[go: up one dir, main page]

JP2010139196A - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP2010139196A
JP2010139196A JP2008317838A JP2008317838A JP2010139196A JP 2010139196 A JP2010139196 A JP 2010139196A JP 2008317838 A JP2008317838 A JP 2008317838A JP 2008317838 A JP2008317838 A JP 2008317838A JP 2010139196 A JP2010139196 A JP 2010139196A
Authority
JP
Japan
Prior art keywords
refrigerant
liquid
gas
heat exchanger
header
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008317838A
Other languages
Japanese (ja)
Inventor
Madoka Ueno
円 上野
Takahiro Hashimoto
隆弘 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2008317838A priority Critical patent/JP2010139196A/en
Publication of JP2010139196A publication Critical patent/JP2010139196A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/027Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of distribution pipes
    • F28F9/0273Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of distribution pipes with multiple holes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • F25B39/028Evaporators having distributing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05391Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits combined with a particular flow pattern, e.g. multi-row multi-stage radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F27/00Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus
    • F28F27/02Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus for controlling the distribution of heat-exchange media between different channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/26Arrangements for connecting different sections of heat-exchange elements, e.g. of radiators
    • F28F9/262Arrangements for connecting different sections of heat-exchange elements, e.g. of radiators for radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve the heat exchanging efficiency of an evaporator by making only liquid refrigerants flow to flat tubes to suppress a drift. <P>SOLUTION: This heat exchanger 1 includes two header pipes 2, 3 disposed in parallel with each other at an interval, and the plurality of flat tubes 4 disposed between the header pies 2, 3 in a state that a plurality of refrigerant passages 5 which are disposed therein communicate with the inside of the header pipes 2, 3. A gas-liquid separator 10 is disposed in the lower header pipe 3 at an inflow side of a gas-liquid two-phase refrigerant. The gas-liquid separator 10 separates the gas-liquid two phase refrigerant into the liquid refrigerant and a gas refrigerant, and mainly distributes the liquid refrigerant to the flat tubes 4. The gas refrigerant is introduced to a suction side of a compressor 102 compressing the refrigerant. The gas-liquid separator 10 includes a liquid refrigerant collecting cylinder 11 provided with a number of pleats 12 on a peripheral wall, and an exhaust pipe 18 projecting to an internal space of the liquid refrigerant collecting cylinder 11 and discharging the gas refrigerant to the outside. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明はパラレルフロー型の熱交換器に関する。   The present invention relates to a parallel flow type heat exchanger.

複数のヘッダパイプの間に複数の偏平チューブを配置して偏平チューブ内部の複数の冷媒通路をヘッダパイプの内部に連通させるとともに、偏平チューブ間にコルゲートフィン等のフィンを配置したパラレルフロー型の熱交換器はカーエアコンや建物用空気調和機の室外側ユニットなどに広く利用されている。   A parallel flow type heat in which a plurality of flat tubes are arranged between a plurality of header pipes so that a plurality of refrigerant passages in the flat tubes communicate with the inside of the header pipe, and fins such as corrugated fins are arranged between the flat tubes. Exchangers are widely used in outdoor units of car air conditioners and building air conditioners.

従来のパラレルフロー型熱交換器の一例を図8に示す。図8では紙面上側が垂直方向の上側、紙面下側が垂直方向の下側となる。熱交換器1は、2本の水平なヘッダパイプ2、3を垂直方向に間隔を置いて平行に配置し、ヘッダパイプ2、3の間に複数の垂直な偏平チューブ4を水平方向に所定ピッチで配置する。偏平チューブ4は金属を押出成型した細長い成型品であり、内部には冷媒を流通させる冷媒通路5が形成されている。偏平チューブ4は長手方向である押出成型方向を垂直にする形で配置されるので、冷媒通路5の冷媒流通方向も垂直になる。冷媒通路5は断面形状及び断面面積の等しいものが図4の奥行き方向に複数個並び、そのため偏平チューブ4の水平断面はハーモニカ状を呈している。各冷媒通路5はヘッダパイプ2、3の内部に連通する。隣り合う偏平チューブ4同士の間にはコルゲートフィン6が配置される。   An example of a conventional parallel flow heat exchanger is shown in FIG. In FIG. 8, the upper side of the paper is the upper side in the vertical direction, and the lower side of the paper is the lower side in the vertical direction. In the heat exchanger 1, two horizontal header pipes 2 and 3 are arranged in parallel at a vertical interval, and a plurality of vertical flat tubes 4 are arranged at a predetermined pitch in the horizontal direction between the header pipes 2 and 3. Place with. The flat tube 4 is an elongated molded product obtained by extruding a metal, and a refrigerant passage 5 through which a refrigerant flows is formed. Since the flat tube 4 is arranged so that the extrusion molding direction which is the longitudinal direction is vertical, the refrigerant flow direction of the refrigerant passage 5 is also vertical. A plurality of refrigerant passages 5 having the same cross-sectional shape and cross-sectional area are arranged in the depth direction of FIG. 4, and therefore the horizontal cross section of the flat tube 4 has a harmonica shape. Each refrigerant passage 5 communicates with the inside of the header pipes 2 and 3. Corrugated fins 6 are arranged between the adjacent flat tubes 4.

ヘッダパイプ2と3、偏平チューブ4、及びコルゲートフィン6はいずれもアルミニウム等熱伝導の良い金属からなり、偏平チューブ4はヘッダパイプ2、3に対し、コルゲートフィン6は偏平チューブ4に対し、それぞれロウ付けまたは溶着で固定される。   The header pipes 2 and 3, the flat tube 4 and the corrugated fin 6 are all made of a metal having good heat conduction such as aluminum, the flat tube 4 is for the header pipes 2 and 3, and the corrugated fin 6 is for the flat tube 4. It is fixed by brazing or welding.

図8に示す熱交換器1は、いわゆるダウンフロー型のパラレルフロー型熱交換器である。上下のヘッダパイプ2、3の間に長手方向を上下方向とする多数の偏平チューブ4を設け、偏平チューブ4間にコルゲートフィン6を設けた構造であるから、熱交換器1の放熱(吸熱)面積は大きく、効率的に熱交換を行うことができる。下側のヘッダパイプである下部ヘッダパイプ3には一端に冷媒出入口7が設けられ、上側のヘッダパイプである上部ヘッダパイプ2には冷媒出入口7と対角をなす一端に冷媒出入口8が設けられている。なお、ここに示した冷媒出入口7と冷媒出入口8の位置関係は一例であって、これに限定されるものではない。例えば、上部ヘッダパイプ2が両端2箇所に冷媒出入口8を備える構成も可能である。   The heat exchanger 1 shown in FIG. 8 is a so-called downflow type parallel flow type heat exchanger. A large number of flat tubes 4 having a longitudinal direction in the vertical direction are provided between the upper and lower header pipes 2 and 3, and corrugated fins 6 are provided between the flat tubes 4. The area is large and heat can be exchanged efficiently. The lower header pipe 3 that is the lower header pipe is provided with a refrigerant inlet / outlet 7 at one end, and the upper header pipe 2 that is the upper header pipe is provided with a refrigerant inlet / outlet 8 at one end that forms a diagonal with the refrigerant inlet / outlet 7. ing. The positional relationship between the refrigerant inlet / outlet 7 and the refrigerant inlet / outlet 8 shown here is merely an example, and the present invention is not limited to this. For example, a configuration in which the upper header pipe 2 includes the refrigerant inlet / outlet 8 at two locations on both ends is also possible.

熱交換器1はセパレート型空気調和機に搭載することができる。セパレート型空気調和機は室外機と室内機により構成され、室外機は圧縮機、四方弁、膨張弁、室外側熱交換器、室外側送風機などを含み、室内機は室内側熱交換器、室内側送風機などを含む。室外側熱交換器は、暖房運転時には蒸発器として機能し、冷房運転時には凝縮器として機能する。室内側熱交換器は、暖房運転時には凝縮器として機能し、冷房運転時には蒸発器として機能する。   The heat exchanger 1 can be mounted on a separate type air conditioner. The separate type air conditioner is composed of an outdoor unit and an indoor unit. The outdoor unit includes a compressor, a four-way valve, an expansion valve, an outdoor heat exchanger, an outdoor fan, and the like. The indoor unit is an indoor heat exchanger, a room Includes an internal blower. The outdoor heat exchanger functions as an evaporator during heating operation and functions as a condenser during cooling operation. The indoor heat exchanger functions as a condenser during heating operation and functions as an evaporator during cooling operation.

冷凍サイクルとしてヒートポンプサイクルを用いるセパレート型空気調和機の基本的構成を図9に示す。ヒートポンプサイクル101は、圧縮機102、四方弁103、室外側の熱交換器104、減圧膨張装置105、及び室内側の熱交換器106をループ状に接続したものである。圧縮機102、四方弁103、熱交換器104、及び減圧膨張装置105は室外機の筐体に収容され、熱交換器106は室内機の筐体に収容される。熱交換器104には室外側の送風機107が組み合わせられ、熱交換器106には室内側の送風機108が組み合わせられる。送風機107は多くの場合プロペラファンで構成され、送風機108は多くの場合クロスフローファンで構成される。熱交換器104または熱交換器106として、上記のパラレルフロー型熱交換器1を用いることができる。   FIG. 9 shows a basic configuration of a separate type air conditioner that uses a heat pump cycle as a refrigeration cycle. The heat pump cycle 101 includes a compressor 102, a four-way valve 103, an outdoor heat exchanger 104, a decompression / expansion device 105, and an indoor heat exchanger 106 connected in a loop. The compressor 102, the four-way valve 103, the heat exchanger 104, and the decompression / expansion device 105 are accommodated in the casing of the outdoor unit, and the heat exchanger 106 is accommodated in the casing of the indoor unit. An outdoor fan 107 is combined with the heat exchanger 104, and an indoor fan 108 is combined with the heat exchanger 106. The blower 107 is often composed of a propeller fan, and the blower 108 is often composed of a cross flow fan. As the heat exchanger 104 or the heat exchanger 106, the parallel flow heat exchanger 1 described above can be used.

図9は暖房運転時の状態を示す。この時は、圧縮機102から吐出された高温高圧の冷媒は室内側の熱交換器106に入ってそこで放熱し、凝縮する。熱交換器106を出た冷媒は減圧膨張装置105から室外側の熱交換器104に入ってそこで膨張し、室外空気から熱を取り込んだ後、圧縮機102に戻る。室内側の送風機108によって生成された気流が熱交換器106からの放熱を促進し、室外側の送風機107によって生成された気流が熱交換器104の吸熱を促進する。   FIG. 9 shows a state during heating operation. At this time, the high-temperature and high-pressure refrigerant discharged from the compressor 102 enters the indoor heat exchanger 106 where it dissipates heat and condenses. The refrigerant exiting the heat exchanger 106 enters the outdoor heat exchanger 104 from the decompression / expansion device 105 and expands there, takes heat from the outdoor air, and returns to the compressor 102. The airflow generated by the indoor fan 108 promotes heat dissipation from the heat exchanger 106, and the airflow generated by the outdoor fan 107 accelerates heat absorption of the heat exchanger 104.

図10は冷房運転時あるいは除霜運転時の状態を示す。この時は四方弁103が切り換えられて暖房運転時と冷媒の流れが逆になる。すなわち、圧縮機102から吐出された高温高圧の冷媒は室外側の熱交換器104に入ってそこで放熱し、凝縮する。熱交換器104を出た冷媒は減圧膨張装置105から室内側の熱交換器106に入ってそこで膨張し、室内空気から熱を取り込んだ後、圧縮機102に戻る。室外側の送風機107によって生成された気流が熱交換器104からの放熱を促進し、室内側の送風機108によって生成された気流が熱交換器106の吸熱を促進する。   FIG. 10 shows a state during cooling operation or defrosting operation. At this time, the four-way valve 103 is switched so that the refrigerant flow is reversed from that during the heating operation. That is, the high-temperature and high-pressure refrigerant discharged from the compressor 102 enters the outdoor heat exchanger 104, where it dissipates heat and condenses. The refrigerant exiting the heat exchanger 104 enters the heat exchanger 106 on the indoor side from the decompression / expansion device 105 and expands there, takes heat from the indoor air, and returns to the compressor 102. The airflow generated by the outdoor fan 107 promotes heat dissipation from the heat exchanger 104, and the airflow generated by the indoor fan 108 promotes heat absorption of the heat exchanger 106.

パラレルフロー型熱交換器については、その性能を高めるため、これまでにも様々な工夫がなされている。   About a parallel flow type heat exchanger, in order to improve the performance, various devices have been made so far.

例えば特許文献1記載のパラレルフロー型熱交換器では、冷媒流入側ヘッダ管の冷媒流入部に、流入するガス冷媒と液冷媒とを混合拡散して流通させる気液拡散体を配置し、複数の伝熱管に到達するまでのガス冷媒と液冷媒をほぼ均等に分配して、熱交換効率を向上させている。   For example, in the parallel flow type heat exchanger described in Patent Document 1, a gas-liquid diffuser that mixes and diffuses an inflowing gas refrigerant and a liquid refrigerant is disposed in a refrigerant inflow portion of a refrigerant inflow side header pipe, The gas refrigerant and liquid refrigerant until reaching the heat transfer tube are almost evenly distributed to improve the heat exchange efficiency.

特許文献2記載のパラレルフロー型熱交換器では、ヘッダー上流側に気液分離器を設け、冷媒を、液体もしくは液体割合が高い気液二相流と、気体もしくは気体割合が高い気液二相流に分離し、一方の気液二相流をヘッダーの一端から流入させ、他方の気液二相流をヘッダーの他端から流入させ、それらをヘッダー内で混合させることにより、乾き度・ボイド率が比較的均質である均質流の気液二相流を形成し、熱交換器伝熱面積を有効に活用し、安定した熱交換能力が得られるようにしている。
特開2008−39304号公報 特開平2−282670号公報
In the parallel flow heat exchanger described in Patent Document 2, a gas-liquid separator is provided on the upstream side of the header, and the refrigerant is a gas-liquid two-phase flow having a high liquid or liquid ratio and a gas-liquid two-phase having a high gas or gas ratio. By separating one gas-liquid two-phase flow from one end of the header and the other gas-liquid two-phase flow from the other end of the header and mixing them in the header, dryness / void A homogeneous gas-liquid two-phase flow with a relatively uniform rate is formed, and the heat exchanger heat transfer area is effectively utilized to obtain a stable heat exchange capability.
JP 2008-39304 A JP-A-2-282670

パラレルフロー型熱交換器の偏平チューブには、気液二相冷媒を流すことが多い。しかしながら、気体と液体の混じった冷媒は、偏平チューブ同士の間で冷媒流量に偏りを生じる、いわゆる偏流を招くことになりやすい。また、気体が混じった流れは圧力損失が
大きく、冷媒循環の阻害要因となる。
In many cases, a gas-liquid two-phase refrigerant flows through the flat tube of the parallel flow type heat exchanger. However, a refrigerant mixed with gas and liquid tends to cause a so-called drift, which causes a deviation in the refrigerant flow rate between the flat tubes. In addition, a flow mixed with gas has a large pressure loss, which becomes an obstacle to refrigerant circulation.

本発明は上記の点に鑑みなされたものであり、偏平チューブに極力液体冷媒のみ流すようにして、偏流を抑制し、蒸発器として使用する場合の熱交換効率を向上させることを目的とする。   The present invention has been made in view of the above points, and an object of the present invention is to suppress only the flow of liquid refrigerant through the flat tube as much as possible, thereby improving the heat exchange efficiency when used as an evaporator.

上記目的を達成するために本発明は、間隔を置いて平行に配置された複数のヘッダパイプと、前記複数のヘッダパイプの間に複数配置され、内部に設けた複数の冷媒通路を前記ヘッダパイプの内部に連通させた偏平チューブとを備えた熱交換器において、前記複数のヘッダパイプの中で気液二相冷媒の流入側となるヘッダパイプの内部に気液分離器を配置し、流入した気液二相冷媒の主として液体冷媒を前記偏平チューブに送ることを特徴としている。   In order to achieve the above object, the present invention provides a plurality of header pipes arranged in parallel at intervals, and a plurality of refrigerant pipes arranged between the plurality of header pipes and provided in the header pipe. In the heat exchanger having a flat tube communicated with the inside of the plurality of header pipes, a gas-liquid separator is arranged inside the header pipe which is the inflow side of the gas-liquid two-phase refrigerant in the plurality of header pipes, It is characterized in that mainly liquid refrigerant of gas-liquid two-phase refrigerant is sent to the flat tube.

この構成によると、偏平チューブを流れるのは主として液体冷媒であるから、ヘッダパイプに流入した気液二相冷媒がそのまま偏平チューブに流れるのに比べ、偏流が生じにくい。また、気体混じりの冷媒に比べ、偏平チューブ内での圧力損失が小さいから、冷媒の循環量が多くなり、熱交換性能が向上する。   According to this configuration, since it is mainly liquid refrigerant that flows through the flat tube, the flow is less likely to occur than when the gas-liquid two-phase refrigerant flowing into the header pipe flows directly into the flat tube. In addition, since the pressure loss in the flat tube is small compared to the refrigerant mixed with gas, the circulation amount of the refrigerant is increased, and the heat exchange performance is improved.

上記構成の熱交換器において、前記気液分離器で液体冷媒から分離された気液二相冷媒の気体冷媒は、冷媒を圧縮する圧縮機の吸込側配管に導入されることが好ましい。   In the heat exchanger configured as described above, the gas refrigerant of the gas-liquid two-phase refrigerant separated from the liquid refrigerant by the gas-liquid separator is preferably introduced into a suction side pipe of a compressor that compresses the refrigerant.

このような構成にすれば、気体冷媒は圧縮機で圧縮されて再び凝縮器で液化されるから、冷媒を無駄なく閉ループ内で循環させることができる。   With such a configuration, the gaseous refrigerant is compressed by the compressor and liquefied again by the condenser, so that the refrigerant can be circulated in the closed loop without waste.

上記構成の熱交換器において、前記気液分離器は、周壁に多数のプリーツを形成した筒形部材であって、内部に導入された気液二相冷媒の液体冷媒を液体の表面張力で前記プリーツの内側に集める液体冷媒捕集筒と、前記液体冷媒捕集筒の内部空間に突き出して、気液二相冷媒の気体冷媒を外部に排出する排気管とを備えることが好ましい。   In the heat exchanger having the above-described configuration, the gas-liquid separator is a cylindrical member in which a large number of pleats are formed on a peripheral wall, and the liquid refrigerant of the gas-liquid two-phase refrigerant introduced into the inside by the surface tension of the liquid. It is preferable to include a liquid refrigerant collecting cylinder that collects inside the pleats and an exhaust pipe that protrudes into the internal space of the liquid refrigerant collecting cylinder and discharges the gas refrigerant of the gas-liquid two-phase refrigerant to the outside.

このような構成にすれば、液体の表面張力という単純な物理現象を利用して気液分離が行われるから、気液分離器の構造が簡単になり、動作確実で故障の少ないものとすることができる。   With this configuration, gas-liquid separation is performed using the simple physical phenomenon of surface tension of the liquid, so the structure of the gas-liquid separator is simplified, operation is reliable, and there are few failures. Can do.

上記構成の熱交換器において、前記液体冷媒捕集筒の内部と、当該気液分離器が配置されている前記ヘッダパイプの内部を連通させる貫通穴が、前記プリーツに分散形成されていることが好ましい。   In the heat exchanger configured as described above, through holes for communicating the inside of the liquid refrigerant collecting cylinder and the inside of the header pipe in which the gas-liquid separator is disposed are dispersedly formed in the pleats. preferable.

このような構成にすれば、液体冷媒をヘッダパイプ内の各所に適切に分配することができる。   With such a configuration, the liquid refrigerant can be appropriately distributed to various places in the header pipe.

上記構成の熱交換器において、前記液体冷媒捕集筒の内部と、当該気液分離器が配置されている前記ヘッダパイプの内部を連通させる貫通穴が、液体冷媒捕集筒に固定されたエンドブラケットに形成されていることが好ましい。   In the heat exchanger having the above-described configuration, an end in which a through hole that connects the inside of the liquid refrigerant collecting cylinder and the inside of the header pipe in which the gas-liquid separator is disposed is fixed to the liquid refrigerant collecting cylinder It is preferable that it is formed on the bracket.

このような構成にすれば、貫通穴を容易に形成することができる。   With such a configuration, the through hole can be easily formed.

上記構成の熱交換器において、前記複数のヘッダパイプは略水平方向に延び、前記複数の偏平チューブは略垂直方向に延びる形に設置されることが好ましい。   In the heat exchanger configured as described above, it is preferable that the plurality of header pipes extend in a substantially horizontal direction and the plurality of flat tubes extend in a substantially vertical direction.

このような構成にすれば、ダウンフロー型であるパラレルフロー型熱交換器の偏流問題を解決できる。   With such a configuration, it is possible to solve the drift problem of the parallel flow heat exchanger that is a down flow type.

上記構成の熱交換器において、前記複数のヘッダパイプの中で、下部に位置するヘッダパイプの内部に前記気液分離器が配置されることが好ましい。   In the heat exchanger configured as described above, it is preferable that the gas-liquid separator is disposed inside a header pipe located at a lower portion of the plurality of header pipes.

このような構成にすれば、この熱交換器を蒸発器として使用する場合、偏平チューブの下端から流入した液体冷媒が、偏平チューブの中を上昇するに従って気体の割合を増やして行くので、冷媒の上昇が促進され、冷媒循環量が増大する。   With such a configuration, when this heat exchanger is used as an evaporator, the liquid refrigerant flowing from the lower end of the flat tube increases the gas ratio as it rises in the flat tube. The increase is promoted and the amount of refrigerant circulation increases.

本発明によると、気液二相冷媒から液体を分離して偏平チューブに流すことにより、偏流を抑制するとともに冷媒循環量を増大し、熱交換性能を向上させることができる。   According to the present invention, by separating the liquid from the gas-liquid two-phase refrigerant and flowing it through the flat tube, it is possible to suppress the drift and increase the refrigerant circulation amount, thereby improving the heat exchange performance.

以下本発明の第1実施形態を図1から図5に基づき説明する。図1はパラレルフロー型熱交換器の部分断面図、図2は図1のA−A線を断面箇所とする部分拡大断面図、図3は図1のB−B線を断面箇所とする気液分離器の拡大断面図、図4は整流コーンの斜視図、図5は第1実施形態に係るパラレルフロー型熱交換器を搭載したセパレート型空気調和機の基本構成図である。なお、第1実施形態の構成の多くは図8から図10に示した従来構造と共通するので、そのような共通の構成要素には図8から図10で用いたのと同じ符号を付し、説明は省略する。   Hereinafter, a first embodiment of the present invention will be described with reference to FIGS. 1 is a partial cross-sectional view of a parallel flow type heat exchanger, FIG. 2 is a partially enlarged cross-sectional view taken along line AA in FIG. 1, and FIG. 3 is a gas view taken along line BB in FIG. 4 is an enlarged cross-sectional view of the liquid separator, FIG. 4 is a perspective view of a rectifying cone, and FIG. 5 is a basic configuration diagram of a separate type air conditioner equipped with a parallel flow type heat exchanger according to the first embodiment. Since many of the configurations of the first embodiment are common to the conventional structure shown in FIGS. 8 to 10, such common components are denoted by the same reference numerals as those used in FIGS. The description is omitted.

熱交換器1は、図8に示したものと同様、ダウンフロー型のパラレルフロー型熱交換器であって、複数のヘッダパイプは略水平方向に延び、複数の偏平チューブは略垂直方向に延びる。下部ヘッダパイプ3の内部には気液分離器10が配置される。気液分離器10は下部ヘッダパイプ3の内部のほぼ端から端まで届く細長い筒形状となっており、中心軸を下部ヘッダパイプ3の中心軸に一致させる形で配置されている。   The heat exchanger 1 is a downflow parallel flow heat exchanger similar to that shown in FIG. 8, wherein the plurality of header pipes extend in a substantially horizontal direction, and the plurality of flat tubes extend in a substantially vertical direction. . A gas-liquid separator 10 is disposed inside the lower header pipe 3. The gas-liquid separator 10 has an elongated cylindrical shape that reaches almost from end to end inside the lower header pipe 3, and is arranged such that the central axis coincides with the central axis of the lower header pipe 3.

気液分離器10の主体をなすのは液体冷媒捕集筒11である。液体冷媒捕集筒11は、周壁に多数のプリーツ12を形成した筒形部材であって、アルミニウムの薄板等から形成される。液体冷媒捕集筒11には、その内部と下部ヘッダパイプ3の内部を連通させる貫通穴13が、適所に分散形成される。貫通穴13は、液体冷媒捕集筒11の軸線方向に所定間隔で、プリーツ12毎に形成される。   The main component of the gas-liquid separator 10 is the liquid refrigerant collecting cylinder 11. The liquid refrigerant collecting cylinder 11 is a cylindrical member in which a large number of pleats 12 are formed on a peripheral wall, and is formed from an aluminum thin plate or the like. The liquid refrigerant collecting cylinder 11 is formed with through holes 13 in communication with the inside of the lower header pipe 3 in a distributed manner. The through holes 13 are formed for each pleat 12 at a predetermined interval in the axial direction of the liquid refrigerant collecting cylinder 11.

液体冷媒捕集筒11の両端にはキャップ状に成形された合成樹脂製または金属製のエンドブラケット14、15が固定される。図2にはエンドブラケット14と液体冷媒捕集筒11の固定箇所が示されている。この箇所において、エンドブラケット14にはプリーツ12の形状に合わせた放射状の開口部が形成されている。この開口部にプリーツ12をぴったりとはめ込んだ状態で、接着や溶着といった常用の固定手法により、液体冷媒捕集筒11とエンドブラケット14は気密(液密)に固定される。エンドブラケット15と液体冷媒捕集筒11の固定箇所も同様の構造である。   Synthetic resin or metal end brackets 14 and 15 formed in a cap shape are fixed to both ends of the liquid refrigerant collecting cylinder 11. FIG. 2 shows a fixed portion of the end bracket 14 and the liquid refrigerant collecting cylinder 11. At this location, the end bracket 14 is formed with a radial opening that matches the shape of the pleat 12. The liquid refrigerant collecting cylinder 11 and the end bracket 14 are fixed in an airtight (liquid-tight) manner by a conventional fixing method such as adhesion or welding in a state where the pleat 12 is fitted in the opening. The fixing positions of the end bracket 15 and the liquid refrigerant collecting cylinder 11 have the same structure.

エンドブラケット14の端面には外側に向かって突き出すパイプ状の冷媒流入口16が形成される。冷媒流入口16は下部エンドブラケット3の冷媒出入口7に内側から気密(液密)に差し込まれる。   A pipe-like refrigerant inlet 16 that protrudes outward is formed on the end surface of the end bracket 14. The refrigerant inlet 16 is inserted into the refrigerant inlet / outlet 7 of the lower end bracket 3 in an airtight (liquid tight) manner from the inside.

エンドブラケット15の端面には内側に向かって突き出すスリーブ17が形成される。下部ヘッダパイプ3の端面を貫通する排気管18が外側からスリーブ17に差し込まれる。排気管18は液体冷媒捕集筒11の内部空間に所定長さ突き出す。排気管18が下部ヘッダパイプ3を貫通する箇所と、排気管18がエンドブラケット15に差し込まれる箇所には、いずれも適切な気密(液密)処置が施される。   A sleeve 17 projecting inward is formed on the end face of the end bracket 15. An exhaust pipe 18 that penetrates the end face of the lower header pipe 3 is inserted into the sleeve 17 from the outside. The exhaust pipe 18 protrudes into the internal space of the liquid refrigerant collecting cylinder 11 by a predetermined length. Appropriate air-tight (liquid-tight) treatment is applied to the place where the exhaust pipe 18 penetrates the lower header pipe 3 and the place where the exhaust pipe 18 is inserted into the end bracket 15.

エンドブラケット14の側ではエンドブラケット14の冷媒流入口16が下部ヘッダパイプ3の冷媒出入口7に差し込まれ、エンドブラケット15の側では下部ヘッダパイプ3を貫通する排気管18がエンドブラケット15に差し込まれることにより、気液分離器10は下部ヘッダパイプ3の中心に保持固定されることになる。   On the end bracket 14 side, the refrigerant inlet 16 of the end bracket 14 is inserted into the refrigerant inlet / outlet 7 of the lower header pipe 3, and on the end bracket 15 side, the exhaust pipe 18 penetrating the lower header pipe 3 is inserted into the end bracket 15. As a result, the gas-liquid separator 10 is held and fixed at the center of the lower header pipe 3.

エンドブラケット14の内部には、冷媒流入口16から流れ込む冷媒流に対向する形で整流コーン20が固定される。整流コーン20は、円筒と円錐を組み合わせた形状のコーン本体21と、所定間隔を置いてコーン本体21を囲む取付用リング22と、コーン本体21と取付用リング22を連結する放射状のスポーク23を備える。   A rectifying cone 20 is fixed inside the end bracket 14 so as to face the refrigerant flow flowing from the refrigerant inlet 16. The rectifying cone 20 includes a cone body 21 having a combination of a cylinder and a cone, a mounting ring 22 surrounding the cone body 21 at a predetermined interval, and a radial spoke 23 connecting the cone body 21 and the mounting ring 22. Prepare.

熱交換器1が蒸発器として使用され、下部ヘッダパイプ3から気液二相冷媒が流入するという設定で説明を続ける。図1ではブロック矢印が気液二相媒の流れを表し、実線の矢印が液体の冷媒流れを表し、点線の矢印が気体の冷媒流れを表す。流入口16から気液分離器10に流入した気液二相冷媒は、整流コーン20により液体冷媒捕集筒11の内周方向へと誘導され、プリーツ12の内部をエンドブラケット15の方に流れる。   The description continues with the setting that the heat exchanger 1 is used as an evaporator and the gas-liquid two-phase refrigerant flows from the lower header pipe 3. In FIG. 1, the block arrow represents the flow of the gas-liquid two-phase medium, the solid line arrow represents the liquid refrigerant flow, and the dotted line arrow represents the gaseous refrigerant flow. The gas-liquid two-phase refrigerant that has flowed into the gas-liquid separator 10 from the inlet 16 is guided toward the inner periphery of the liquid refrigerant collecting cylinder 11 by the rectifying cone 20, and flows inside the pleat 12 toward the end bracket 15. .

プリーツ12の内部を流れる過程で、気液二相冷媒のうちの液体冷媒が表面張力でプリーツ12の先端部分に集結する。逆説的に言えば、表面張力による液体冷媒の集結が生じる程度にプリーツ12の頂角を鋭角にし、そのような形状のプリーツ12を密集状態で配置する。プリーツ12に液体冷媒が集まる反動で、気体冷媒は液体冷媒捕集筒11の中心部分に集まる。   In the process of flowing inside the pleat 12, the liquid refrigerant of the gas-liquid two-phase refrigerant is concentrated on the tip portion of the pleat 12 by surface tension. Paradoxically speaking, the apex angle of the pleat 12 is set to an acute angle such that the liquid refrigerant is concentrated due to surface tension, and the pleats 12 having such a shape are arranged in a dense state. As the liquid refrigerant collects in the pleats 12, the gas refrigerant collects in the central portion of the liquid refrigerant collecting cylinder 11.

プリーツ12の先端部分に集結した液体冷媒は貫通穴13を通じて気液分離器10の外綿と下部ヘッダパイプ3の内面の間の空間に流出し、偏平チューブ4に流入する。気液分離器10の内部に残る気体冷媒は排気管18を通じて下部ヘッダパイプ3の外に排出される。   The liquid refrigerant collected at the tip portion of the pleat 12 flows out into the space between the outer cotton of the gas-liquid separator 10 and the inner surface of the lower header pipe 3 through the through hole 13 and flows into the flat tube 4. The gaseous refrigerant remaining inside the gas-liquid separator 10 is discharged out of the lower header pipe 3 through the exhaust pipe 18.

気液分離器10に気液二相冷媒を通すことにより、偏平チューブ4を流れるのは主として液体冷媒となり、下部ヘッダパイプ3に流入した気液二相冷媒がそのまま偏平チューブ4に流れるという構成に比べ、偏流が生じにくい。また、気体混じりの冷媒に比べ、偏平チューブ4内での圧力損失が小さいから、冷媒の循環量が多くなり、熱交換性能が向上する。   By passing the gas-liquid two-phase refrigerant through the gas-liquid separator 10, the flow through the flat tube 4 is mainly liquid refrigerant, and the gas-liquid two-phase refrigerant flowing into the lower header pipe 3 flows into the flat tube 4 as it is. In comparison, drift is less likely to occur. Moreover, since the pressure loss in the flat tube 4 is small compared with the refrigerant mixed with gas, the circulation amount of the refrigerant is increased, and the heat exchange performance is improved.

気液分離器10において気液分離の役割を担うのは、周壁に多数のプリーツ12を形成した液体冷媒捕集筒11であって、液体の表面張力という単純な物理現象を利用して気液分離が行われるから、気液分離器10の構造が簡単になり、動作確実で故障の少ないものとすることができる。   The gas-liquid separator 10 plays a role of gas-liquid separation, which is a liquid refrigerant collecting cylinder 11 in which a large number of pleats 12 are formed on a peripheral wall. The gas-liquid separator utilizes a simple physical phenomenon called liquid surface tension. Since the separation is performed, the structure of the gas-liquid separator 10 is simplified, and the operation can be reliably performed and the failure is reduced.

また、液体冷媒捕集筒11の内部と、下部ヘッダパイプ3の内部を連通させる貫通穴13が、液体冷媒捕集筒11の軸線方向に所定間隔で、プリーツ12毎に分散形成されているから、液体冷媒を下部ヘッダパイプ3内の各所に適切に分配することができる。   Further, the through holes 13 that allow the inside of the liquid refrigerant collecting cylinder 11 and the inside of the lower header pipe 3 to communicate with each other are distributed and formed for each pleat 12 at predetermined intervals in the axial direction of the liquid refrigerant collecting cylinder 11. The liquid refrigerant can be appropriately distributed to various places in the lower header pipe 3.

熱交換器1が、図5に示すセパレート型空気調和機の室外機に熱交換器104として搭載されている場合には、暖房運転時に排気管18を通じて排出される気体の冷媒を、配管109を通じて圧縮機102の吸込側配管に導入することができる。このようにすれば、冷媒の気体冷媒を圧縮機102で圧縮して再び室内側の熱交換器106で液化することができるから、冷媒を無駄なく閉ループ内で循環させることができる。なお、配管109には電磁弁110を設けておくことが好ましい。冷房運転時においては、室外側の熱交換器104が凝縮器となり、気体から液体へと冷媒の状態が変化するため、気液分離を行う必要がない。従って電磁弁110は、冷房運転時は閉じ、暖房運転時に開くように制御される。   When the heat exchanger 1 is mounted as the heat exchanger 104 in the outdoor unit of the separate type air conditioner shown in FIG. 5, the gaseous refrigerant discharged through the exhaust pipe 18 during the heating operation is passed through the pipe 109. It can be introduced into the suction side piping of the compressor 102. In this way, the refrigerant gas refrigerant can be compressed by the compressor 102 and liquefied again by the indoor heat exchanger 106, so that the refrigerant can be circulated in the closed loop without waste. In addition, it is preferable to provide the solenoid valve 110 in the piping 109. During the cooling operation, the outdoor heat exchanger 104 serves as a condenser, and the state of the refrigerant changes from gas to liquid, so there is no need to perform gas-liquid separation. Therefore, the electromagnetic valve 110 is controlled to be closed during the cooling operation and to be opened during the heating operation.

本発明の第2実施形態を図6と図7に示す。図6はパラレルフロー型熱交換器の部分断面図、図7は図6のC−C線を断面箇所とする部分拡大断面図である。   A second embodiment of the present invention is shown in FIGS. FIG. 6 is a partial cross-sectional view of the parallel flow heat exchanger, and FIG. 7 is a partial enlarged cross-sectional view taken along line CC in FIG.

第1実施形態と第2実施形態の相違点は、液体冷媒捕集筒11の内部と下部ヘッダパイプ3の内部を連通させる貫通穴の位置にある。すなわち第2実施形態では、エンドブラケット15に複数の貫通穴25が形成されている。この構成は貫通穴の形成が容易であるという特徴を有する。   The difference between the first embodiment and the second embodiment resides in the position of a through hole that communicates the inside of the liquid refrigerant collecting cylinder 11 and the inside of the lower header pipe 3. That is, in the second embodiment, a plurality of through holes 25 are formed in the end bracket 15. This configuration has a feature that the formation of the through hole is easy.

プリーツ12への貫通穴13の形成と、エンドブラケット15への貫通穴25の形成は、排他的な関係にはない。必要があれば、両方同時に実施して構わない。   The formation of the through hole 13 in the pleat 12 and the formation of the through hole 25 in the end bracket 15 are not in an exclusive relationship. If necessary, both can be performed simultaneously.

以上、本発明の各実施形態につき説明したが、本発明の範囲はこれに限定されるものではなく、発明の主旨を逸脱しない範囲で種々の変更を加えて実施することができる。   As mentioned above, although each embodiment of the present invention was described, the scope of the present invention is not limited to this, and various modifications can be made without departing from the spirit of the invention.

本発明はパラレルフロー型熱交換器に広く利用可能である。   The present invention is widely applicable to parallel flow heat exchangers.

第1実施形態に係るパラレルフロー型熱交換器の部分断面図The fragmentary sectional view of the parallel flow type heat exchanger concerning a 1st embodiment 図1のA−A線を断面箇所とする部分拡大断面図Partial expanded sectional view which makes the AA line of FIG. 1 a cross-sectional location 図1のB−B線を断面箇所とする気液分離器の拡大断面図FIG. 1 is an enlarged cross-sectional view of a gas-liquid separator having a cross-section taken along line BB in FIG. 整流コーンの斜視図Perspective view of rectifying cone 1実施形態に係るパラレルフロー型熱交換器を搭載したセパレート型空気調和機の基本構成図1 is a basic configuration diagram of a separate air conditioner equipped with a parallel flow heat exchanger according to an embodiment. 第2施形態に係るパラレルフロー型熱交換器の部分断面図Partial sectional view of a parallel flow heat exchanger according to the second embodiment 図6のC−C線を断面箇所とする部分拡大断面図Partial expanded sectional view which makes the CC line of FIG. 6 a cross-sectional location 従来のパラレルフロー型熱交換器の概略構造を示す垂直断面図Vertical sectional view showing the schematic structure of a conventional parallel flow heat exchanger セパレート型空気調和機の基本構成図Basic configuration diagram of separate air conditioner セパレート型空気調和機の基本構成図であって、図9と異なる状態を示すものFIG. 9 is a basic configuration diagram of a separate type air conditioner, showing a state different from FIG. 9.

符号の説明Explanation of symbols

1 熱交換器
2 上部ヘッダパイプ
3 下部ヘッダパイプ
4 偏平チューブ
5 冷媒通路
6 コルゲートフィン
7、8 冷媒出入口
10 気液分離器
11 液体冷媒捕集筒
12 プリーツ
13 貫通穴
14、15 エンドブラケット
16 冷媒流入口
18 排気管
20 整流コーン
25 貫通穴
DESCRIPTION OF SYMBOLS 1 Heat exchanger 2 Upper header pipe 3 Lower header pipe 4 Flat tube 5 Refrigerant passage 6 Corrugated fin 7, 8 Refrigerant inlet / outlet 10 Gas-liquid separator 11 Liquid refrigerant collection cylinder 12 Pleated 13 Through hole 14, 15 End bracket 16 Refrigerant flow Inlet 18 Exhaust pipe 20 Rectification cone 25 Through hole

Claims (7)

間隔を置いて平行に配置された複数のヘッダパイプと、前記複数のヘッダパイプの間に複数配置され、内部に設けた複数の冷媒通路を前記ヘッダパイプの内部に連通させた偏平チューブとを備えた熱交換器において、
前記複数のヘッダパイプの中で気液二相冷媒の流入側となるヘッダパイプの内部に気液分離器を配置し、流入した気液二相冷媒の主として液体冷媒を前記偏平チューブに送ることを特徴とする熱交換器。
A plurality of header pipes arranged in parallel at intervals, and a flat tube arranged between the plurality of header pipes and having a plurality of refrigerant passages provided therein communicated with the inside of the header pipe. In the heat exchanger
A gas-liquid separator is disposed inside the header pipe which is the inflow side of the gas-liquid two-phase refrigerant among the plurality of header pipes, and the liquid refrigerant mainly flowing in the gas-liquid two-phase refrigerant is sent to the flat tube. Features heat exchanger.
前記気液分離器で液体冷媒から分離された気液二相冷媒の気体冷媒は、冷媒を圧縮する圧縮機の吸込側配管に導入されることを特徴とする請求項1に記載の熱交換器。   The heat exchanger according to claim 1, wherein the gas refrigerant of the gas-liquid two-phase refrigerant separated from the liquid refrigerant by the gas-liquid separator is introduced into a suction side pipe of a compressor that compresses the refrigerant. . 前記気液分離器は、周壁に多数のプリーツを形成した筒形部材であって、内部に導入された気液二相冷媒の液体冷媒を液体の表面張力で前記プリーツの内側に集める液体冷媒捕集筒と、前記液体冷媒捕集筒の内部空間に突き出して、気液二相冷媒の気体冷媒を外部に排出する排気管とを備えることを特徴とする請求項1または2に記載の熱交換器。   The gas-liquid separator is a cylindrical member in which a large number of pleats are formed on the peripheral wall, and collects the liquid refrigerant of the gas-liquid two-phase refrigerant introduced into the inside of the pleat by the surface tension of the liquid. The heat exchange according to claim 1 or 2, further comprising: a collecting tube; and an exhaust pipe that protrudes into the internal space of the liquid refrigerant collecting tube and discharges the gas refrigerant of the gas-liquid two-phase refrigerant to the outside. vessel. 前記液体冷媒捕集筒の内部と、当該気液分離器が配置されている前記ヘッダパイプの内部を連通させる貫通穴が、前記プリーツに分散形成されていることを特徴とする請求項3に記載の熱交換器。   The through-hole which connects the inside of the said liquid refrigerant | coolant collection cylinder and the inside of the said header pipe in which the said gas-liquid separator is arrange | positioned is distributedly formed in the said pleat. Heat exchanger. 前記液体冷媒捕集筒の内部と、当該気液分離器が配置されている前記ヘッダパイプの内部を連通させる貫通穴が、液体冷媒捕集筒に固定されたエンドブラケットに形成されていることを特徴とする請求項3に記載の熱交換器。   A through hole for communicating the inside of the liquid refrigerant collecting cylinder and the inside of the header pipe where the gas-liquid separator is disposed is formed in an end bracket fixed to the liquid refrigerant collecting cylinder. The heat exchanger according to claim 3, wherein 前記複数のヘッダパイプは略水平方向に延び、前記複数の偏平チューブは略垂直方向に延びる形に設置されることを特徴とする請求項1から5のいずれか1項に記載の熱交換器。   6. The heat exchanger according to claim 1, wherein the plurality of header pipes extend in a substantially horizontal direction, and the plurality of flat tubes extend in a substantially vertical direction. 前記複数のヘッダパイプの中で、下部に位置するヘッダパイプの内部に前記気液分離器が配置されることを特徴とする請求項6に記載の熱交換器。   The heat exchanger according to claim 6, wherein the gas-liquid separator is disposed inside a header pipe located at a lower portion of the plurality of header pipes.
JP2008317838A 2008-12-15 2008-12-15 Heat exchanger Pending JP2010139196A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008317838A JP2010139196A (en) 2008-12-15 2008-12-15 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008317838A JP2010139196A (en) 2008-12-15 2008-12-15 Heat exchanger

Publications (1)

Publication Number Publication Date
JP2010139196A true JP2010139196A (en) 2010-06-24

Family

ID=42349470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008317838A Pending JP2010139196A (en) 2008-12-15 2008-12-15 Heat exchanger

Country Status (1)

Country Link
JP (1) JP2010139196A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101473873B1 (en) * 2012-10-09 2014-12-24 삼성전자주식회사 Heat exchanger
WO2019198174A1 (en) * 2018-04-11 2019-10-17 三菱電機株式会社 Air conditioning device
CN114484947A (en) * 2021-12-23 2022-05-13 西安交通大学 Rectifier tube and gas-liquid distribution device
WO2023058179A1 (en) * 2021-10-07 2023-04-13 三菱電機株式会社 Refrigerant distributor, heat exchanger, and air conditioner
WO2023199466A1 (en) * 2022-04-14 2023-10-19 三菱電機株式会社 Heat exchanger, and air conditioning device including same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101473873B1 (en) * 2012-10-09 2014-12-24 삼성전자주식회사 Heat exchanger
WO2019198174A1 (en) * 2018-04-11 2019-10-17 三菱電機株式会社 Air conditioning device
JPWO2019198174A1 (en) * 2018-04-11 2021-02-12 三菱電機株式会社 Air conditioner
WO2023058179A1 (en) * 2021-10-07 2023-04-13 三菱電機株式会社 Refrigerant distributor, heat exchanger, and air conditioner
CN114484947A (en) * 2021-12-23 2022-05-13 西安交通大学 Rectifier tube and gas-liquid distribution device
CN114484947B (en) * 2021-12-23 2022-12-13 西安交通大学 Rectifier tube and gas-liquid distribution device
WO2023199466A1 (en) * 2022-04-14 2023-10-19 三菱電機株式会社 Heat exchanger, and air conditioning device including same

Similar Documents

Publication Publication Date Title
JP6023464B2 (en) Vehicle capacitors
JPH0835744A (en) Refrigerant condenser integral with liquid receiver
JP6889541B2 (en) Internal heat exchanger integrated accumulator and refrigeration cycle using it
JP3617083B2 (en) Receiver integrated refrigerant condenser
CN112944741B (en) Droplet evaporation device for chiller and chiller
JP2010139196A (en) Heat exchanger
JP6458680B2 (en) Heat exchanger
JP4553040B2 (en) Evaporator unit
CN210107818U (en) Shell and tube condenser and refrigerating system thereof
JP2010078287A (en) Air conditioner
EP2787314B1 (en) Double-pipe heat exchanger and air conditioner using same
JP2015108463A (en) Heat exchanger and refrigeration cycle device
EP3789697B1 (en) Heat exchanger and refrigeration cycle device
JP2010014353A (en) Evaporator unit for ejector refrigeration cycle
JP2005037054A (en) Heat exchanger for refrigerant cycle device
KR200259605Y1 (en) Integral Condenser
JP6169199B2 (en) Heat exchanger and refrigeration cycle apparatus
JP2013002773A (en) Heat exchanger and air conditioner with the same
KR101210570B1 (en) Heat exchanger
JP2006266570A (en) Vehicular cooling device
KR100243246B1 (en) Heat exchanger of air-conditioner in car
JP2012042128A (en) Heat exchanger and air conditioner equipped with the same
CN209399558U (en) air conditioner
CN107421179B (en) Flash device
CN206440039U (en) A kind of air-conditioning system of use gravity force liquid-supply