[go: up one dir, main page]

JP2010132839A - Water-repellent configuration and water-repellent structure - Google Patents

Water-repellent configuration and water-repellent structure Download PDF

Info

Publication number
JP2010132839A
JP2010132839A JP2008312496A JP2008312496A JP2010132839A JP 2010132839 A JP2010132839 A JP 2010132839A JP 2008312496 A JP2008312496 A JP 2008312496A JP 2008312496 A JP2008312496 A JP 2008312496A JP 2010132839 A JP2010132839 A JP 2010132839A
Authority
JP
Japan
Prior art keywords
water
repellent
resin
inorganic particles
repellent structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008312496A
Other languages
Japanese (ja)
Other versions
JP5522339B2 (en
Inventor
Yuji Noguchi
雄司 野口
Takayuki Fukui
孝之 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2008312496A priority Critical patent/JP5522339B2/en
Publication of JP2010132839A publication Critical patent/JP2010132839A/en
Application granted granted Critical
Publication of JP5522339B2 publication Critical patent/JP5522339B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Materials Applied To Surfaces To Minimize Adherence Of Mist Or Water (AREA)
  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide water-repellent configuration exhibiting an excellent water-repellent function over a long period of time and a water-repellent structure that includes such configuration, for example, an automotive component, such as a window panel or a display. <P>SOLUTION: In the water-repellent configuration including fine convexoconcaves, the fine convexoconcaves comprises a resin 3 and inorganic particles 2 combined with the resin, and water-repellent functional groups are linked to surfaces of the inorganic particles 2 exposed from the resin 3. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、水滴の付着を防ぐ撥水機能を発揮する微細な凹凸構造を備えた撥水性構造であって、耐摩耗性に優れ、撥水性を長期に亘って発揮することができる撥水性構造と、このような構造を備えた撥水性構造体に関するものである。   The present invention is a water-repellent structure having a fine concavo-convex structure that exhibits a water-repellent function that prevents the adhesion of water droplets, and has excellent wear resistance and can exhibit water repellency over a long period of time. And a water-repellent structure having such a structure.

自動車や鉄道用車両、船舶、航空機などの各種ウインドウパネルにおいては、雨を除去するためにワイパーシステムが導入されているが、ウインドウパネルの撥水化によって、ワイパーの要らないウインドウパネルを実現し、コスト削減や生産工数削減する試みがある。   In various window panels for automobiles, railway vehicles, ships, airplanes, etc., wiper systems have been introduced to remove rain, but by making the window panels water repellent, window panels that do not require wipers are realized. There are attempts to reduce costs and production man-hours.

このようなパネルの撥水化技術としては、無数の微細突起から成る微細な凹凸構造の表面に、塗布やプラズマCVD法を用いてナノ粒子を付着させることによって、超撥水性を付与することが記載されている(特許文献1参照)。
特開2008−122435号公報
As a water repellency technique for such a panel, super water repellency can be imparted by attaching nanoparticles to the surface of a fine concavo-convex structure made up of countless fine protrusions using coating or plasma CVD. (See Patent Document 1).
JP 2008-122435 A

しかしながら、上記した特許文献1に記載された撥水性反射防止構造においては、表面のなの粒子が塗布やプラズマによる粒子形成により付着しているに過ぎないため、当該粒子が表面から脱落しやすく、からぶき等に対する長期耐久性に乏しいという問題点があった。   However, in the water-repellent antireflection structure described in Patent Document 1 described above, since the particles on the surface are only adhered by coating or plasma particle formation, the particles are likely to fall off the surface. There was a problem of poor long-term durability against splashing.

本発明は、上記課題を解決すべくなされたものであって、その目的とするところは、優れた撥水機能を長期間に亘って発揮することができる撥水性構造と、このような構造を備えた撥水性構造体、例えば、ウインドウパネルやディスプレイなどの自動車部品を提供することにある。   The present invention has been made to solve the above-mentioned problems, and the object of the present invention is to provide a water-repellent structure capable of exhibiting an excellent water-repellent function over a long period of time, and such a structure. The object is to provide a water-repellent structure provided, for example, an automobile part such as a window panel or a display.

本発明者らは、上記目的を達成すべく、鋭意検討を重ねた結果、撥水機能を発揮する微細凹凸構造を活性の高い無機粒子を含む樹脂材料から成るものとし、この無機粒子を介して撥水性官能基を結合させることによって、上記目的が達成できることを見出し、本発明を完成するに到った。   As a result of intensive studies to achieve the above object, the inventors of the present invention assumed that the fine concavo-convex structure exhibiting a water repellency function is made of a resin material containing highly active inorganic particles, and through these inorganic particles. The inventors have found that the above object can be achieved by bonding a water repellent functional group, and have completed the present invention.

本発明は上記知見に基づくものであって、本発明の撥水性構造は、微細凹凸構造を備え、この微細凹凸が樹脂と、該樹脂と結合した無機粒子から成り、樹脂から露出した無機粒子の表面には撥水性官能基が結合させてあることを特徴としている。
また、本発明の撥水性構造体は、上記撥水構造を基板の少なくとも一方の面に備えていることを特徴とする。
The present invention is based on the above knowledge, and the water-repellent structure of the present invention has a fine concavo-convex structure, and the fine concavo-convex structure is composed of a resin and inorganic particles bonded to the resin. It is characterized in that a water repellent functional group is bonded to the surface.
The water-repellent structure of the present invention is characterized in that the water-repellent structure is provided on at least one surface of the substrate.

本発明によれば、撥水性構造における凹凸構造部分を無機粒子と樹脂材料から成るものとしたから、凹凸構造の強度が増し、破損や傷付き、摩耗を防止することができる。また、無機粒子表面は活性が高く、樹脂材料や撥水性官能基と強固に結合し、無機粒子自体落や当該粒子からの撥水性成分の脱落が防止され、長期に亘って高い撥水性を維持することができる。   According to the present invention, since the concavo-convex structure portion in the water-repellent structure is made of inorganic particles and a resin material, the strength of the concavo-convex structure is increased, and damage, scratches, and wear can be prevented. In addition, the surface of the inorganic particles is highly active and binds firmly to resin materials and water-repellent functional groups, preventing the inorganic particles themselves from dropping and the water-repellent components from falling off the particles, and maintaining high water repellency over a long period of time. can do.

以下、本発明の撥水性構造やこのような構造を備えた構造体について、その製造方法や実施形態などと共に、さらに詳細に説明する。なお、本明細書において、「%」は特記しない限り、質量百分率を意味するものとする。   Hereinafter, the water-repellent structure of the present invention and the structure provided with such a structure will be described in more detail together with the manufacturing method and embodiments thereof. In the present specification, “%” means mass percentage unless otherwise specified.

図1は、本発明の撥水性構造における微細凹凸の形状例を示すものであって、図1(a)に示す円錐や、図2(b)に示す角錐など、無数の錐体状突起1から成るものとすることができる。
なお、図1では、平面上に無数の突起1を所定間隔に配列した例を示したが、例えば正弦波曲線のような波状や、鋸形断面を有し、凸部と凹部が三次元的に連続するような凹凸構造を採用することも可能である。
FIG. 1 shows an example of the shape of fine irregularities in the water-repellent structure of the present invention, and an infinite number of cone-shaped projections 1 such as the cone shown in FIG. 1 (a) and the pyramid shown in FIG. 2 (b). It can consist of:
FIG. 1 shows an example in which innumerable protrusions 1 are arranged on a plane at predetermined intervals. For example, the projections 1 have a wave shape such as a sine wave curve or a saw-shaped cross section, and the convex and concave portions are three-dimensional. It is also possible to adopt a concavo-convex structure that continues to

ここで、上記錐体状突起1同士の間隔(ピッチ)Pについては、良好な撥水性を確保する観点から、水滴の径よりも小さい0.1mm程度以下とすることが望ましい。
また、ディスプレイのカバーやウインドウパネルとして用いるために、透明性を確保するには、間隔Pを400μm以下とすることが望ましい。さらに、外の景色や照明の映り込みを防止して、視認性を確保すべく反射防止機能を得るためには400nm以下とすることが望ましい。なお、ピッチPが400nmを超えると、回折光が発生し、反射率が大きくなる傾向がある。より望ましくは380nm以下であり、さらに望ましくは250nm以下である。250nm以下であれば、回折光はほとんど観測されなくなる。
Here, the interval (pitch) P between the cone-shaped projections 1 is preferably about 0.1 mm or less, which is smaller than the diameter of the water droplets, from the viewpoint of ensuring good water repellency.
In order to secure transparency for use as a display cover or a window panel, the interval P is preferably 400 μm or less. Furthermore, in order to prevent reflection of outside scenery and illumination and to obtain an antireflection function to ensure visibility, the thickness is desirably 400 nm or less. When the pitch P exceeds 400 nm, diffracted light is generated and the reflectance tends to increase. More desirably, it is 380 nm or less, and further desirably 250 nm or less. If it is 250 nm or less, almost no diffracted light is observed.

なお、図1においては、微細凹凸構造を構成する錐体状突起1の形状例として、円錐形及び四角錐のものを示したが、その底面形状としては、三角形や六角形など、他の多角形であっても良い。
また、本発明における錐体状突起1の形状としては、正確な円錐(母線が直線)や角錐(稜が直線、側面が平面)のみならず、底面から先端側に向かって断面積が順次小さくなるような形状である限り、母線が曲線である円錐状のものや、側面が曲面をなす角錐状であってもよい。
In FIG. 1, cones and quadrangular pyramids are shown as examples of the shape of the cone-shaped protrusions 1 constituting the fine concavo-convex structure, but the bottom shape of the cone-shaped projection 1 may be other various shapes such as a triangle or a hexagon. It may be square.
In addition, the shape of the cone-shaped projection 1 in the present invention is not only an accurate cone (the bus is a straight line) and a pyramid (a ridge is a straight line, a side is a flat surface), but the cross-sectional area is gradually reduced from the bottom to the tip side. As long as it has such a shape, it may be a cone having a curved bus line or a pyramid having a curved side surface.

さらに、撥水性が多少犠牲になるものの、成形性や耐破損性を考慮して、先端部を平坦に(すなわち、錐体形状を錐台形状に)したり、丸みをつけたりすることも可能である。
加えて、錐体状突起1の底面の中心と頂点を結ぶ直線は、必ずしも底面に対して垂直である必要もない。
Furthermore, although the water repellency is somewhat sacrificed, it is possible to make the tip flat (ie, the cone shape into a frustum shape) or round in consideration of moldability and damage resistance. is there.
In addition, the straight line connecting the center and the apex of the bottom surface of the conical protrusion 1 does not necessarily need to be perpendicular to the bottom surface.

このように、本発明において『錐体状』とは、正確な円錐や角錐のみならず、釣り鐘形や椎の実形の変形円錐状や、曲面から成る側面を有する変形角錐状のもの、先端が平坦なもの、丸みを帯びたもの、傾斜したものをも含めた形状を意味する。   Thus, in the present invention, “conical shape” means not only an accurate cone or pyramid, but also a bell-shaped or vertebral deformed cone shape, a deformed pyramid shape having a curved side surface, a tip Means shapes that include flat, rounded, and slanted shapes.

図2は、本発明の撥水性構造における個々の錐体状突起1の断面構造を示すものであって、図2(a)は、無機粒子2を含む樹脂材料によって微細凹凸の成形直後の状態を示し、錐体状突起1は、無機粒子2と樹脂3から成り、樹脂中に無機粒子2が分散した状態となっている。   FIG. 2 shows a cross-sectional structure of each cone-shaped protrusion 1 in the water-repellent structure of the present invention. FIG. 2 (a) shows a state immediately after molding of fine irregularities by a resin material containing inorganic particles 2. The cone-shaped protrusion 1 is composed of inorganic particles 2 and a resin 3, and the inorganic particles 2 are dispersed in the resin.

本発明において、無機粒子2としては、二酸化ケイ素、二酸化チタン、二酸化ジルコニウム、酸化アルミニウムなどの無機酸化物系粒子、金、銀、プラチナ、鉄などの金属コロイド粒子、チタン酸バリウムなどのセラミック系粒子を用いることができる。なお、特に耐久性を向上させるためには、圧縮強度が高く、表面改質などにより樹脂との密着性が良くなる無機酸化物系が好ましい。
これら粒子の形状についても、特に限定されることはなく、真球状、ラグビーボール状、こんぺいとう状、不定形、多孔状などが挙げられる。
In the present invention, the inorganic particles 2 include inorganic oxide particles such as silicon dioxide, titanium dioxide, zirconium dioxide and aluminum oxide, metal colloid particles such as gold, silver, platinum and iron, and ceramic particles such as barium titanate. Can be used. In particular, in order to improve durability, an inorganic oxide system having high compressive strength and improved adhesion with a resin by surface modification or the like is preferable.
The shape of these particles is not particularly limited, and examples thereof include a true spherical shape, a rugby ball shape, a confetti shape, an indeterminate shape, and a porous shape.

また、無機粒子2の大きさとしては、球換算直径で50nm以下であることが好ましく、さらに好ましくは、10〜20nmの範囲である。これは、粒子径が50nmを超えると、透明性が失われる可能性があると共に、成形時に微細突起部に粒子が入り難く、微細構造の耐久性を向上させることが難しくなることによる。   Moreover, as a magnitude | size of the inorganic particle 2, it is preferable that it is 50 nm or less in a spherical equivalent diameter, More preferably, it is the range of 10-20 nm. This is because when the particle diameter exceeds 50 nm, transparency may be lost, and it is difficult for particles to enter the fine protrusions during molding, and it becomes difficult to improve the durability of the fine structure.

一方、樹脂3の材料としては、後述する方法によって、無機粒子2と共に、微細凹凸構造を成形できる材料であればよく、例えば、ポリエチレン、ポリプロピレン、ポリビニルアルコール、ポリ塩化ビニリデン、ポリエチレンテレフタレート、ポリ塩化ビニール、ポリスチレン、ABS樹脂、AS樹脂、アクリル樹脂、ポリアミド、ポリアセタール、ポリブチレンテレフタレート、ポリカーボネート、変性ポリフェニレンエーテル、ポリフェニレンスルフィド、ポリエーテルエーテルケトン、フッ素樹脂、ポリアレート、ポリスルホン、ポリエーテルスルホン、ポリアミドイミド、ポリエーテルイミド、熱可塑性ポリイミド等の熱可塑性樹脂や、フェノール樹脂、メラミン樹脂、ユリア樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、アルキド樹脂、シリコーン樹脂、ジアリルフタレート樹脂、ポリアミドビスマレイミド、ポリビスアミドトリアゾール等の熱硬化性樹脂、さらにはこれらを2種以上ブレンドした材料を用いることが可能であって、とりわけ透明性があるものは、例えば窓(ウインドシールド)や計器類のカバーなどに好適に用いることができる。   On the other hand, the material of the resin 3 may be any material that can form a fine concavo-convex structure together with the inorganic particles 2 by the method described later. For example, polyethylene, polypropylene, polyvinyl alcohol, polyvinylidene chloride, polyethylene terephthalate, polyvinyl chloride , Polystyrene, ABS resin, AS resin, acrylic resin, polyamide, polyacetal, polybutylene terephthalate, polycarbonate, modified polyphenylene ether, polyphenylene sulfide, polyether ether ketone, fluororesin, polyarate, polysulfone, polyethersulfone, polyamideimide, polyether Thermoplastic resins such as imide and thermoplastic polyimide, phenolic resin, melamine resin, urea resin, epoxy resin, unsaturated polyester resin, alkyl Thermosetting resins such as resins, silicone resins, diallyl phthalate resins, polyamide bismaleimides, polybisamide triazoles, and blended materials of two or more of these can be used. For example, it can be suitably used for windows (windshields) and instrument covers.

後述するように、成形に活性エネルギー線を用いる場合は、活性エネルギー線により重合を開始できる樹脂が用いられる。このような樹脂としては、例えば紫外線硬化型アクリルウレタン系樹脂、紫外線硬化型ポリエステルアクリレート系樹脂、紫外線硬化型エポキシアクリレート樹脂、紫外線硬化型ポリオールアクリレート樹脂、紫外線硬化型エポキシ樹脂などを例示することができ、必要に応じて、活性エネルギー線を照射することによりラジカルを発生する重合開始剤を用いることもでき、より強固に固めるためイソシアネートのような硬化剤を加えることもできる。   As will be described later, when an active energy ray is used for molding, a resin capable of initiating polymerization by the active energy ray is used. Examples of such resins include UV curable acrylic urethane resins, UV curable polyester acrylate resins, UV curable epoxy acrylate resins, UV curable polyol acrylate resins, and UV curable epoxy resins. If necessary, a polymerization initiator that generates radicals by irradiating active energy rays can be used, and a curing agent such as isocyanate can be added in order to solidify more firmly.

無機粒子2の樹脂材料中への添加量としては、20〜60%の範囲であることが望ましい。すなわち、20%未満では微細凹凸構造の強度が十分に向上せず、60%を超えると、粒子の分散状態が悪化し、成形品が脆くなったり、透明性が悪化したりする傾向がある。   The amount of the inorganic particles 2 added to the resin material is desirably in the range of 20 to 60%. That is, if it is less than 20%, the strength of the fine concavo-convex structure is not sufficiently improved, and if it exceeds 60%, the dispersion state of the particles tends to deteriorate, and the molded product tends to become brittle, or the transparency tends to deteriorate.

本発明の撥水性構造においては、上記無機粒子2が樹脂3に化学結合していることを要し、これによって無機粒子2の微細凹凸構造からの脱落が防止されることになる。
例えば、無機粒子2の種類に応じて、シランカップリング剤やチタネートカップリング剤、アルミネートカップリング剤を用いることによって、樹脂3と無機粒子2との結合の強度を向上させることができる。
In the water-repellent structure of the present invention, it is necessary that the inorganic particles 2 are chemically bonded to the resin 3, thereby preventing the inorganic particles 2 from falling off the fine uneven structure.
For example, the strength of the bond between the resin 3 and the inorganic particles 2 can be improved by using a silane coupling agent, a titanate coupling agent, or an aluminate coupling agent according to the type of the inorganic particles 2.

なお、本発明において、『結合』とは、無機粒子の表面と樹脂の主鎖または側鎖が化学的に結合することを意味し、具体的には共有結合やイオン結合といった結合が例示される。   In the present invention, the term “bond” means that the surface of the inorganic particles and the main chain or side chain of the resin are chemically bonded, and specific examples include bonds such as covalent bonds and ionic bonds. .

図2(b)は、無機粒子2と樹脂3から成る微細凹凸の表面をエッチングして、表面の樹脂を除去し、樹脂中の無機粒子2を表面に露出させた状態を示す。
このときのエッチング方法としては、樹脂をエッチングできる方法であれば特に限定はなく、電子線リソグラフィ、プラズマ放電、コロナ放電、真空紫外線照射、酸やアルカリ、溶剤を用いたケミカルエッチング等の方法を挙げることができる。
FIG. 2B shows a state in which the surface of fine irregularities made of the inorganic particles 2 and the resin 3 is etched to remove the resin on the surface and expose the inorganic particles 2 in the resin to the surface.
The etching method at this time is not particularly limited as long as it is a method capable of etching a resin, and examples thereof include electron beam lithography, plasma discharge, corona discharge, vacuum ultraviolet irradiation, chemical etching using acid, alkali, and solvent. be able to.

そして、エッチングによって無機粒子2が露出した微細凹凸を表面処理することによって、粒子表面に撥水性官能基を結合させ、無機粒子2を撥水化する。
このときの撥水性官能基としてはパーフルオロアルキル基、パーフルオロエーテル基、ハイドロフルオロアルキル基、ハイドロフルオロエーテル基等のフッ素系官能基、ドデカン、ペンタデカン、ヘキサデカンなどの炭化水素基、アルキルポリシランやこの混合物を挙げることができ、具体的な処理方法としては、例えば蒸着やスパッタなどのドライ処理、ディップやグラビアコート、ダイコートなどのウェット処理をすることができる。
Then, surface treatment is performed on the fine irregularities in which the inorganic particles 2 are exposed by etching, whereby water-repellent functional groups are bonded to the particle surfaces to make the inorganic particles 2 water repellent.
The water-repellent functional groups at this time include fluorine functional groups such as perfluoroalkyl groups, perfluoroether groups, hydrofluoroalkyl groups and hydrofluoroether groups, hydrocarbon groups such as dodecane, pentadecane and hexadecane, alkylpolysilanes, and Specific examples of the treatment method include dry treatment such as vapor deposition and sputtering, and wet treatment such as dip, gravure coating, and die coating.

本発明の撥水性構造において、上記のような微細凹凸を成形する方法としては、特に限定されるものではないが、熱プレス法(ホットエンボス法)、射出成形法などを挙げることができる。
特に、光の波長以下の微細凹凸を容易に成形するための方法としては、ナノインプリントが好適に用いられる。このナノインプリントによる成形方法としては、熱や活性エネルギー線のいずれを用いる方法であってもよい。
In the water-repellent structure of the present invention, the method for forming such fine irregularities is not particularly limited, and examples thereof include a hot press method (hot embossing method) and an injection molding method.
In particular, nanoimprint is preferably used as a method for easily forming fine irregularities having a wavelength of light or less. As a forming method by this nanoimprint, any method using heat or active energy rays may be used.

熱を用いる方法については、熱可塑性樹脂を加熱して、金型を押し当てることによって当該樹脂に上記のような微細凹凸を転写する方法である。また、活性エネルギー線を用いる方法は、型に活性エネルギー線により重合し硬化するポリマー又はオリゴマー、モノマーなどを入れ、紫外線やX線、その他電子線、電磁波などの活性エネルギー線を照射することによって固化させる方法である。   The method using heat is a method in which the thermoplastic resin is heated and a mold is pressed to transfer the fine irregularities as described above to the resin. In addition, the method using active energy rays is solidified by putting a polymer or oligomer that is polymerized and cured by active energy rays into a mold, monomers, and irradiating active energy rays such as ultraviolet rays, X-rays, other electron beams, and electromagnetic waves. It is a method to make it.

上記の成形に用いられるスタンパとしては、上記のような微細凹凸を形成できる方法であれば、特にその製造方法に限定はなく、生産性やコストなどを考慮して適宜なものを使用することができる。
なお、本発明において、ナノインプリントとは、数nmから数10μm程度の範囲の転写を言う。
The stamper used for the above molding is not particularly limited as long as it can form the fine irregularities as described above, and an appropriate one can be used in consideration of productivity, cost, and the like. it can.
In the present invention, nanoimprint means transfer in the range of several nanometers to several tens of micrometers.

本発明に使用するプレス装置としては、加熱・加圧機構を有するものや、光透過性スタンパの上方より活性エネルギー線を照射できる機構を有するものがパターン転写を効率良く行う上で好ましい。   As the press apparatus used in the present invention, a press machine having a heating / pressurizing mechanism and a press machine having a mechanism capable of irradiating an active energy ray from above the light transmissive stamper are preferable for efficient pattern transfer.

上記スタンパは、転写されるべき微細なパターンを有するものであり、スタンパにパターンを形成する方法については、特に制限ななく、例えばフォトリソグラフィや電子線描画法等を所望する加工精度に応じて選択することができる。
また、スタンパの材料としては、シリコンウエハ、各種金属材料、ガラス、セラミック、プラスチック、炭素材料等、強度と要求される精度の加工性を有するものであればよく、 具体的には、Si、SiC、SiN、多結晶Si、ガラス、Ni、Cr、Cu、C、さらにはこれらを1種以上含むものを例示することができる。
The stamper has a fine pattern to be transferred, and the method for forming the pattern on the stamper is not particularly limited. For example, photolithography, electron beam drawing method, or the like is selected according to the desired processing accuracy. can do.
The stamper material may be a silicon wafer, various metal materials, glass, ceramics, plastics, carbon materials, etc., as long as it has strength and workability with the required accuracy. Specifically, Si, SiC , SiN, polycrystalline Si, glass, Ni, Cr, Cu, C, and those containing one or more of these.

本発明の撥水性構造体は、上記した撥水性構造を基板の少なくとも一方の面に備えたものである。
このとき、微細凹凸構造を備えた撥水性構造部分と基板とは、同種の材料であっても、接合に問題がない限り異種材料であっても構わない。また、一体的に同時成形することも、接着剤などによって貼り合わせることも可能である。
The water-repellent structure of the present invention comprises the above-described water-repellent structure on at least one surface of the substrate.
At this time, the water-repellent structure portion having the fine uneven structure and the substrate may be the same type of material or different materials as long as there is no problem in bonding. Also, it can be integrally molded simultaneously or bonded with an adhesive or the like.

上記撥水性構造体においては、アクリル樹脂やポリカーボネートなどの透明材料を用い、構造体全体を透明なものとすることが望ましく、これによって当該構造体の窓材などへの適用が可能になる。なお、基板部分についてはガラスを用いることも可能である。   In the above water-repellent structure, it is desirable to use a transparent material such as acrylic resin or polycarbonate, and to make the entire structure transparent, so that the structure can be applied to a window material or the like. It is also possible to use glass for the substrate portion.

本発明の自動車部品は、本発明の上記撥水性構造を備えたものであるから、耐久性に富み、優れた撥水性能を長期に亘って発揮することから、例えば自動車のウインドシールドに当該構造を適用することによって、ワイパーの不要なウインドシールドを実現できることになる。   Since the automobile part of the present invention is provided with the above water-repellent structure of the present invention, it has excellent durability and exhibits excellent water-repellent performance over a long period of time. By applying, a windshield that does not require a wiper can be realized.

以下に、本発明を実施例に基づいて、さらに具体的に説明するが、本発明はこれらの実施例のみに限定されないことは言うまでもない。   Hereinafter, the present invention will be described more specifically based on examples. However, it is needless to say that the present invention is not limited to these examples.

(実施例1)
市販の電子線描画装置を用いて、開口径100nm、深さ200nmの円錐状凹部が100nmの間隔に六方最密配列した金型を作製した。この金型に、球換算直径が10nmのシリカ粒子と、シラノール基を含むγ−メタクリロキシプロピルトリメトキシシランを持つ紫外線硬化性ポリメチルメタクリレート樹脂とを流し込み、基材であるポリメチルメタクリレート樹脂を押し当てた状態で紫外線を照射して固化させることで、シリカ粒子中及びγ−メタクリロキシプロピルトリメトキシシラン中のシラノール基同士を脱水縮合反応させ、Si−O−Si共有結合させた紫外線硬化性ポリメチルメタクリレート樹脂を得た。なお、粒子含有樹脂材料中におけるシリカ粒子の添加量を35質量%とし、紫外線硬化ポリメチルメタクリレート樹脂中におけるγ−メタクリロキシプロピルトリメトキシシラン基の置換量を5質量%とした。
これによって、底面径D=100nm、高さH=200nmの円錐状微細突起1が頂点間距離P=100nmに六方最密配列されてなる微細凹凸構造を両面に備えた成形品を作製した。
Example 1
Using a commercially available electron beam drawing apparatus, a mold was prepared in which conical recesses having an opening diameter of 100 nm and a depth of 200 nm were arranged in a hexagonal close-packed manner at an interval of 100 nm. Into this mold, silica particles having a spherical equivalent diameter of 10 nm and an ultraviolet curable polymethyl methacrylate resin having γ-methacryloxypropyltrimethoxysilane containing silanol groups are poured, and the polymethyl methacrylate resin as a base material is pressed. By irradiating with ultraviolet rays in the applied state and solidifying, silanol groups in silica particles and γ-methacryloxypropyltrimethoxysilane are subjected to a dehydration condensation reaction, and a Si—O—Si covalent bond is formed. A methyl methacrylate resin was obtained. The addition amount of silica particles in the particle-containing resin material was 35% by mass, and the substitution amount of γ-methacryloxypropyltrimethoxysilane group in the ultraviolet curable polymethyl methacrylate resin was 5% by mass.
In this way, a molded product was prepared having a fine concavo-convex structure in which conical fine protrusions 1 having a bottom diameter D = 100 nm and a height H = 200 nm were arranged in a hexagonal close-packed manner at a distance P between apexes of 100 nm on both sides.

次に、この成形品の表面をプラズマ放電処理によってエッチングして、シリカ粒子を表面に露出させ、撥水性官能基としてのパーフルオロエーテル基を持つトリメトキシシランを用いて表面処理することによって、パーフルオロエーテル基を持つトリメトキシシラン中とシリカ粒子中のシラノール基同士を脱水縮合反応させ、Si−O−Si共有結合させた本例の撥水性構造体を得た。   Next, the surface of the molded product is etched by plasma discharge treatment to expose silica particles on the surface, and surface treatment is performed using trimethoxysilane having a perfluoroether group as a water repellent functional group. The water-repellent structure of this example in which trianolsilane having a fluoroether group and silanol groups in silica particles were subjected to a dehydration condensation reaction and Si—O—Si covalently bonded was obtained.

このようにして得られた撥水性構造体について、下記の要領によって、水付着性及び耐摩耗性について評価し、その結果を表1に示す。   The water-repellent structure thus obtained was evaluated for water adhesion and wear resistance according to the following procedure, and the results are shown in Table 1.

(実施例2)
市販の電子線描画装置を用いて、開口径300nm、深さ500nmの円錐状凹部が300nmの間隔に六方最密配列した金型を作製した。この金型に、シリカ粒子の添加量を30質量%としたこと以外は、上記実施例と同様にして、シリカ粒子をSi−O−Si共有結合させた紫外線硬化性ポリメチルメタクリレート樹脂を得た。
これにより、底面径D=300nm、高さH=500nmの円錐状微細突起1が頂点間距離P=300nmに六方最密配列されてなる微細凹凸構造を両面に備えた成形品を作製した。
(Example 2)
Using a commercially available electron beam drawing apparatus, a mold was prepared in which conical recesses having an opening diameter of 300 nm and a depth of 500 nm were arranged in a hexagonal close-packed manner at an interval of 300 nm. An ultraviolet curable polymethyl methacrylate resin in which silica particles were covalently bonded to Si—O—Si was obtained in the same manner as in the above example except that the amount of silica particles added to this mold was 30% by mass. .
As a result, a molded article was prepared that had a fine concavo-convex structure in which conical fine protrusions 1 having a bottom surface diameter D = 300 nm and a height H = 500 nm were closely arranged in a hexagonal distance P = 300 nm on both sides.

次に、この成形品の表面を同様にエッチングして、シリカ粒子を表面に露出させた後、同様の撥水化表面処理を施すことによって、本例の撥水性構造体を得た。
そして、このようにして得られた撥水性構造体について、上記実施例と同様の性能評価を行い、その結果を表1に併せて示す。
Next, the surface of this molded product was similarly etched to expose the silica particles on the surface, and then subjected to the same water-repellent surface treatment to obtain the water-repellent structure of this example.
And the performance evaluation similar to the said Example was performed about the water-repellent structure obtained in this way, and the result is combined with Table 1, and is shown.

(実施例3)
上記実施例2と同様の金型を用いて、シリカ粒子の添加量を60質量%としたこと以外は、上記実施例と同様にして、シリカ粒子をSi−O−Si共有結合させた紫外線硬化性ポリメチルメタクリレート樹脂を得た。これによって、底面径D=300nm、高さH=500nmの円錐状微細突起1が頂点間距離P=300nmに六方最密配列されてなる微細凹凸構造を両面に備えた成形品を作製した。
(Example 3)
Ultraviolet curing in which silica particles are covalently bonded to Si-O-Si in the same manner as in the above example except that the amount of silica particles added is 60% by mass using the same mold as in Example 2. Polymethylmethacrylate resin was obtained. In this way, a molded product was prepared having a fine concavo-convex structure in which conical fine protrusions 1 having a bottom surface diameter D = 300 nm and a height H = 500 nm were arranged in a hexagonal close-packed manner at a distance P between apexes of 300 nm.

次に、この成形品の表面を同様にエッチングして、シリカ粒子を表面に露出させた後、同様の撥水化表面処理を施すことによって、本例の撥水性構造体を得た。
そして、このようにして得られた撥水性構造体について、上記実施例と同様の性能評価を行い、その結果を表1に併せて示す。
Next, the surface of this molded product was similarly etched to expose the silica particles on the surface, and then subjected to the same water-repellent surface treatment to obtain the water-repellent structure of this example.
And the performance evaluation similar to the said Example was performed about the water-repellent structure obtained in this way, and the result is combined with Table 1, and is shown.

(実施例4)
市販の電子線描画装置を用いて、開口径200nm、深さ500nmの円錐状凹部が200nmの間隔に六方最密配列した金型を作製した。この金型に、シリカ粒子の添加量を20質量%としたこと以外は、上記実施例と同様にして、シリカ粒子をSi−O−Si共有結合させた紫外線硬化性ポリメチルメタクリレート樹脂を得た。これにより、底面径D=200nm、高さH=500nmの円錐状微細突起1が頂点間距離P=200nmに六方最密配列されてなる微細凹凸構造を両面に備えた成形品を作製した。
Example 4
Using a commercially available electron beam drawing apparatus, a mold was prepared in which conical recesses having an opening diameter of 200 nm and a depth of 500 nm were arranged in a hexagonal close-packed manner at intervals of 200 nm. An ultraviolet curable polymethyl methacrylate resin in which silica particles were covalently bonded to Si—O—Si was obtained in the same manner as in the above example except that the addition amount of silica particles was 20% by mass in this mold. . As a result, a molded article was prepared which had a fine concavo-convex structure in which conical fine protrusions 1 having a bottom diameter D = 200 nm and a height H = 500 nm were arranged in a hexagonal close-packed manner at a distance P between apexes of 200 nm on both sides.

次に、この成形品に対して、同様のエッチング処理と撥水化表面処理を施すことによって、本例の撥水性構造体を得た。
そして、このようにして得られた撥水性構造体について、上記実施例と同様の性能評価を行い、その結果を表1に併せて示す。
Next, this molded article was subjected to the same etching treatment and water-repellent surface treatment to obtain a water-repellent structure of this example.
And the performance evaluation similar to the said Example was performed about the water-repellent structure obtained in this way, and the result is combined with Table 1, and is shown.

(比較例1)
上記実施例1と同様の金型を用いて、シリカ粒子を含有しない紫外線硬化アクリル樹脂を流し込み、基材であるアクリルを押し当てた状態で紫外線を照射することによって、底面径D=100nm、高さH=200nmの円錐状微細突起1が頂点間距離P=100nmに六方最密配列されてなる微細凹凸構造を両面に備えた成形品を得た。
(Comparative Example 1)
By using the same mold as in Example 1 above, an ultraviolet curable acrylic resin containing no silica particles is poured, and ultraviolet rays are irradiated in a state where the base material acrylic is pressed, whereby the bottom diameter D = 100 nm, high A molded article having a fine concavo-convex structure in which conical fine protrusions 1 having a height H of 200 nm are arranged in a hexagonal close-packed manner at a distance P between apexes of 100 nm was obtained.

次に、この成形品の表面をプラズマ放電処理によってエッチングした後、撥水性官能基としてのパーフルオロエーテル基を持つトリメトキシシランを用いて表面処理することによって、本比較例の撥水性構造体を得た。
そして、このようにして得られた構造体について、同様の性能評価を行い、その結果を表1に併せて示す。
Next, after etching the surface of this molded product by plasma discharge treatment, surface treatment is performed using trimethoxysilane having a perfluoroether group as a water-repellent functional group, whereby the water-repellent structure of this comparative example is obtained. Obtained.
And about the structure obtained in this way, the same performance evaluation is performed and the result is combined with Table 1, and is shown.

〔性能評価方法〕
(1)水付着性
上記各実施例及び比較例によって得られた各構造体について、まず、トラバース式摩耗試験機を用い、キャンバス布(JIS L 3102)から成る摩擦布によって、荷重9.8kPa、ストローク長100mm、摩擦速度30往復/分の条件のもとに、200回往復払拭作動させた。
そして、このような乾拭き試験後、JIS L 1092に規定された方法に基づき、スプレーテスタ(東洋精器製)を用いて、以下の基準によって撥水度を5段階評価した。
1:表面全体に濡れ広がるもの
2:水滴が球状を保持することなく、表面に濡れ広がるもの
3:表面に球状の水滴が付着するもの
4:表面に微小な球状の水滴がわずかに付着するもの
5:表面に水滴が付着しないもの
[Performance evaluation method]
(1) Water adhesion About each structure obtained by each of the above Examples and Comparative Examples, first, using a traverse type abrasion tester, a load of 9.8 kPa, using a friction cloth made of canvas cloth (JIS L 3102), The reciprocating wiping operation was performed 200 times under the conditions of a stroke length of 100 mm and a friction speed of 30 reciprocations / minute.
And after such a dry wiping test, based on the method prescribed | regulated to JISL1092, the water repellency was evaluated in five steps according to the following criteria using a spray tester (manufactured by Toyo Seiki).
1: Those that spread wet on the entire surface 2: Water droplets that spread on the surface without retaining a spherical shape 3: Those that adhere to the surface of spherical water droplets 4: Those that adhere to the surface slightly spherical water droplets on the surface 5: Water droplets do not adhere to the surface

(2)耐摩耗性
上記の乾拭き試験及び撥水性評価試験を終えた後の各構造体について、各構造体の払拭表面を目視にて観察し、傷付きがない場合を「○」、傷付きが認められたものを「×」とした。
(2) Abrasion resistance For each structure after the dry wiping test and water repellency evaluation test described above, the wiping surface of each structure is visually observed. The thing where was recognized as "x".

Figure 2010132839
Figure 2010132839

表1に示すように、本発明の実施例1〜4による撥水性構造体においては、撥水性、耐摩耗性共に極めて良好であるのに対して、無機粒子を含まない比較例においては、耐摩耗性が劣り、そのために乾拭き試験後の撥水性にも劣ることが確認された。   As shown in Table 1, in the water-repellent structures according to Examples 1 to 4 of the present invention, both the water repellency and the wear resistance are extremely good, whereas in the comparative examples not containing inorganic particles, It was confirmed that the abrasion was inferior, and therefore the water repellency after the dry wiping test was also inferior.

(a)本発明に用いる微細構造の代表例として円錐状突起から成るものの形状を示す斜視図である。(b)本発明に用いる微細構造の代表例として角錐状突起から成るものの形状を示す斜視図である。(A) It is a perspective view which shows the shape of what consists of conical protrusion as a typical example of the microstructure used for this invention. (B) It is a perspective view which shows the shape of what consists of a pyramidal projection as a typical example of the microstructure used for this invention. 本発明の撥水性構造における錐体状突起の断面図であって、成形直後(a)、エッチング後(b)及び撥水処理後(c)の状態を示すそれぞれ断面図である。It is sectional drawing of the cone-shaped processus | protrusion in the water-repellent structure of this invention, Comprising: It is sectional drawing which each shows the state immediately after shaping | molding (a), after an etching (b), and after a water-repellent process (c).

符号の説明Explanation of symbols

1 錐体状突起
2 無機粒子
3 樹脂
1 Cone-shaped projection 2 Inorganic particle 3 Resin

Claims (7)

微細凹凸構造を備え、当該微細凹凸が樹脂と、該樹脂と結合した無機粒子から成り、樹脂から露出した無機粒子の表面には撥水性官能基が結合させてあることを特徴とする撥水性構造。   A water-repellent structure comprising a fine concavo-convex structure, wherein the fine concavo-convex structure comprises a resin and inorganic particles bonded to the resin, and water-repellent functional groups are bonded to the surface of the inorganic particles exposed from the resin. . 上記微細凹凸が400nm以下のピッチで配列された無数の錐体状突起から成ることを特徴とする請求項1に記載の撥水性構造。   2. The water repellent structure according to claim 1, wherein the fine irregularities are innumerable conical protrusions arranged at a pitch of 400 nm or less. 上記無機粒子の球換算直径が50nm以下であることを特徴とする請求項1又は2に記載の撥水性構造。   3. The water-repellent structure according to claim 1, wherein the inorganic particles have a spherical equivalent diameter of 50 nm or less. 上記無機粒子の添加量が質量比で20〜60%であることを特徴とする請求項1〜3のいずれか1つの項に記載の撥水性構造。   The water-repellent structure according to any one of claims 1 to 3, wherein the added amount of the inorganic particles is 20 to 60% by mass ratio. 請求項1〜4のいずれか1つの項に記載の撥水性構造を基板の少なくとも一方の面に備えていることを特徴とする撥水性構造体。   A water repellent structure comprising the water repellent structure according to any one of claims 1 to 4 on at least one surface of a substrate. 透明材料から構成されていることを特徴とする請求項5に記載の撥水性構造体。   The water repellent structure according to claim 5, which is made of a transparent material. 請求項1〜4のいずれか1つの項に記載の撥水性構造を備えていることを特徴とする自動車部品。   An automobile part comprising the water-repellent structure according to any one of claims 1 to 4.
JP2008312496A 2008-12-08 2008-12-08 Water repellent structure and water repellent structure Expired - Fee Related JP5522339B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008312496A JP5522339B2 (en) 2008-12-08 2008-12-08 Water repellent structure and water repellent structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008312496A JP5522339B2 (en) 2008-12-08 2008-12-08 Water repellent structure and water repellent structure

Publications (2)

Publication Number Publication Date
JP2010132839A true JP2010132839A (en) 2010-06-17
JP5522339B2 JP5522339B2 (en) 2014-06-18

Family

ID=42344433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008312496A Expired - Fee Related JP5522339B2 (en) 2008-12-08 2008-12-08 Water repellent structure and water repellent structure

Country Status (1)

Country Link
JP (1) JP5522339B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014087541A (en) * 2012-10-31 2014-05-15 Terumo Corp Transparent structure and endoscope made using the same
WO2014181448A1 (en) * 2013-05-10 2014-11-13 株式会社 日立製作所 Functional member provided with hydrophilic surface or hydrophobic surface
WO2015002012A1 (en) * 2013-07-02 2015-01-08 東洋製罐グループホールディングス株式会社 Resin molded article provided with surface having exceptional water-sheeting properties
JP2015063068A (en) * 2013-09-25 2015-04-09 日産自動車株式会社 Transparent water-repellent body, and production method thereof
JP2015066850A (en) * 2013-09-30 2015-04-13 日産自動車株式会社 Fine surface structure and method for manufacturing the same
WO2015170546A1 (en) * 2014-05-09 2015-11-12 デクセリアルズ株式会社 Lipophilic laminate, manufacturing method therefor, and article
WO2017159654A1 (en) * 2016-03-14 2017-09-21 デンカ株式会社 Liquid-repellent resin sheet and article using same
JP2018103534A (en) * 2016-12-27 2018-07-05 綜研化学株式会社 Hard coat film and method for producing the same
KR102132728B1 (en) * 2019-04-16 2020-07-10 울산과학기술원 Antifouling surface structure with antifouling function
WO2020190213A1 (en) * 2019-03-18 2020-09-24 Agency For Science, Technology And Research A multi-layered coating

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000167955A (en) * 1998-12-04 2000-06-20 Nippon Carbide Ind Co Inc Super water-repellent adhesive film
JP2001001458A (en) * 1999-06-17 2001-01-09 Aisin Seiki Co Ltd Antifouling material and method for producing the same
JP2003001736A (en) * 2001-06-27 2003-01-08 Toto Ltd Water-repellent high-brightness transparent material
JP2008122435A (en) * 2006-11-08 2008-05-29 Nissan Motor Co Ltd Water repellent reflection preventive structure and its manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000167955A (en) * 1998-12-04 2000-06-20 Nippon Carbide Ind Co Inc Super water-repellent adhesive film
JP2001001458A (en) * 1999-06-17 2001-01-09 Aisin Seiki Co Ltd Antifouling material and method for producing the same
JP2003001736A (en) * 2001-06-27 2003-01-08 Toto Ltd Water-repellent high-brightness transparent material
JP2008122435A (en) * 2006-11-08 2008-05-29 Nissan Motor Co Ltd Water repellent reflection preventive structure and its manufacturing method

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014087541A (en) * 2012-10-31 2014-05-15 Terumo Corp Transparent structure and endoscope made using the same
WO2014181448A1 (en) * 2013-05-10 2014-11-13 株式会社 日立製作所 Functional member provided with hydrophilic surface or hydrophobic surface
US10266735B2 (en) 2013-07-02 2019-04-23 Toyo Seikan Group Holdings, Ltd. Resin formed body having surface that exhibits excellent water-sliding property
WO2015002012A1 (en) * 2013-07-02 2015-01-08 東洋製罐グループホールディングス株式会社 Resin molded article provided with surface having exceptional water-sheeting properties
JP2015010221A (en) * 2013-07-02 2015-01-19 東洋製罐グループホールディングス株式会社 Resin molded body with surface having excellent water sliding property
KR101800791B1 (en) 2013-07-02 2017-11-23 도요세이칸 그룹 홀딩스 가부시키가이샤 Resin molded article provided with surface having exceptional water-sheeting properties
JP2015063068A (en) * 2013-09-25 2015-04-09 日産自動車株式会社 Transparent water-repellent body, and production method thereof
JP2015066850A (en) * 2013-09-30 2015-04-13 日産自動車株式会社 Fine surface structure and method for manufacturing the same
WO2015170546A1 (en) * 2014-05-09 2015-11-12 デクセリアルズ株式会社 Lipophilic laminate, manufacturing method therefor, and article
JP2015214068A (en) * 2014-05-09 2015-12-03 デクセリアルズ株式会社 Lipophilic laminate and method for producing the same, and article
US10464255B2 (en) 2014-05-09 2019-11-05 Dexerials Corporation Lipophilic laminate, manufacturing method therefor, and article
TWI647104B (en) * 2014-05-09 2019-01-11 日商迪睿合股份有限公司 Lipophilic laminate, method for manufacturing the same, and product
WO2017159654A1 (en) * 2016-03-14 2017-09-21 デンカ株式会社 Liquid-repellent resin sheet and article using same
JPWO2017159654A1 (en) * 2016-03-14 2019-01-17 デンカ株式会社 Liquid repellent resin sheet and article using the same
JP2018103534A (en) * 2016-12-27 2018-07-05 綜研化学株式会社 Hard coat film and method for producing the same
WO2020190213A1 (en) * 2019-03-18 2020-09-24 Agency For Science, Technology And Research A multi-layered coating
US20220195205A1 (en) * 2019-03-18 2022-06-23 Agency For Science Technology And Research A Multi-Layered Coating
KR102132728B1 (en) * 2019-04-16 2020-07-10 울산과학기술원 Antifouling surface structure with antifouling function

Also Published As

Publication number Publication date
JP5522339B2 (en) 2014-06-18

Similar Documents

Publication Publication Date Title
JP5522339B2 (en) Water repellent structure and water repellent structure
JP5267798B2 (en) Scratch-resistant water-repellent structure and scratch-resistant water-repellent structure
JP4894663B2 (en) Water-repellent structure and water-repellent molded product
Rahmawan et al. Self-assembly of nanostructures towards transparent, superhydrophobic surfaces
JP5630635B2 (en) MICROSTRUCTURE, ITS MANUFACTURING METHOD, AND AUTOMOBILE PARTS USING THE MICROSTRUCTURE
JP5201537B2 (en) Water repellent structure and water repellent structure
Im et al. A robust superhydrophobic and superoleophobic surface with inverse-trapezoidal microstructures on a large transparent flexible substrate
KR101045695B1 (en) Anti-reflective structure and anti-reflective molded body, and automotive parts using anti-reflective molded body
Torun et al. Water impact resistant and antireflective superhydrophobic surfaces fabricated by spray coating of nanoparticles: interface engineering via end-grafted polymers
KR101866501B1 (en) Superhydrophobic electromagnetic field sheilding material and method of preparing the same
WO2011024947A1 (en) Molded structure
KR100957890B1 (en) Water repellent antireflective structure, automobile parts having same and method for manufacturing same
JP2003082292A (en) Self-cleaning surface with self-regenerative self- cleaning activity and method for producing the same
JP2008122435A (en) Water repellent reflection preventive structure and its manufacturing method
JP2008158293A (en) Hydrophilic antireflection structure
WO2012087352A2 (en) Superhydrophobic and superoleophobic nanosurfaces
JP2009042714A (en) Water repellent anti-reflective structure and method of manufacturing the same
JP2007187868A (en) Wetting control antireflection optical structure and automotive window glass
JP2013003383A (en) Abrasion-resistant fine structure and method of manufacturing the same
JP6449856B2 (en) Anti-fogging member and method for producing the same
JP2009294341A (en) Water-repellent antireflection structure and water-repellent antireflection molding
JP2007322767A (en) Anti-reflection structure, anti-reflection structural body and its manufacturing method
JP2006257249A (en) Liquid droplets guide structure
JP5224180B2 (en) Antistatic water repellent structure and antistatic water repellent structure
KR101165606B1 (en) Method for manufacturing superhydrophobic surface and super water-repellent face product manufactured by the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140325

LAPS Cancellation because of no payment of annual fees