされる。ひいては、半導体モジュール2がインバータケース4内の所定位置に位置決めされる。
これにより、端部に配置されるモジュールユニット6がインバータケース4内において高精度に位置決めされる。ひいては、半導体モジュール2がインバータケース4内の所定位置に位置決めされる。
図7に示すように、ユニット挿入工程S22では、モジュールユニット6の保護プレート12上に放熱性確保用のグリス層41を介在させた状態でモジュールユニット6の支持部13と位置決め部材5とが当接するまで、インバータケース4内にモジュールユニット6を加圧しながら押し込む。また、半導体モジュールケース10の水路14と冷却器3の開口35との間にはO−リングが介装され、シール性が確保される。
これにより、モジュールユニット6がインバータケース4内で位置決めされつつ積層されるとともに、半導体モジュールケース10より剛性の低い冷却器3側が積層方向に向けて変形(収縮)する。このとき、冷却器3内のばね部材33が外力を受けて収縮し、当該外力へ反発する方向にばね反力を発生させ、半導体モジュールケース10と冷却器3とを密着させる。また、前記外力及びばね部材33のばね反力により、モジュールユニット6・6間(本実施形態の場合、より厳密には、冷却器ケース30の底面と保護プレート12の上面との間)に介在するグリス層41が圧縮される。
このように積層されたモジュールユニット6・6では、端部に配置されているモジュールユニット6の半導体モジュール2を除いて、半導体モジュール2から冷却器3・3への両面放熱が実現される。
このユニット挿入工程S22を所定回数繰り返す。より具体的には、積層モジュール構造1に必要なモジュールユニット6の個数から1回減じた回数だけ繰り返す。
これにより、モジュールユニット6がインバータケース4内で位置決めされつつ積層されるとともに、半導体モジュールケース10より剛性の低い冷却器3側が積層方向に向けて変形(収縮)する。このとき、冷却器3内のばね部材33が外力を受けて収縮し、当該外力へ反発する方向にばね反力を発生させ、半導体モジュールケース10と冷却器3とを密着させる。また、前記外力及びばね部材33のばね反力により、モジュールユニット6・6間(本実施形態の場合、より厳密には、冷却器ケース30の底面と保護プレート12の上面との間)に介在するグリス層41が圧縮される。
このように積層されたモジュールユニット6・6では、端部に配置されているモジュールユニット6の半導体モジュール2を除いて、半導体モジュール2から冷却器3・3への両面放熱が実現される。
このユニット挿入工程S22を所定回数繰り返す。より具体的には、積層モジュール構造1に必要なモジュールユニット6の個数から1回減じた回数だけ繰り返す。
図8に示すように、冷却器取付工程S23では、端部に配置されているモジュールユニット6の保護プレート12上面に放熱性確保用のグリス層41を塗布し、グリス層41を介して冷却器3を加圧しつつ保護プレート12に取り付ける。冷却器3を、モジュールユニット6に対して加圧した状態でインバータケース4に固定することにより、グリス層41が圧縮した状態となる。なお、この冷却器3は、端部に配置されるため、開口35の一端は封止されている構造を有する。
これにより、積層モジュール構造1における全ての半導体モジュール2の両面側が冷却器3と当接した状態となり、全ての半導体モジュール2から冷却器3・3への両面放熱が実現される。
これにより、積層モジュール構造1における全ての半導体モジュール2の両面側が冷却器3と当接した状態となり、全ての半導体モジュール2から冷却器3・3への両面放熱が実現される。
以上のように、第一ユニット挿入工程S21、ユニット挿入工程S22、冷却器取付工程S23を経て、積層モジュール構造1が製造される。
また、積層モジュール構造1では、半導体モジュールケース10の一面(図示において下面)と冷却器3との間は、ろう層40によるろう付けによって固定され、半導体モジュールケース10の他面(図示において上面)と、積層される他のモジュールユニット6の冷却器3との間は、放熱性確保用のグリス層41を介して互いに圧接されることによって積層されている。つまり、一つのモジュールユニット6において、冷却器3と半導体モジュールケース10とが一体的にユニットとして用いられている。
これにより、積層モジュール製造工程S20において、モジュールユニット6の支持部13を位置決め部材5に対して位置決めすることのみによって、高精度にモジュールユニット6を位置決めしつつ組み付けることができる。従って、積層モジュール製造工程S20における作業工程数を低減することができ、組み付け性に優れる。
また、積層モジュール構造1では、半導体モジュールケース10の一面(図示において下面)と冷却器3との間は、ろう層40によるろう付けによって固定され、半導体モジュールケース10の他面(図示において上面)と、積層される他のモジュールユニット6の冷却器3との間は、放熱性確保用のグリス層41を介して互いに圧接されることによって積層されている。つまり、一つのモジュールユニット6において、冷却器3と半導体モジュールケース10とが一体的にユニットとして用いられている。
これにより、積層モジュール製造工程S20において、モジュールユニット6の支持部13を位置決め部材5に対して位置決めすることのみによって、高精度にモジュールユニット6を位置決めしつつ組み付けることができる。従って、積層モジュール製造工程S20における作業工程数を低減することができ、組み付け性に優れる。
図9に示すように、ばね部材33は、プレス成型によって成型される板ばね34・34・・・を有する略平板状の部材である。板ばね34は、所定のばね定数を有する。
また、図9に示すように、ばね部材33の積層方向視において、所定個数の板ばね34・34・・・が所定箇所に設けられている。この「所定個数」及び「所定箇所」とは、略平板状のばね部材33において、板ばね34・34・・・のばね反力が冷却器3の平面度に影響しない個数及び箇所であり、その配置個数、配置箇所等は積層モジュール構造1の規模等に応じた所望の圧接力、ばね部材33の材質、板厚等に応じて設定可能である。
また、図9に示すように、ばね部材33の積層方向視において、所定個数の板ばね34・34・・・が所定箇所に設けられている。この「所定個数」及び「所定箇所」とは、略平板状のばね部材33において、板ばね34・34・・・のばね反力が冷却器3の平面度に影響しない個数及び箇所であり、その配置個数、配置箇所等は積層モジュール構造1の規模等に応じた所望の圧接力、ばね部材33の材質、板厚等に応じて設定可能である。
より具体的には、図10に示すように、半導体モジュールケース10による冷却器3の圧縮量(dx)と、係る圧縮量に起因して発生するばね反力(F)とが満たす関係において、適正エリアA(図中において点線で囲まれる領域A)から外れている場合に、板ばね34・34・・・の個数又はばね部材33の板厚を変更する、若しくは、ばね部材33の材質の変更又は板ばね34・34・・・の形状を変更することによって、適正エリアAの条件を満たすように変更することによって、ばね部材33によるばね特性を適宜設定可能である。
なお、この「適正エリアA」は、積層モジュール構造1の形態に応じて設定される領域であり、横軸方向(dx方向)の範囲は、半導体モジュール2及び冷却器3の製造寸法のばらつきを吸収する許容範囲を示し、縦軸方向(F方向)の範囲は、圧接された際に半導体モジュール2と冷却器3との間の接触面積(平面度)を確保する許容範囲を示している。
なお、この「適正エリアA」は、積層モジュール構造1の形態に応じて設定される領域であり、横軸方向(dx方向)の範囲は、半導体モジュール2及び冷却器3の製造寸法のばらつきを吸収する許容範囲を示し、縦軸方向(F方向)の範囲は、圧接された際に半導体モジュール2と冷却器3との間の接触面積(平面度)を確保する許容範囲を示している。
以上のように、板ばね34・34・・・を有するばね部材33は、簡易な構成によって実現可能であり、材料となるばね鋼材の選択又は板厚の選択、板ばね34の形状、配置箇所、配置個数等を適宜設定することにより、そのばね特性を容易に設定可能である。これにより、半導体モジュールケース10と冷却器3との間の平面度を担保しつつ、十分なばね反力による圧接を実現できる。つまり、半導体モジュールケース10と冷却器3との密着性を確保でき、半導体モジュール2に対する十分な冷却性能を確保できる。
なお、冷却器3の冷却フィン31をアルミニウム製とした場合、冷却フィン31とばね部材33とをろう付けするために、ばね鋼材からなるばね部材33に対してニッケルメッキ等のメッキ処理を施す必要がある。
また、冷却器ケース30の内壁と冷却フィン31との間のろう付け、並びに冷却フィン31とばね部材33との間のろう付けの際に、ろう付け性を確保するために、ばね部材33と中板32との間に隙間を形成しておく必要がある。つまり、ろう付け時の冷却フィン31の熱膨張を考慮し、ばね部材33が中板32と当接して、ばね部材33によるばね反力が発生しない程度の隙間を形成しておく必要がある。
また、冷却器ケース30内には冷却水が循環するため、異種金属間の接合構造に対して電食による漏水等を考慮する必要があるが、イオン化傾向の大きさを比較すると、Al>Fe>Ni>Cuである。そこで、本実施形態に係る積層モジュール構造1において、例えばアルミニウム製の冷却フィン31にFe系のばね鋼材製のばね部材33を接合した場合、電食に対する考慮は必要なく、冷却器3のシール性を確保できる。
また、冷却器ケース30の内壁と冷却フィン31との間のろう付け、並びに冷却フィン31とばね部材33との間のろう付けの際に、ろう付け性を確保するために、ばね部材33と中板32との間に隙間を形成しておく必要がある。つまり、ろう付け時の冷却フィン31の熱膨張を考慮し、ばね部材33が中板32と当接して、ばね部材33によるばね反力が発生しない程度の隙間を形成しておく必要がある。
また、冷却器ケース30内には冷却水が循環するため、異種金属間の接合構造に対して電食による漏水等を考慮する必要があるが、イオン化傾向の大きさを比較すると、Al>Fe>Ni>Cuである。そこで、本実施形態に係る積層モジュール構造1において、例えばアルミニウム製の冷却フィン31にFe系のばね鋼材製のばね部材33を接合した場合、電食に対する考慮は必要なく、冷却器3のシール性を確保できる。
図11に示すように、本発明に係る弾性部材は、ばね部材60としても良い。ばね部材60は、ばね鋼材からなり、波形形状を有する部材であり、冷却器ケース30の立ち上がり部61に設けられる。立ち上がり部61は、冷却器ケース30における、冷却フィン31がろう付けされる内壁面からテーパ状に縮小する部位である。つまり、この立ち上がり部61をばね部材60として形成し、ばね部材60と冷却ケース30とをろう付けすることによって、冷却器3に所定のばね特性を付与している。
また、ばね部材60においても、ばね部材33と同様に、その材質、形状(傾斜角度、曲率等)、板厚等を変更することによって、ばね反力を設定可能である。
例えば、図11に示すようなばね部材60を採用した場合、冷却フィン31の中板32と反対側の(図示において下側の)端部は、冷却器ケース30の内壁面とろう付けされているが、冷却フィン31の中板32側の(図示において上側の)端部は固定されておらず、かつ、中板32と適宜の隙間を形成している。このように冷却フィン31と冷却器ケース30とをろう付けすることにより、冷却器3の冷却性能及び剛性を確保している。また、冷却フィン31と中板32との間に隙間を形成することにより、組み付けの際にばね部材60の圧縮の阻害とならないようにしている。
なお、ばね鋼材からなるばね部材60と冷却器ケース30とを接合する際に、ばね部材60側にニッケルメッキ等のメッキ処理が必要であることは上述の通りである。
また、ばね部材60においても、ばね部材33と同様に、その材質、形状(傾斜角度、曲率等)、板厚等を変更することによって、ばね反力を設定可能である。
例えば、図11に示すようなばね部材60を採用した場合、冷却フィン31の中板32と反対側の(図示において下側の)端部は、冷却器ケース30の内壁面とろう付けされているが、冷却フィン31の中板32側の(図示において上側の)端部は固定されておらず、かつ、中板32と適宜の隙間を形成している。このように冷却フィン31と冷却器ケース30とをろう付けすることにより、冷却器3の冷却性能及び剛性を確保している。また、冷却フィン31と中板32との間に隙間を形成することにより、組み付けの際にばね部材60の圧縮の阻害とならないようにしている。
なお、ばね鋼材からなるばね部材60と冷却器ケース30とを接合する際に、ばね部材60側にニッケルメッキ等のメッキ処理が必要であることは上述の通りである。
図12〜図14に示すように、本発明に係る弾性部材は、ばね部材70、80、90としても良い。つまり、冷却フィン31自体をばね鋼材にて形成し、所定のばね特性を有する冷却フィン31をばね部材70、80、又は90として構成する。これらのばね部材70、80、90によって、冷却器3に所定のばね特性を付与している。
また、ばね部材70、80、90においても、ばね部材33、ばね部材60と同様に、その材質、形状(幅、曲率等)、板厚等を変更することによってばね反力を設定可能である。
例えば、図12及び図13に示すようなばね部材70、80を採用した場合、冷却フィン31の中板32と反対側の(図示において下側の)端部の一部又は全部と、冷却器ケース30の内壁とがろう付けされている(図中において矢印で示す箇所)。図14に示すようなばね部材90を採用した場合、冷却フィン31の中板32と反対側の(図示において下側の)端部の一部又は全部と、冷却器ケース30の内壁とがろう付けされ、冷却フィン31の中板32側の(図示において上側の)端部の一部と中板32とがろう付けされている(図中において矢印で示す箇所)。アルミニウム製の冷却器ケース30とばね部材70、80、90として構成される冷却フィン31とを接合する際には、冷却器ケース30側に電食の懸念があるため、冷却器ケース30側に儀材等の防食加工が必要となる。
以上のようにして、冷却器3の冷却性能及び剛性を確保している。ばね部材70、80、90によるばね反力はばね部材33と比較して弱いが、コンパクトな構造にて実現できるため、小型の冷却器3を有する積層モジュール構造1に対して特に有効である。
なお、ばね鋼材からなるばね部材70、80、90と冷却器ケース30とを接合する際に、ばね部材70、80、90側にニッケルメッキ等のメッキ処理が必要であることは上述の通りである。
また、ばね部材70、80、90においても、ばね部材33、ばね部材60と同様に、その材質、形状(幅、曲率等)、板厚等を変更することによってばね反力を設定可能である。
例えば、図12及び図13に示すようなばね部材70、80を採用した場合、冷却フィン31の中板32と反対側の(図示において下側の)端部の一部又は全部と、冷却器ケース30の内壁とがろう付けされている(図中において矢印で示す箇所)。図14に示すようなばね部材90を採用した場合、冷却フィン31の中板32と反対側の(図示において下側の)端部の一部又は全部と、冷却器ケース30の内壁とがろう付けされ、冷却フィン31の中板32側の(図示において上側の)端部の一部と中板32とがろう付けされている(図中において矢印で示す箇所)。アルミニウム製の冷却器ケース30とばね部材70、80、90として構成される冷却フィン31とを接合する際には、冷却器ケース30側に電食の懸念があるため、冷却器ケース30側に儀材等の防食加工が必要となる。
以上のようにして、冷却器3の冷却性能及び剛性を確保している。ばね部材70、80、90によるばね反力はばね部材33と比較して弱いが、コンパクトな構造にて実現できるため、小型の冷却器3を有する積層モジュール構造1に対して特に有効である。
なお、ばね鋼材からなるばね部材70、80、90と冷却器ケース30とを接合する際に、ばね部材70、80、90側にニッケルメッキ等のメッキ処理が必要であることは上述の通りである。
1 積層モジュール構造
2 半導体モジュール
3 冷却器
4 インバータケース
5 位置決め部材
6 モジュールユニット
33 ばね部材(弾性部材)
34 板ばね
2 半導体モジュール
3 冷却器
4 インバータケース
5 位置決め部材
6 モジュールユニット
33 ばね部材(弾性部材)
34 板ばね
Claims (4)
- 半導体モジュールと、該半導体モジュールを冷却する冷却器と、を有するモジュールユニットを複数積層してなる積層モジュール構造であって、
前記冷却器は、内部に弾性部材を有し、
前記半導体モジュールは、位置決め部材によって前記積層モジュール構造の所定位置に位置決めされ、
前記半導体モジュールが前記位置決め部材により位置決めされつつ、前記モジュールユニットが積層される際に、
隣接する一方のモジュールユニットにおける前記半導体モジュールと他方のモジュールユニットにおける前記冷却器とが前記弾性部材により圧接されることを特徴とする積層モジュール構造。 - 前記モジュールユニットは、
前記半導体モジュールを格納する半導体モジュールケースを含むとともに、
前記冷却器の剛性は前記半導体モジュールケースの剛性より低く設定され、
前記モジュールユニットを積層する際に、前記半導体モジュールケースが前記位置決め部材と当接するように前記積層方向に加圧することにより、前記冷却器が前記積層方向に変形し、前記半導体モジュールケースが位置決めされることを特徴とする請求項1に記載の積層モジュール構造。 - 前記半導体モジュールは、両面放熱性のモジュールからなるとともに、
前記弾性部材は、前記積層方向両側に向けた弾性力を発生させ、前記半導体モジュールは、前記弾性部材の弾性力により、積層方向両側において冷却器と圧接されることを特徴とする請求項1又は請求項2に記載の積層モジュール構造。 - 前記弾性部材は、プレス成型により成型され、所定のばね定数を有する板ばねを有することを特徴とする請求項1〜請求項3の何れか一項に記載の積層モジュール構造。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008313587A JP2010140969A (ja) | 2008-12-09 | 2008-12-09 | 積層モジュール構造 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008313587A JP2010140969A (ja) | 2008-12-09 | 2008-12-09 | 積層モジュール構造 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2010140969A true JP2010140969A (ja) | 2010-06-24 |
Family
ID=42350874
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008313587A Pending JP2010140969A (ja) | 2008-12-09 | 2008-12-09 | 積層モジュール構造 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2010140969A (ja) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013179743A (ja) * | 2012-02-28 | 2013-09-09 | Toyota Central R&D Labs Inc | インバータ用部品 |
JP2014135527A (ja) * | 2014-04-30 | 2014-07-24 | Rohm Co Ltd | 半導体パワーモジュールおよびその製造方法 |
JP2014192479A (ja) * | 2013-03-28 | 2014-10-06 | Mitsubishi Materials Corp | 熱インターフェース板及びその製造方法 |
JP2014236599A (ja) * | 2013-06-03 | 2014-12-15 | 株式会社デンソー | 電力変換装置 |
JP2015026653A (ja) * | 2013-07-24 | 2015-02-05 | 日本発條株式会社 | 積層構造体および積層ユニット |
US8981542B2 (en) | 2010-09-29 | 2015-03-17 | Rohm Co., Ltd. | Semiconductor power module and method of manufacturing the same |
JP2015233168A (ja) * | 2015-10-01 | 2015-12-24 | ローム株式会社 | 半導体パワーモジュール |
US20170133294A1 (en) * | 2015-04-28 | 2017-05-11 | Shindengen Electric Manufacturing Co., Ltd. | Semiconductor module and method for manufacturing semiconductor module |
JP2019186297A (ja) * | 2018-04-04 | 2019-10-24 | 株式会社フジクラ | コールドプレート |
WO2024219184A1 (ja) * | 2023-04-17 | 2024-10-24 | 三菱電機株式会社 | 放熱部材、放熱部材の製造方法および真空バルブ |
-
2008
- 2008-12-09 JP JP2008313587A patent/JP2010140969A/ja active Pending
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8981542B2 (en) | 2010-09-29 | 2015-03-17 | Rohm Co., Ltd. | Semiconductor power module and method of manufacturing the same |
JP2013179743A (ja) * | 2012-02-28 | 2013-09-09 | Toyota Central R&D Labs Inc | インバータ用部品 |
JP2014192479A (ja) * | 2013-03-28 | 2014-10-06 | Mitsubishi Materials Corp | 熱インターフェース板及びその製造方法 |
JP2014236599A (ja) * | 2013-06-03 | 2014-12-15 | 株式会社デンソー | 電力変換装置 |
JP2015026653A (ja) * | 2013-07-24 | 2015-02-05 | 日本発條株式会社 | 積層構造体および積層ユニット |
JP2014135527A (ja) * | 2014-04-30 | 2014-07-24 | Rohm Co Ltd | 半導体パワーモジュールおよびその製造方法 |
US20170133294A1 (en) * | 2015-04-28 | 2017-05-11 | Shindengen Electric Manufacturing Co., Ltd. | Semiconductor module and method for manufacturing semiconductor module |
US9892993B2 (en) * | 2015-04-28 | 2018-02-13 | Shindengen Electric Manufacturing Co., Ltd. | Semiconductor module having stacked insulated substrate structures |
JP2015233168A (ja) * | 2015-10-01 | 2015-12-24 | ローム株式会社 | 半導体パワーモジュール |
JP2019186297A (ja) * | 2018-04-04 | 2019-10-24 | 株式会社フジクラ | コールドプレート |
WO2024219184A1 (ja) * | 2023-04-17 | 2024-10-24 | 三菱電機株式会社 | 放熱部材、放熱部材の製造方法および真空バルブ |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2010140969A (ja) | 積層モジュール構造 | |
JP2010135697A (ja) | 積層モジュール構造 | |
US7019395B2 (en) | Double-sided cooling type semiconductor module | |
US8198539B2 (en) | Heat radiator and power module | |
JP6409690B2 (ja) | 冷却モジュール | |
JP6286543B2 (ja) | パワーモジュール装置、電力変換装置およびパワーモジュール装置の製造方法 | |
JP2009117428A (ja) | パワー半導体モジュールの製造方法、パワー半導体モジュールの製造装置、パワー半導体モジュール、及び接合方法 | |
JP2008270297A (ja) | パワーユニットおよび放熱容器 | |
JP2010087002A (ja) | 発熱部品冷却構造 | |
JP2005175163A (ja) | 半導体モジュールの冷却構造 | |
JP6299618B2 (ja) | 電力変換装置及びその製造方法 | |
JP7016375B2 (ja) | パワー半導体モジュール | |
WO2015194023A1 (ja) | パワーモジュール装置及び電力変換装置 | |
JP4228830B2 (ja) | 半導体冷却ユニット | |
JP2010219137A (ja) | 半導体装置及び半導体装置の製造方法 | |
JP2009200258A (ja) | 半導体モジュール | |
WO2021235002A1 (ja) | パワーモジュール | |
JP5971051B2 (ja) | 半導体ユニット | |
JP6738193B2 (ja) | 伝熱構造体、絶縁積層材、絶縁回路基板およびパワーモジュール用ベース | |
JP4935783B2 (ja) | 半導体装置および複合半導体装置 | |
JP4937951B2 (ja) | 電力用半導体装置およびその製造方法 | |
JP2006294921A (ja) | 電力変換装置 | |
JP4158648B2 (ja) | 半導体冷却ユニット | |
JP6119419B2 (ja) | 電力変換装置 | |
JP6555159B2 (ja) | 冷却チューブ |