[go: up one dir, main page]

JP2010129418A - Electrode using inorganic particle binder, and manufacturing method thereof - Google Patents

Electrode using inorganic particle binder, and manufacturing method thereof Download PDF

Info

Publication number
JP2010129418A
JP2010129418A JP2008303862A JP2008303862A JP2010129418A JP 2010129418 A JP2010129418 A JP 2010129418A JP 2008303862 A JP2008303862 A JP 2008303862A JP 2008303862 A JP2008303862 A JP 2008303862A JP 2010129418 A JP2010129418 A JP 2010129418A
Authority
JP
Japan
Prior art keywords
electrode
active material
inorganic particles
redox active
electrode film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008303862A
Other languages
Japanese (ja)
Inventor
Hironori Eguchi
裕規 江口
Taiichi Sakatani
泰一 阪谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2008303862A priority Critical patent/JP2010129418A/en
Publication of JP2010129418A publication Critical patent/JP2010129418A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Primary Cells (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

【課題】導電性の高い電極膜、ならびにそれを用いた電極および酸化還元性蓄電デバイスを提供すること。
【解決手段】酸化還元性活物質と無機粒子とを含み、前記酸化還元性活物質が前記無機粒子によって結着されている電極膜。前記電極膜が集電体上に積層されてなる電極。前記電極を有する酸化還元性蓄電デバイスであって、2枚の電極を電極膜同士が対向するように配置し、両電極膜間にセパレーターを介在させて巻回または積層し、電解液と共に金属ケースに封入してなる酸化還元性蓄電デバイス。
【選択図】なし
An electrode film having high conductivity, an electrode using the electrode film, and an oxidation-reduction power storage device are provided.
An electrode film comprising a redox active material and inorganic particles, wherein the redox active material is bound by the inorganic particles. An electrode in which the electrode film is laminated on a current collector. An oxidation-reduction power storage device having the electrode, wherein two electrodes are arranged so that the electrode films face each other, and are wound or laminated with a separator interposed between the two electrode films, and a metal case together with the electrolyte An oxidation-reduction power storage device enclosed in a container.
[Selection figure] None

Description

本発明は、電極膜、電極およびその製造方法に関する。さらに本発明は、前記電極を有する酸化還元性蓄電デバイスに関する。なお、本発明における電極膜とは、集電体とともに電極を構成する部材であり、電極において実質的に電気を蓄える部分となるものである。また、本発明における酸化還元性蓄電デバイスとは、充放電に化学反応を利用する蓄電デバイスのことである。   The present invention relates to an electrode film, an electrode, and a manufacturing method thereof. Furthermore, this invention relates to the oxidation reduction electrical storage device which has the said electrode. In addition, the electrode film in this invention is a member which comprises an electrode with a collector, and becomes a part which accumulate | stores electricity substantially in an electrode. In addition, the oxidation-reduction power storage device in the present invention is a power storage device that uses a chemical reaction for charging and discharging.

一次電池や二次電池、ハイブリッドキャパシタといった酸化還元性蓄電デバイスに用いられる電極としては、集電体である金属箔と、バインダーで結着された酸化還元性活物質からなる電極が知られている。従来、バインダーとしてはフッ素樹脂が用いられており、中でも、耐熱性、耐薬品性、電気化学安定性に優れるポリテトラフルオロエチレン(以下、PTFEと記す)やポリビニリデンフルオライド(以下、PVDF)が好適に用いられている。
例えば特許文献1には、ポリフルオロエチレンと活物質を含む混合物を金属スクリーンに圧着して得られる電極が開示されている。
As an electrode used in a redox storage device such as a primary battery, a secondary battery, or a hybrid capacitor, an electrode made of a redox active material bound with a metal foil as a current collector and a binder is known. . Conventionally, a fluororesin has been used as a binder, and among them, polytetrafluoroethylene (hereinafter referred to as PTFE) and polyvinylidene fluoride (hereinafter referred to as PVDF), which are excellent in heat resistance, chemical resistance and electrochemical stability. It is preferably used.
For example, Patent Document 1 discloses an electrode obtained by pressure-bonding a mixture containing polyfluoroethylene and an active material to a metal screen.

近年、導電性の高い電極が求められており、上記のようにバインダーとしてフッ素樹脂を用いた電極では、導電性の観点から、未だ不十分であった。   In recent years, an electrode having high conductivity has been demanded, and an electrode using a fluororesin as a binder as described above is still insufficient from the viewpoint of conductivity.

特開平6−103979号公報Japanese Patent Laid-Open No. 6-103979

本発明の目的は、導電性の高い電極膜、ならびにそれを用いた電極および酸化還元性蓄電デバイスを提供することである。   An object of the present invention is to provide an electrode film having high conductivity, an electrode using the electrode film, and a redox storage device.

本発明は、酸化還元性活物質と無機粒子とを含み、前記酸化還元性活物質が前記無機粒子によって結着されている電極膜に関する。
また本発明は、前記電極膜が集電体上に積層されている電極に関する。
さらに本発明は、酸化還元性活物質および無機粒子が液体媒体に分散されている塗工液を集電体上に塗布して塗布膜を形成した後、前記塗布膜から液体媒体を除去して製造される、前記電極の製造方法に関する。
また本発明は、前記電極を有する酸化還元性蓄電デバイスであって、2枚の電極を電極膜同士が対向するように配置し、両電極膜間にセパレーターを介在させて巻回または積層し、電解液と共に金属ケースに封入してなる酸化還元性蓄電デバイスに関する。
The present invention relates to an electrode film comprising a redox active material and inorganic particles, wherein the redox active material is bound by the inorganic particles.
The present invention also relates to an electrode in which the electrode film is laminated on a current collector.
Furthermore, the present invention provides a coating film in which an oxidation-reduction active material and inorganic particles are dispersed in a liquid medium to form a coating film, and then removes the liquid medium from the coating film. The present invention relates to a method for manufacturing the electrode.
Further, the present invention is a redox electricity storage device having the electrode, wherein two electrodes are disposed so that the electrode films face each other, and are wound or laminated with a separator interposed between both electrode films, The present invention relates to an oxidation-reduction power storage device encapsulated in a metal case together with an electrolytic solution.

本発明によれば、導電性の高い電極膜、ならびにそれを用いた電極および酸化還元性蓄電デバイスを得ることができる。この酸化還元性蓄電デバイスは、ラップトップPCや携帯電話等のメモリバックアップ電源や、OA機器の補助電源、電気自動車、ハイブリッド車、燃料電池車などの電源、補助電源などに好適に利用することができる。   ADVANTAGE OF THE INVENTION According to this invention, an electroconductive electrode film, an electrode using the same, and an oxidation-reduction electrical storage device can be obtained. This oxidation-reduction power storage device can be suitably used for memory backup power sources such as laptop PCs and mobile phones, auxiliary power sources for office automation equipment, power sources for electric vehicles, hybrid vehicles, fuel cell vehicles, auxiliary power sources, etc. it can.

本発明の電極膜は、酸化還元性活物質と無機粒子とを含む。   The electrode film of the present invention contains a redox active material and inorganic particles.

酸化還元性活物質とは、電解質との化学反応によって、電子を放出したり(酸化)、取り込んだりする(還元)物質をいう。酸化還元性活物質の酸化還元電位の例としては、標準電極電位で−3.0V〜1.2V等が挙げられる。   The redox active material refers to a substance that emits (oxidizes) or takes up (reduces) electrons by a chemical reaction with an electrolyte. Examples of the oxidation-reduction potential of the oxidation-reduction active material include −3.0 V to 1.2 V at a standard electrode potential.

本発明において、酸化還元性活物質は、活物質イオンを含有する活物質であり、活物質イオンとしては、アルカリ金属イオンなどが挙げられる。アルカリ金属イオンとしては、リチウムイオン、ナトリウムイオンが好ましい。酸化還元性活物質としては、金属酸化物、金属カルコゲン酸化物、金属、合金、金属錯体などで、活物質イオンを含有するものを挙げることができ、これらは、単独で用いてもよいし、2種以上組み合わせて用いてもよい。   In the present invention, the redox active material is an active material containing active material ions, and examples of the active material ions include alkali metal ions. As the alkali metal ions, lithium ions and sodium ions are preferable. Examples of the redox active material include metal oxides, metal chalcogen oxides, metals, alloys, metal complexes, and the like that contain active material ions, and these may be used alone, Two or more kinds may be used in combination.

例えば、活物質イオンを含有する金属酸化物として、より具体的には、チタン(Ti)、バナジウム(V)、クロム(Cr)、マンガン(Mn)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、銅(Cu)、ニオブ(Nb)、モリブデン(Mo)などの遷移金属元素と、アルカリ金属元素とを含む酸化物を挙げることができる。このような酸化物の中でも、アルカリ金属が、リチウムである場合が好ましく、この場合は、リチウムイオン二次電池における正極活物質として好適に適用できる。より好ましくは、α−NaFeO2型構造またはスピネル型構造を母体とする複合酸化物である。該複合金属酸化物として、具体的には、コバルト酸リチウム、ニッケル酸リチウム、ニッケル酸リチウムのニッケルの一部をMn、Co、Al等の他元素と置換されてなる複合酸化物や、リチウムマンガンスピネルなどを挙げることができる。 For example, as a metal oxide containing active material ions, more specifically, titanium (Ti), vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel An oxide containing a transition metal element such as (Ni), copper (Cu), niobium (Nb), or molybdenum (Mo) and an alkali metal element can be given. Among such oxides, the alkali metal is preferably lithium, and in this case, it can be suitably applied as a positive electrode active material in a lithium ion secondary battery. More preferably, it is a complex oxide based on an α-NaFeO 2 type structure or a spinel type structure. Specifically, as the composite metal oxide, lithium cobaltate, lithium nickelate, a composite oxide obtained by substituting a part of nickel of lithium nickelate with other elements such as Mn, Co, Al, or lithium manganese Spinel etc. can be mentioned.

また、例えば、活物質イオンを含有する金属、合金としては、リチウム、ナトリウムなどの金属、または、リチウム、ナトリウムなどを含む合金などが挙げられ、リチウムを含む場合は、リチウムイオン二次電池における電極活物質(特に負極活物質)として、好適である。   In addition, examples of the metal or alloy containing active material ions include metals such as lithium and sodium, and alloys containing lithium and sodium. When lithium is contained, an electrode in a lithium ion secondary battery is used. It is suitable as an active material (particularly a negative electrode active material).

本発明において、酸化還元性活物質の粒径は、膜の強度と安定性の観点から、1μm〜30μmの範囲内であることが好ましい。なお、酸化還元性活物質の粒径とは、レーザー回折/散乱式粒度分布測定装置で測定される平均粒径である。このような粒径の酸化還元性活物質は、市販の酸化還元性活物質をボールミル等の粉砕装置によって粉砕することにより得ることができる。ボールミルにより粉砕する場合には、金属粉の混入を避けるために、ボールや粉砕容器は、アルミナ、メノウ、ジルコニアなどの非金属製であることが好ましい。   In the present invention, the particle size of the redox active material is preferably in the range of 1 μm to 30 μm from the viewpoint of the strength and stability of the film. The particle size of the redox active material is an average particle size measured with a laser diffraction / scattering particle size distribution analyzer. The redox active material having such a particle size can be obtained by pulverizing a commercially available redox active material with a pulverizer such as a ball mill. When pulverizing with a ball mill, the balls and pulverization containers are preferably made of non-metal such as alumina, agate and zirconia in order to avoid mixing of metal powder.

上記のように、本発明における酸化還元性活物質には、炭素材料、例えば活性炭、アセチレンブラックやケッチェンブラックのようなカーボンブラック、黒鉛、カーボンナノチューブ、カーボンナノスフィアは含まれない。   As described above, the redox active material in the present invention does not include carbon materials such as activated carbon, carbon black such as acetylene black and ketjen black, graphite, carbon nanotube, and carbon nanosphere.

無機粒子は、前記酸化還元性活物質の酸化還元電位の範囲(電位窓)で不活性(酸化還元されない)である無機粒子である。無機粒子は、酸化還元性活物質同士を結着しているバインダーである。また、本発明の電極膜が集電体と組み合わされて電極を構成しているとき、該無機粒子は、該電極膜を集電体と結着させるバインダーとしても機能する。無機粒子は、前記酸化還元性活物質の酸化還元電位の範囲(電位窓)で不活性であれば、金属粒子やその酸化物など特に限定されるものではないが、酸化還元性活物質との結着力、および電極膜の耐熱性の観点から、シリカ粒子、アルミナ粒子、またはシリカ粒子とアルミナ粒子との混合粒子であることが好ましく、シリカ粒子であることがより好ましい。   The inorganic particles are inorganic particles that are inactive (not redox) within the range of the redox potential (potential window) of the redox active material. Inorganic particles are binders that bind redox active materials together. In addition, when the electrode film of the present invention is combined with a current collector to form an electrode, the inorganic particles also function as a binder for binding the electrode film to the current collector. The inorganic particles are not particularly limited as long as they are inactive within the redox potential range (potential window) of the redox active material. From the viewpoint of binding force and heat resistance of the electrode film, silica particles, alumina particles, or mixed particles of silica particles and alumina particles are preferable, and silica particles are more preferable.

酸化還元性活物質との結着力の観点から、本発明における無機粒子の粒径は、1nm〜100nmの範囲内にあることが好ましく、1nm〜50nmの範囲内にあることがさらに好ましい。また、無機粒子の粒径は、電極膜の膜厚以下であることが好ましく、酸化還元性活物質との結着力の観点から、酸化還元性活物質の粒径以下であることがより好ましく、更には酸化還元性活物質の粒径の10分の1以下であることがより好ましい。本発明において、無機粒子の粒径とは、レーザー回折/散乱式粒度分布測定装置で測定される平均粒径である。   From the viewpoint of the binding force with the redox active material, the particle size of the inorganic particles in the present invention is preferably in the range of 1 nm to 100 nm, and more preferably in the range of 1 nm to 50 nm. In addition, the particle size of the inorganic particles is preferably not more than the film thickness of the electrode film, and more preferably not more than the particle size of the redox active material from the viewpoint of the binding force with the redox active material, Further, it is more preferably 1/10 or less of the particle size of the redox active material. In the present invention, the particle size of the inorganic particles is an average particle size measured by a laser diffraction / scattering particle size distribution measuring device.

本発明において、無機粒子の形状に限定は無いが、酸化還元性活物質との結着力の観点から、球状、棒状、または鎖状であることが好ましく、球状の粒子が繋がった鎖状粒子が好ましい。具体的には、球状粒子としては日産化学工業(株)製のスノーテックスST−XS(商品名)、スノーテックスST−XL(商品名)、鎖状粒子としては日産化学工業(株)製のスノーテックスPS−S、スノーテックスPS−SO(商品名)等が挙げられる。   In the present invention, the shape of the inorganic particles is not limited, but from the viewpoint of the binding force with the redox active material, it is preferably spherical, rod-like, or chain-like, and the chain-like particles connected to the spherical particles are preferable. Specifically, as the spherical particles, SNOWTEX ST-XS (trade name) manufactured by Nissan Chemical Industries, Ltd., SNOWTEX ST-XL (trade name), and as the chain particles, manufactured by Nissan Chemical Industries, Ltd. Snowtex PS-S, Snowtex PS-SO (trade name), and the like can be given.

本発明の電極膜における無機粒子の含有量は、膜の強度と安定性の観点から酸化還元性活物質100重量部に対して1〜100重量部の範囲内であることが好ましく、特に静電容量の観点から1〜50重量部の範囲内であることがさらに好ましく、1〜35重量部の範囲内であることがより好ましく、1〜20重量部の範囲内であることが最も好ましい。   The content of inorganic particles in the electrode film of the present invention is preferably in the range of 1 to 100 parts by weight with respect to 100 parts by weight of the redox active material from the viewpoint of the strength and stability of the film. From the viewpoint of capacity, it is further preferably within the range of 1 to 50 parts by weight, more preferably within the range of 1 to 35 parts by weight, and most preferably within the range of 1 to 20 parts by weight.

電極膜の導電性の観点から、酸化還元性活物質と、該酸化還元性活物質よりも粒径の小さいアセチレンブラック、カーボンブラック、黒鉛、カーボンナノチューブ、カーボンナノスフィア等の導電剤とを併用することが好ましい。導電剤の粒径は、電極の導電性の観点から、1nm〜10μmの範囲内であることが好ましい。なお、本発明において、導電剤の粒径とは、レーザー回折/散乱式粒度分布測定装置で測定される平均粒径である。   From the viewpoint of the conductivity of the electrode film, a redox active material is used in combination with a conductive agent such as acetylene black, carbon black, graphite, carbon nanotube, or carbon nanosphere having a smaller particle size than the redox active material. It is preferable. The particle size of the conductive agent is preferably in the range of 1 nm to 10 μm from the viewpoint of electrode conductivity. In the present invention, the particle diameter of the conductive agent is an average particle diameter measured by a laser diffraction / scattering particle size distribution measuring apparatus.

酸化還元性活物質と導電剤とを併用する場合、両者の混合割合に特に限定は無いが、電極膜の導電性という観点から、導電剤の量は、酸化還元性活物質100重量部に対し1〜20重量部の範囲内とすることが好ましい。   When the redox active material and the conductive agent are used in combination, the mixing ratio of the two is not particularly limited, but from the viewpoint of the conductivity of the electrode film, the amount of the conductive agent is based on 100 parts by weight of the redox active material. It is preferable to be within the range of 1 to 20 parts by weight.

電極膜の密度向上の観点からイオン液体を添加しても良い。また、イオン液体を添加しておくことで酸化還元性蓄電デバイスにした際、酸化還元性蓄電デバイスの導電性向上が期待できる。
本発明のイオン液体の添加量は酸化還元性活物質100重量部に対し0.01〜1重量部の範囲内とすることが好ましく、密度向上の観点から0.01〜0.6重量部の範囲内とすることが好ましい。
An ionic liquid may be added from the viewpoint of improving the density of the electrode film. In addition, when a redox power storage device is obtained by adding an ionic liquid, the conductivity of the redox power storage device can be expected to improve.
The addition amount of the ionic liquid of the present invention is preferably in the range of 0.01 to 1 part by weight with respect to 100 parts by weight of the redox active material, and 0.01 to 0.6 part by weight from the viewpoint of improving the density. It is preferable to be within the range.

本発明のイオン液体とは、一般に常温程度で液体である塩のことである。例えば以下に示す、イミダゾリウム塩、ピリジニウム塩、ピロリジニウム塩、ホスホニウム塩、アンモニウム塩、グアニジニウム塩、イソウロニウム塩、イソチオウロニウム塩が挙げられ、好ましくは、イミダゾリウム塩である。   The ionic liquid of the present invention is generally a salt that is liquid at about room temperature. Examples thereof include imidazolium salts, pyridinium salts, pyrrolidinium salts, phosphonium salts, ammonium salts, guanidinium salts, isouronium salts, and isothiouronium salts shown below, and imidazolium salts are preferred.

(イミダゾリウム塩)
1,3−ジメチルイミダゾリウムトリフロオロメタンスルホネート、1−エチル−3−メチルイミダゾリウム ビス[オクサレート(2−)]ボレート、1−エチル−3−メチルイミダゾリウム テトラフルオロボレート、1−エチル−3−メチルイミダゾリウム ブロマイド、1−エチル−3−メチルイミダゾリウム クロライド、1−エチル−3−メチルイミダゾリウム ヘキサフルオロボフォスフェイト、1−エチル−3−メチルイミダゾリウム トリフルオロメタンスルホネート、1−エチル−3−メチルイミダゾリウム トリフルオロアセテート、1−エチル−3−メチルイミダゾリウム メチルスルフェイト、1−エチル−3−メチルイミダゾリウム p−トルエンスルホネート、1−エチル−3−メチルイミダゾリウム シオチアネート、1−ブチル−3−メチルイミダゾリウム トリフルオロメタンスルホネート、1−ブチル−3−メチルイミダゾリウム テトラフルオロボレート、1−ブチル−3−メチルイミダゾリウム ヘキサフルオロフォスフェイト、1−ブチル−3−メチルイミダゾリウム メチルスルフェイト、1−ブチル−3−メチルイミダゾリウム クロライド、1−ブチル−3−メチルイミダゾリウム ブロマイド、1−ブチル−3−メチルイミダゾリウム トリフルオロアセテート、1−ブチル−3−メチルイミダゾリウム オクチルスルフェイト、1−ヘキシル−3−メチルイミダゾリウム ビス(トリフルオロメチルスルホニル)イミド、1−ヘキシル−3−メチルイミダゾリウム クロライド、1−ヘキシル−3−メチルイミダゾリウム テトラフルオロボレート、1−ヘキシル−3−メチルイミダゾリウム ヘキサフルオロフォスフェイト、1−ヘキシル−3−メチルイミダゾリウム トリス(ペンタフルオロエチル)トリフルオロフォスフェイト、3−メチル−1−オクチルイミダゾリウム ヘキサフルオロフォスフェイト、3−メチル−1−オクチルイミダゾリウム クロライド、3−メチル−1−オクチルイミダゾリウム テトラフルオロボレート、3−メチル−1−オクチルイミダゾリウム ビス(トリフルオロメチルスルホニル)イミド、3−メチル−1−オクチルイミダゾリウム オクチルスルフェイト、3−メチル−1−テトラデシイミダゾリウム テトラフルオロボレート、1−ヘキサデシル−3−メチルイミダゾリウム クロライド、3−メチル−1−オクタデシルイミダゾリウム ヘキサフルオロフォスフェイト、3−メチル−1−オクタデシルイミダゾリウム ビス(トリフルオロメチルスルホニル)イミド、3−メチル−1−オクタデシルイミダゾリウム トリ(ペンタフルオロエチル)トリフルオロフォスフェイト、1−エチル−2,3−ジメチルイミダゾリウム ブロマイド、1−エチル−2,3−ジメチルイミダゾリウム テトラフルオロボレート、1−エチル−2,3−ジメチルイミダゾリウム ヘキサフルオロフォスフェイト、1−エチル−2,3−ジメチルイミダゾリウム クロライド、1−エチル−2,3−ジメチルイミダゾリウム p−トルエンスルホネート、1−ブチル−2,3−ジメチルイミダゾリウム テトラフルオロボレート、1−ブチル−2,3−ジメチルイミダゾリウム クロライド、1−ブチル−2,3−ジメチルイミダゾリウム ヘキサフルオロフォスフェイト、1−ブチル−2,3−ジメチルイミダゾリウム オクチルスルフェイト、1−ヘキシル−2,3−ジメチルイミダゾリウム クロライド、1−ヘキサデシル−2,3−ジメチルイミダゾリウム クロライド
(Imidazolium salt)
1,3-dimethylimidazolium trifluoromethanesulfonate, 1-ethyl-3-methylimidazolium bis [oxalate (2-)] borate, 1-ethyl-3-methylimidazolium tetrafluoroborate, 1-ethyl-3- Methylimidazolium bromide, 1-ethyl-3-methylimidazolium chloride, 1-ethyl-3-methylimidazolium hexafluorobophosphate, 1-ethyl-3-methylimidazolium trifluoromethanesulfonate, 1-ethyl-3- Methylimidazolium trifluoroacetate, 1-ethyl-3-methylimidazolium methylsulfate, 1-ethyl-3-methylimidazolium p-toluenesulfonate, 1-ethyl-3-methylimidazolium thiothianate, 1 -Butyl-3-methylimidazolium trifluoromethanesulfonate, 1-butyl-3-methylimidazolium tetrafluoroborate, 1-butyl-3-methylimidazolium hexafluorophosphate, 1-butyl-3-methylimidazolium methylsulfur Fate, 1-butyl-3-methylimidazolium chloride, 1-butyl-3-methylimidazolium bromide, 1-butyl-3-methylimidazolium trifluoroacetate, 1-butyl-3-methylimidazolium octyl sulfate, 1-hexyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide, 1-hexyl-3-methylimidazolium chloride, 1-hexyl-3-methylimidazolium tetrafluoroborate, 1 Hexyl-3-methylimidazolium hexafluorophosphate, 1-hexyl-3-methylimidazolium tris (pentafluoroethyl) trifluorophosphate, 3-methyl-1-octylimidazolium hexafluorophosphate, 3-methyl-1 -Octylimidazolium chloride, 3-methyl-1-octylimidazolium tetrafluoroborate, 3-methyl-1-octylimidazolium bis (trifluoromethylsulfonyl) imide, 3-methyl-1-octylimidazolium octylsulfate, 3-methyl-1-tetradecylimidazolium tetrafluoroborate, 1-hexadecyl-3-methylimidazolium chloride, 3-methyl-1-octadecylimidazolium hexafluoroph Sulfate, 3-methyl-1-octadecylimidazolium bis (trifluoromethylsulfonyl) imide, 3-methyl-1-octadecylimidazolium tri (pentafluoroethyl) trifluorophosphate, 1-ethyl-2,3-dimethylimidazolium Bromide, 1-ethyl-2,3-dimethylimidazolium tetrafluoroborate, 1-ethyl-2,3-dimethylimidazolium hexafluorophosphate, 1-ethyl-2,3-dimethylimidazolium chloride, 1-ethyl- 2,3-dimethylimidazolium p-toluenesulfonate, 1-butyl-2,3-dimethylimidazolium tetrafluoroborate, 1-butyl-2,3-dimethylimidazolium chloride, 1-butyl-2,3-dimethylimidazole Midazolium hexafluorophosphate, 1-butyl-2,3-dimethylimidazolium octyl sulfate, 1-hexyl-2,3-dimethylimidazolium chloride, 1-hexadecyl-2,3-dimethylimidazolium chloride

(ピリジニウム塩)
N−エチルピリジニウム クロライド、N−エチルピリジニウム ブロマイド、N−ブチルピリジニウム クロライド、N−ブチルピリジニウム テトラフルオロボレート、N−ブチルピリジニウム ヘキサフルオロフォスフェイト、N−ブチルピリジニウム トリフルオロメタンスルホネート、N−ヘキシルピリジニウム テトラフルオロボレート、N−ヘキシルピリジニウム ヘキサフルオロフォスフェイト、N−ヘキシルピリジニウム ビス(トリフルオロメチルスルホニル)イミド、N−ヘキシルピリジニウム トリフルオロメタンスルホネート、N−オクチルピリジニウム クロライド、4−メチル−N−ブチルピリジニウム クロライド、4−メチル−N−ブチルピリジニウム テトラフルオロボレート、4−メチル−N−ブチルピリジニウム ヘキサフルオロフォスフェイト、3−メチル−N−ブチルピリジニウム クロライド、4−メチル−N−ブチルピリジニウム ブロマイド、3,4−ジメチル−N−ブチルピリジニウム クロライド、3,5−ジメチル−N−ブチルピリジニウム クロライド
(Pyridinium salt)
N-ethylpyridinium chloride, N-ethylpyridinium bromide, N-butylpyridinium chloride, N-butylpyridinium tetrafluoroborate, N-butylpyridinium hexafluorophosphate, N-butylpyridinium trifluoromethanesulfonate, N-hexylpyridinium tetrafluoroborate N-hexylpyridinium hexafluorophosphate, N-hexylpyridinium bis (trifluoromethylsulfonyl) imide, N-hexylpyridinium trifluoromethanesulfonate, N-octylpyridinium chloride, 4-methyl-N-butylpyridinium chloride, 4-methyl -N-butylpyridinium tetrafluoroborate, 4-methyl-N-butylpyridinium Sa fluoro phosphate, 3-methyl -N- butyl pyridinium chloride, 4-methyl -N- butyl pyridinium bromide, 3,4-dimethyl -N- butyl pyridinium chloride, 3,5-dimethyl -N- butyl pyridinium chloride

(ピロリジニウム塩)
1−ブチル−1−メチルピロリジニウム クロライド、1−ブチル−1−メチルピロリジニウム トリフルオロメタンスルホネート、1−ブチル−1−メチルピロリジニウム ビス(トリフルオロメチルスルホニル)イミド、1−ブチル−1−メチルピロリジニウム テトラフルオロボレート、1−ブチル−1−メチルピロリジニウム ヘキサフルオロフォスフェイト、1−ブチル−1−メチルピロリジニウム トリス(ペンタフルオロエチル)トリフルオロフォスフェイト、1−ブチル−1−メチルピロリジニウム トリフルオロアセテート、1−ヘキシル−1−メチルピロリジニウム クロライド、1−メチル−1−オクチルピロリジニウム クロライド
(Pyrrolidinium salt)
1-butyl-1-methylpyrrolidinium chloride, 1-butyl-1-methylpyrrolidinium trifluoromethanesulfonate, 1-butyl-1-methylpyrrolidinium bis (trifluoromethylsulfonyl) imide, 1-butyl-1 -Methylpyrrolidinium tetrafluoroborate, 1-butyl-1-methylpyrrolidinium hexafluorophosphate, 1-butyl-1-methylpyrrolidinium tris (pentafluoroethyl) trifluorophosphate, 1-butyl-1- Methylpyrrolidinium trifluoroacetate, 1-hexyl-1-methylpyrrolidinium chloride, 1-methyl-1-octylpyrrolidinium chloride

(ホスホニウム塩)
トリヘキシル(テトラデシル)ホスホニウム クロライド、トリヘキシル(テトラデシル)ホスホニウム トリス(ペンタフルオロエチル)トリフルオロフォスフェイト、トリヘキシル(テトラデシル)ホスホニウム テトラフルオロボレート、トリヘキシル(テトラデシル)ホスホニウム ビス(トリフルオロメチルスルホニル)イミド、トリヘキシル(テトラデシル)ホスホニウム ヘキサフルオロフォスフェイト、トリヘキシル(テトラデシル)ホスホニウム ビス[オクサレート(2−)]ボレート
(Phosphonium salt)
Trihexyl (tetradecyl) phosphonium chloride, trihexyl (tetradecyl) phosphonium tris (pentafluoroethyl) trifluorophosphate, trihexyl (tetradecyl) phosphonium tetrafluoroborate, trihexyl (tetradecyl) phosphonium bis (trifluoromethylsulfonyl) imide, trihexyl (tetradecyl) phosphonium Hexafluorophosphate, trihexyl (tetradecyl) phosphonium bis [oxalate (2-)] borate

(アンモニウム塩)
メチルトリオクチルアンモニウム トリフルオロアセテート、メチルトリオクチルアンモニウム トリフルオロメタンスルホネート、メチルトリオクチルアンモニウム ビス(トリフルオロメチルスルホニル)イミド
(Ammonium salt)
Methyltrioctylammonium trifluoroacetate, methyltrioctylammonium trifluoromethanesulfonate, methyltrioctylammonium bis (trifluoromethylsulfonyl) imide

(グアニジニウム塩)
N”−エチル−N,N,N’,N’−テトラメチルグアニジニウム トリス(ペンタフルオロエチル)トリフルオロフォスフェイト、グアニジニウム トリス(ペンタフルオロエチル)トリフルオロフォスフェイト、グアニジニウム トリフルオロメタンスルホネート、N”−エチル−N,N,N’,N’−テトラメチルグアニジニウム トリフルオロメタンスルホネート
(Guanidinium salt)
N ″ -ethyl-N, N, N ′, N′-tetramethylguanidinium tris (pentafluoroethyl) trifluorophosphate, guanidinium tris (pentafluoroethyl) trifluorophosphate, guanidinium trifluoromethanesulfonate, N ″ -ethyl -N, N, N ', N'-tetramethylguanidinium trifluoromethanesulfonate

(イソウロニウム塩)
O−エチル−N,N,N’,N’−テトラメチルイソウロニウム トリフルオロメタンスルホネート、O−エチル−N,N,N’,N’−テトラメチルイソウロニウム トリ(ペンタフルオロエチル)トリフルオロフォスフェイト
(Isouronium salt)
O-ethyl-N, N, N ′, N′-tetramethylisouronium trifluoromethanesulfonate, O-ethyl-N, N, N ′, N′-tetramethylisouronium tri (pentafluoroethyl) trifluorophos Fate

(イソチオウロニウム塩)
S−エチル−N,N,N’,N’−テトラメチルイソチオウロニウム トリフルオロメタンスルホネート、S−エチル−N,N,N’,N’−テトラメチルイソチオウロニウム トリス(ペンタフルオロエチル)トリフルオロフォスフェイト
(Isothiouronium salt)
S-ethyl-N, N, N ′, N′-tetramethylisothiouronium trifluoromethanesulfonate, S-ethyl-N, N, N ′, N′-tetramethylisothiouronium tris (pentafluoroethyl) trifluorophos Fate

本発明の電極は、集電体と、該集電体上に積層された電極膜とを有し、該電極膜は、酸化還元性活物質と無機粒子とを含み、前記酸化還元性活物質同士が前記無機粒子で結着されている。集電体は通常、金属箔であり、かかる金属の例としては、アルミニウム、銅、鉄などが挙げられる。なかでもアルミニウムは、軽く、電気抵抗が低いため好ましい。巻回型電極や積層型電極の作製が容易であることから、集電体は、厚みが20μm〜100μmの範囲内のフィルム状であることが好ましい。また集電体と電極膜との密着性を向上させるために、集電体の表面はエッチング処理などによって粗面化していることが好ましい。   The electrode of the present invention includes a current collector and an electrode film laminated on the current collector, and the electrode film includes a redox active material and inorganic particles, and the redox active material They are bound together by the inorganic particles. The current collector is usually a metal foil, and examples of such metals include aluminum, copper, and iron. Among these, aluminum is preferable because it is light and has low electric resistance. The current collector is preferably in the form of a film having a thickness in the range of 20 μm to 100 μm because it is easy to produce a wound electrode or a laminated electrode. In order to improve the adhesion between the current collector and the electrode film, the surface of the current collector is preferably roughened by etching or the like.

本発明の電極膜および電極の製造方法を説明する。
本発明の電極膜は、酸化還元性活物質と無機粒子の混合物をロール成形やプレス成形を用いてシートにするシート成形法や、前記混合物が液体媒体(以下、溶媒と記す)に分散された塗工液を支持体上に塗布して塗布膜を形成し、次いで該塗布膜から溶媒を除去して酸化還元性活物質と無機粒子を含む電極膜を形成する塗布法等、公知の方法により製造することができる。なお、前記支持体として集電体を使用することにより、本発明の電極を直接製造することができる。
シート成形法では、まず酸化還元性活物質と無機粒子とを所定の割合で混合機に投入して混合し、ペースト状混合物を得る。この時、少量の溶媒を加えることにより、混合物の均一性を向上させることができる。次に該ペースト状混合物を、カレンダー成形等のロール成形やプレス成形等の成形方法でシート状に成形することにより、本発明の電極膜を得ることができる。また、前記した方法で得られた電極膜を、所定の厚みにするためにさらにロールにより圧延してもよい。このようにして得られた電極膜を集電体に貼合することにより、本発明の電極が得られる。電極膜に溶媒が残存している場合には、溶媒を蒸発させて除去する。
The electrode film and electrode manufacturing method of the present invention will be described.
The electrode film of the present invention includes a sheet molding method in which a mixture of a redox active material and inorganic particles is formed into a sheet using roll molding or press molding, and the mixture is dispersed in a liquid medium (hereinafter referred to as a solvent). By applying a coating solution on a support to form a coating film, and then removing the solvent from the coating film to form an electrode film containing an oxidation-reduction active material and inorganic particles. Can be manufactured. In addition, the electrode of this invention can be directly manufactured by using a collector as the said support body.
In the sheet molding method, first, a redox active material and inorganic particles are introduced into a mixer at a predetermined ratio and mixed to obtain a paste-like mixture. At this time, the uniformity of the mixture can be improved by adding a small amount of solvent. Next, the electrode film of the present invention can be obtained by forming the paste-like mixture into a sheet by a roll forming method such as calendering or a forming method such as press forming. Further, the electrode film obtained by the above-described method may be further rolled with a roll in order to obtain a predetermined thickness. The electrode of the present invention is obtained by bonding the electrode film thus obtained to a current collector. If the solvent remains in the electrode film, the solvent is removed by evaporation.

厚みの均一な電極膜を容易に形成できることから、塗布法により電極膜を製造することが好ましい。ここで塗布法による本発明の電極膜の製造について更に詳細に説明する。塗布法とは、溶媒中に分散された酸化還元性活物質と無機粒子を含有する塗工液を支持体(例えば、金属箔からなる集電体)上に塗布して塗布膜を形成した後、前記塗布膜から溶媒を除去して、電極膜を形成する方法である。塗布法では、まず酸化還元性活物質と無機粒子とが溶媒に分散された塗工液を調製する。   Since an electrode film having a uniform thickness can be easily formed, the electrode film is preferably produced by a coating method. Here, the production of the electrode film of the present invention by a coating method will be described in more detail. The coating method is a method in which a coating liquid containing a redox active material and inorganic particles dispersed in a solvent is coated on a support (for example, a current collector made of a metal foil) to form a coating film. The electrode film is formed by removing the solvent from the coating film. In the coating method, first, a coating liquid in which a redox active material and inorganic particles are dispersed in a solvent is prepared.

塗工液の調製方法としては、溶媒に所定量の酸化還元性活物質と無機粒子とを添加して混合する方法、所定量の酸化還元性活物質と無機粒子の混合物に溶媒を添加して混合する方法、所定量の無機粒子が溶媒に分散された無機粒子分散液に所定量の酸化還元性活物質を添加して混合する方法、所定量の無機粒子が溶媒に分散された無機粒子分散液と、所定量の酸化還元性活物質が溶媒に分散された酸化還元性活物質分散液とを混合する方法、所定量の酸化還元性活物質が溶媒に分散された酸化還元性活物質分散液に無機粒子を添加して混合する方法等が挙げられる。混合には、公知の混合機を用いることができる。更に、酸化還元性活物質と、無機粒子とを粉砕しながら溶媒に混合しても良い。こうすることで、酸化還元性活物質や無機粒子の凝集を抑え、分散性の良い塗工液を得る事ができる。無機粒子および酸化還元性活物質をより均一に分散させやすいことから、無機粒子が溶媒に分散された無機粒子分散液に酸化還元性活物質と溶媒を添加して分散させる方法により塗工液を調製することが好ましい。また、導電性のより高い電極膜を得るためには、無機粒子分散液としてコロイダルシリカを用いることが好ましい。コロイダルシリカとは、シリカまたはその水和物の水性コロイドである。   As a method for preparing the coating liquid, a method in which a predetermined amount of redox active material and inorganic particles are added to a solvent and mixed, and a solvent is added to a mixture of a predetermined amount of redox active material and inorganic particles. A method of mixing, a method of adding a predetermined amount of redox active material to an inorganic particle dispersion in which a predetermined amount of inorganic particles are dispersed in a solvent, and mixing, an inorganic particle dispersion in which a predetermined amount of inorganic particles are dispersed in a solvent A liquid and a redox active material dispersion in which a predetermined amount of redox active material is dispersed in a solvent, a redox active material dispersion in which a predetermined amount of redox active material is dispersed in a solvent Examples include a method of adding inorganic particles to the liquid and mixing them. A known mixer can be used for mixing. Furthermore, you may mix with a solvent, grind | pulverizing a redox active material and an inorganic particle. By doing so, it is possible to suppress the aggregation of the redox active material and the inorganic particles and obtain a coating liquid with good dispersibility. Since it is easy to disperse the inorganic particles and the redox active material more uniformly, the coating liquid can be dispersed by adding the redox active material and the solvent to the inorganic particle dispersion in which the inorganic particles are dispersed in the solvent. It is preferable to prepare. In order to obtain an electrode film with higher conductivity, it is preferable to use colloidal silica as the inorganic particle dispersion. Colloidal silica is an aqueous colloid of silica or its hydrate.

塗工液を支持体上に塗布して塗布膜を形成するのには、ハンディ・フィルムアプリケーター、バーコーター、ダイコーター等の公知の塗布装置を用いることができる。形成した分散液膜から溶媒を除去することにより、支持体上に電極膜を形成することができる。前述のとおり、前記支持体として集電体を使用することにより、本発明の電極を直接製造することができる。溶媒を除去する方法としては、通常50〜500℃の温度で溶媒を蒸発させる方法が挙げられる。無機粒子分散液としてコロイダルシリカを用いる場合、まず50〜80℃の温度で1〜30分の時間乾燥した後、さらに100〜200℃の温度で1〜60分の時間乾燥することが、結着力を高める観点から好ましい。また、塗布法で支持体上に電極膜を形成した後、電極膜の厚さを調整するために支持体上の電極膜をプレスしてもよい。   A known coating apparatus such as a handy film applicator, a bar coater, or a die coater can be used to form the coating film by coating the coating liquid on the support. By removing the solvent from the formed dispersion film, an electrode film can be formed on the support. As described above, the electrode of the present invention can be directly produced by using a current collector as the support. Examples of the method for removing the solvent include a method of evaporating the solvent at a temperature of usually 50 to 500 ° C. When colloidal silica is used as the inorganic particle dispersion, it is first dried at a temperature of 50 to 80 ° C. for 1 to 30 minutes, and then further dried at a temperature of 100 to 200 ° C. for 1 to 60 minutes. From the viewpoint of increasing Further, after the electrode film is formed on the support by a coating method, the electrode film on the support may be pressed in order to adjust the thickness of the electrode film.

電極膜を圧縮する場合には、その圧力は、10〜500kg/cm2であることが好ましく、50〜300kg/cm2であることがより好ましい。
圧縮する際の温度は、酸化還元性活物質の融点と無機粒子の融点以下であることが好ましい。更に圧縮する際の温度は、残留溶媒による液架橋力を引き起こし、電極膜の成形性を向上させるという観点から、使用する溶媒の沸点以下であることが好ましく、具体的には10〜50℃であることが好ましい。このような温度で圧縮することにより、電極膜を溶融させることなく、かつ強固に酸化還元性活物質を結着させることができ、それにより電極膜の導電性向上が期待できる。圧縮して得られる電極膜は、支持体と積層したままで使用してもよく、支持体を溶かしたり剥がしたりして、電極膜単層として使用してもよい。
When compressing an electrode film, the pressure is preferably 10~500kg / cm 2, more preferably 50~300kg / cm 2.
The compression temperature is preferably not higher than the melting point of the redox active material and the melting point of the inorganic particles. Further, the temperature at the time of compression is preferably not more than the boiling point of the solvent used from the viewpoint of causing the liquid crosslinking force by the residual solvent and improving the moldability of the electrode film, specifically 10-50 ° C. Preferably there is. By compressing at such a temperature, it is possible to bind the redox active material firmly without melting the electrode film, and thereby to improve the conductivity of the electrode film. The electrode film obtained by compression may be used while being laminated with the support, or may be used as a single electrode film by dissolving or peeling the support.

本発明の電極は、例えば、乾電池、一次電池、二次電池、レドックスキャパシタ、ハイブリッドキャパシタなどの酸化還元性蓄電デバイス電極として用いることができ、とりわけ二次電池の電極として好適である。
本発明は、一つの面において、前記本発明の電極を備えた二次電池である。具体的には、2枚の電極の間にセパレーターがあり、セパレーターと各電極との間に電解液が充填された二次電池や、2枚の電極の間に固体電解質(ゲル電解質)が充填された二次電池などが挙げられる。
二次電池では、充電時は、片方の酸化還元性活物質を含む電極からもう片方の酸化還元性活物質を含む電極にイオンが移動し充電電流が流れる。放電時は、充電時と逆にイオンが移動することで放電電流が流れる。ここでいうイオンとは各種電池で異なり、例えば該イオンがリチウムであるリチウムイオン二次電池や、該イオンがナトリウムであるナトリウムイオン二次電池が挙げられる。
二次電池は、2枚の電極、すなわち1対の正極と負極を含むセルを1つだけ有する二次電池でもよいが、このようなセルを複数有する二次電池であってもよい。
The electrode of the present invention can be used, for example, as a redox battery device electrode such as a dry battery, a primary battery, a secondary battery, a redox capacitor, and a hybrid capacitor, and is particularly suitable as an electrode of a secondary battery.
In one aspect, the present invention is a secondary battery including the electrode of the present invention. Specifically, there is a separator between two electrodes, a secondary battery in which an electrolyte is filled between the separator and each electrode, and a solid electrolyte (gel electrolyte) is filled between the two electrodes Secondary batteries and the like.
In the secondary battery, during charging, ions move from the electrode containing one redox active material to the electrode containing the other redox active material, and a charging current flows. At the time of discharging, a discharge current flows due to ions moving in the opposite manner to charging. The ion referred to here is different in various batteries, and examples include a lithium ion secondary battery in which the ion is lithium and a sodium ion secondary battery in which the ion is sodium.
The secondary battery may be a secondary battery having only two cells, that is, a single cell including a pair of positive and negative electrodes, or a secondary battery having a plurality of such cells.

本発明の電極は、電解液が充填された二次電池に好適に用いられる。このような二次電池は、より具体的には、集電体と該集電体上に積層された電極膜とを有する電極2枚が、電極膜同士が対向するように配置され、両電極膜間に更にセパレーターが配置された少なくとも1個のセルと、電解液と、前記少なくとも1個のセルおよび電解質が封入された容器とを有する。具体的には、円盤状の電極2枚を電極膜同士が対向するように配置し、両電極膜間に更にセパレーターを配置したセルを、電解液と共にコイン型ケースに封入したコイン型二次電池や、シート状の電極2枚を電極膜同士が対向するように配置し、両電極膜間に更にセパレーターを配置したセルを巻回し、これを電解液と共に円筒型ケースに封入した円筒型二次電池や、フィルム状電極とセパレーターとを積層した積層型二次電池や、蛇腹型二次電池等が挙げられる。   The electrode of the present invention is suitably used for a secondary battery filled with an electrolytic solution. More specifically, in such a secondary battery, two electrodes each having a current collector and an electrode film laminated on the current collector are arranged so that the electrode films face each other. It further includes at least one cell in which a separator is further disposed between the membranes, an electrolytic solution, and a container in which the at least one cell and the electrolyte are enclosed. Specifically, a coin-type secondary battery in which two disc-shaped electrodes are arranged so that the electrode films face each other, and a cell in which a separator is further arranged between both electrode films is enclosed in a coin-type case together with an electrolytic solution. Or a cylindrical secondary in which two sheet-like electrodes are arranged so that the electrode films face each other, a cell in which a separator is further arranged between both electrode films is wound, and this is enclosed in a cylindrical case together with an electrolytic solution Examples thereof include a battery, a laminated secondary battery in which a film electrode and a separator are laminated, and a bellows type secondary battery.

電解液としては、公知の電解質と溶媒との混合物を用いることができる。電解質は無機系電解質であっても有機系電解質であってもよい。無機系電解質は、通常、水と混合して電解液とされる。有機系電解質は、通常、有機極性溶媒を主成分とする溶媒と混合して電解液とされる。   As the electrolytic solution, a known mixture of an electrolyte and a solvent can be used. The electrolyte may be an inorganic electrolyte or an organic electrolyte. The inorganic electrolyte is usually mixed with water to form an electrolytic solution. The organic electrolyte is usually mixed with a solvent containing an organic polar solvent as a main component to form an electrolytic solution.

セパレーターとしては、大きなイオン透過度と所定の機械的強度とを持つ絶縁性の膜が用いられる。具体的には、天然セルロースやマニラ麻など天然繊維の抄紙;レーヨン、ビニロン、ポリエステルなどの再生繊維や合成繊維などの抄紙;前記天然繊維と前記再生繊維や前記合成繊維を混合して抄造した混抄紙;ポリエチレン不織布、ポリプロピレン不織布、ポリエステル不織布、ポリブチレンテレフタレー不織布などの不織布;多孔質ポリエチレン、多孔質ポリプロピレン、多孔質ポリエステルなどの多孔質膜;パラ系全芳香族ポリアミド、フッ化ビニリデン、テトラフルオロエチレン、フッ化ビニリデンと6フッ化プロピレンとの共重合体、フッ素ゴム等の含フッ素樹脂などの樹脂膜が挙げられる。   As the separator, an insulating film having a large ion permeability and a predetermined mechanical strength is used. Specifically, paper making of natural fibers such as natural cellulose and manila hemp; paper making of regenerated fibers and synthetic fibers such as rayon, vinylon and polyester; mixed paper made by mixing the natural fibers with the regenerated fibers and the synthetic fibers Non-woven fabrics such as polyethylene non-woven fabric, polypropylene non-woven fabric, polyester non-woven fabric, and polybutylene terephthalate non-woven fabric; porous membranes such as porous polyethylene, porous polypropylene, and porous polyester; para-type wholly aromatic polyamide, vinylidene fluoride, tetrafluoroethylene And a resin film such as a copolymer of vinylidene fluoride and propylene hexafluoride, or a fluorine-containing resin such as fluorine rubber.

以下、本件を実施例によってさらに具体的に説明するが、本発明はこれら実施例に限られることではない。   Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.

[実施例1]
酸化還元性活物質としてコバルト酸リチウム(和光純薬株式会社製;平均粒径6μm)、導電材としてアセチレンブラック(電気化学工業製のデンカブラック 50%プレス品;平均粒径32nm)、および人造黒鉛(ロンザ社製のKS15;平均粒径6μm)を用いた。
無機粒子としては、コロイダルシリカ(日産化学工業株式会社製のスノーテックスPS−S(商品名);平均粒径10〜50nm;球状シリカが50〜200nmの長さに結合した鎖状粒子;固形分濃度:20重量%)を用いた。
酸化還元性活物質9.0gとアセチレンブラック0.1gと人造黒鉛0.6gにコロイダルシリカ3.0gを添加し、さらに純水を添加して混合し、固形分濃度57重量%のスラリーを調製した。該スラリーは、酸化還元性活物質9.0g、アセチレンブラック0.1g、人造黒鉛0.6g、シリカ0.6gを含有していた。すなわち、酸化還元性活物質100重量部当たりの無機粒子の量は6.6重量部であった。厚さ20μmのアルミニウム箔(集電体)上に、前記スラリーをハンディ・フィルムアプリケーターを用いて塗布しスラリー膜を形成した後、室温で30分間保持後60℃で60分間、さらに150℃で6時間加熱して水を除去することで、集電体上に電極膜が積層されている電極を得た。乾燥後の電極膜の膜厚は80μmであった。
得られた電極から3.0cm×3.0cmの大きさの電極1枚を切り出して、電極膜の重量、膜厚および表面抵抗を測定した。表面抵抗の測定にはロレスタ(株式会社ダイアインストルメンツ製)を用いた。重量と膜厚から算出した密度と表面抵抗結果を表1に示した。
[Example 1]
Lithium cobalt oxide (made by Wako Pure Chemical Industries, Ltd .; average particle size 6 μm) as a redox active material, acetylene black (Denka Black 50% press product manufactured by Denki Kagaku Kogyo; average particle size 32 nm), and artificial graphite as a conductive material (KS15 manufactured by Lonza Corp .; average particle size 6 μm) was used.
As the inorganic particles, colloidal silica (Snowtex PS-S (trade name) manufactured by Nissan Chemical Industries, Ltd.); average particle size of 10 to 50 nm; chain particles in which spherical silica is bonded to a length of 50 to 200 nm; solid content Concentration: 20% by weight) was used.
Add 3.0 g of colloidal silica to 9.0 g of redox active material, 0.1 g of acetylene black and 0.6 g of artificial graphite, add pure water and mix to prepare a slurry with a solid content concentration of 57% by weight. did. The slurry contained 9.0 g of a redox active material, 0.1 g of acetylene black, 0.6 g of artificial graphite, and 0.6 g of silica. That is, the amount of inorganic particles per 100 parts by weight of the redox active material was 6.6 parts by weight. The slurry was applied onto a 20 μm thick aluminum foil (current collector) using a handy film applicator to form a slurry film, then held at room temperature for 30 minutes, then held at 60 ° C. for 60 minutes, and further at 150 ° C. for 6 minutes. By heating for a period of time to remove water, an electrode having an electrode film laminated on the current collector was obtained. The electrode film thickness after drying was 80 μm.
One electrode having a size of 3.0 cm × 3.0 cm was cut out from the obtained electrode, and the weight, film thickness, and surface resistance of the electrode film were measured. Loresta (manufactured by Dia Instruments Co., Ltd.) was used for measuring the surface resistance. Table 1 shows the density and surface resistance results calculated from the weight and film thickness.

[実施例2]
イオン液体(1−エチル−3−メチル−イミダゾリウムテトラフルオロボレート)0.01gを添加し、純水を添加して固形分濃度44重量%にした以外は実施例1と同様にしてスラリーを調製した。該スラリーは、酸化還元性活物質9.0g、アセチレンブラック0.1g、人造黒鉛0.6g、シリカ0.6g、イオン液体0.01gを含有していた。すなわち、酸化還元性活物質100重量部当たりの無機粒子の量は6.6重量部、イオン液体の量は0.11重量部であった。次に、実施例1と同様に電極を作製した。乾燥後の電極膜の膜厚は44μmであった。
得られた電極から3.0cm×3.0cmの大きさの電極1枚を切り出して、電極膜の重量、膜厚および表面抵抗を測定した。重量と膜厚から算出した密度と表面抵抗結果を表1に示した。
[Example 2]
A slurry was prepared in the same manner as in Example 1 except that 0.01 g of ionic liquid (1-ethyl-3-methyl-imidazolium tetrafluoroborate) was added and pure water was added to obtain a solid concentration of 44% by weight. did. The slurry contained 9.0 g of a redox active material, 0.1 g of acetylene black, 0.6 g of artificial graphite, 0.6 g of silica, and 0.01 g of ionic liquid. That is, the amount of inorganic particles per 100 parts by weight of the redox active material was 6.6 parts by weight, and the amount of ionic liquid was 0.11 parts by weight. Next, an electrode was produced in the same manner as in Example 1. The electrode film thickness after drying was 44 μm.
One electrode having a size of 3.0 cm × 3.0 cm was cut out from the obtained electrode, and the weight, film thickness, and surface resistance of the electrode film were measured. Table 1 shows the density and surface resistance results calculated from the weight and film thickness.

[実施例3]
イオン液体(1−エチル−3−メチル−イミダゾリウムテトラフルオロボレート)0.05gを添加し、純水を添加して固形分濃度44重量%にした以外は実施例1と同様にしてスラリーを調整した。該スラリ−は、酸化還元性活物質9.0g、アセチレンブラック0.1g、人造黒鉛0.6g、シリカ0.6g、イオン液体0.05gを含有していた。すなわち、酸化還元性活物質100重量部当たりの無機粒子の量は6.6重量部、イオン液体の量は0.56重量部であった。次に、実施例1と同様に電極を作製した。乾燥後の電極膜の膜厚は43.3μmであった。
得られた電極から3.0cm×3.0cmの大きさの電極1枚を切り出して、電極膜の重量、膜厚および表面抵抗を測定した。重量と膜厚から算出した密度と表面抵抗結果を表1に示した。
[Example 3]
A slurry was prepared in the same manner as in Example 1 except that 0.05 g of ionic liquid (1-ethyl-3-methyl-imidazolium tetrafluoroborate) was added and pure water was added to obtain a solid content concentration of 44% by weight. did. The slurry contained 9.0 g of a redox active material, 0.1 g of acetylene black, 0.6 g of artificial graphite, 0.6 g of silica, and 0.05 g of ionic liquid. That is, the amount of inorganic particles per 100 parts by weight of the redox active material was 6.6 parts by weight, and the amount of ionic liquid was 0.56 parts by weight. Next, an electrode was produced in the same manner as in Example 1. The electrode film thickness after drying was 43.3 μm.
One electrode having a size of 3.0 cm × 3.0 cm was cut out from the obtained electrode, and the weight, film thickness, and surface resistance of the electrode film were measured. Table 1 shows the density and surface resistance results calculated from the weight and film thickness.

[実施例4]
導電材に人造黒鉛を用いず、アセチレンブラック0.7gを使用し、純水を添加して固形分濃度44重量%にした以外は実施例1と同様にしてスラリーを調製した。該スラリーは、酸化還元性活物質9.0g、アセチレンブラック0.7g、シリカ0.6gを含有していた。すなわち、酸化還元性活物質100重量部当たりの無機粒子の量は6.6重量部であった。次に、実施例1と同様に電極を作製した。乾燥後の電極膜の膜厚は49.5μmであった。
得られた電極から3.0cm×3.0cmの大きさの電極1枚を切り出して、電極膜の重量、膜厚および表面抵抗を測定した。重量と膜厚から算出した密度と表面抵抗結果を表1に示した。
[Example 4]
A slurry was prepared in the same manner as in Example 1 except that 0.7 g of acetylene black was used without using artificial graphite as the conductive material, and pure water was added to obtain a solid content concentration of 44% by weight. The slurry contained 9.0 g of a redox active material, 0.7 g of acetylene black, and 0.6 g of silica. That is, the amount of inorganic particles per 100 parts by weight of the redox active material was 6.6 parts by weight. Next, an electrode was produced in the same manner as in Example 1. The thickness of the dried electrode film was 49.5 μm.
One electrode having a size of 3.0 cm × 3.0 cm was cut out from the obtained electrode, and the weight, film thickness, and surface resistance of the electrode film were measured. Table 1 shows the density and surface resistance results calculated from the weight and film thickness.

[実施例5]
実施例4と同様にしてスラリーを調製した。該スラリーは、酸化還元性活物質9.0g、アセチレンブラック0.7g、シリカ0.6gを含有していた。すなわち、酸化還元性活物質100重量部当たりの無機粒子の量は6.6重量部であった。次に、実施例1と同様に電極を作製した。乾燥後の電極膜の膜厚は28μmであった。
得られた電極から3.0cm×3.0cmの大きさの電極1枚を切り出して、プレス圧縮を行った。プレス温度は室温、プレス圧は100kg/cm3で3分間保持した。圧縮後の電極膜の重量、膜厚および表面抵抗を測定した。重量と膜厚から算出した密度と表面抵抗結果を表1に示した。
[Example 5]
A slurry was prepared in the same manner as in Example 4. The slurry contained 9.0 g of a redox active material, 0.7 g of acetylene black, and 0.6 g of silica. That is, the amount of inorganic particles per 100 parts by weight of the redox active material was 6.6 parts by weight. Next, an electrode was produced in the same manner as in Example 1. The thickness of the electrode film after drying was 28 μm.
One electrode having a size of 3.0 cm × 3.0 cm was cut out from the obtained electrode and subjected to press compression. The pressing temperature was room temperature, and the pressing pressure was maintained at 100 kg / cm 3 for 3 minutes. The weight, film thickness, and surface resistance of the electrode film after compression were measured. Table 1 shows the density and surface resistance results calculated from the weight and film thickness.

[実施例6]
イオン液体(1−エチル−3−メチル−イミダゾリウムテトラフルオロボレート)0.1gを添加し、純水を添加して固形分濃度44重量%にした以外は実施例1と同様にしてスラリーを調整した。該スラリ−は、酸化還元性活物質9.0g、アセチレンブラック0.1g、人造黒鉛0.6g、シリカ0.6g、イオン液体0.1gを含有していた。すなわち、酸化還元性活物質100重量部当たりの無機粒子の量は6.6重量部、イオン液体の量は1.11重量部であった。次に、実施例1と同様に電極を作製した。乾燥後の電極膜の膜厚は61.0μmであった。
得られた電極から3.0cm×3.0cmの大きさの電極1枚を切り出して、電極膜の重量、膜厚および表面抵抗を測定した。重量と膜厚から算出した密度と表面抵抗結果を表1に示した。
[Example 6]
The slurry was prepared in the same manner as in Example 1 except that 0.1 g of ionic liquid (1-ethyl-3-methyl-imidazolium tetrafluoroborate) was added and pure water was added to obtain a solid concentration of 44% by weight. did. The slurry contained 9.0 g of a redox active material, 0.1 g of acetylene black, 0.6 g of artificial graphite, 0.6 g of silica, and 0.1 g of ionic liquid. That is, the amount of inorganic particles per 100 parts by weight of the redox active material was 6.6 parts by weight, and the amount of ionic liquid was 1.11 parts by weight. Next, an electrode was produced in the same manner as in Example 1. The thickness of the electrode film after drying was 61.0 μm.
One electrode having a size of 3.0 cm × 3.0 cm was cut out from the obtained electrode, and the weight, film thickness, and surface resistance of the electrode film were measured. Table 1 shows the density and surface resistance results calculated from the weight and film thickness.

[比較例1]
無機粒子の代わりにフッ素樹脂粒子(シグマ・アルドリッチ社製のPVdF(商品名))3.0gを用い、純水の替わりにNメチルピロリドン(NMP)を用いた以外は実施例1と同様にしてスラリーを調製した。該スラリーは酸化還元性活物質9.0g、アセチレンブラック0.1g、人造黒鉛0.6g、PVdF0.3gを含有していた。すなわち、酸化還元性活物質100重量部当たりのフッ素樹脂の量は3.3重量部であった。次に、実施例1と同様に電極を作製した。乾燥後の電極膜の膜厚は88μmであった。
得られた電極から実施例1と同様に、3.0cm×3.0cmの大きさの電極1枚を切り出して、膜厚および表面抵抗を測定した。重量と膜厚から算出した密度と表面抵抗結果を表1に示した。
[Comparative Example 1]
Example 3 was used except that 3.0 g of fluororesin particles (PVdF (trade name) manufactured by Sigma-Aldrich) was used instead of inorganic particles, and N-methylpyrrolidone (NMP) was used instead of pure water. A slurry was prepared. The slurry contained 9.0 g of a redox active material, 0.1 g of acetylene black, 0.6 g of artificial graphite, and 0.3 g of PVdF. That is, the amount of the fluororesin per 100 parts by weight of the redox active material was 3.3 parts by weight. Next, an electrode was produced in the same manner as in Example 1. The thickness of the electrode film after drying was 88 μm.
In the same manner as in Example 1, one electrode having a size of 3.0 cm × 3.0 cm was cut out from the obtained electrode, and the film thickness and the surface resistance were measured. Table 1 shows the density and surface resistance results calculated from the weight and film thickness.

Figure 2010129418
Figure 2010129418

Claims (13)

酸化還元性活物質と無機粒子とを含み、前記酸化還元性活物質が前記無機粒子によって結着されている電極膜。 An electrode film comprising a redox active material and inorganic particles, wherein the redox active material is bound by the inorganic particles. 無機粒子がシリカである請求項1に記載の電極膜。 The electrode film according to claim 1, wherein the inorganic particles are silica. 無機粒子の平均粒径が1nm〜100nmである請求項1または2に記載の電極膜。 The electrode film according to claim 1 or 2, wherein the average particle diameter of the inorganic particles is 1 nm to 100 nm. 酸化還元性活物質100重量部に対し無機粒子1〜50重量部含有する、請求項1〜3のいずれかに記載の電極膜。 The electrode film in any one of Claims 1-3 which contains 1-50 weight part of inorganic particles with respect to 100 weight part of oxidation-reduction active materials. さらにイオン液体を含む請求項1〜4のいずれかに記載の電極膜。 Furthermore, the electrode film in any one of Claims 1-4 containing an ionic liquid. 酸化還元性活物質の融点以下であり、且つ無機粒子の融点以下の温度で圧縮した、請求項1〜5のいずれかに記載の電極膜。 The electrode film according to claim 1, wherein the electrode film is compressed at a temperature not higher than the melting point of the redox active material and not higher than the melting point of the inorganic particles. 請求項1〜6のいずれかに記載の電極膜が集電体上に積層されてなる電極。 An electrode formed by laminating the electrode film according to claim 1 on a current collector. 酸化還元性活物質および無機粒子が液体媒体に分散されている塗工液を集電体上に塗布して塗布膜を形成した後、前記塗布膜から液体媒体を除去して製造される、請求項7に記載の電極の製造方法。 A coating liquid in which a redox active material and inorganic particles are dispersed in a liquid medium is applied onto a current collector to form a coating film, and then manufactured by removing the liquid medium from the coating film. Item 8. A method for producing an electrode according to Item 7. 塗工液が、酸化還元性活物質と、無機粒子とを粉砕しながら液体媒体に混合したものであることを特徴とする、請求項8に記載の電極の製造方法。 The method for producing an electrode according to claim 8, wherein the coating liquid is a mixture of a redox active material and inorganic particles mixed in a liquid medium while being pulverized. 塗工液が、予め無機粒子が液体媒体に分散されている無機粒子分散液に、酸化還元性活物質および液体媒体を添加して混合したものであることを特徴とする、請求項8に記載の電極の製造方法。 9. The coating liquid according to claim 8, wherein the redox active material and the liquid medium are added to and mixed with an inorganic particle dispersion in which inorganic particles are previously dispersed in the liquid medium. Of manufacturing the electrode. 無機粒子分散液が、コロイダルシリカである請求項10に記載の電極の製造方法。 The method for producing an electrode according to claim 10, wherein the inorganic particle dispersion is colloidal silica. 請求項7に記載の電極を有する酸化還元性蓄電デバイス。 An oxidation-reduction power storage device having the electrode according to claim 7. 2枚の電極を電極膜同士が対向するように配置し、両電極膜間にセパレーターを介在させて巻回または積層し、電解液と共に金属ケースに封入してなる、請求項12に記載の酸化還元性蓄電デバイス。 The oxidation according to claim 12, wherein two electrodes are arranged so that the electrode films face each other, wound or laminated with a separator interposed between both electrode films, and sealed in a metal case together with an electrolytic solution. Reducing electricity storage device.
JP2008303862A 2008-11-28 2008-11-28 Electrode using inorganic particle binder, and manufacturing method thereof Pending JP2010129418A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008303862A JP2010129418A (en) 2008-11-28 2008-11-28 Electrode using inorganic particle binder, and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008303862A JP2010129418A (en) 2008-11-28 2008-11-28 Electrode using inorganic particle binder, and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2010129418A true JP2010129418A (en) 2010-06-10

Family

ID=42329665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008303862A Pending JP2010129418A (en) 2008-11-28 2008-11-28 Electrode using inorganic particle binder, and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2010129418A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010122975A1 (en) * 2009-04-24 2010-10-28 大日本印刷株式会社 Electrode plate for non-aqueous electrolyte secondary battery, process for production of electrode plate for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP2012109205A (en) * 2010-10-19 2012-06-07 Dainippon Printing Co Ltd Electrode plate for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and battery pack
US8394537B2 (en) 2009-04-24 2013-03-12 Dai Nippon Printing Co., Ltd. Electrode plate for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
US8394536B2 (en) 2009-04-24 2013-03-12 Dai Nippon Printing Co., Ltd. Electrode plate for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
US8394538B2 (en) 2009-04-24 2013-03-12 Dai Nippon Printing Co., Ltd. Electrode plate for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
US8673492B2 (en) 2009-04-24 2014-03-18 Dai Nippon Printing Co., Ltd. Cathode plate for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP2019169404A (en) * 2018-03-26 2019-10-03 株式会社東芝 Electrode, secondary battery, battery pack, and vehicle

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010122975A1 (en) * 2009-04-24 2010-10-28 大日本印刷株式会社 Electrode plate for non-aqueous electrolyte secondary battery, process for production of electrode plate for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP2010272511A (en) * 2009-04-24 2010-12-02 Dainippon Printing Co Ltd Electrode plate for nonaqueous electrolyte solution secondary battery, method for manufacturing electrode plate for nonaqueous electrolyte solution secondary battery, and nonaqueous electrolyte solution secondary battery
US8394535B2 (en) 2009-04-24 2013-03-12 Dai Nippon Printing Co., Ltd. Electrode plate for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
US8394537B2 (en) 2009-04-24 2013-03-12 Dai Nippon Printing Co., Ltd. Electrode plate for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
US8394536B2 (en) 2009-04-24 2013-03-12 Dai Nippon Printing Co., Ltd. Electrode plate for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
US8394538B2 (en) 2009-04-24 2013-03-12 Dai Nippon Printing Co., Ltd. Electrode plate for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
US8673492B2 (en) 2009-04-24 2014-03-18 Dai Nippon Printing Co., Ltd. Cathode plate for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP2012109205A (en) * 2010-10-19 2012-06-07 Dainippon Printing Co Ltd Electrode plate for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and battery pack
JP2019169404A (en) * 2018-03-26 2019-10-03 株式会社東芝 Electrode, secondary battery, battery pack, and vehicle

Similar Documents

Publication Publication Date Title
JP5365260B2 (en) Electrode film and electrode containing ionic liquid, manufacturing method thereof, and electricity storage device
WO2010061965A1 (en) Electrode film, electrode, method for manufacturing the electrode, and electrical storage device
TWI821838B (en) Manufacturing method of sheet for solid secondary battery and binder for solid secondary battery
JP2009272041A (en) Lithium-ion secondary battery
Kwak et al. Implementation of stable electrochemical performance using a Fe0. 01ZnO anodic material in alkaline Ni–Zn redox battery
JP2010129418A (en) Electrode using inorganic particle binder, and manufacturing method thereof
JP5157222B2 (en) Electrode and electrochemical device
JP2008108649A (en) Method for manufacturing positive electrode for lithium secondary battery for vehicle
JP5269390B2 (en) Electrode film, electrode, manufacturing method thereof, and electric double layer capacitor
EP3913706A1 (en) Pre-lithiated negative electrode and preparation method therefor, and lithium ion battery and supercapacitor having pre-lithiated negative electrode
JP6947552B2 (en) Secondary battery and its manufacturing method
JP2019016484A (en) Negative electrode for all solid state battery and all solid state battery having the same
JP2013135223A (en) Electrode active material-conductive agent composite, method for preparing the same, and electrochemical capacitor comprising the same
JP5336752B2 (en) Carbon particle film, laminated electrode, and manufacturing method of electric double layer capacitor
Zhang et al. Hydrogenated vanadium oxides as an advanced anode material in lithium ion batteries
Yin et al. Nano-TiNb2O7/CNTs composites with pseudocapacitive behavior for superior lithium-ion storage
JP5349821B2 (en) Solid fine particle dispersion, electrode film coating liquid, electrode and method for producing electric double layer capacitor
JP2020047764A (en) Electric double layer capacitor electrode and electric double layer capacitor
Wang et al. Enhanced pseudocapacitance of amorphous oxy-hydroxides epitaxially grown on intermetallics nanofoam
JPWO2009107716A1 (en) Method for producing electrochemical element electrode
JP7486006B2 (en) Manufacturing method of sheet for solid secondary battery, binder for electrode of solid secondary battery, composition for producing electrode, electrode mixture, and electrode
JP2014232708A (en) Secondary battery electrode, manufacturing method thereof, and secondary battery
JP2006128049A (en) Electronic component for storage of electricity
Khamsanga MnO2/carbon material cathode for rechargeable aqueous electrolyte-based zinc-ion batteries
JP2009224561A (en) Metal oxide particle-containing polarizable electrode, and electric double layer capacitor using the same