JP2010134457A - Infrared ray blocking film and infrared ray blocking laminated film - Google Patents
Infrared ray blocking film and infrared ray blocking laminated film Download PDFInfo
- Publication number
- JP2010134457A JP2010134457A JP2009253508A JP2009253508A JP2010134457A JP 2010134457 A JP2010134457 A JP 2010134457A JP 2009253508 A JP2009253508 A JP 2009253508A JP 2009253508 A JP2009253508 A JP 2009253508A JP 2010134457 A JP2010134457 A JP 2010134457A
- Authority
- JP
- Japan
- Prior art keywords
- infrared
- group
- compound
- infrared ray
- copolymer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Optical Filters (AREA)
- Laminated Bodies (AREA)
Abstract
Description
本発明は、赤外線遮断性及び可視光線透過性に優れた薄いフィルムに関する。 The present invention relates to a thin film excellent in infrared shielding properties and visible light transmittance.
可視光線を透過させるが、赤外線を反射又は吸収するフィルム状材料が、建築物、乗り物等において太陽光の熱線を抑制したり、デジタルカメラの視感度を補正したりするために用いられている。このようなフィルム状材料として、アクリル樹脂に、赤外線吸収剤として銅イオンを添加するとともに、銅イオンの分散性を高めるために燐酸エステルを添加した組成物からなるものが知られている。しかしこの組成物は、アクリル樹脂に対する燐酸エステルの相溶性が良くないため、銅イオンの分散性が不十分であり、十分な赤外線遮断性が得られない。 A film-like material that transmits visible light but reflects or absorbs infrared rays is used to suppress the heat rays of sunlight and to correct the visibility of digital cameras in buildings and vehicles. As such a film-like material, a material made of a composition in which a copper ion is added as an infrared absorber to an acrylic resin and a phosphate ester is added to increase the dispersibility of the copper ion is known. However, since this composition has poor compatibility of the phosphate ester with the acrylic resin, the dispersibility of the copper ions is insufficient, and sufficient infrared shielding properties cannot be obtained.
そこで特開平6-118228号(特許文献1)は、近赤外線を効率よくカットする光学フィルタとして、式:PO(OH)nR3-n[ただし、Rは
しかし特許文献1のフィルタは、リン酸基含有単量体が分子中にリン酸基を一個のみ有するものであるので、銅塩の分散が十分とはいえず、十分な赤外線遮断性を得るためには厚くする必要があり、そのため可視光線透過性や軽量性に欠けるという問題がある。 However, in the filter of Patent Document 1, since the phosphoric acid group-containing monomer has only one phosphoric acid group in the molecule, the dispersion of the copper salt cannot be said to be sufficient, and sufficient infrared shielding properties are obtained. Needs to be thick, and therefore has a problem of lack of visible light transmittance and lightness.
従って、本発明の目的は、赤外線遮断性及び可視光線透過性に優れた薄いフィルムを提供することである。 Accordingly, an object of the present invention is to provide a thin film excellent in infrared shielding properties and visible light transmittance.
上記目的に鑑み鋭意研究の結果、本発明者は、(メタ)アクリルアミドとリン酸との反応物又はその加水分解物を必須成分とする重合体に、金属化合物を添加した樹脂を用いると、赤外線遮断性及び可視光線透過性に優れた薄いフィルムが得られることを見出し、本発明に想到した。 As a result of intensive studies in view of the above object, the present inventors have found that when a resin in which a metal compound is added to a polymer having a reaction product of (meth) acrylamide and phosphoric acid or a hydrolyzate thereof as an essential component is used, infrared rays are used. The inventors have found that a thin film excellent in blocking property and visible light transmittance can be obtained, and have arrived at the present invention.
すなわち、本発明の赤外線遮断性フィルムは、(1) (メタ)アクリルアミドとリン酸との反応物又はその加水分解物の重合体に、リチウム、カルシウム、バナジウム、コバルト、ニッケル、銅、亜鉛及びインジウムからなる群から選ばれた少なくとも一種の金属の化合物を添加してなる第一の赤外線遮断性樹脂、(2) 前記反応物又はその加水分解物と、エチレン性不飽和結合を有する化合物との共重合体に、前記金属化合物を添加してなる第二の赤外線遮断性樹脂、又は(3) これらの混合物からなる第三の赤外線遮断性樹脂を含むことを特徴とする。 That is, the infrared shielding film of the present invention comprises (1) a polymer of a reaction product of (meth) acrylamide and phosphoric acid or a hydrolyzate thereof, lithium, calcium, vanadium, cobalt, nickel, copper, zinc and indium. A first infrared ray shielding resin comprising at least one metal compound selected from the group consisting of: (2) a co-reaction of the reactant or a hydrolyzate thereof with a compound having an ethylenically unsaturated bond; The polymer contains a second infrared shielding resin obtained by adding the metal compound, or (3) a third infrared shielding resin comprising a mixture thereof.
赤外線遮断性層と、透明性樹脂フィルムとを有する本発明の赤外線遮断性積層フィルムは、前記赤外線遮断性層が、(1) (メタ)アクリルアミドとリン酸との反応物又はその加水分解物の重合体に、リチウム、カルシウム、バナジウム、コバルト、ニッケル、銅、亜鉛及びインジウムからなる群から選ばれた少なくとも一種の金属の化合物を添加してなる第一の赤外線遮断性樹脂、(2) 前記反応物又はその加水分解物と、エチレン性不飽和結合を有する化合物との共重合体に、前記金属化合物を添加してなる第二の赤外線遮断性樹脂、又は(3) これらの混合物からなる第三の赤外線遮断性樹脂を含むことを特徴とする。前記透明性樹脂フィルムに金属酸化物半導体薄膜が設けられていてもよい。 The infrared shielding laminated film of the present invention having an infrared shielding layer and a transparent resin film, wherein the infrared shielding layer comprises (1) a reaction product of (meth) acrylamide and phosphoric acid or a hydrolyzate thereof. A first infrared ray shielding resin obtained by adding a compound of at least one metal selected from the group consisting of lithium, calcium, vanadium, cobalt, nickel, copper, zinc and indium to the polymer; (2) the reaction Or a hydrolyzate thereof and a copolymer of a compound having an ethylenically unsaturated bond, a second infrared blocking resin obtained by adding the metal compound, or (3) a third mixture comprising a mixture thereof. The infrared shielding resin is included. A metal oxide semiconductor thin film may be provided on the transparent resin film.
前記金属化合物は、前記金属の有機酸塩、無機酸塩、ハロゲン化物、アルコキシド又はアセチルアセトネートであるのが好ましい。前記重合体及び共重合体は(ポリ)ホスホン酸基を有するのが好ましい。前記エチレン性不飽和結合を有する化合物は、酸性基を有する不飽和化合物、及び/又は酸性基を有しない不飽和化合物でよい。前記酸性基を有する不飽和化合物は、スルホン酸基を有する不飽和化合物であるのが好ましい。 The metal compound is preferably an organic acid salt, inorganic acid salt, halide, alkoxide or acetylacetonate of the metal. The polymer and copolymer preferably have a (poly) phosphonic acid group. The compound having an ethylenically unsaturated bond may be an unsaturated compound having an acidic group and / or an unsaturated compound having no acidic group. The unsaturated compound having an acidic group is preferably an unsaturated compound having a sulfonic acid group.
前記第一の赤外線遮断性樹脂は、前記重合体に前記金属化合物が分散した構造、前記金属のイオンが前記重合体の(ポリ)ホスホン酸基と塩を形成した構造、又はこれらの両構造を有するのが好ましい。前記第二の赤外線遮断性樹脂は、前記共重合体に前記金属化合物が分散した構造、前記金属のイオンが前記共重合体の(ポリ)ホスホン酸基と塩を形成した構造、又はこれらの両構造を有するのが好ましい。前記第二の赤外線遮断性樹脂は、前記共重合体に前記金属化合物が分散した構造、前記金属のイオンが前記共重合体の(ポリ)ホスホン酸基及び前記酸性基と塩を形成した構造、又はこれらの両構造を有するのがより好ましい。 The first infrared blocking resin has a structure in which the metal compound is dispersed in the polymer, a structure in which the metal ions form a salt with the (poly) phosphonic acid group of the polymer, or both of these structures. It is preferable to have. The second infrared ray blocking resin has a structure in which the metal compound is dispersed in the copolymer, a structure in which ions of the metal form a salt with the (poly) phosphonic acid group of the copolymer, or both of them. It preferably has a structure. The second infrared blocking resin has a structure in which the metal compound is dispersed in the copolymer, a structure in which ions of the metal form a salt with the (poly) phosphonic acid group and the acidic group of the copolymer, Or it is more preferable to have both of these structures.
前記加水分解物は、式(1):
前記第二の赤外線遮断性樹脂は、前記反応物又はその加水分解物と、式(3):
近赤外線に対して一層優れた遮断性を得るために、前記金属化合物として、一価又は二価の銅の有機酸塩、無機酸塩、ハロゲン化物、アルコキシド又はアセチルアセトネートを用いるのが好ましい。 In order to obtain a more excellent blocking property against near infrared rays, it is preferable to use a monovalent or divalent copper organic acid salt, inorganic acid salt, halide, alkoxide or acetylacetonate as the metal compound.
本発明の赤外線遮断性(積層)フィルムは、金属化合物及び/又はその金属イオンが高分散しているので、厚さが500μm程度であっても、少なくとも中・遠赤外線に対して優れた遮断性を有する。しかも可視光線に対する透過性が高く、軽量である。このような赤外線遮断性(積層)フィルムは、熱線遮断用フィルム等として有用である。特に銅化合物を用いた赤外線遮断性(積層)フィルムは、近赤外線に対する遮断性にも優れているので、カメラの測光用フィルタや視感度補正用フィルタ、プラズマディスプレイ用近赤線カットフィルタ等としても有用である。 The infrared blocking (laminated) film of the present invention has a high dispersion of metal compounds and / or metal ions thereof, so that even at a thickness of about 500 μm, it has excellent blocking properties for at least medium and far infrared rays. Have Moreover, it is highly permeable to visible light and is lightweight. Such an infrared shielding (laminated) film is useful as a heat ray shielding film or the like. In particular, infrared blocking (laminated) films using copper compounds are also excellent in blocking near-infrared, so they can be used as camera photometric filters, visibility correction filters, near-red line cut filters for plasma displays, etc. Useful.
[1] 第一の赤外線遮断性樹脂
第一の赤外線遮断性樹脂は、(メタ)アクリルアミドとリン酸との反応物又はその加水分解物の重合体に、リチウム、カルシウム、バナジウム、コバルト、ニッケル、銅、亜鉛及びインジウムからなる群から選ばれた少なくとも一種の金属の化合物を添加してなる。
[1] First infrared blocking resin The first infrared blocking resin is a polymer of a reaction product of (meth) acrylamide and phosphoric acid or a hydrolyzate thereof, lithium, calcium, vanadium, cobalt, nickel, It is formed by adding at least one metal compound selected from the group consisting of copper, zinc and indium.
(1) (メタ)アクリルアミドとリン酸との反応物及びその加水分解物
第一の赤外線遮断性樹脂のマトリックスは、(メタ)アクリルアミドとリン酸との反応物又はその加水分解物の重合体からなる。(メタ)アクリルアミドはアクリルアミド、メタクリルアミド又はこれらの混合物でよい。リン酸としては、正リン酸及び無水リン酸(五酸化リン=P2O5)のいずれでもよいが、無水リン酸が好ましい。以下無水リン酸を用いる場合について説明する。重合体は、(メタ)アクリルアミドと無水リン酸との反応物の加水分解物を重合してなるのが好ましい。ただし加水分解は反応物を重合する前に行ってもよいし、反応物を重合しながら行ってもよいし、反応物を重合した後に行ってもよいし、これらを組合せて行ってもよいが、好ましくは重合前に行う。
(1) Reaction product of (meth) acrylamide and phosphoric acid and hydrolyzate thereof The first infrared ray blocking resin matrix is formed from a reaction product of (meth) acrylamide and phosphoric acid or a polymer of the hydrolyzate thereof. Become. (Meth) acrylamide may be acrylamide, methacrylamide or a mixture thereof. The phosphoric acid may be either orthophosphoric acid or phosphoric anhydride (phosphorus pentoxide = P 2 O 5 ), but phosphoric anhydride is preferred. Hereinafter, the case of using phosphoric anhydride will be described. The polymer is preferably formed by polymerizing a hydrolyzate of a reaction product of (meth) acrylamide and phosphoric anhydride. However, the hydrolysis may be performed before polymerizing the reactants, may be performed while polymerizing the reactants, may be performed after polymerizing the reactants, or may be performed in combination. , Preferably before polymerization.
反応及び加水分解の手順及び条件については、例えばWO2005-080454に記載されているので詳細な説明を省略するが、(メタ)アクリルアミドに対して無水リン酸を反応させ、加水分解すると、(メタ)アクリルアミドと無水リン酸とが1:1のモル比で反応する場合、(メタ)アクリルアミドは、例えば式(4):
また(メタ)アクリルアミドと無水リン酸とが2:1のモル比で反応する場合、(メタ)アクリルアミドは、例えば式(5):
従って、N, N-ジホスホン酸(メタ)アクリルアミドを主に製造する場合、(メタ)アクリルアミドに対する無水リン酸のモル比は0.9〜1.2の範囲とするのが好ましい。N-(ポリ)ホスホン酸(メタ)アクリルアミドを主に製造する場合、(メタ)アクリルアミドに対する無水リン酸のモル比は0.5〜0.8の範囲とするのが好ましい。N, N-ジホスホン酸(メタ)アクリルアミドとN-(ポリ)ホスホン酸(メタ)アクリルアミドとのモル比は、(50/50)以上が好ましく、(60/40)以上がより好ましく、(70/30)以上が最も好ましい。 Therefore, when N, N-diphosphonic acid (meth) acrylamide is mainly produced, the molar ratio of phosphoric anhydride to (meth) acrylamide is preferably in the range of 0.9 to 1.2. When N- (poly) phosphonic acid (meth) acrylamide is mainly produced, the molar ratio of phosphoric anhydride to (meth) acrylamide is preferably in the range of 0.5 to 0.8. The molar ratio of N, N-diphosphonic acid (meth) acrylamide to N- (poly) phosphonic acid (meth) acrylamide is preferably (50/50) or more, more preferably (60/40) or more, (70 / 30) or more is most preferable.
(2) 金属化合物
金属化合物は、リチウム、カルシウム、バナジウム、コバルト、ニッケル、銅、亜鉛及びインジウムからなる群から選ばれた少なくとも一種の金属の有機酸塩、無機酸塩、ハロゲン化物、アルコキシド又はアセチルアセトネートである。中でも銅の化合物は、中・遠赤外線に対してのみならず、近赤外線に対しても優れた遮断性を有するフィルムが得られるので好ましい。銅は一価及び二価のいずれでもよいが、二価が好ましい。有機酸としては、蟻酸、シュウ酸、酢酸、乳酸、プロピオン酸、酪酸、酒石酸、ソルビン酸、グルコン酸等を挙げることができる。無機酸としては、硫酸、アミド硫酸、リン酸、硝酸等を挙げることができる。
(2) Metal compound The metal compound is an organic acid salt, inorganic acid salt, halide, alkoxide or acetyl of at least one metal selected from the group consisting of lithium, calcium, vanadium, cobalt, nickel, copper, zinc and indium. Acetonate. Among them, a copper compound is preferable because a film having excellent blocking properties not only for the middle and far infrared rays but also for the near infrared rays can be obtained. Copper may be either monovalent or divalent, but divalent is preferred. Examples of the organic acid include formic acid, oxalic acid, acetic acid, lactic acid, propionic acid, butyric acid, tartaric acid, sorbic acid, and gluconic acid. Examples of inorganic acids include sulfuric acid, amidosulfuric acid, phosphoric acid, nitric acid and the like.
金属化合物の具体例として、酢酸リチウム、酢酸カルシウム、バナジウムアセチルアセトネート、酢酸コバルト、酢酸ニッケル、酢酸第一銅、硫酸第一銅、リン酸第一銅、硝酸第一銅、塩化第一銅、臭化第一銅、ギ酸第二銅、酢酸第二銅、グルコン酸第二銅、硫酸第二銅、リン酸第二銅、硝酸第二銅、塩化第二銅、臭化第二銅、酢酸亜鉛及び塩化インジウムが挙げられる。 Specific examples of the metal compound include lithium acetate, calcium acetate, vanadium acetylacetonate, cobalt acetate, nickel acetate, cuprous acetate, cuprous sulfate, cuprous phosphate, cuprous nitrate, cuprous chloride, Cuprous bromide, cupric formate, cupric acetate, cupric gluconate, cupric sulfate, cupric phosphate, cupric nitrate, cupric chloride, cupric bromide, acetic acid Zinc and indium chloride are mentioned.
金属化合物の含有量は、(メタ)アクリルアミドとリン酸との反応物又はその加水分解物の重合体1gに対して、1×10-4〜3×10-3モルが好ましく、3×10-4〜2×10-3モルがより好ましい。この含有量が1×10-4モル/g未満だと、赤外線遮断性が不十分である。一方3×10-3モル/g超とすると、可視光線の透過率が低下することがある。 Content of the metal compound, (meth) of the polymer 1g of reactants or a hydrolyzate of acrylamide with phosphoric acid, is preferably 1 × 10 -4 ~3 × 10 -3 mol, 3 × 10 - 4 to 2 × 10 −3 mol is more preferable. When this content is less than 1 × 10 −4 mol / g, the infrared ray shielding property is insufficient. On the other hand, if it exceeds 3 × 10 −3 mol / g, the visible light transmittance may be lowered.
(3) 調製方法
第一の赤外線遮断性樹脂は、(メタ)アクリルアミドとリン酸との反応物又はその加水分解物を重合するか、上記反応物を重合しながら加水分解するか、上記反応物を重合した後加水分解するか、これらを組合せることにより重合体を調製し、重合体に金属化合物を添加することにより調製する。以下上記反応物又はその加水分解物を重合する場合について説明する。
(3) Preparation method The first infrared ray blocking resin is obtained by polymerizing a reaction product of (meth) acrylamide and phosphoric acid or a hydrolyzate thereof, hydrolyzing the above reaction product while polymerizing, or by reacting the above reaction product. The polymer is polymerized and then hydrolyzed or a combination thereof is prepared, and then a metal compound is added to the polymer. Hereinafter, the case of polymerizing the reaction product or the hydrolyzate thereof will be described.
重合反応は、上記反応物又はその加水分解物及び生成する重合体が溶解する共通溶媒中で、アンモニウムパーサルフェート、カリウムパーサルフェート、アセチルパーオキサイド、イソプロピルハイドロパーオキサイド等の無機又は有機の過酸化物系開始剤、2, 2’-アゾビスイソブチロニトリル、2, 2 ’-アゾビス(2, 4-ジメチルバレロニトリル)、ジメチル2, 2 ’-アゾビス(2-メチルプロピオネート)、ジメチル2, 2 ’-アゾビスイソブチレート等のアゾ系開始剤、あるいはラウリルパーオキシド、ベンゾイルパーオキシド、tert-ブチルパーオキシ・ピバレート等の過酸化物系開始剤、過酸化水素等の重合開始剤を用いて、ラジカル重合により行う。
The polymerization reaction is carried out in an inorganic or organic peroxide such as ammonium persulfate, potassium persulfate, acetyl peroxide, isopropyl hydroperoxide, etc. in a common solvent in which the reaction product or its hydrolyzate and the polymer produced are dissolved. Initiator, 2, 2'-azobisisobutyronitrile, 2, 2 '-Azobis (2,4-dimethylvaleronitrile),
溶媒としては水、アルコール及び有機極性溶媒が好ましい。アルコールとしては、脂肪族低級アルコールが好ましい。脂肪族低級アルコールとしてはメタノール、エタノール及びイソプロピルアルコールが好ましい。これらは2種以上を併用してもよい。また溶解性を損なわない範囲でエステル、ジオキサン、エーテル等を共存させてもよい。有機極性溶媒としては、ジメチルアセトアミド及びジメチルスルホキシドが好ましい。水を使用する場合、脂肪族低級アルコールを併用するのが好ましい。 As a solvent, water, alcohol, and an organic polar solvent are preferable. As the alcohol, an aliphatic lower alcohol is preferable. As the aliphatic lower alcohol, methanol, ethanol and isopropyl alcohol are preferable. Two or more of these may be used in combination. In addition, an ester, dioxane, ether or the like may be allowed to coexist within a range that does not impair the solubility. As the organic polar solvent, dimethylacetamide and dimethylsulfoxide are preferable. When water is used, it is preferable to use an aliphatic lower alcohol in combination.
重合手順について述べる。攪拌器、還流冷却器付き反応器に(上記反応物又はその加水分解物+溶媒)からなる溶液を入れ、反応器内を窒素ガス雰囲気とした後、添加する重合開始剤の分解温度である40℃〜90℃に昇温する。好ましい重合温度は50℃〜90℃である。所定温度到達直後に重合開始剤を添加する。このとき若干の発熱があり、重合開始を確認することができる。所定温度に到達してから約1時間間隔で重合開始剤を2〜3回添加した後、1〜8時間程度重合反応を継続する。反応温度は最初から最後まで一定である必要はなく、重合末期に温度を上げて未反応単量体を極力少なくする方法をとってもよい。 The polymerization procedure is described. A decomposition temperature of a polymerization initiator to be added after putting a solution consisting of (the above reaction product or a hydrolyzate thereof + solvent) into a reactor equipped with a stirrer and a reflux condenser and making the inside of the reactor a nitrogen gas atmosphere is 40 The temperature is raised to from 90 to 90 ° C. The preferred polymerization temperature is 50 ° C to 90 ° C. A polymerization initiator is added immediately after reaching the predetermined temperature. At this time, there is slight heat generation, and the start of polymerization can be confirmed. After reaching the predetermined temperature, the polymerization initiator is added 2 to 3 times at intervals of about 1 hour, and then the polymerization reaction is continued for about 1 to 8 hours. The reaction temperature does not need to be constant from the beginning to the end, and a method of increasing the temperature at the end of the polymerization to minimize the unreacted monomer may be used.
重合溶液は初期固形分濃度が10〜80質量%であるのが好ましく、10〜70質量%であるのがより好ましい。重合開始剤のトータル使用量は、上記反応物又はその加水分解物を100とした場合に質量比で0.1〜5であるのが好ましく、0.1〜2であるのがより好ましい。 The polymerization solution preferably has an initial solid content concentration of 10 to 80% by mass, and more preferably 10 to 70% by mass. The total amount of the polymerization initiator used is preferably 0.1 to 5 and more preferably 0.1 to 2 in terms of mass ratio when the above reaction product or its hydrolyzate is defined as 100.
重合体に金属化合物を添加する方法としては、上記方法により得られた重合体の溶液に、金属化合物を添加し、攪拌する方法が好ましい。この操作は室温で行えばよいが、必要に応じて加熱してもよい。金属化合物の溶解性を良好にするために、硫酸、塩酸、硝酸等の無機酸を添加してもよい。無機酸の添加量は、金属化合物1モル当たり1〜1.5モルが好ましい。金属化合物が分散又は溶解した後、30分程度攪拌するのが好ましい。得られた溶液から溶媒を蒸発させることにより、第一の赤外線遮断性樹脂が得られる。重合体と金属化合物との反応により生成する酸成分(有機酸成分及び無機酸成分)が酢酸等のように揮発性の場合、溶媒とともに蒸発させればよい。 As a method for adding the metal compound to the polymer, a method in which the metal compound is added to the polymer solution obtained by the above method and stirred is preferable. This operation may be performed at room temperature, but may be heated as necessary. In order to improve the solubility of the metal compound, an inorganic acid such as sulfuric acid, hydrochloric acid, or nitric acid may be added. The addition amount of the inorganic acid is preferably 1 to 1.5 mol per mol of the metal compound. After the metal compound is dispersed or dissolved, it is preferable to stir for about 30 minutes. By evaporating the solvent from the obtained solution, the first infrared blocking resin is obtained. When the acid component (organic acid component and inorganic acid component) produced by the reaction between the polymer and the metal compound is volatile such as acetic acid, it may be evaporated together with the solvent.
(4) 構造
第一の赤外線遮断性樹脂は、(メタ)アクリルアミドとリン酸との反応物又はその加水分解物の重合体に金属化合物が分散した構造、金属のイオンが重合体の(ポリ)ホスホン酸基と塩を形成した構造、及びこれらの両構造のいずれを有してもよい。
(4) Structure The first infrared blocking resin has a structure in which a metal compound is dispersed in a polymer of a reaction product of (meth) acrylamide and phosphoric acid or its hydrolyzate, and a metal ion is a polymer (poly). You may have either the structure which formed the salt with the phosphonic acid group, and these both structures.
[2] 第二の赤外線遮断性樹脂
第二の赤外線遮断性樹脂は、(メタ)アクリルアミドとリン酸との反応物又はその加水分解物と、エチレン性不飽和結合を有する化合物との共重合体に、上記金属化合物を添加してなる。エチレン性不飽和結合を有する化合物は、分子内にエチレン性不飽和結合及び酸性基を有する不飽和化合物(1)、及び/又は分子内にエチレン性不飽和結合を有するが酸性基を有しない不飽和化合物(2)でよい。
[2] Second infrared blocking resin The second infrared blocking resin is a copolymer of a reaction product of (meth) acrylamide and phosphoric acid or a hydrolyzate thereof and a compound having an ethylenically unsaturated bond. And the above metal compound. The compound having an ethylenically unsaturated bond is an unsaturated compound (1) having an ethylenically unsaturated bond and an acidic group in the molecule and / or a compound having an ethylenically unsaturated bond in the molecule but having no acidic group. Saturated compound (2) may be sufficient.
(1) 酸性基を含有する不飽和化合物
酸性基を含有する不飽和化合物は、分子内にスルホン酸基及び/又はカルボン酸基とエチレン性不飽和結合とを有するのが好ましい。エチレン性不飽和結合を有する骨格としては、(メタ)アクリレート骨格、(メタ)アリルエステル骨格等を挙げることができる。
(1) Unsaturated compound containing an acidic group The unsaturated compound containing an acidic group preferably has a sulfonic acid group and / or a carboxylic acid group and an ethylenically unsaturated bond in the molecule. Examples of the skeleton having an ethylenically unsaturated bond include a (meth) acrylate skeleton and a (meth) allyl ester skeleton.
(i) スルホン酸基を含有する不飽和単量体
スルホン酸基を含有する不飽和単量体として、式(3):
アクリルアミドアルカンスルホン酸としては、式(6):
(ii) カルボン酸基を含有する不飽和単量体
カルボン酸基を含有する不飽和単量体としては、(メタ)アクリル酸、クロトン酸、マレイン酸及びその無水物、フマル酸、イタコン酸等が挙げられる。これらは単独で用いてもよいし、2種以上を併用しても良い。
(ii) Unsaturated monomer containing carboxylic acid group As unsaturated monomer containing carboxylic acid group, (meth) acrylic acid, crotonic acid, maleic acid and its anhydride, fumaric acid, itaconic acid, etc. Is mentioned. These may be used alone or in combination of two or more.
(2) 酸性基を含有しない不飽和化合物
第二の赤外線遮断性樹脂は、造膜性、耐水性等の向上を目的として、酸性基を含有しない不飽和化合物を共重合成分として含んでもよい。酸性基非含有不飽和化合物としては(メタ)アクリルアミドが好ましい。
(2) Unsaturated compound containing no acidic group The second infrared ray shielding resin may contain an unsaturated compound containing no acidic group as a copolymer component for the purpose of improving the film forming property, water resistance and the like. (Meth) acrylamide is preferred as the unsaturated compound containing no acidic group.
(3) 配合割合
(メタ)アクリルアミドとリン酸との反応物又はその加水分解物(a)と酸性基含有不飽和化合物(b)とからなる共重合体の場合、これらの質量比(a)/(b)は(10/90)以上が好ましく、(20/80)以上がより好ましく、(20/80)〜(70/30)が特に好ましい。この比を(20/80)〜(70/30)とすると、一層優れた赤外線遮断性及び造膜性が得られる。上記反応物又はその加水分解物(a)と酸性基非含有不飽和化合物(c)とからなる共重合体の場合、これらの質量比(a)/(c)は(50/50)以上が好ましく、(60/40)以上がより好ましい。上記反応物又はその加水分解物(a)と酸性基含有不飽和化合物(b)と酸性基非含有不飽和化合物(c)とからなる共重合体の場合、(a)及び(b)の合計と(c)との質量比[(a)+(b)]/(c)が(50/50)以上であるのが好ましく、(60/40)以上であるのがより好ましい。この共重合体における質量比(a)/(b)は上記と同じでよい。
(3) Mixing ratio In the case of a copolymer composed of a reaction product of (meth) acrylamide and phosphoric acid or a hydrolyzate thereof (a) and an acidic group-containing unsaturated compound (b), these mass ratios (a) / (B) is preferably (10/90) or more, more preferably (20/80) or more, and particularly preferably (20/80) to (70/30). When this ratio is (20/80) to (70/30), more excellent infrared shielding properties and film-forming properties can be obtained. In the case of a copolymer comprising the above reactant or its hydrolyzate (a) and an acidic group-free unsaturated compound (c), the mass ratio (a) / (c) is (50/50) or more. Preferably, (60/40) or more is more preferable. In the case of a copolymer comprising the reaction product or its hydrolyzate (a), an acidic group-containing unsaturated compound (b) and an acidic group-free unsaturated compound (c), the sum of (a) and (b) The mass ratio [(a) + (b)] / (c) is preferably (50/50) or more, and more preferably (60/40) or more. The mass ratio (a) / (b) in this copolymer may be the same as described above.
(4) 金属化合物の含有量
金属化合物の含有量は、(メタ)アクリルアミドとリン酸との反応物又はその加水分解物と、酸性基含有不飽和化合物(1)及び/又は酸性基非含有不飽和化合物(2)とからなる共重合体1gに対して、1×10-4〜3×10-3モルが好ましく、3×10-4〜2×10-3モルがより好ましい。
(4) Content of the metal compound The content of the metal compound is determined by the reaction product of (meth) acrylamide and phosphoric acid or its hydrolyzate, the acid group-containing unsaturated compound (1) and / or the acid group-free content. 1 × 10 −4 to 3 × 10 −3 mol is preferable, and 3 × 10 −4 to 2 × 10 −3 mol is more preferable with respect to 1 g of the copolymer composed of the saturated compound (2).
(5) 調製方法
第二の赤外線遮断性樹脂は、(メタ)アクリルアミドとリン酸との反応物又はその加水分解物と、酸性基含有不飽和化合物(1)及び/又は酸性基非含有不飽和化合物(2)とを共重合し、共重合体に金属化合物を添加することにより調製するのが好ましい。共重合方法、及び共重合体に金属化合物を添加する方法は、第一の赤外線遮断性樹脂の場合と本質的に同じでよいので、説明を省略する。
(5) Preparation method The second infrared ray blocking resin comprises a reaction product of (meth) acrylamide and phosphoric acid or a hydrolyzate thereof, an acidic group-containing unsaturated compound (1) and / or an acidic group-free unsaturated material. It is preferably prepared by copolymerizing the compound (2) and adding a metal compound to the copolymer. Since the copolymerization method and the method of adding a metal compound to the copolymer may be essentially the same as in the case of the first infrared ray blocking resin, description thereof is omitted.
(6) 構造
第二の赤外線遮断性樹脂は、上記共重合体に金属化合物が分散した構造、金属のイオンが共重合体の(ポリ)ホスホン酸基及び/又は酸性基と塩を形成した構造、及びこれらの両構造のいずれを有してもよい。
(6) Structure The second infrared ray blocking resin has a structure in which a metal compound is dispersed in the copolymer, and a structure in which metal ions form a salt with the (poly) phosphonic acid group and / or acidic group of the copolymer. , And both of these structures.
[3] 第三の赤外線遮断性樹脂
第三の赤外線遮断性樹脂は、第一及び第二の赤外線遮断性樹脂の混合物である。これらの配合割合は限定的ではない。
[3] Third infrared blocking resin The third infrared blocking resin is a mixture of the first and second infrared blocking resins. These blending ratios are not limited.
[4] 赤外線遮断性フィルムの組成
赤外線遮断性フィルムは、上記第一〜第三の赤外線遮断性樹脂のいずれか(以下まとめて単に「赤外線遮断性樹脂」とよぶことがある)を主成分とする。赤外線遮断性フィルムは、本発明の効果を阻害しない範囲で、金属酸化物半導体微粉末、赤外線吸収性色素、透明化剤、架橋剤、紫外線吸収剤、可塑剤、酸化肪止剤、帯電防止剤、界面活性剤、無機充填剤等のその他の添加物を含有してもよい。
[4] Composition of infrared blocking film The infrared blocking film is composed mainly of any of the first to third infrared blocking resins (hereinafter sometimes referred to simply as “infrared blocking resin”). To do. The infrared shielding film is a metal oxide semiconductor fine powder, an infrared absorbing dye, a transparentizing agent, a crosslinking agent, an ultraviolet absorber, a plasticizer, an antioxidative agent, and an antistatic agent as long as the effects of the present invention are not impaired. Other additives such as a surfactant and an inorganic filler may be contained.
(1) 金属酸化物半導体微粉末
金属酸化物半導体微粉末は赤外線吸収性を有する。金属酸化物半導体微粉末としては、酸化インジウム及び酸化スズの複合酸化物(ITO)、酸化アンチモン及び酸化スズの複合酸化物(ATO)等からなる微粉末が挙げられる。
(1) Metal oxide semiconductor fine powder Metal oxide semiconductor fine powder has infrared absorptivity. Examples of the metal oxide semiconductor fine powder include fine powder composed of indium oxide and tin oxide composite oxide (ITO), antimony oxide and tin oxide composite oxide (ATO), and the like.
(2) 赤外線吸収性色素
赤外線吸収性色素として、フタロシアニン系化合物、ナフタロシアニン系化合物、アントラキノン系化合物、特開平9-188689号に記載の式(7):
(3) 透明化剤
透明化剤として、グリセリン、エチレングリコール、プロピレングリコール、ポリグリセリン等のポリオールや、エチレンカーボネート、プロピレンカーボネート等のイオン溶解溶剤が挙げられる。透明化剤の添加量は限定的ではないが、赤外線遮断性樹脂を100質量%として50質量%以下が好ましく、40質量%以下がより好ましく、30質量%以下が最も好ましい。
(3) Clearing agent Examples of the clearing agent include polyols such as glycerin, ethylene glycol, propylene glycol, and polyglycerin, and ion-dissolving solvents such as ethylene carbonate and propylene carbonate. The addition amount of the clarifying agent is not limited, but is preferably 50% by mass or less, more preferably 40% by mass or less, and most preferably 30% by mass or less, based on 100% by mass of the infrared blocking resin.
(4) 架橋剤
架橋剤としてはメラミン樹脂(例えばトリメトキシメチルメラミン樹脂等)が好ましい。メラミン樹脂を添加すると、赤外線遮断性樹脂が有する(ポリ)ホスホン酸基が触媒となり、メラミン樹脂の架橋反応が促進され、赤外線遮断性フィルムの機械的強度が一層向上する。架橋剤の添加量は、赤外線遮断性樹脂を100質量%として20質量%以下が好ましく、10質量%以下がより好ましく、5質量%以下が最も好ましい。
(4) Crosslinking agent As the crosslinking agent, a melamine resin (for example, trimethoxymethylmelamine resin) is preferable. When the melamine resin is added, the (poly) phosphonic acid group of the infrared blocking resin becomes a catalyst, the crosslinking reaction of the melamine resin is promoted, and the mechanical strength of the infrared blocking film is further improved. The addition amount of the crosslinking agent is preferably 20% by mass or less, more preferably 10% by mass or less, and most preferably 5% by mass or less, based on 100% by mass of the infrared blocking resin.
[5] 赤外線遮断性積層フィルムの構成
赤外線遮断性積層フィルムは、上記第一〜第三の赤外線遮断性樹脂のいずれかを主成分とする赤外線遮断性層と、透明性樹脂フィルムとを有する。赤外線遮断性層は、上記の金属酸化物半導体微粉末、赤外線吸収性色素、透明化剤、架橋剤、紫外線吸収剤、可塑剤、酸化肪止剤、帯電防止剤、界面活性剤、無機充填剤等のその他の添加物を含有してもよい。
[5] Configuration of infrared blocking multilayer film The infrared blocking multilayer film includes an infrared blocking layer containing one of the first to third infrared blocking resins as a main component and a transparent resin film. Infrared shielding layer is composed of the above metal oxide semiconductor fine powder, infrared absorbing dye, clearing agent, crosslinking agent, ultraviolet absorber, plasticizer, antioxidative agent, antistatic agent, surfactant, inorganic filler. Other additives such as these may be contained.
透明性樹脂フィルムを用いることにより、赤外線遮断性層を保護したり、フィルム強度を向上させたりすることができる。このフィルムを構成する透明性樹脂としては、ポリエチレンテレフタレート、ポリエチレン、ポリビニルアルコール、エチレン−ビニルアルコール共重合体、ポリビニルピロリドン、セルロース系重合体等が挙げられる。中でもポリエチレンテレフタレート又はポリエチレンが好ましい。透明性樹脂フィルムは、可塑剤、酸化肪止剤、紫外線吸収剤、帯電防止剤、界面活性剤、無機充填剤等の添加剤を適宜含有しても良い。透明性樹脂フィルム上に金属酸化物半導体薄膜が設けられていてもよい。金属酸化物半導体薄膜としてはITO膜及びATO膜が好ましい。 By using a transparent resin film, the infrared shielding layer can be protected or the film strength can be improved. Examples of the transparent resin constituting the film include polyethylene terephthalate, polyethylene, polyvinyl alcohol, an ethylene-vinyl alcohol copolymer, polyvinyl pyrrolidone, and a cellulose polymer. Of these, polyethylene terephthalate or polyethylene is preferred. The transparent resin film may appropriately contain additives such as a plasticizer, an antioxidant, an ultraviolet absorber, an antistatic agent, a surfactant, and an inorganic filler. A metal oxide semiconductor thin film may be provided on the transparent resin film. As the metal oxide semiconductor thin film, an ITO film and an ATO film are preferable.
積層構成例として、赤外線遮断性層/透明性樹脂フィルム、赤外線遮断性層/透明性樹脂フィルム/金属酸化物半導体薄膜、透明性樹脂フィルム/赤外線遮断性層/透明性樹脂フィルム、透明性樹脂フィルム/赤外線遮断性層/透明性樹脂フィルム/金属酸化物半導体薄膜等が挙げられる。必要に応じて、赤外線遮断性層と透明性樹脂フィルムとの間に透明接着剤層を設けてもよい。 Examples of laminated structures include infrared blocking layer / transparent resin film, infrared blocking layer / transparent resin film / metal oxide semiconductor thin film, transparent resin film / infrared blocking layer / transparent resin film, transparent resin film / Infrared shielding layer / transparent resin film / metal oxide semiconductor thin film. If necessary, a transparent adhesive layer may be provided between the infrared shielding layer and the transparent resin film.
[6] 赤外線遮断性フィルムの製造方法
赤外線遮断性フィルムは、例えば赤外線遮断性樹脂の溶液を水平なガラス板やトレイ上に流延し、溶媒を蒸発させるキャスト法により製造することができる。赤外線遮断性樹脂の溶液は、赤外線遮断性樹脂を水、アルコール、これらの混合物等の極性溶媒に溶解したものでよい。アルコールは上記と同じでよい。上記のその他の添加物を使用する場合、流延する溶液に添加物を混合すればよい。溶媒を蒸発させた後の製膜したフィルム(皮膜)に対してさらに常圧又は減圧下40〜150℃で3〜30分程度加熱してもよい。
[6] Method for producing infrared shielding film The infrared shielding film can be produced, for example, by a casting method in which a solution of an infrared shielding resin is cast on a horizontal glass plate or tray and the solvent is evaporated. The solution of the infrared blocking resin may be a solution obtained by dissolving the infrared blocking resin in a polar solvent such as water, alcohol, or a mixture thereof. The alcohol may be the same as above. When using the above-mentioned other additives, the additive may be mixed in the solution to be cast. The film (film) formed after evaporation of the solvent may be further heated at 40 to 150 ° C. for about 3 to 30 minutes under normal pressure or reduced pressure.
[7] 赤外線遮断性積層フィルムの製造方法
赤外線遮断性積層フィルムは、例えば金属酸化物半導体薄膜が設けられた又は設けられていない透明性樹脂フィルムに、赤外線遮断性樹脂の溶液を流延又は塗布し、乾燥することにより製造することができる。必要に応じて、赤外線遮断性層上に、金属酸化物半導体薄膜が設けられた又は設けられていない透明性樹脂フィルムをさらに積層する。
[7] Manufacturing method of infrared blocking multilayer film The infrared blocking multilayer film is, for example, cast or coated with a solution of an infrared blocking resin on a transparent resin film with or without a metal oxide semiconductor thin film. And can be produced by drying. If necessary, a transparent resin film with or without a metal oxide semiconductor thin film is further laminated on the infrared shielding layer.
[8] 赤外線遮断性(積層)フィルムの特性
赤外線遮断性フィルム、及び赤外線遮断性積層フィルムの赤外線遮断性層は、金属化合物又はその金属イオンが高分散した赤外線遮断性樹脂を主成分とするので、厚さが500μm程度であっても、少なくとも中・遠赤外線に対して優れた遮断性を有する。しかも可視光線に対する透過性が高く、軽量である。特に銅化合物を用いた赤外線遮断性(積層)フィルムは、近赤外線に対する遮断性にも優れている。赤外線遮断性フィルム、及び赤外線遮断性積層フィルムの赤外線遮断性層の厚さは限定的ではないが、通常100〜2,000μm、好ましくは100〜1,200μm程度とする。
[8] Characteristics of infrared blocking film (laminated) film The infrared blocking film and the infrared blocking layer of the infrared blocking multilayer film are mainly composed of an infrared blocking resin in which a metal compound or a metal ion thereof is highly dispersed. Even if the thickness is about 500 μm, it has an excellent barrier property against at least medium and far infrared rays. Moreover, it is highly permeable to visible light and is lightweight. In particular, an infrared ray shielding (laminated) film using a copper compound is excellent in the shielding property against near infrared rays. The thickness of the infrared ray shielding film and the infrared ray shielding layer of the infrared ray shielding laminated film is not limited, but is usually 100 to 2,000 μm, preferably about 100 to 1,200 μm.
以上のような赤外線遮断性(積層)フィルムは、熱線遮断用フィルム等として有用である。特に銅化合物を用いた赤外線遮断性(積層)フィルムは、カメラの測光用フィルタや視感度補正用フィルタ、プラズマディスプレイ用近赤線カットフィルタ等としても有用である。 The infrared shielding (lamination) film as described above is useful as a heat ray shielding film or the like. In particular, an infrared shielding (laminated) film using a copper compound is useful as a camera photometric filter, a visibility correction filter, a near-red line cut filter for a plasma display, and the like.
本発明を以下の実施例によりさらに詳細に説明するが、本発明はこれらの例に限定されるものではない。 The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.
実施例1
(1) ホスホン酸基含有加水分解物の調製
WO2005-080454の実施例4と同様にして、アクリルアミド及び無水リン酸を用いてホスホン酸基を有する加水分解物を調製した。このホスホン酸基含有加水分解物を含む反応溶液に貧溶媒を添加し、濾別したホスホン酸基含有加水分解物を100℃で1時間加熱乾燥した。ホスホン酸基含有加水分解物の酸価を測定した結果、925 mg/gであった(N, N-ジホスホン酸アクリルアミドの理論酸価:969.7 mg/g、N-モノホスホン酸アクリルアミドの理論酸価:741.7 mg/g)。
Example 1
(1) Preparation of hydrolyzate containing phosphonic acid group
In the same manner as in Example 4 of WO2005-080454, a hydrolyzate having a phosphonic acid group was prepared using acrylamide and phosphoric anhydride. A poor solvent was added to the reaction solution containing the phosphonic acid group-containing hydrolyzate, and the filtered phosphonic acid group-containing hydrolyzate was heated and dried at 100 ° C. for 1 hour. The acid value of the phosphonic acid group-containing hydrolyzate was measured and found to be 925 mg / g (theoretical acid value of N, N-diphosphonic acid acrylamide: 969.7 mg / g, the theoretical acid value of N-monophosphonic acid acrylamide: 741.7 mg / g).
(2) 元素分析
ホスホン酸基含有加水分解物の窒素含有量をCHNコーダ法により測定し、リン含有量をICP発光分光分析法により測定し、窒素とリンの質量比を求めた結果、1:4.4であり、N, N-ジホスホン酸アクリルアミドにおける理論比と同じであった。
(2) Elemental analysis The nitrogen content of the phosphonic acid group-containing hydrolyzate was measured by the CHN coder method, the phosphorus content was measured by ICP emission spectroscopy, and the mass ratio of nitrogen and phosphorus was determined. 4.4, which is the same as the theoretical ratio in N, N-diphosphonic acid acrylamide.
(3) 赤外スペクトル測定
アクリルアミド及びホスホン酸基含有加水分解物について、フーリエ変換赤外分光装置(形式:Nexus 670、ニコレー社製)を用いて、赤外スペクトル測定を行った。結果を図1及び図2に示す。アクリルアミドでは、3,170 cm-1付近にN-H結合によるピークが検出された(図1)が、ホスホン酸基含有加水分解物では、このピークが検出されなかった(図2)。またホスホン酸基含有加水分解物では、700〜1,300 cm-1の範囲に、ホスホン酸基による幅広いピークが検出された(図2)。これらのことから、大部分のアクリルアミドの窒素原子に、2つのホスホン酸基が導入されたことが確認された。
(3) Infrared spectrum measurement About the acrylamide and the phosphonic acid group containing hydrolyzate, the infrared spectrum measurement was performed using the Fourier-transform infrared spectroscopy apparatus (form: Nexus 670, the product made from a Nicolet company). The results are shown in FIGS. In acrylamide, a peak due to NH bond was detected in the vicinity of 3,170 cm −1 (FIG. 1), but this peak was not detected in the phosphonic acid group-containing hydrolyzate (FIG. 2). In the phosphonic acid group-containing hydrolyzate in the range of 700~1,300 cm -1, broad peak due to the phosphonic acid groups were detected (Figure 2). From these facts, it was confirmed that two phosphonic acid groups were introduced into most acrylamide nitrogen atoms.
(4) 液体クロマトグラフィー分析
ホスホン酸基含有加水分解物を液体クロマトグラフィーにより分析した結果、N, N-ジホスホン酸アクリルアミドのピークと、N-モノホスホン酸アクリルアミドのピークの面積比は80/20であった[液体クロマトグラフィーの分析条件は以下の通りである。測定機器:株式会社島津製作所製SPD-10A(UV検出器使用)、カラム温度:室温、溶媒:メタノール/水=7/3(質量比)、濃度:0.01 質量%(インジェクション量:2.5μl)、カラム:HAMILTON社製PRP-1、溶媒流速:0.3 ml/分。]。
(4) Liquid Chromatographic Analysis As a result of analyzing the phosphonic acid group-containing hydrolyzate by liquid chromatography, the area ratio of the N, N-diphosphonic acid acrylamide peak to the N-monophosphonic acid acrylamide peak was 80/20. [The analytical conditions for liquid chromatography are as follows. Measuring instrument: SPD-10A manufactured by Shimadzu Corporation (using UV detector), column temperature: room temperature, solvent: methanol / water = 7/3 (mass ratio), concentration: 0.01% by mass (injection amount: 2.5 μl), Column: PRP-1 manufactured by HAMILTON, solvent flow rate: 0.3 ml / min. ].
元素分析、赤外スペクトル測定及び液体クロマトグラフィー分析の結果から、ホスホン酸基含有加水分解物は、N, N-ジホスホン酸アクリルアミド及びN-モノホスホン酸アクリルアミドを含み、N, N-ジホスホン酸アクリルアミドを主成分とする混合物であることが確認された。 Based on the results of elemental analysis, infrared spectrum measurement, and liquid chromatography analysis, the phosphonic acid group-containing hydrolyzate contains N, N-diphosphonic acid acrylamide and N-monophosphonic acid acrylamide, and N, N-diphosphonic acid acrylamide is the main component. It was confirmed that the mixture was a component.
(4) 共重合体の調製
還流冷却管、触媒投入口等を有する自動合成反応装置に、16.1 gのホスホン酸基含有加水分解物、32.0 g(0.154モル)のターシャリーブチルアクリルアミドスルホン酸(分子量207.25)、及び70.0 gの30質量%メタノール水溶液を入れ、窒素ガスを導入しながら攪拌し、80℃まで昇温した後、2.5 gの10質量%アンモニウムパーサルフェート(APS)水溶液を入れた。その1時間後及び2時間後に、2.5 gの10質量%APS水溶液をさらに入れた。その後3時間80℃に保持し、固形分濃度が49.3質量%のホスホン酸基含有加水分解物及びターシャリーブチルアクリルアミドスルホン酸の共重合体溶液を得た。共重合体溶液の粘度(18℃)を測定した結果、16,940 cpsであった。共重合体溶液を水で希釈して10質量%溶液とした。
(4) Preparation of copolymer 16.1 g of phosphonic acid group-containing hydrolyzate, 32.0 g (0.154 mol) of tertiary butyl acrylamide sulfonic acid (molecular weight) with reflux condenser, catalyst inlet, etc. 207.25) and 70.0 g of a 30% by mass methanol aqueous solution were added, stirred while introducing nitrogen gas, heated to 80 ° C., and then 2.5 g of 10% by mass ammonium persulfate (APS) aqueous solution was added. After 1 hour and 2 hours, 2.5 g of 10% by mass APS aqueous solution was further added. Thereafter, the mixture was kept at 80 ° C. for 3 hours to obtain a phosphonic acid group-containing hydrolyzate and tertiary butyl acrylamide sulfonic acid copolymer solution having a solid content concentration of 49.3 mass%. As a result of measuring the viscosity (18 ° C.) of the copolymer solution, it was 16,940 cps. The copolymer solution was diluted with water to give a 10% by mass solution.
(5) 赤外線遮断性樹脂の調製
共重合体溶液(10質量%)に、共重合体10.0 g当たり3.27 g(0.0180モル)の酢酸第二銅を室温で溶解し、30分間攪拌した。
(5) Preparation of infrared ray blocking resin 3.27 g (0.0180 mol) of cupric acetate per 10.0 g of copolymer was dissolved in a copolymer solution (10% by mass) at room temperature and stirred for 30 minutes.
(6) 赤外線遮断性フィルムの作製
得られた赤外線遮断性樹脂の溶液をガラス板に流延し、50℃で3日間乾燥し、厚さ500μmの赤外線遮断性フィルムを作製した。
(6) Production of infrared shielding film The obtained infrared shielding resin solution was cast on a glass plate and dried at 50 ° C. for 3 days to produce an infrared shielding film having a thickness of 500 μm.
実施例2
赤外線遮断性樹脂の溶液に、赤外線遮断性樹脂を100質量%として4質量%のトリメトキシメチルメラミン樹脂を添加した以外実施例1と同様にして、赤外線遮断性フィルムを作製した。
Example 2
An infrared blocking film was produced in the same manner as in Example 1 except that 4% by mass of trimethoxymethylmelamine resin was added to the infrared blocking resin solution at 100% by mass.
実施例3
348 gの60質量%メタノール水溶液を溶媒として、165.0 gのホスホン酸基含有加水分解物のみを重合した以外実施例1と同様にして、固形分濃度が37.0質量%のホスホン酸基含有加水分解物の重合体溶液を得た。得られた重合体溶液の粘度(28℃)を測定した結果、2,640 cpsであった。
Example 3
A phosphonic acid group-containing hydrolyzate having a solid content concentration of 37.0% by mass in the same manner as in Example 1 except that 348 g of a 60% by mass aqueous methanol solution was used to polymerize only 165.0 g of the phosphonic acid group-containing hydrolyzate. A polymer solution was obtained. It was 2,640 cps as a result of measuring the viscosity (28 degreeC) of the obtained polymer solution.
7.0質量%硫酸水溶液30.00 gに、3.09 g(0.0170モル)の酢酸第二銅を溶解させた。得られた酢酸第二銅の溶液33.09 gを、上記のホスホン酸基含有加水分解物の重合体溶液40.0 gに、室温で除々に添加し、30分間攪拌した。 3.09 g (0.0170 mol) of cupric acetate was dissolved in 30.00 g of a 7.0 mass% sulfuric acid aqueous solution. 33.09 g of the obtained cupric acetate solution was gradually added to 40.0 g of the phosphonic acid group-containing hydrolyzate polymer solution at room temperature, followed by stirring for 30 minutes.
得られた赤外線遮断性樹脂の溶液を、ポリエチレンテレフタレート(PET)フィルム(厚さ100μm)製容器(底面;10 cm × 10 cm)に流延し、50℃で3日間乾燥し、厚さ1mmの赤外線遮断性層を形成した。この容器から、赤外線遮断性層を設けた底部のみを切り出し、赤外線遮断性層上に厚さ45μmのポリエチレンフィルムを積層し、赤外線遮断性積層フィルムを作製した。
The obtained infrared blocking resin solution was cast into a polyethylene terephthalate (PET) film (
実施例4
赤外線遮断性層の厚さを500μmとした以外実施例3と同様にして、赤外線遮断性積層フィルムを作製した。
Example 4
An infrared blocking laminated film was produced in the same manner as in Example 3 except that the thickness of the infrared blocking layer was 500 μm.
実施例5
実施例1と同様にして調製した7.50 gのホスホン酸基含有加水分解物、及び22.50 gのターシャリーブチルアクリルアミドスルホン酸を、70.0 gの30質量%メタノール水溶液に溶解した。得られた混合液を、窒素ガスを導入しながら攪拌し、80℃まで昇温した後、2.5 gの10質量%APS水溶液を入れた。その1時間後及び2時間後に、2.5 gの10質量%APS水溶液をさらに入れた。その後3時間80℃に保持し、ホスホン酸基含有加水分解物及びターシャリーブチルアクリルアミドスルホン酸の共重合体を含む溶液を得た。
Example 5
7.50 g of the phosphonic acid group-containing hydrolyzate prepared in the same manner as in Example 1 and 22.50 g of tertiary butyl acrylamide sulfonic acid were dissolved in 70.0 g of a 30% by mass methanol aqueous solution. The obtained mixed liquid was stirred while introducing nitrogen gas, heated to 80 ° C., and then 2.5 g of 10 mass% APS aqueous solution was added. After 1 hour and 2 hours, 2.5 g of 10% by mass APS aqueous solution was further added. Thereafter, the solution was kept at 80 ° C. for 3 hours to obtain a solution containing a phosphonic acid group-containing hydrolyzate and a tertiary butyl acrylamide sulfonic acid copolymer.
共重合体溶液に5.99 g(0.0330モル)の酢酸第二銅を室温で溶解し、30分間攪拌した。得られた赤外線遮断性樹脂の溶液を用いて、厚さ500μmの赤外線遮断性層を形成した以外、実施例3と同様にして赤外線遮断性積層フィルムを作製した。 5.99 g (0.0330 mol) of cupric acetate was dissolved in the copolymer solution at room temperature and stirred for 30 minutes. Using the obtained infrared blocking resin solution, an infrared blocking laminated film was prepared in the same manner as in Example 3, except that an infrared blocking layer having a thickness of 500 μm was formed.
実施例6
ホスホン酸基含有加水分解物及びターシャリーブチルアクリルアミドスルホン酸をそれぞれ10.0 g及び20.0 g用いた以外実施例5と同様にして、赤外線遮断性積層フィルムを作製した。
Example 6
An infrared blocking multilayer film was prepared in the same manner as in Example 5 except that 10.0 g and 20.0 g of phosphonic acid group-containing hydrolyzate and tertiary butyl acrylamide sulfonic acid were used, respectively.
実施例7
ホスホン酸基含有加水分解物及びターシャリーブチルアクリルアミドスルホン酸をそれぞれ15.0 g及び15.0 g用いた以外実施例5と同様にして、赤外線遮断性積層フィルムを作製した。
Example 7
An infrared blocking multilayer film was produced in the same manner as in Example 5 except that 15.0 g and 15.0 g of phosphonic acid group-containing hydrolyzate and tertiary butyl acrylamide sulfonic acid were used, respectively.
実施例8
ホスホン酸基含有加水分解物及びターシャリーブチルアクリルアミドスルホン酸をそれぞれ20.0 g及び10.0 g用いた以外実施例5と同様にして、赤外線遮断性積層フィルムを作製した。
Example 8
An infrared blocking multilayer film was prepared in the same manner as in Example 5 except that 20.0 g and 10.0 g of phosphonic acid group-containing hydrolyzate and tertiary butyl acrylamide sulfonic acid were used, respectively.
実施例9
溶媒としてイオン交換水を用い、かつ固形分濃度を10.0質量%とした以外実施例1と同様にして、1.00:2.00の質量比のホスホン酸基含有加水分解物及びターシャリーブチルアクリルアミドスルホン酸の共重合体を含む溶液を調製した。共重合体溶液に、共重合体10.0 g当たり3.09 g(0.0170モル)の酢酸第二銅を室温で溶解し、30分間攪拌した。得られた赤外線遮断性樹脂の溶液を、上記PETフィルム容器に流延し、50℃で3日間乾燥し、厚さ500μmの赤外線遮断性層を形成した。この容器から、赤外線遮断性層を設けた底部のみを切り出し、赤外線遮断性層上に厚さ100μmのPETフィルムを積層し、赤外線遮断性積層フィルムを作製した。
Example 9
In the same manner as in Example 1 except that ion-exchanged water was used as the solvent and the solid content concentration was 10.0% by mass, the phosphonic acid group-containing hydrolyzate and tertiary butyl acrylamide sulfonic acid having a mass ratio of 1.00: 2.00 were used. A solution containing the polymer was prepared. In the copolymer solution, 3.09 g (0.0170 mol) of cupric acetate per 10.0 g of the copolymer was dissolved at room temperature and stirred for 30 minutes. The obtained infrared blocking resin solution was cast into the PET film container and dried at 50 ° C. for 3 days to form an infrared blocking layer having a thickness of 500 μm. Only the bottom part provided with the infrared shielding layer was cut out from this container, and a 100 μm thick PET film was laminated on the infrared shielding layer to produce an infrared shielding laminated film.
実施例10
一方のPETフィルムを、厚さ10μmのITO膜を有するPETフィルム(厚さ100μm)に代え、積層構成をPETフィルム/赤外線遮断性層/PETフィルム/ITO膜とした以外実施例9と同様にして、赤外線遮断性積層フィルムを作製した。
Example 10
One PET film was replaced with a PET film (100 μm thickness) having an ITO film having a thickness of 10 μm, and the laminated structure was changed to PET film / infrared shielding layer / PET film / ITO film as in Example 9. An infrared shielding laminated film was prepared.
実施例11
共重合体10.0 g当たり3.27 g(0.0180モル)の酢酸第二銅を添加した以外実施例9と同様にして、赤外線遮断性積層フィルムを作製した。
Example 11
An infrared ray shielding laminated film was produced in the same manner as in Example 9 except that 3.27 g (0.0180 mol) of cupric acetate was added per 10.0 g of the copolymer.
実施例12
共重合体10.0 g当たり8.17 g(0.0180モル)のグルコン酸第二銅を添加した以外実施例9と同様にして、赤外線遮断性積層フィルムを作製した。
Example 12
An infrared ray shielding laminated film was produced in the same manner as in Example 9 except that 8.17 g (0.0180 mol) of cupric gluconate was added per 10.0 g of the copolymer.
実施例13
共重合体10.0 g当たり2.87 g(0.0180モル)のリン酸第二銅を添加した以外実施例9と同様にして、赤外線遮断性積層フィルムを作製した。
Example 13
An infrared ray shielding laminated film was produced in the same manner as in Example 9 except that 2.87 g (0.0180 mol) of cupric phosphate was added per 10.0 g of the copolymer.
実施例14
共重合体10.0 g当たり4.06 g(0.0180モル)の蟻酸第二銅を添加した以外実施例9と同様にして、赤外線遮断性積層フィルムを作製した。
Example 14
An infrared ray shielding laminated film was produced in the same manner as in Example 9 except that 4.06 g (0.0180 mol) of cupric formate was added per 10.0 g of the copolymer.
実施例15
共重合体10.0 g当たり2.66 g(0.0110モル)の硝酸第二銅・3水和物を添加した以外実施例9と同様にして、赤外線遮断性積層フィルムを作製した。
Example 15
An infrared ray shielding laminated film was produced in the same manner as in Example 9, except that 2.66 g (0.0110 mol) of cupric nitrate trihydrate per 10.0 g of the copolymer was added.
実施例16
共重合体10.0 g当たり0.545 g(0.0055モル)の塩化第一銅を添加した以外実施例9と同様にして、赤外線遮断性積層フィルムを作製した。
Example 16
An infrared ray shielding laminated film was produced in the same manner as in Example 9 except that 0.545 g (0.0055 mol) of cuprous chloride was added per 10.0 g of the copolymer.
実施例17
共重合体10.0 g当たり0.297 g(0.0030モル)の塩化第一銅を添加した以外実施例9と同様にして、赤外線遮断性積層フィルムを作製した。
Example 17
An infrared ray shielding laminated film was produced in the same manner as in Example 9 except that 0.297 g (0.0030 mol) of cuprous chloride was added per 10.0 g of the copolymer.
実施例18
共重合体10.0 g当たり1.48 g(0.0110モル)の塩化第二銅を添加した以外実施例9と同様にして、赤外線遮断性積層フィルムを作製した。
Example 18
An infrared ray shielding laminated film was produced in the same manner as in Example 9 except that 1.48 g (0.0110 mol) of cupric chloride was added per 10.0 g of the copolymer.
実施例19
共重合体10.0 g当たり1.75 g(0.0110モル)の硫酸第二銅を添加した以外実施例9と同様にして、赤外線遮断性積層フィルムを作製した。
Example 19
An infrared ray shielding laminated film was produced in the same manner as in Example 9 except that 1.75 g (0.0110 mol) of cupric sulfate was added per 10.0 g of the copolymer.
実施例20
共重合体10.0 g当たり2.02 g(0.0110モル)の酢酸亜鉛を添加した以外実施例9と同様にして、赤外線遮断性積層フィルムを作製した。
Example 20
An infrared ray shielding laminated film was produced in the same manner as in Example 9 except that 2.02 g (0.0110 mol) of zinc acetate was added per 10.0 g of the copolymer.
実施例21
共重合体10.0 g当たり0.726 g(0.0110モル)の酢酸リチウムを添加した以外実施例9と同様にして、赤外線遮断性積層フィルムを作製した。
Example 21
An infrared ray shielding laminated film was produced in the same manner as in Example 9 except that 0.726 g (0.0110 mol) of lithium acetate was added per 10.0 g of the copolymer.
実施例22
共重合体10.0 g当たり2.74 g(0.0110モル)の酢酸ニッケルを添加した以外実施例9と同様にして、赤外線遮断性積層フィルムを作製した。
Example 22
An infrared ray shielding laminated film was produced in the same manner as in Example 9 except that 2.74 g (0.0110 mol) of nickel acetate was added per 10.0 g of the copolymer.
実施例23
共重合体10.0 g当たり1.94 g(0.0110モル)の酢酸カルシウムを添加した以外実施例9と同様にして、赤外線遮断性積層フィルムを作製した。
Example 23
An infrared ray shielding laminated film was produced in the same manner as in Example 9 except that 1.94 g (0.0110 mol) of calcium acetate was added per 10.0 g of the copolymer.
実施例24
共重合体10.0 g当たり1.95 g(0.0110モル)の酢酸コバルトを添加した以外実施例9と同様にして、赤外線遮断性積層フィルムを作製した。
Example 24
An infrared ray shielding laminated film was produced in the same manner as in Example 9 except that 1.95 g (0.0110 mol) of cobalt acetate was added per 10.0 g of the copolymer.
実施例25
共重合体10.0 g当たり3.23 g(0.0110モル)の塩化インジウムを添加した以外実施例9と同様にして、赤外線遮断性積層フィルムを作製した。
Example 25
An infrared ray shielding laminated film was produced in the same manner as in Example 9 except that 3.23 g (0.0110 mol) of indium chloride was added per 10.0 g of the copolymer.
実施例26
共重合体10.0 g当たり3.83 g(0.0110モル)のバナジウムアセチルアセトネートを添加した以外実施例9と同様にして、赤外線遮断性積層フィルムを作製した。
Example 26
An infrared ray shielding laminated film was produced in the same manner as in Example 9, except that 3.83 g (0.0110 mol) of vanadium acetylacetonate per 10.0 g of the copolymer was added.
実施例27
WO2005-080454の実施例1と同様にして、アクリルアミド及び無水リン酸を用いてホスホン酸基を有する加水分解物を調製した。このホスホン酸基含有加水分解物を含む反応溶液に貧溶媒を添加し、分液ロートにより分離したホスホン酸基含有加水分解物を100℃で1時間加熱乾燥した。ホスホン酸基含有加水分解物の酸価を測定した結果、635 mg/gであり、生成物の主成分はN-モノアクリルアミドホスホン酸(理論酸価:741.7 mg/g)であることが確認された。
Example 27
A hydrolyzate having a phosphonic acid group was prepared using acrylamide and phosphoric anhydride in the same manner as in Example 1 of WO2005-080454. A poor solvent was added to the reaction solution containing the phosphonic acid group-containing hydrolyzate, and the phosphonic acid group-containing hydrolyzate separated by the separatory funnel was heated and dried at 100 ° C. for 1 hour. As a result of measuring the acid value of the phosphonic acid group-containing hydrolyzate, it was 635 mg / g, and it was confirmed that the main component of the product was N-monoacrylamidephosphonic acid (theoretical acid value: 741.7 mg / g). It was.
還流冷却管、触媒投入口等を有する自動合成反応装置に、23.3質量部の上記ホスホン酸基含有加水分解物、46.7質量部のビニルスルホン酸(分子量108.12)、及び30質量部のジメチルアセトアミドを入れ、窒素ガスを導入しながら攪拌し、80℃まで昇温した後、ホスホン酸基含有加水分解物及びビニルスルホン酸の合計を100として質量比で1.5のアンモニウムパーサルフェートを添加した。その後6時間80℃に保持し、固形分濃度が66.7質量%のホスホン酸基含有加水分解物及びビニルスルホン酸の共重合体溶液を得た。共重合体溶液の粘度(25℃)を測定した結果、1,470 cpsであった。共重合体溶液を水で希釈して20質量%溶液とした。 23.3 parts by mass of the phosphonic acid group-containing hydrolyzate, 46.7 parts by mass of vinyl sulfonic acid (molecular weight 108.12), and 30 parts by mass of dimethylacetamide are placed in an automatic synthesis reactor having a reflux condenser, a catalyst inlet, and the like. The mixture was stirred while introducing nitrogen gas, and the temperature was raised to 80 ° C., and then ammonium persulfate having a mass ratio of 1.5 was added with the total of the phosphonic acid group-containing hydrolyzate and vinyl sulfonic acid being 100. Thereafter, the mixture was kept at 80 ° C. for 6 hours to obtain a phosphonic acid group-containing hydrolyzate and vinylsulfonic acid copolymer solution having a solid concentration of 66.7% by mass. As a result of measuring the viscosity (25 ° C.) of the copolymer solution, it was 1,470 cps. The copolymer solution was diluted with water to give a 20% by mass solution.
希釈後の共重合体溶液(20質量%)に、共重合体10.0 g当たり1g(0.0055モル)の酢酸第二銅を溶解し、攪拌した。得られた赤外線遮断性樹脂の溶液(固形分23.0質量%)に、赤外線遮断性樹脂を100質量%として30質量%のグリセリンを添加した。 1 g (0.0055 mol) of cupric acetate per 10.0 g of the copolymer was dissolved in the diluted copolymer solution (20% by mass) and stirred. To the obtained infrared blocking resin solution (solid content: 23.0% by mass), 30% by mass of glycerin was added with the infrared blocking resin as 100% by mass.
得られた溶液を、PETフィルム(厚さ100μm)製容器(底面;10 cm × 10 cm)に流延し、50℃で24時間乾燥し、厚さ134μmの赤外線遮断性層を形成した。この容器から、赤外線遮断性層を設けた底部のみを切り出し、赤外線遮断性層上に厚さ50μmのポリエチレンフィルムを積層し、赤外線遮断性積層フィルムを作製した。 The obtained solution was cast into a PET film (thickness: 100 μm) container (bottom surface: 10 cm × 10 cm) and dried at 50 ° C. for 24 hours to form an infrared blocking layer having a thickness of 134 μm. From this container, only the bottom portion provided with the infrared shielding layer was cut out, and a polyethylene film having a thickness of 50 μm was laminated on the infrared shielding layer to produce an infrared shielding laminated film.
実施例28
還流冷却管、触媒投入口等を有する自動合成反応装置に、23.3質量部の実施例1と同じN, N-ジホスホン酸アクリルアミドを主成分とするホスホン酸基含有加水分解物、46.7質量部のビニルスルホン酸、及び30質量部のジメチルアセトアミドを入れ、窒素ガスを導入しながら攪拌し、80℃まで昇温した後、ホスホン酸基含有加水分解物及びビニルスルホン酸の合計を100として質量比で1.5のアンモニウムパーサルフェートを添加した。その後6時間80℃に保持し、固形分濃度が70質量%のホスホン酸基含有加水分解物及びビニルスルホン酸の共重合体溶液を得た。共重合体溶液の粘度(25℃)を測定した結果、230 cpsであった。共重合体溶液を水で希釈して20質量%溶液とした。
Example 28
In an automatic synthesis reaction apparatus having a reflux condenser, a catalyst inlet, etc., 23.3 parts by mass of the same phosphonic acid group-containing hydrolyzate as the main component of N, N-diphosphonic acid acrylamide as in Example 1, 46.7 parts by mass of vinyl After adding sulfonic acid and 30 parts by mass of dimethylacetamide, stirring while introducing nitrogen gas, and heating up to 80 ° C., the total of the phosphonic acid group-containing hydrolyzate and vinyl sulfonic acid was set to 100 and the mass ratio was 1.5. Of ammonium persulfate was added. Thereafter, the mixture was kept at 80 ° C. for 6 hours to obtain a phosphonic acid group-containing hydrolyzate and vinylsulfonic acid copolymer solution having a solid content concentration of 70% by mass. As a result of measuring the viscosity (25 ° C.) of the copolymer solution, it was 230 cps. The copolymer solution was diluted with water to give a 20% by mass solution.
希釈後の共重合体溶液(20質量%)に、共重合体10.0 g当たり1g(0.0055モル)の酢酸第二銅を溶解し、攪拌した。得られた赤外線遮断性樹脂の溶液(固形分21.3質量%)に、赤外線遮断性樹脂を100質量%として30質量%のグリセリンを添加した。 1 g (0.0055 mol) of cupric acetate per 10.0 g of the copolymer was dissolved in the diluted copolymer solution (20% by mass) and stirred. To the obtained infrared blocking resin solution (solid content: 21.3% by mass), 30% by mass of glycerin was added with the infrared blocking resin as 100% by mass.
得られた溶液を、上記PETフィルム製容器に流延し、50℃で24時間乾燥し、厚さ100μmの赤外線遮断性層を形成した。この容器から、赤外線遮断性層を設けた底部のみを切り出し、赤外線遮断性層上に厚さ50μmのポリエチレンフィルムを積層し、赤外線遮断性積層フィルムを作製した。 The obtained solution was cast into the above PET film container and dried at 50 ° C. for 24 hours to form an infrared shielding layer having a thickness of 100 μm. From this container, only the bottom portion provided with the infrared shielding layer was cut out, and a polyethylene film having a thickness of 50 μm was laminated on the infrared shielding layer to produce an infrared shielding laminated film.
比較例1
赤外線遮断性層に代えてホスホン酸基含有加水分解物の重合体層を設けた以外実施例3と同様にして、ポリエチレンフィルム(45μm)/ホスホン酸基含有加水分解物の重合体層(1mm)/PETフィルム(100μm)からなる積層構成のフィルムを作製した。
Comparative Example 1
Polyethylene film (45 μm) / Phosphonic acid group-containing hydrolyzate polymer layer (1 mm) in the same manner as in Example 3 except that a polymer layer of phosphonic acid group-containing hydrolyzate was provided instead of the infrared ray blocking layer. A film having a laminated structure composed of / PET film (100 μm) was produced.
比較例2
ポリエチレンフィルム(45μm)/PETフィルム(100μm)からなる積層構成のフィルムを作製した。
Comparative Example 2
A film having a laminated structure composed of a polyethylene film (45 μm) / PET film (100 μm) was produced.
実施例1〜28の赤外線遮断性(積層)フィルム及び比較例1,2の積層フィルムについて、分光光度計(形式:U-2900、株式会社日立ハイテクノロジーズ製)及び上記フーリエ変換赤外分光装置を用いて、300〜1,100 nmの波長範囲(実施例1〜9,11〜28,比較例1及び2)及び2,500〜20,000 nmの波長範囲(実施例9,10,20〜26)の分光透過率を測定した。結果を図3〜図19に示す。 For the infrared blocking (laminated) films of Examples 1 to 28 and the laminated films of Comparative Examples 1 and 2, a spectrophotometer (type: U-2900, manufactured by Hitachi High-Technologies Corporation) and the above-described Fourier transform infrared spectrometer Spectral transmittance of 300-1100 nm wavelength range (Examples 1-9, 11-28, Comparative Examples 1 and 2) and 2,500-20,000 nm wavelength range (Examples 9, 10, 20-26) Was measured. The results are shown in FIGS.
図3〜7,10〜13,18から、実施例1〜9,11〜19,27及び28の銅化合物を含む赤外線遮断性(積層)フィルムは、780〜1,100 nmの波長範囲の近赤外線に対して40%以下の優れた遮断性を有し、かつ380〜600 nmの波長範囲(実施例16〜18ではほぼ480 nm〜ほぼ620 nmの波長範囲、実施例27ではほぼ410 nm〜ほぼ600 nmの波長範囲)の可視光線に対して60%以上の優れた透過性を有することが分かった。特に実施例3,9,13,14,18,27及び28では、上記波長範囲の近赤外線に対して10%以下の一層優れた遮断性を有することが分かった。図8及び9から、酢酸第二銅を含む赤外線遮断性(積層)フィルムは、2,500〜20,000 nmの波長範囲の中・遠赤外線に対して1%以下の優れた遮断性を有することが分かった。 From FIGS. 3 to 7, 10 to 13 and 18, the infrared blocking (laminated) films containing the copper compounds of Examples 1 to 9, 11 to 19, 27 and 28 are in the near infrared in the wavelength range of 780 to 1,100 nm. And an excellent blocking property of 40% or less and a wavelength range of 380 to 600 nm (a wavelength range of about 480 nm to about 620 nm in Examples 16 to 18 and about 410 nm to about 600 in Example 27) It was found that the film had excellent transmittance of 60% or more with respect to visible light in the wavelength range of nm. In particular, Examples 3, 9, 13, 14, 18, 27, and 28 were found to have a further excellent blocking property of 10% or less with respect to near infrared rays in the above wavelength range. 8 and 9, it was found that the infrared shielding (laminated) film containing cupric acetate has an excellent shielding property of 1% or less with respect to the middle and far infrared rays in the wavelength range of 2,500 to 20,000 nm. .
図14〜17から、実施例20〜26の順に亜鉛、リチウム、ニッケル、カルシウム、コバルト、インジウム及びバナジウムの各化合物を含む赤外線遮断性積層フィルムは、近赤外線に対する遮断性は良好ではないが、上記波長範囲の中・遠赤外線に対して2%以下の優れた遮断性を有し、380〜780 nmの波長範囲(実施例24ではほぼ480 nm〜ほぼ560 nmの波長範囲)の可視光線に対して60%以上の優れた透過性を有することが分かった。 From FIGS. 14 to 17, the infrared blocking multilayer film containing each compound of zinc, lithium, nickel, calcium, cobalt, indium and vanadium in the order of Examples 20 to 26 is not good in blocking against near infrared rays, but the above It has an excellent blocking property of 2% or less for mid- and far-infrared rays in the wavelength range, and for visible light in the wavelength range of 380 to 780 nm (in Example 24, the wavelength range of about 480 nm to about 560 nm). It was found to have excellent permeability of 60% or more.
図19から、比較例1の積層フィルムでは、金属化合物を有さないホスホン酸基含有加水分解物の重合体を用いており、比較例2の積層フィルムでは、赤外線遮断性層を設けていないので、いずれも近赤外線に対する遮断性を有さなかった。 From FIG. 19, the laminated film of Comparative Example 1 uses a polymer of a phosphonic acid group-containing hydrolyzate that does not have a metal compound, and the laminated film of Comparative Example 2 does not have an infrared shielding layer. None of them had a blocking property against near infrared rays.
Claims (21)
及び/又はビニルスルホン酸
との共重合体に、前記金属化合物を添加してなることを特徴とする赤外線遮断性フィルム。 The infrared ray shielding film according to any one of claims 1 to 8, wherein the second infrared ray shielding resin includes the reactant or a hydrolyzate thereof, and the formula (3):
及び/又はビニルスルホン酸
との共重合体に、前記金属化合物を添加してなることを特徴とする赤外線遮断性積層フィルム。 The infrared ray shielding laminated film according to any one of claims 11 to 18, wherein the second infrared ray shielding resin comprises the reactant or a hydrolyzate thereof, and the formula (3):
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009253508A JP4804572B2 (en) | 2008-11-06 | 2009-11-04 | Infrared shielding film and infrared shielding laminated film |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008285900 | 2008-11-06 | ||
JP2008285900 | 2008-11-06 | ||
JP2009253508A JP4804572B2 (en) | 2008-11-06 | 2009-11-04 | Infrared shielding film and infrared shielding laminated film |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011169536A Division JP4891455B2 (en) | 2008-11-06 | 2011-08-02 | Infrared shielding resin |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010134457A true JP2010134457A (en) | 2010-06-17 |
JP4804572B2 JP4804572B2 (en) | 2011-11-02 |
Family
ID=42345750
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009253508A Expired - Fee Related JP4804572B2 (en) | 2008-11-06 | 2009-11-04 | Infrared shielding film and infrared shielding laminated film |
JP2011169536A Expired - Fee Related JP4891455B2 (en) | 2008-11-06 | 2011-08-02 | Infrared shielding resin |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011169536A Expired - Fee Related JP4891455B2 (en) | 2008-11-06 | 2011-08-02 | Infrared shielding resin |
Country Status (1)
Country | Link |
---|---|
JP (2) | JP4804572B2 (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014129366A1 (en) | 2013-02-19 | 2014-08-28 | 富士フイルム株式会社 | Near-infrared absorbing composition, near-infrared blocking filter, method for producing near-infrared blocking filter, camera module and method for manufacturing camera module |
WO2014189099A1 (en) | 2013-05-23 | 2014-11-27 | 富士フイルム株式会社 | Near-infrared-absorbing composition, near-infrared cut-off filter and production method using same, and camera module |
WO2015005448A1 (en) * | 2013-07-12 | 2015-01-15 | 富士フイルム株式会社 | Method for producing near infrared cutoff filter, and solid-state imaging element |
JP2015043062A (en) * | 2013-02-19 | 2015-03-05 | 富士フイルム株式会社 | Near-infrared-absorbing composition, near-infrared cut filter using this and method for producing the same, and camera module and method for producing the same |
JP2015043063A (en) * | 2013-02-19 | 2015-03-05 | 富士フイルム株式会社 | Near-infrared-absorbing composition, near-infrared cut filter using this and method for producing the same, and camera module and method for producing the same |
JP2015157927A (en) * | 2013-04-11 | 2015-09-03 | 富士フイルム株式会社 | Near-infrared absorbing composition, near-infrared cut filter using the same, and method for manufacturing the same, and camera module and method for manufacturing the same |
KR20150143675A (en) | 2013-05-23 | 2015-12-23 | 후지필름 가부시키가이샤 | Near-infrared absorbing composition, near-infrared blocking filter using same, method for producing said near-infrared blocking filter, camera module, and method for manufacturing said camera module |
KR20150143640A (en) | 2013-05-23 | 2015-12-23 | 후지필름 가부시키가이샤 | Near-infrared-absorbing composition, near-infrared cut-off filter and production method using same, and camera module and method for producing same |
WO2016002701A1 (en) * | 2014-06-30 | 2016-01-07 | 富士フイルム株式会社 | Near-infrared-absorbent composition, near-infrared cut filter, method for manufacturing near-infrared cut filter, solid-state imaging element, and camera module |
WO2016010049A1 (en) * | 2014-07-16 | 2016-01-21 | コニカミノルタ株式会社 | Laminated film and method for producing same |
KR20160027028A (en) | 2013-07-24 | 2016-03-09 | 후지필름 가부시키가이샤 | Near-infrared-absorbing composition, near-infrared cut filter obtained using same, process for producing said cut filter, camera module and process for producing same, and solid photographing element |
TWI571650B (en) * | 2015-05-26 | 2017-02-21 | 玉晶光電股份有限公司 | An optical lens module and an optical lens |
WO2018030247A1 (en) * | 2016-08-10 | 2018-02-15 | 富士フイルム株式会社 | Near-ir-cut filter, solid state imaging device, camera module, and image display device |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6180379B2 (en) * | 2013-07-12 | 2017-08-16 | 富士フイルム株式会社 | Near-infrared absorbing composition, near-infrared cut filter, method for producing the same, and solid-state imaging device |
WO2017183671A1 (en) * | 2016-04-21 | 2017-10-26 | 日本板硝子株式会社 | Infrared-absorbing composition, infrared-cut filter, optical system for imaging |
JP6232161B1 (en) | 2017-07-27 | 2017-11-15 | 日本板硝子株式会社 | Optical filter |
JP6267823B1 (en) | 2017-07-27 | 2018-01-24 | 日本板硝子株式会社 | Optical filter, camera module, and information terminal |
JP6273064B1 (en) * | 2017-10-03 | 2018-01-31 | 日本板硝子株式会社 | Optical filter and imaging device |
JP6368417B1 (en) * | 2017-10-20 | 2018-08-01 | 日本板硝子株式会社 | Optical filter |
JP6435033B1 (en) * | 2017-10-20 | 2018-12-05 | 日本板硝子株式会社 | Optical filter |
JP6778222B2 (en) * | 2018-01-24 | 2020-10-28 | 日本板硝子株式会社 | Optical filter and camera module |
US20210356638A1 (en) * | 2018-10-05 | 2021-11-18 | Nippon Sheet Glass Company, Limited | Optical filter and light-absorbing composition |
JP2020057009A (en) * | 2019-12-16 | 2020-04-09 | 日本板硝子株式会社 | Optical filter and information terminal with camera |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1045995A (en) * | 1996-04-12 | 1998-02-17 | Sumitomo Chem Co Ltd | Near infrared absorbing resin composition and material |
JPH1152127A (en) * | 1997-08-07 | 1999-02-26 | Kyoritsu Kagaku Sangyo Kk | Near infrared ray absorbing material, method for synthesizing same and near infrared ray absorbing resin composition |
JPH11271502A (en) * | 1998-03-24 | 1999-10-08 | Kureha Chem Ind Co Ltd | Optical material and its production as well as applied apparatus |
JP2000007871A (en) * | 1998-06-23 | 2000-01-11 | Kureha Chem Ind Co Ltd | Resin composition and its production, optical filter and device equipped with the same, and athermanous filter, optical fiber and glass lens |
JP2000252482A (en) * | 1999-02-25 | 2000-09-14 | Kureha Chem Ind Co Ltd | Light receiving sensor and device using the sensor |
JP2002071941A (en) * | 2000-08-25 | 2002-03-12 | Kureha Chem Ind Co Ltd | Optical material |
JP2005084156A (en) * | 2003-09-05 | 2005-03-31 | Seed Co Ltd | Lens with optical filter and method for manufacturing same |
WO2005080454A1 (en) * | 2004-02-24 | 2005-09-01 | Uni-Chemical Co., Ltd. | (meth)acrylamide containing phosphorus compound acid residue, polymer made therefrom, use of the same, and processes for producing these |
JP2005345680A (en) * | 2004-06-02 | 2005-12-15 | Kureha Chem Ind Co Ltd | Optical filter and imaging device |
JP2008050459A (en) * | 2006-08-24 | 2008-03-06 | Riken Technos Corp | Adhesive composition and adhesive sheet member using the same |
-
2009
- 2009-11-04 JP JP2009253508A patent/JP4804572B2/en not_active Expired - Fee Related
-
2011
- 2011-08-02 JP JP2011169536A patent/JP4891455B2/en not_active Expired - Fee Related
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1045995A (en) * | 1996-04-12 | 1998-02-17 | Sumitomo Chem Co Ltd | Near infrared absorbing resin composition and material |
JPH1152127A (en) * | 1997-08-07 | 1999-02-26 | Kyoritsu Kagaku Sangyo Kk | Near infrared ray absorbing material, method for synthesizing same and near infrared ray absorbing resin composition |
JPH11271502A (en) * | 1998-03-24 | 1999-10-08 | Kureha Chem Ind Co Ltd | Optical material and its production as well as applied apparatus |
JP2000007871A (en) * | 1998-06-23 | 2000-01-11 | Kureha Chem Ind Co Ltd | Resin composition and its production, optical filter and device equipped with the same, and athermanous filter, optical fiber and glass lens |
JP2000252482A (en) * | 1999-02-25 | 2000-09-14 | Kureha Chem Ind Co Ltd | Light receiving sensor and device using the sensor |
JP2002071941A (en) * | 2000-08-25 | 2002-03-12 | Kureha Chem Ind Co Ltd | Optical material |
JP2005084156A (en) * | 2003-09-05 | 2005-03-31 | Seed Co Ltd | Lens with optical filter and method for manufacturing same |
WO2005080454A1 (en) * | 2004-02-24 | 2005-09-01 | Uni-Chemical Co., Ltd. | (meth)acrylamide containing phosphorus compound acid residue, polymer made therefrom, use of the same, and processes for producing these |
JP2005345680A (en) * | 2004-06-02 | 2005-12-15 | Kureha Chem Ind Co Ltd | Optical filter and imaging device |
JP2008050459A (en) * | 2006-08-24 | 2008-03-06 | Riken Technos Corp | Adhesive composition and adhesive sheet member using the same |
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104937453B (en) * | 2013-02-19 | 2017-07-14 | 富士胶片株式会社 | Near infrared ray absorbing composition and its application, camera module and its manufacture method, sulfonic acid copper complex and its mixture |
JP2015043063A (en) * | 2013-02-19 | 2015-03-05 | 富士フイルム株式会社 | Near-infrared-absorbing composition, near-infrared cut filter using this and method for producing the same, and camera module and method for producing the same |
KR20180014216A (en) | 2013-02-19 | 2018-02-07 | 후지필름 가부시키가이샤 | Near-infrared absorbing composition, near-infrared blocking filter, method for producing near-infrared blocking filter, camera module and method for manufacturing camera module |
JP2015043062A (en) * | 2013-02-19 | 2015-03-05 | 富士フイルム株式会社 | Near-infrared-absorbing composition, near-infrared cut filter using this and method for producing the same, and camera module and method for producing the same |
JP2017142502A (en) * | 2013-02-19 | 2017-08-17 | 富士フイルム株式会社 | Near-infrared absorbing composition, near-infrared cut filter and manufacturing method thereof, and camera module and manufacturing method thereof |
WO2014129366A1 (en) | 2013-02-19 | 2014-08-28 | 富士フイルム株式会社 | Near-infrared absorbing composition, near-infrared blocking filter, method for producing near-infrared blocking filter, camera module and method for manufacturing camera module |
CN104903758A (en) * | 2013-02-19 | 2015-09-09 | 富士胶片株式会社 | Near-infrared-absorbing composition, near-infrared cut-off filter using same, camera module, and manufacturing method therefor |
CN104937453A (en) * | 2013-02-19 | 2015-09-23 | 富士胶片株式会社 | Near-infrared-absorbing composition, near-infrared cut filter using the composition, and method for producing the same, camera module, and method for producing the same |
US9698186B2 (en) | 2013-02-19 | 2017-07-04 | Fujifilm Corporation | Near-infrared-absorbing composition, near-infrared cut-off filter using same, camera module, and manufacturing method therefor |
KR101741609B1 (en) * | 2013-02-19 | 2017-05-30 | 후지필름 가부시키가이샤 | Near-infrared-absorbing composition, near-infrared cut-off filter using same, manufacturing method therefor, camera module, and manufacturing method therefor |
US9618666B2 (en) | 2013-02-19 | 2017-04-11 | Fujifilm Corporation | Near-infrared-absorbing composition, near-infrared cut-off filter using same, manufacturing method therefor, camera module, and manufacturing method therefor |
US9826129B2 (en) | 2013-04-11 | 2017-11-21 | Fujifilm Corporation | Near-infrared-ray-absorbing composition, near-infrared-ray cut filter using same, manufacturing method therefor, camera module, and manufacturing method therefor |
JP2015157927A (en) * | 2013-04-11 | 2015-09-03 | 富士フイルム株式会社 | Near-infrared absorbing composition, near-infrared cut filter using the same, and method for manufacturing the same, and camera module and method for manufacturing the same |
KR20150143626A (en) | 2013-05-23 | 2015-12-23 | 후지필름 가부시키가이샤 | Near-infrared-absorbing composition, near-infrared cut-off filter and production method using same, and camera module |
WO2014189099A1 (en) | 2013-05-23 | 2014-11-27 | 富士フイルム株式会社 | Near-infrared-absorbing composition, near-infrared cut-off filter and production method using same, and camera module |
KR20150143675A (en) | 2013-05-23 | 2015-12-23 | 후지필름 가부시키가이샤 | Near-infrared absorbing composition, near-infrared blocking filter using same, method for producing said near-infrared blocking filter, camera module, and method for manufacturing said camera module |
KR20150143640A (en) | 2013-05-23 | 2015-12-23 | 후지필름 가부시키가이샤 | Near-infrared-absorbing composition, near-infrared cut-off filter and production method using same, and camera module and method for producing same |
WO2015005448A1 (en) * | 2013-07-12 | 2015-01-15 | 富士フイルム株式会社 | Method for producing near infrared cutoff filter, and solid-state imaging element |
JP2016014846A (en) * | 2013-07-12 | 2016-01-28 | 富士フイルム株式会社 | Method for manufacturing near infrared cut filter, and solid-state image sensing device |
KR20160027028A (en) | 2013-07-24 | 2016-03-09 | 후지필름 가부시키가이샤 | Near-infrared-absorbing composition, near-infrared cut filter obtained using same, process for producing said cut filter, camera module and process for producing same, and solid photographing element |
JPWO2016002701A1 (en) * | 2014-06-30 | 2017-06-01 | 富士フイルム株式会社 | Near-infrared absorbing composition, near-infrared cut filter, method for producing near-infrared cut filter, solid-state imaging device, camera module |
KR20170007365A (en) | 2014-06-30 | 2017-01-18 | 후지필름 가부시키가이샤 | Near-infrared-absorbent composition, near-infrared cut filter, method for manufacturing near-infrared cut filter, solid-state imaging element, and camera module |
WO2016002701A1 (en) * | 2014-06-30 | 2016-01-07 | 富士フイルム株式会社 | Near-infrared-absorbent composition, near-infrared cut filter, method for manufacturing near-infrared cut filter, solid-state imaging element, and camera module |
TWI667243B (en) * | 2014-06-30 | 2019-08-01 | 日商富士軟片股份有限公司 | Near-infrared absorbing composition, near-infrared cut filter, near-infrared cut filter manufacturing method, solid-state imaging device, and camera module |
WO2016010049A1 (en) * | 2014-07-16 | 2016-01-21 | コニカミノルタ株式会社 | Laminated film and method for producing same |
TWI571650B (en) * | 2015-05-26 | 2017-02-21 | 玉晶光電股份有限公司 | An optical lens module and an optical lens |
WO2018030247A1 (en) * | 2016-08-10 | 2018-02-15 | 富士フイルム株式会社 | Near-ir-cut filter, solid state imaging device, camera module, and image display device |
JPWO2018030247A1 (en) * | 2016-08-10 | 2019-04-18 | 富士フイルム株式会社 | Near-infrared cut filter, solid-state imaging device, camera module and image display device |
Also Published As
Publication number | Publication date |
---|---|
JP2011227528A (en) | 2011-11-10 |
JP4891455B2 (en) | 2012-03-07 |
JP4804572B2 (en) | 2011-11-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4804572B2 (en) | Infrared shielding film and infrared shielding laminated film | |
WO2001020374A1 (en) | Optical filter and process for producing the same | |
KR101962664B1 (en) | Near-infrared absorbing composition, near-infrared blocking filter, method for producing near-infrared blocking filter, camera module and method for manufacturing camera module | |
WO2015012322A1 (en) | Near-infrared-absorbing composition, near-infrared cut filter obtained using same, process for producing said cut filter, camera module and process for producing same, and solid photographing element | |
JP2016027400A (en) | Resin composition for lamination and intended purposes thereof | |
JP6251530B2 (en) | Curable resin composition for imaging device and use thereof | |
TW201508346A (en) | Method for manufacturing near infrared cut filter, and solid-state image sensing device | |
JP6180379B2 (en) | Near-infrared absorbing composition, near-infrared cut filter, method for producing the same, and solid-state imaging device | |
KR20150143675A (en) | Near-infrared absorbing composition, near-infrared blocking filter using same, method for producing said near-infrared blocking filter, camera module, and method for manufacturing said camera module | |
KR100777484B1 (en) | Resin composition for protective film of color filter, and color filter | |
CN104093772A (en) | Optical member, method for producing same, and article provided with optical member | |
WO2016208258A1 (en) | Near-infrared absorbing composition, near-infrared blocking filter, method for producing near-infrared blocking filter, apparatus, method for producing copper-containing polymer, and copper-containing polymer | |
JP2013138158A (en) | Image pickup device, pigment-containing lens, and lens molding resin composition | |
JP5019325B2 (en) | Polymer material with UV absorbing ability | |
WO2014189099A1 (en) | Near-infrared-absorbing composition, near-infrared cut-off filter and production method using same, and camera module | |
KR101317159B1 (en) | Composition for forming anti-reflection film and anti-reflection film | |
KR102216329B1 (en) | organic compounds containing 2-cyanoethyl group and preparing method thereof | |
KR102381938B1 (en) | Resin composition for coating and coating film | |
JP7156366B2 (en) | Near-infrared absorbing composition, near-infrared absorbing film, and image sensor for solid-state imaging device | |
WO2014175231A1 (en) | Resin composition and use thereof | |
KR102294139B1 (en) | Crosslinkable Composition | |
WO2007010713A1 (en) | Polymerizable fluorine-containing compound metal complex, polymerizable fluorine-containing complex composition containing the metal complex and composite material prepared from the composition | |
WO2015016142A1 (en) | Method for manufacturing film containing copper compound, method for suppressing thickening of film-forming composition, kit for manufacturing film-forming composition, and solid-state image sensor | |
JPWO2019244589A1 (en) | Image sensor for near-infrared absorbing composition, near-infrared absorbing film and solid-state image sensor | |
WO2014171215A1 (en) | Resin composition and use thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110322 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20110322 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110427 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20110421 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110524 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110727 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110809 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4804572 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140819 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |