JP2010127916A - Method for extracting and evaluating inclusion - Google Patents
Method for extracting and evaluating inclusion Download PDFInfo
- Publication number
- JP2010127916A JP2010127916A JP2008306746A JP2008306746A JP2010127916A JP 2010127916 A JP2010127916 A JP 2010127916A JP 2008306746 A JP2008306746 A JP 2008306746A JP 2008306746 A JP2008306746 A JP 2008306746A JP 2010127916 A JP2010127916 A JP 2010127916A
- Authority
- JP
- Japan
- Prior art keywords
- inclusions
- sio
- steel
- inclusion
- mgo
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title abstract description 27
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 51
- 239000010959 steel Substances 0.000 claims abstract description 51
- 238000000605 extraction Methods 0.000 claims abstract description 19
- 238000011156 evaluation Methods 0.000 claims abstract description 15
- MODGUXHMLLXODK-UHFFFAOYSA-N [Br].CO Chemical compound [Br].CO MODGUXHMLLXODK-UHFFFAOYSA-N 0.000 claims abstract description 11
- 239000000126 substance Substances 0.000 claims abstract description 11
- LDDQLRUQCUTJBB-UHFFFAOYSA-O azanium;hydrofluoride Chemical compound [NH4+].F LDDQLRUQCUTJBB-UHFFFAOYSA-O 0.000 claims abstract description 6
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 49
- 239000000463 material Substances 0.000 claims description 33
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 9
- 229910052784 alkaline earth metal Inorganic materials 0.000 abstract description 3
- 150000001875 compounds Chemical class 0.000 abstract description 2
- 239000000499 gel Substances 0.000 description 18
- 239000002131 composite material Substances 0.000 description 12
- 238000012360 testing method Methods 0.000 description 8
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 5
- 239000000523 sample Substances 0.000 description 5
- 238000011978 dissolution method Methods 0.000 description 4
- 238000001914 filtration Methods 0.000 description 4
- 229910052839 forsterite Inorganic materials 0.000 description 4
- HCWCAKKEBCNQJP-UHFFFAOYSA-N magnesium orthosilicate Chemical compound [Mg+2].[Mg+2].[O-][Si]([O-])([O-])[O-] HCWCAKKEBCNQJP-UHFFFAOYSA-N 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000003960 organic solvent Substances 0.000 description 4
- 239000002253 acid Substances 0.000 description 3
- 238000004090 dissolution Methods 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 229910000655 Killed steel Inorganic materials 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 150000001342 alkaline earth metals Chemical class 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005868 electrolysis reaction Methods 0.000 description 2
- 238000004453 electron probe microanalysis Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- MIMUSZHMZBJBPO-UHFFFAOYSA-N 6-methoxy-8-nitroquinoline Chemical compound N1=CC=CC2=CC(OC)=CC([N+]([O-])=O)=C21 MIMUSZHMZBJBPO-UHFFFAOYSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- DIZZIOFQEYSTPV-UHFFFAOYSA-N [I].CO Chemical compound [I].CO DIZZIOFQEYSTPV-UHFFFAOYSA-N 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 238000011086 high cleaning Methods 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- WKPSFPXMYGFAQW-UHFFFAOYSA-N iron;hydrate Chemical compound O.[Fe] WKPSFPXMYGFAQW-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000006166 lysate Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 239000000289 melt material Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000012265 solid product Substances 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Sampling And Sample Adjustment (AREA)
- Investigating And Analyzing Materials By Characteristic Methods (AREA)
Abstract
Description
本発明は、鋼材中に含まれる介在物を有効に抽出評価する方法に関するものである。 The present invention relates to a method for effectively extracting and evaluating inclusions contained in a steel material.
鉄鋼材料(鋼材)に含まれる酸化物系介在物は、該鋼材の諸性質、例えば強度、靭性、加工性、表面性状等に多大な影響を及ぼしている。こうしたことから、酸化物系介在物の鋼中における存在個数、大きさ等を評価することは鋼材を扱う技術者にとって大きな関心事である。 Oxide inclusions contained in steel materials (steel materials) have a great influence on various properties of the steel materials, such as strength, toughness, workability, and surface properties. For these reasons, it is of great interest to engineers who handle steel materials to evaluate the number and size of oxide inclusions in steel.
鋼材中の介在物を評価する方法は様々提案されているが、被検体積をできるだけ大きくし、介在物の形態を三次元的に観察できる方法としては、鋼を溶解し、介在物を抽出する方法が代表的なものとして挙げられ、こうした方法を実施するときには下記の手順に従って行なわれる。 Various methods for evaluating inclusions in steel materials have been proposed, but as a method to increase the test volume as much as possible and observe the form of inclusions three-dimensionally, melt the steel and extract the inclusions. The method is listed as a representative method, and when the method is carried out, the following procedure is performed.
鋼の溶解→溶液を濾過する(溶け残った介在物を濾紙上に残存させる)→濾紙上の残渣を、光学顕微鏡、SEM、EPMA等で観察および分析する、または残渣の総量を化学分析により評価する。また、上記方法で介在物を評価するに当たっては、下記(a)〜(c)の要件が要求される。 Dissolve steel → Filter the solution (leave undissolved inclusions on the filter paper) → Observe and analyze the residue on the filter paper with an optical microscope, SEM, EPMA, etc., or evaluate the total amount of the residue by chemical analysis To do. In addition, when the inclusions are evaluated by the above method, the following requirements (a) to (c) are required.
(a)必要な被検量の鋼材が溶解でき、評価の対象となる介在物を溶解しないこと:
介在物を抽出する上で当然要求される要件であり、必要な被検量の鋼材を溶解でき、しかも対象となる介在物が溶けない(少なくとも、抽出作業中には、大部分が溶解しない)ことが必要である。
(A) A necessary amount of steel material can be dissolved, and inclusions to be evaluated are not dissolved:
It is a requirement that is naturally required to extract inclusions, and it can dissolve the required amount of steel, and the target inclusions do not melt (at least during extraction, most do not dissolve). is required.
(b)鋼材中の評価対象とする介在物以外のものを抽出しないこと:
対象とする介在物以外の介在物が大量に存在すると、対象とする介在物が埋もれてしまい、介在物を正確に観察できないことになる。
(B) Do not extract anything other than inclusions to be evaluated in steel:
When a large amount of inclusions other than the target inclusion exists, the target inclusion is buried, and the inclusion cannot be observed accurately.
(c)溶解、抽出の妨げとなる反応生成物が形成されないこと:
抽出した物質を観察するときに、対象とする介在物以外のものが多く存在すると、観察に支障を来すことになる。従って、鋼の溶解液中に鋼中の合金元素等との反応により何らかの固体生成物が、鋼の溶解液中に形成されないことが好ましい。鋼中の介在物抽出時に問題となりやすいものの一例として、SiO2の水和物[SiO2・nH2O]を主体とするゲルの生成が挙げられる。
(C) No reaction product is formed which hinders dissolution and extraction:
When many substances other than the target inclusion are present when observing the extracted substance, the observation is hindered. Therefore, it is preferable that no solid product is formed in the steel solution due to the reaction with the alloying elements and the like in the steel solution. An example of the material can easily become a problem when inclusions extracted in steel, the generation of a gel consisting mainly of hydrate of SiO 2 [SiO 2 · nH 2 O] and the like.
一般的な介在物であるAl2O3等の抽出評価方法については、これまでにも様々な技術が報告されており、例えば非特許文献1には、各種方法が概説されている。近年、鋼の高清浄化への要求がますます厳しくなる中、Al2O3等以外の介在物についても、多量の被検量を確保できる介在物の抽出評価方法の確立が望まれている。 Various techniques for extracting and evaluating Al 2 O 3 and the like, which are general inclusions, have been reported so far. For example, Non-Patent Document 1 outlines various methods. In recent years, with the demand for high cleaning of steel becoming more and more severe, it is desired to establish an extraction evaluation method for inclusions that can secure a large amount of test for inclusions other than Al 2 O 3 and the like.
例えば酸化物系介在物の1種であるMgO−SiO2系複合介在物を抽出するに当たっては、この複合介在物を溶解しない溶解法が必要になるが、こうした溶解法に関する技術は報告されていない。酸溶解抽出法に比べて、介在物の溶損を著しく抑制できる溶解法として、ハロゲン−有機溶剤による溶解法も知られているが、この方法では、アルカリ土類金属を含む酸化物(CaO,MgO等)や硫化物等の介在物は溶解することが知られている。 For example, in order to extract MgO—SiO 2 composite inclusions, which are one type of oxide inclusions, a dissolution method that does not dissolve the composite inclusions is required, but no technology relating to such dissolution methods has been reported. . A dissolution method using a halogen-organic solvent is also known as a dissolution method capable of significantly suppressing the dissolution loss of inclusions compared to the acid dissolution extraction method. In this method, an oxide containing an alkaline earth metal (CaO, Inclusions such as MgO and sulfides are known to dissolve.
これらの介在物の抽出法に対して、鋼材を電解によって溶解する方法等が知られており、適正な電解条件を選ぶことによって、ほとんど全ての介在物の定量的な抽出分離が可能であることが報告されている(前記非特許文献1)。 In contrast to these inclusion extraction methods, there are known methods for dissolving steel materials by electrolysis, and by selecting appropriate electrolytic conditions, almost all inclusions can be quantitatively extracted and separated. Has been reported (Non-Patent Document 1).
上記したハロゲン−有機溶剤としては、ヨウ素−メタノール溶液や臭素−メタノール溶液が知られているが、CaO−SiO2,3CaO−2SiO2,MgO等の酸化物は、これらの溶液に対して溶解する(即ち、抽出できない)ので(前記非特許文献1)、これらの介在物の抽出に当たっては、電解法が採用されるのが一般的である。 As the organic solvent, iodine - - halogen mentioned above methanol solution and bromine - Methanol solution is known, CaO-SiO 2, 3CaO- 2SiO 2, oxides such as MgO is soluble in these solutions (I.e., it cannot be extracted) (Non-Patent Document 1), the electrolysis method is generally employed for extracting these inclusions.
一方、電解法によって鋼材を溶解した場合には、MnSやTiN等、鋼材中に比較的多く存在する非金属介在物も抽出されることから、対象とする介在物の評価がしにくいという問題がある。 On the other hand, when the steel material is dissolved by the electrolytic method, non-metallic inclusions such as MnS and TiN that are relatively present in the steel material are also extracted, which makes it difficult to evaluate the target inclusions. is there.
ところで、ハロゲン−有機溶剤を用いて鋼材を溶解した場合には、鋼材中の溶存Siが溶液中でゲル化して水和物を主体とするゲル(以下、「SiO2ゲル」と呼ぶ)が生成する等、反応性が強く、適用できる介在物の種類が制限されていた。また、ヨウ素−メタノール溶液で溶解した場合には、水または雰囲気中酸素により鉄水和物が沈殿することも報告されている(前記非特許文献1)。これらが生成すると、抽出の阻害となるうえに、抽出された評価対象介在物の測定(観察、分析)の妨げとなるという問題がある(例えば特許文献1)。
本発明はこうした従来技術における課題を解決する為になされたものであって、その目的は、MgO−SiO2に代表されるようなアルカリ土類金属を含む介在物(特に複合酸化物)を、SiO2ゲルの生成による不都合を回避しつつ有効に抽出評価するための有用な方法を提供することにある。 The present invention has been made to solve such problems in the prior art, and its purpose is to include inclusions (particularly complex oxides) containing alkaline earth metals such as MgO—SiO 2 . An object of the present invention is to provide a useful method for effective extraction and evaluation while avoiding inconvenience due to generation of SiO 2 gel.
上記課題を解決することのできた本発明方法とは、介在物を鋼材中から抽出するに当り、前記鋼材を臭素−メタノール溶液中に投入して前記鋼材を溶解し残渣を濾過した後、得られる介在物含有物質をフッ化水素アンモニウム溶液で処理することによって、介在物含有物質中に含まれる介在物を抽出評価する点に要旨を有するものである。 The method of the present invention capable of solving the above problems is obtained by extracting the inclusions from the steel material, adding the steel material into a bromine-methanol solution, dissolving the steel material, and filtering the residue. It has a gist in that the inclusions contained in the inclusion-containing substance are extracted and evaluated by treating the inclusion-containing substance with an ammonium hydrogen fluoride solution.
本発明方法において、対象とする介在物は、酸化物を主体とするものであり、Al2O3,SiO2,MgO−SiO2のいずれかを含むもの等が挙げられるが、特に少なくともMgO−SiO2を抽出評価するときにその効果を発揮する。 In the method of the present invention, the target inclusions are mainly composed of oxides, and include those containing any of Al 2 O 3 , SiO 2 , and MgO—SiO 2. The effect is exhibited when extracting and evaluating SiO 2 .
本発明方法は、上記のようなSiO2ゲルが生成しやすいような鋼材、特にSi含有量が0.1質量%以上であるような鋼材に適用したときにその効果が有効に発揮される。 The method of the present invention is effective when applied to a steel material in which the above-described SiO 2 gel is easily generated, particularly a steel material having a Si content of 0.1% by mass or more.
本発明では、介在物を鋼材中から抽出するに際して、鋼材を臭素−メタノール溶液中に投入して前記鋼材を溶解し残渣を濾過した後、得られる介在物含有物質をフッ化水素アンモニウム溶液で処理することによって、SiO2ゲル等の生成による不都合を回避しつつ、MgO−SiO2系複合酸化物に代表される介在物を効果的に抽出評価することができた。 In the present invention, when the inclusions are extracted from the steel material, the steel material is put into a bromine-methanol solution, the steel material is dissolved and the residue is filtered, and the resulting inclusion-containing substance is treated with an ammonium hydrogen fluoride solution. By doing so, it was possible to effectively extract and evaluate inclusions typified by MgO—SiO 2 composite oxides while avoiding inconvenience due to the generation of SiO 2 gel and the like.
本発明者らは、鋼材中に含まれるMgO−SiO2系複合酸化物(即ち、複合介在物)を効果的に濾過、抽出評価するための有用な方法について、様々な角度から検討した。その結果、鋼を溶解するための溶液として、特に臭素−メタノール溶液を用いれば、鋼を溶解させつつMgO−SiO2系複合介在物は溶解しないことが判明した。 The present inventors have studied a useful method for effectively filtering and extracting and evaluating MgO—SiO 2 -based composite oxides (ie, composite inclusions) contained in steel materials from various angles. As a result, it was found that when a bromine-methanol solution was used as a solution for dissolving steel, the MgO—SiO 2 composite inclusions were not dissolved while the steel was dissolved.
MgO−SiO2系複合介在物等に代表される複合過酸化物については、上述の如く酸やハロゲン−有機溶剤等に溶解してしまい、これらの介在物を抽出することは困難であると考えられていた。こうしたことが、MgO−SiO2を濾過・抽出して評価する方法が確立されていなかった理由と考えられる。 Complex peroxides typified by MgO-SiO 2 -based composite inclusions are dissolved in acids and halogen-organic solvents as described above, and it is difficult to extract these inclusions. It was done. This is considered to be the reason why a method for evaluating by filtering and extracting MgO—SiO 2 has not been established.
一方、MgOと同じアルカリ金属であるCaOとSiO2の化合物を、溶解させない方法は、電解法以外には知られていない。また、MgO−SiO2系の複合介在物である例えばフォルステライト(Forsterite)を生成する鋼は或る程度の高Si鋼である場合が多いが、高Si鋼の評価には臭素−メタノール溶液の適用はできないことも知られている(前記特許文献1)。 On the other hand, there is no known method other than the electrolytic method in which the compound of CaO and SiO 2 which is the same alkali metal as MgO is not dissolved. In addition, for example, steel that produces forsterite (Forsterite), which is a composite inclusion of MgO—SiO 2, is often a high Si steel, but for evaluation of high Si steel, a bromine-methanol solution is used. It is also known that it cannot be applied (Patent Document 1).
本発明者らは、従来の既成概念にとらわれず、特殊溶解炉によって作製した各種組成比、各種結晶化状態(Forsterite,Enstatite,非晶質)のMgO−SiO2を用いて、その溶解性について検討した。その結果、臭素−メタノール溶液を溶解液体として用いた場合であっても、フォルステライトやMgO−SiO2系複合介在物は溶解することなく濾過・抽出させることができ、これらの成分を含む酸化物系介在物を評価できることを見出した。 The inventors of the present invention are not limited to the conventional concept, and use MgO-SiO 2 in various composition ratios and various crystallization states (Forsterite, Enstate, amorphous) produced by a special melting furnace. investigated. As a result, even when a bromine-methanol solution is used as a dissolving liquid, forsterite and MgO-SiO 2 composite inclusions can be filtered and extracted without dissolving, and oxides containing these components It was found that system inclusions can be evaluated.
また、臭素−メタノール溶液を用いてSi濃度が高い鋼を溶解した場合には、酸化物系介在物の抽出工程においてSiO2ゲルが生成し、こうしたSiO2ゲルが生成すると抽出後の介在物分析の妨げとなることは上述した通りである。本発明者らは、SiO2ゲル生成による不都合を回避するという観点からも検討を重ねた。その結果、鋼材を臭素−メタノール溶液中に投入して前記鋼材を溶解した後、フィルタ上の残渣を、フッ化水素アンモニウム溶液によって処理(即ち、洗浄)すれば、SiO2ゲルが効果的に除去でき、SiO2ゲルよる介在物分析の妨げを回避できることも見出し、本発明を完成した。 In addition, when steel with high Si concentration is dissolved using bromine-methanol solution, SiO 2 gel is generated in the extraction process of oxide inclusions, and when such SiO 2 gel is generated, inclusion analysis after extraction is performed. As described above, this is an obstacle. The present inventors have also studied from the viewpoint of avoiding inconvenience due to the generation of SiO 2 gel. As a result, after the steel material is put into a bromine-methanol solution to dissolve the steel material, the residue on the filter is treated (ie, washed) with an ammonium hydrogen fluoride solution, so that the SiO 2 gel is effectively removed. It was also found that the hindrance of inclusion analysis by SiO 2 gel can be avoided, and the present invention has been completed.
本発明は、上記趣旨から明らかなように、MgO−SiO2系複合介在物の抽出評価を可能とするものであるが、その他の介在物として当然にアルミナ(Al2O3)系やシリカ(SiO2)系の介在物の抽出評価にも有効であることは勿論である。 As apparent from the above, the present invention enables extraction evaluation of MgO—SiO 2 composite inclusions. Naturally, other inclusions include alumina (Al 2 O 3 ) and silica ( Of course, it is also effective for the extraction evaluation of SiO 2 ) inclusions.
本発明方法においては、SiO2ゲルよる介在物分析の妨げを回避できるものであるので、上記のようなSiO2ゲルが生成しやすいような鋼材、特にSi含有量が0.1質量%以上であるような鋼材に適用したときにその効果が有効に発揮されるものとなる。 In the method of the present invention, since those can be avoided interfere with inclusions analysis by SiO 2 gel, steels such as SiO 2 gel is likely to produce as described above, in particular Si content of 0.1 mass% or more When applied to certain steel materials, the effect is effectively exhibited.
以下、本発明を実施例によって更に詳細に説明するが、下記実施例は本発明を限定する性質のものではなく、前・後記の趣旨に徴して設計変更することはいずれも本発明の技術的範囲に含まれるものである。 Hereinafter, the present invention will be described in more detail by way of examples. However, the following examples are not intended to limit the present invention, and any design changes in accordance with the gist of the preceding and following descriptions are technical aspects of the present invention. It is included in the range.
[実施例1]
下記表1に示した化学成分組成となるようなラボ溶製材を作製した。このとき、MgO−SiO2系複合介在物を生成させるため、少量のMgを含有させた。
[Example 1]
A lab melt material having the chemical component composition shown in Table 1 below was prepared. At this time, a small amount of Mg was contained in order to generate MgO—SiO 2 composite inclusions.
作製した鋼材から20gの小片を7個切り出し、表面のスケールを処理して、試料とした。切り出した試料を、下記表1に示す各種溶解液で溶解し(各溶解液の入ったビーカに、洗浄した試料を投入)、介在物を濾過・抽出した。 Seven small pieces of 20 g were cut out from the produced steel material, and the surface scale was processed to prepare a sample. The cut sample was dissolved with various dissolving solutions shown in Table 1 below (the washed sample was put into a beaker containing each dissolving solution), and inclusions were filtered and extracted.
この濾過・抽出に際しては、抽出液(試料を溶解した後の溶解液)を、孔径:1μmのフィルタで濾過した後、下記表1に示す溶液を用い、フィルタを洗浄した。 In this filtration / extraction, the extract (dissolved solution after dissolving the sample) was filtered with a filter having a pore size of 1 μm, and then the filter was washed with the solution shown in Table 1 below.
このフィルタ上の残渣をX線マイクロアナライザー(Erectron Probe X−ray Micro Analyzer:EPMA)で長径:10μm以上の介在物を分析し、SiまたはAlを含む介在物の組成と大きさを測定し、シリカ系(SiO2系)、アルミナ系(Al2O3系)およびMgO−SiO2系の各介在物の個数を測定した。尚、本評価においては、ブランク測定(鋼材を溶解せずに同じ操作を行うこと)において、評価対象となる介在物がゼロ個であること確認したうえで実施した。 The residue on this filter is analyzed for inclusions having a major axis of 10 μm or more with an X-ray microanalyzer (Electron Probe X-ray Micro Analyzer: EPMA), and the composition and size of inclusions containing Si or Al are measured. The number of inclusions of the system (SiO 2 system), alumina system (Al 2 O 3 system) and MgO—SiO 2 system was measured. In addition, in this evaluation, it implemented after confirming that the inclusion used as evaluation object was zero in blank measurement (performing the same operation, without melt | dissolving steel materials).
尚、分析した介在物は、MgOおよびSiO2が夫々25質量%以上、且つMgOとSiO2の総量が60質量%以上であるものをMgO−SiO2系、SiO2を60質量%以上、且つMgOを25質量%未満(0質量%を含む)含有するものをSiO2系、Al2O3を60質量%以上含有するものをAl2O3系とした。これらの結果を、下記表1に併記する。 The inclusions analyzed were MgO and SiO 2 , each containing 25% by mass or more, and the total amount of MgO and SiO 2 being 60% by mass or more, MgO—SiO 2 system, SiO 2 being 60% by mass or more, and the MgO less than 25% by mass (including 0 mass%) those containing SiO 2 system, those of Al 2 O 3 containing not less than 60 wt% was Al 2 O 3 system. These results are also shown in Table 1 below.
この結果から次のように考察できる。試験No.1のものは、溶解液として臭素−メタノール溶液を用い、しかもフッ化水素アンモニウム溶液を用いてSiO2ゲル処理を行ったものであり、SiO2系およびMgO−SiO2系の各介在物の評価が有効に行えていることが分かる。 From this result, it can be considered as follows. Test No. One thing, bromine as lysates - methanol solution using, moreover ammonium bifluoride solution are those subjected to SiO 2 gel process using an evaluation of the inclusion of SiO 2 system and MgO-SiO 2 system It can be seen that is effectively performed.
これに対して、硝酸や塩酸等の酸を用いて溶解したもの(試験No.2、3)や、臭素−メタノール溶液を用いてもフッ化水素アンモニウム溶液を用いてSiO2ゲル処理を行なわなかったもの(試験No.4、5)では、介在物の評価が行えないか、測定ができない(SiO2ゲルが多量に生成)状態であった。尚、上記表1には電解法によって鋼材を溶解したものも示したが(試験No.6、7)、これらの方法では介在物の抽出自体ができなかった(残渣が多く濾過できなかった)。 On the other hand, a solution dissolved with an acid such as nitric acid or hydrochloric acid (test Nos. 2 and 3) or a bromine-methanol solution was not subjected to SiO 2 gel treatment using an ammonium hydrogen fluoride solution. The samples (test Nos. 4 and 5) were in a state where inclusions could not be evaluated or measured (a large amount of SiO 2 gel was generated). In addition, although the thing which melt | dissolved steel materials by the electrolytic method was also shown in the said Table 1 (test No. 6, 7), extraction of inclusion itself was not able to be performed by these methods (a lot of residue was not able to be filtered) .
[実施例2]
各種介在物を評価するため、下記表2に示した各種化学成分組成となるようなラボ溶製材を作製し、実施例1と同様にして評価した、その結果を、抽出時の処理(溶解液、SiO2ゲル処理)と共に、下記表2に示す。
[Example 2]
In order to evaluate various inclusions, lab melts having various chemical component compositions shown in Table 2 below were prepared and evaluated in the same manner as in Example 1. The result was treated at the time of extraction (solution) , SiO 2 gel treatment) and the following Table 2.
この結果から明らかなように、アルミキルド鋼におけるAl2O3系介在物(試験No.8)、シリコンキルド鋼におけるSiO2系介在物およびMgO−SiO2系複合介在物の評価が有効に行なえていることが分かる(試験No.9〜11)。
As is clear from this result, evaluation of Al 2 O 3 inclusions (test No. 8) in aluminum killed steel, evaluation of SiO 2 inclusions and MgO-SiO 2 composite inclusions in silicon killed steel can be performed effectively. (Test Nos. 9 to 11).
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008306746A JP5055251B2 (en) | 2008-12-01 | 2008-12-01 | Inclusion extraction evaluation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008306746A JP5055251B2 (en) | 2008-12-01 | 2008-12-01 | Inclusion extraction evaluation method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010127916A true JP2010127916A (en) | 2010-06-10 |
JP5055251B2 JP5055251B2 (en) | 2012-10-24 |
Family
ID=42328411
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008306746A Expired - Fee Related JP5055251B2 (en) | 2008-12-01 | 2008-12-01 | Inclusion extraction evaluation method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5055251B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ITMI20101576A1 (en) * | 2010-08-27 | 2012-02-28 | Cogne Acciai Speciali S P A | METHOD FOR CHEMICAL ANALYSIS OF ELEMENTS IN METALLIC ALLOYS |
JP2012194110A (en) * | 2011-03-17 | 2012-10-11 | Sumitomo Metal Ind Ltd | Method for separating and analyzing inclusion in steel |
CN113702120A (en) * | 2021-07-15 | 2021-11-26 | 北京科技大学 | Device and method for extracting inclusions in steel |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02176560A (en) * | 1988-12-28 | 1990-07-09 | Sumitomo Metal Ind Ltd | Method for determining multielement composite oxide by form |
JPH06249845A (en) * | 1993-02-25 | 1994-09-09 | Kawasaki Steel Corp | Analysis of oxide group existing substance in each form of iron and steel powder and compaction member |
JP2003027184A (en) * | 2001-07-12 | 2003-01-29 | Kobe Steel Ltd | High-strength wire rod with excellent cold wire drawability |
JP2003027263A (en) * | 2001-07-10 | 2003-01-29 | Hakuto Co Ltd | How to remove silicate scale |
JP2005315648A (en) * | 2004-04-27 | 2005-11-10 | Kobe Steel Ltd | Method for extracting oxide based inclusion in metal |
-
2008
- 2008-12-01 JP JP2008306746A patent/JP5055251B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02176560A (en) * | 1988-12-28 | 1990-07-09 | Sumitomo Metal Ind Ltd | Method for determining multielement composite oxide by form |
JPH06249845A (en) * | 1993-02-25 | 1994-09-09 | Kawasaki Steel Corp | Analysis of oxide group existing substance in each form of iron and steel powder and compaction member |
JP2003027263A (en) * | 2001-07-10 | 2003-01-29 | Hakuto Co Ltd | How to remove silicate scale |
JP2003027184A (en) * | 2001-07-12 | 2003-01-29 | Kobe Steel Ltd | High-strength wire rod with excellent cold wire drawability |
JP2005315648A (en) * | 2004-04-27 | 2005-11-10 | Kobe Steel Ltd | Method for extracting oxide based inclusion in metal |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ITMI20101576A1 (en) * | 2010-08-27 | 2012-02-28 | Cogne Acciai Speciali S P A | METHOD FOR CHEMICAL ANALYSIS OF ELEMENTS IN METALLIC ALLOYS |
JP2012194110A (en) * | 2011-03-17 | 2012-10-11 | Sumitomo Metal Ind Ltd | Method for separating and analyzing inclusion in steel |
CN113702120A (en) * | 2021-07-15 | 2021-11-26 | 北京科技大学 | Device and method for extracting inclusions in steel |
Also Published As
Publication number | Publication date |
---|---|
JP5055251B2 (en) | 2012-10-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chiba et al. | Direct observation of pit initiation process on type 304 stainless steel | |
JP2009031269A (en) | Method for determining the solid solution content of the element of interest in a metal sample | |
RU2698004C1 (en) | Device for electrolytic etching and dissolution and a method for extracting particles of a metallic compound | |
EP3418712B1 (en) | Method for extracting metal compound particles, method for analyzing metal compound particles, and the use of the electrolyte solution for extracting metal compound particles present in a metal material | |
JP5055251B2 (en) | Inclusion extraction evaluation method | |
WO2018003128A1 (en) | Method of separately visualizing austenite phase, martensite phase and bainitic-ferrite matrix in bainitic steel and bainitic steel specimen for microstructure observation | |
JP5835385B2 (en) | Method for determination of magnesium oxide and magnesium hydroxide in inorganic compound samples | |
Liang et al. | Effect of inclusion on service properties of GW103K magnesium alloy | |
SI23106A (en) | Procedure of dynamic deep etching and particle extraction from aluminium alloys | |
JP5223665B2 (en) | Method for analyzing precipitates and / or inclusions in metal materials | |
KR20220082076A (en) | A method for extracting precipitates and/or inclusions, a method for quantitative analysis of precipitates and/or inclusions, an electrolyte solution, and a method for preparing a replica sample | |
JP2004198145A (en) | METHOD FOR ANALYZING CaO-CONTAINING INCLUSION IN METAL | |
JP6897532B2 (en) | Electrolytic solution for extracting metal compound particles, and electrolytic extraction method using it | |
JP4762926B2 (en) | High weatherability steel with improved dense rust formation and steel structure using the same | |
Batista et al. | The effects of deoxidation practice on the quality of thin foil low-carbon steel | |
JP2009008586A (en) | Method for determining the solid solution content of the element of interest in a metal sample | |
Liang et al. | Evaluation of a new single-tube multiprobe real-time PCR for diagnosis of Entamoeba histolytica and Entamoeba dispar | |
JP2002340885A (en) | ANALYSIS METHOD FOR CaO-CONTAINING INCLUSION IN STEEL | |
JP2010008090A (en) | Analysis method of cao-containing inclusion in steel | |
JP6969222B2 (en) | Cu-added steel sheet | |
JP4005583B2 (en) | Method for extracting oxide inclusions in metal | |
JP5569445B2 (en) | Method for separating inclusions in steel and analysis method for particle size distribution | |
Stypula et al. | Corrosion behaviour of stainless steel in hot concentrated sulfuric acid–effect of fluoride impurities | |
JP7010411B2 (en) | A method for extracting precipitates and / or inclusions, a method for quantitative analysis of precipitates and / or inclusions, and an electrolytic solution. | |
Li et al. | Intergranular corrosion of 304 stainless steel pickled in acidic electrolytes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110204 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120522 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120524 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120629 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120724 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120730 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5055251 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150803 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |