JP2010127830A - Method and apparatus for quantifying hydrogen peroxide - Google Patents
Method and apparatus for quantifying hydrogen peroxide Download PDFInfo
- Publication number
- JP2010127830A JP2010127830A JP2008304585A JP2008304585A JP2010127830A JP 2010127830 A JP2010127830 A JP 2010127830A JP 2008304585 A JP2008304585 A JP 2008304585A JP 2008304585 A JP2008304585 A JP 2008304585A JP 2010127830 A JP2010127830 A JP 2010127830A
- Authority
- JP
- Japan
- Prior art keywords
- hydrogen peroxide
- sample solution
- dissolved oxygen
- concentration
- oxygen sensor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 title claims abstract description 473
- 238000000034 method Methods 0.000 title claims abstract description 51
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 226
- 239000001301 oxygen Substances 0.000 claims abstract description 221
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 221
- 239000012488 sample solution Substances 0.000 claims abstract description 111
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims abstract description 105
- 238000000354 decomposition reaction Methods 0.000 claims abstract description 96
- 230000003287 optical effect Effects 0.000 claims abstract description 96
- 229910052697 platinum Inorganic materials 0.000 claims abstract description 46
- 239000003054 catalyst Substances 0.000 claims abstract description 44
- 238000012545 processing Methods 0.000 claims abstract description 12
- 239000002105 nanoparticle Substances 0.000 claims description 20
- 239000007788 liquid Substances 0.000 claims description 17
- 239000002245 particle Substances 0.000 claims description 15
- 238000011002 quantification Methods 0.000 claims description 13
- 230000001681 protective effect Effects 0.000 claims description 11
- 239000003795 chemical substances by application Substances 0.000 claims description 9
- 238000005349 anion exchange Methods 0.000 claims description 4
- 238000007872 degassing Methods 0.000 claims description 4
- 239000000523 sample Substances 0.000 abstract description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 21
- 238000005259 measurement Methods 0.000 description 19
- 230000005284 excitation Effects 0.000 description 12
- 239000011540 sensing material Substances 0.000 description 12
- 239000000243 solution Substances 0.000 description 11
- 239000013307 optical fiber Substances 0.000 description 10
- 239000003957 anion exchange resin Substances 0.000 description 9
- 239000000835 fiber Substances 0.000 description 9
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 230000003197 catalytic effect Effects 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- 230000000171 quenching effect Effects 0.000 description 6
- 102000004190 Enzymes Human genes 0.000 description 5
- 108090000790 Enzymes Proteins 0.000 description 5
- 239000011521 glass Substances 0.000 description 5
- 239000001257 hydrogen Substances 0.000 description 5
- 229910052739 hydrogen Inorganic materials 0.000 description 5
- 229910021642 ultra pure water Inorganic materials 0.000 description 5
- 239000012498 ultrapure water Substances 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 229910052763 palladium Inorganic materials 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 229920001131 Pulp (paper) Polymers 0.000 description 3
- 239000007844 bleaching agent Substances 0.000 description 3
- 239000012459 cleaning agent Substances 0.000 description 3
- 239000000645 desinfectant Substances 0.000 description 3
- 239000003814 drug Substances 0.000 description 3
- 238000010828 elution Methods 0.000 description 3
- 235000013305 food Nutrition 0.000 description 3
- 150000002431 hydrogen Chemical class 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000010453 quartz Substances 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- -1 silane alkoxide Chemical class 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 238000000862 absorption spectrum Methods 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 239000000084 colloidal system Substances 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 238000004020 luminiscence type Methods 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- YAYGSLOSTXKUBW-UHFFFAOYSA-N ruthenium(2+) Chemical compound [Ru+2] YAYGSLOSTXKUBW-UHFFFAOYSA-N 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 239000005909 Kieselgur Substances 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 102000003992 Peroxidases Human genes 0.000 description 1
- 239000012327 Ruthenium complex Substances 0.000 description 1
- 239000006087 Silane Coupling Agent Substances 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 229910001361 White metal Inorganic materials 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000000249 desinfective effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000006911 enzymatic reaction Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 150000002391 heterocyclic compounds Chemical class 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 239000003456 ion exchange resin Substances 0.000 description 1
- 229920003303 ion-exchange polymer Polymers 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 238000002796 luminescence method Methods 0.000 description 1
- HWYHZTIRURJOHG-UHFFFAOYSA-N luminol Chemical compound O=C1NNC(=O)C2=C1C(N)=CC=C2 HWYHZTIRURJOHG-UHFFFAOYSA-N 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 239000002082 metal nanoparticle Substances 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- DCKVFVYPWDKYDN-UHFFFAOYSA-L oxygen(2-);titanium(4+);sulfate Chemical compound [O-2].[Ti+4].[O-]S([O-])(=O)=O DCKVFVYPWDKYDN-UHFFFAOYSA-L 0.000 description 1
- 108040007629 peroxidase activity proteins Proteins 0.000 description 1
- 238000005375 photometry Methods 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 150000004032 porphyrins Chemical class 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 229910000348 titanium sulfate Inorganic materials 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- 238000005292 vacuum distillation Methods 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
- 239000010969 white metal Substances 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Images
Landscapes
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
- Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
Abstract
【課題】試料溶液中の過酸化水素濃度を、正確に、かつ連続して定量できる過酸化水素の定量方法と過酸化水素の定量装置を提供する。
【解決手段】過酸化水素を含む試料溶液を、白金を担持した過酸化水素分解触媒と接触させた後の処理液中の溶存酸素濃度を光酸素センサで測定し、その溶存酸素濃度から前記試料溶液中の過酸化水素濃度を定量する過酸化水素の定量方法。また、前記方法において、前記試料溶液中の溶存酸素を過酸化水素分解前に測定すると、精度が向上する。さらに過酸化水素を含む試料溶液を、光酸素センサに供給して前記試料溶液中の溶存酸素濃度を測定後、切替手段によって、前記溶液を、白金を担持した過酸化水素分解触媒と前記試料溶液接とを接触させた後、その処理液中の溶存酸素濃度を前記光酸素センサで測定し、前記光酸素センサにより得られた両者の溶存酸素濃度から、前記試料溶液中の過酸化水素濃度を定量することもできる。
【選択図】図1A hydrogen peroxide determination method and a hydrogen peroxide determination apparatus capable of accurately and continuously determining the hydrogen peroxide concentration in a sample solution are provided.
A sample solution containing hydrogen peroxide is contacted with a hydrogen peroxide decomposition catalyst supporting platinum, and a dissolved oxygen concentration in a processing solution is measured by an optical oxygen sensor, and the sample is calculated from the dissolved oxygen concentration. A method for quantifying hydrogen peroxide that quantifies the concentration of hydrogen peroxide in a solution. Further, in the above method, when the dissolved oxygen in the sample solution is measured before hydrogen peroxide decomposition, the accuracy is improved. Further, after supplying a sample solution containing hydrogen peroxide to the optical oxygen sensor and measuring the dissolved oxygen concentration in the sample solution, the solution is converted into a hydrogen peroxide decomposition catalyst supporting platinum and the sample solution by a switching means. After the contact with each other, the dissolved oxygen concentration in the processing solution is measured by the optical oxygen sensor, and the hydrogen peroxide concentration in the sample solution is determined from the dissolved oxygen concentrations obtained by the optical oxygen sensor. It can also be quantified.
[Selection] Figure 1
Description
本発明は、過酸化水素を含む試料溶液中の過酸化水素濃度を測定する過酸化水素の定量方法、およびその定量装置に関する。 The present invention relates to a method for quantifying hydrogen peroxide for measuring the concentration of hydrogen peroxide in a sample solution containing hydrogen peroxide, and a quantification apparatus therefor.
過酸化水素は、その優れた酸化作用により、食品、医薬品、紙パルプ、繊維、および電子工業などで、洗浄剤や漂白剤、殺菌消毒剤等として利用されている。特に、半導体や液晶製造工場等では、電子部品の洗浄や製造プラントの殺菌消毒処理のために使用されている。また、水処理分野では、被処理物質の処理のために、オゾン等の酸化剤が使用される結果、副生物として過酸化水素が発生し、後処理工程における悪影響を防ぐために過酸化水素を分解、消失させる必要が生じる。特に、この処理水が放流水として系外に放出される際には、含有される過酸化水素を完全に分解処理する必要がある。
このような用水や排水を扱う水処理分野では、過酸化水素の濃度を連続的に、かつ正確に把握して、管理しなければならない必要性が高い。
Hydrogen peroxide is used as a cleaning agent, a bleaching agent, a disinfectant and the like in foods, pharmaceuticals, paper pulp, fibers, and the electronics industry because of its excellent oxidizing action. In particular, in semiconductor and liquid crystal manufacturing factories and the like, they are used for cleaning electronic components and sterilizing and disinfecting manufacturing plants. In the field of water treatment, oxidants such as ozone are used to treat substances to be treated. As a result, hydrogen peroxide is generated as a by-product, and hydrogen peroxide is decomposed to prevent adverse effects in the post-treatment process. Need to disappear. In particular, when this treated water is discharged out of the system as discharged water, it is necessary to completely decompose the hydrogen peroxide contained therein.
In the water treatment field that handles such water and wastewater, it is highly necessary that the concentration of hydrogen peroxide must be continuously and accurately grasped and managed.
過酸化水素の濃度を測定する方法として、従来、ヨウ素滴定法や硫酸チタン、過マンガン酸による吸光光度法が知られている。しかし、これらの方法は連続測定には不向きで、感度も十分ではなかった。
そこで、酵素を用いた発光法による過酸化水素の測定法(特許文献1)や、紫外線分光分析による過酸化水素の測定法(特許文献2)、検体水中の過酸化水素を溶存酸素に分解し、検体水中の過酸化水素濃度を演算する方法(特許文献3)、などが提案されている。
特許文献1記載の発明方法は、過酸化水素と反応して発光する化学発光物質を含むサンプル溶液を触媒酵素の存在下で反応させて、過酸化水素濃度に比例する化学発光量を光センサで検出するようにしたもので、化学発光物質としてルミノールを、触媒酵素としてペルオキシダーゼを用いた過酸化水素センサを使用している。
一方、特許文献2記載の方法は、過酸化水素と過酸化水素の濃度測定を妨害する成分とを含む試料溶液中の過酸化水素の濃度を、前記試料溶液の紫外線の透過光量と、前記試料溶液から、過酸化水素を所定量分解除去した紫外線の透過光量との比から推定して測定するものである。
この特許文献2の記載では、試料溶液槽と過酸化水素の分解槽と三方切替弁を有し、分解槽には過酸化水素分解触媒であるコイル状の白金線が配設されている。この分解槽には振動モータも付設され、過酸化水素分解を促進する。過酸化水素の濃度減衰試料は分解槽で、例えば10分間保持して調製され、三方切替弁で試料溶液と適宜切り替えて、分光分析器に供給される。
特許文献3の記載の方法は、水処理プロセスからの検体水を有する過酸化水素分解部と溶存酸素測定部に通液し、検体水中の過酸化水素濃度を演算するものである。
Conventionally known methods for measuring the concentration of hydrogen peroxide are iodometric titration, absorptiometry using titanium sulfate and permanganic acid. However, these methods are not suitable for continuous measurement and the sensitivity is not sufficient.
Therefore, a method for measuring hydrogen peroxide by an luminescence method using an enzyme (Patent Document 1), a method for measuring hydrogen peroxide by ultraviolet spectroscopic analysis (Patent Document 2), and decomposing hydrogen peroxide in a sample water into dissolved oxygen. A method of calculating the hydrogen peroxide concentration in the sample water (Patent Document 3) has been proposed.
In the invention method described in Patent Document 1, a sample solution containing a chemiluminescent substance that emits light by reacting with hydrogen peroxide is reacted in the presence of a catalytic enzyme, and a chemiluminescence amount proportional to the hydrogen peroxide concentration is measured with an optical sensor. A hydrogen peroxide sensor using luminol as a chemiluminescent substance and peroxidase as a catalytic enzyme is used.
On the other hand, in the method described in Patent Document 2, the concentration of hydrogen peroxide in a sample solution containing hydrogen peroxide and a component that interferes with the measurement of the concentration of hydrogen peroxide, the amount of transmitted UV light of the sample solution, and the sample The measurement is performed by estimating from the ratio to the amount of transmitted ultraviolet light obtained by decomposing and removing a predetermined amount of hydrogen peroxide from the solution.
In the description of Patent Document 2, a sample solution tank, a hydrogen peroxide decomposition tank, and a three-way switching valve are provided, and a coiled platinum wire as a hydrogen peroxide decomposition catalyst is disposed in the decomposition tank. A vibration motor is also attached to the decomposition tank to promote hydrogen peroxide decomposition. The hydrogen peroxide concentration-attenuated sample is prepared by holding for 10 minutes in a decomposition tank, for example, and is appropriately switched to the sample solution by a three-way switching valve and supplied to the spectroscopic analyzer.
In the method described in Patent Document 3, the hydrogen peroxide decomposition part having the sample water from the water treatment process and the dissolved oxygen measuring part are passed through, and the hydrogen peroxide concentration in the sample water is calculated.
しかしながら、特許文献1記載の方法では、過酸化水素の測定が酵素を含む膜内での酵素反応に起因しているため、過酸化水素量に対する発光光量が温度等によって影響を受ける酵素活性によって変化したり、化学発光物質を被測定対象となる試料溶液に所定量含有させる必要があるため、測定は必然的にバッチ式となり、安定した測定が困難である等の理由のため、特に多量の試料溶液中の過酸化水素を常時モニターするような用途には適さなかった。
特許文献2記載の方法についても、上記紫外線による分光測定方法では、紫外領域で広帯域の光源、すなわち大型で高電圧が必要な放電管(水銀ランプ、キセノンランプなど)と電源が必要なため、また、紫外線の分光計測装置は、波長が短いために波面収差を小さくするためには、可視光と比較して波長の比率の分だけ、高精度で紫外線透過率に優れた光学部品を使用する必要があるため、装置が大型化、重量化、および高価格化してしまう。加えて、紫外線による分光測定方法では、試料溶液中の妨害物質の吸光スペクトルが過酸化水素の吸光スペクトルに被っている場合が多いため、過酸化水素濃度を正確に測定できないという問題があった。
いずれの方法も、特に、多量の試料溶液中の過酸化水素を常時連続してモニタリングする用途には適さなかった。
一方、特許文献3記載の方法は、検体水の過酸化水素濃度を自動化できる方法であるが、溶存酸素測定手段としては、公知の溶存酸素計により構成される旨の記載がある。このような公知の溶存酸素計では常にメンテナンスを十分しておかないと、すぐに誤差が発生する。従って、測定自体は自動化できても、装置のメンテナンスが大変になる可能性がある。
さらに、特許文献3記載の過酸化水素分解手段についても、金属触媒(Ptなど)の例示はあるが、活性炭や合成吸着材が特に好適である旨記載されているが、これらの材料では活性が十分でないため、大量の材料を必要としたり、交換頻度が増えたりする可能性がある。
However, in the method described in Patent Document 1, since the measurement of hydrogen peroxide is caused by an enzyme reaction in the membrane containing the enzyme, the amount of light emitted with respect to the amount of hydrogen peroxide varies depending on the enzyme activity affected by temperature or the like. Or a chemiluminescent substance must be contained in the sample solution to be measured, so that the measurement is inevitably batch-type, and stable measurement is difficult. It was not suitable for applications where hydrogen peroxide in the solution was constantly monitored.
Also in the method described in Patent Document 2, the above-described spectroscopic measurement method using ultraviolet rays requires a broadband light source in the ultraviolet region, that is, a large discharge tube (such as a mercury lamp or a xenon lamp) and a power source that require high voltage. In order to reduce wavefront aberration due to the short wavelength of ultraviolet spectroscopic measurement equipment, it is necessary to use optical components with high accuracy and excellent ultraviolet transmittance by the ratio of wavelength compared to visible light. As a result, the apparatus becomes larger, heavier, and more expensive. In addition, the spectroscopic measurement method using ultraviolet rays has a problem in that the hydrogen peroxide concentration cannot be accurately measured because the absorption spectrum of the interfering substance in the sample solution often covers the absorption spectrum of hydrogen peroxide.
Neither method is particularly suitable for applications in which hydrogen peroxide in a large amount of sample solution is continuously monitored.
On the other hand, the method described in Patent Document 3 is a method that can automate the hydrogen peroxide concentration of the specimen water, but there is a description that the dissolved oxygen measuring means is constituted by a known dissolved oxygen meter. If such a known dissolved oxygen meter is not always maintained sufficiently, an error occurs immediately. Therefore, even if the measurement itself can be automated, maintenance of the apparatus may be difficult.
Furthermore, the hydrogen peroxide decomposition means described in Patent Document 3 is also exemplified by metal catalysts (such as Pt), but it is described that activated carbon and synthetic adsorbents are particularly suitable. However, these materials are not active. Since it is not sufficient, a large amount of material may be required and the exchange frequency may increase.
試料溶液中の過酸化水素濃度を、正確に、迅速に、かつ必要に応じて、連続して定量することができる過酸化水素の定量方法、および過酸化水素の定量装置を提供することを目的とする。 An object of the present invention is to provide a hydrogen peroxide quantification method and a hydrogen peroxide quantification device capable of quantifying the hydrogen peroxide concentration in a sample solution accurately, rapidly, and continuously as necessary. And
本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、本発明方法に想達し、当該目的を達成し得ることを見出したものである。
すなわち、本発明は、以下を要旨とするものである。
1.過酸化水素を含む試料溶液を、白金を担持した過酸化水素分解触媒と接触させた後の処理液中の溶存酸素濃度を光酸素センサで測定し、その溶存酸素濃度から前記試料溶液中の過酸化水素濃度を定量することを特徴とする過酸化水素の定量方法。
2.過酸化水素を含む試料溶液中の溶存酸素濃度と、白金を担持した過酸化水素分解触媒を前記試料溶液と接触させた後の処理液中の溶存酸素濃度とを、それぞれ光酸素センサで測定し、前記光酸素センサにより得られた両者の溶存酸素濃度から、前記試料溶液中の過酸化水素濃度を定量することを特徴とする過酸化水素の定量方法。
3.過酸化水素を含む試料溶液を、光酸素センサに供給して前記試料溶液中の溶存酸素濃度を測定後、切替手段によって、前記試料溶液と白金を担持した過酸化水素分解触媒とを接触させた後、その処理液中の溶存酸素濃度を前記光酸素センサで測定し、前記光酸素センサにより得られた両者の溶存酸素濃度から、前記試料溶液中の過酸化水素濃度を定量することを特徴とする過酸化水素の定量方法。
4、前記試料溶液を脱気した後、前記過酸化水素分解触媒と接触させる上記1〜3のいずれかに記載の過酸化水素の定量方法。
5.前記白金が、保護コロイド形成剤を0〜200質量ppm含む上記1〜4のいずれかに記載の過酸化水素の定量方法。
6.前記白金が、白金ナノ粒子である上記1〜5のいずれかに記載の過酸化水素の定量方法。
7.前記白金ナノ粒子が、体積平均粒径1〜50nmの粒子である上記6記載の過酸化水素の定量方法。
8.過酸化水素分解触媒が、アニオン交換基を持つ表面に白金を担持したものである上記1〜7のいずれかに記載の過酸化水素の定量方法。
9.前記光酸素センサが、可視光で励起し、蛍光又は燐光で溶存酸素を検出するものである上記1〜8のいずれかに記載の過酸化水素の定量方法。
10.前記過酸化水素を含む試料溶液が連続的に供給されて、過酸化水素濃度が連続的に定量される上記1〜9のいずれかに記載の過酸化水素の定量方法。
11.過酸化水素を含む試料溶液供給手段と、白金を担持した過酸化水素分解触媒を充填した過酸化水素分解槽と、光酸素センサによる溶存酸素測定手段と、前記光酸素センサによる溶存酸素測定手段で測定された溶存酸素濃度から試料溶液中の過酸化水素濃度を演算する演算手段と、前記試料溶液供給手段からの試料溶液を前記過酸化水素分解槽に供給する手段と、前記過酸化水素分解槽からの処理液を前記光酸素センサによる溶存酸素測定手段に供給する手段と、を具備することを特徴とする過酸化水素濃度の定量装置。
12.過酸化水素を含む試料溶液供給手段と、光酸素センサによる溶存酸素測定手段Aと、白金を担持した過酸化水素分解触媒を充填した過酸化水素分解槽と、光酸素センサによる溶存酸素測定手段Bと、前記光酸素センサによる溶存酸素測定手段A、Bで測定された各溶存酸素濃度から、前記試料溶液中の過酸化水素濃度を演算する演算手段と、前記試料溶液供給手段からの試料溶液を前記光酸素センサによる溶存酸素測定手段Aに供給する手段と、前記溶存酸素測定手段Aからの流出液を前記過酸化水素分解槽に供給する手段と、前記過酸化水素分解槽からの処理液を前記光酸素センサによる溶存酸素測定手段Bに供給する手段と、を具備することを特徴とする過酸化水素濃度の定量装置。
13.白金を担持した過酸化水素分解触媒を充填した過酸化水素分解槽と、光酸素センサによる溶存酸素測定手段と、過酸化水素を含む試料溶液を前記光酸素センサによる溶存酸素測定手段、または前記白金担持触媒を充填した過酸化水素分解槽のいずれかに供給可能とされた切替手段を有する試料溶液供給手段と、前記白金担持触媒を充填した過酸化水素分解槽からの処理液を前記光酸素センサによる溶存酸素測定手段に供給する手段と、前記光酸素センサによる溶存酸素測定手段で測定された溶存酸素濃度と、前記白金担持触媒を充填した過酸化水素分解槽からの処理液を前記光酸素センサによる溶存酸素測定手段で測定された溶存酸素濃度とから、前記試料溶液中の過酸化水素濃度を演算する演算手段と、を具備する過酸化水素濃度の定量装置。
14.前記過酸化水素分解槽が、脱気装置を前置したものである上記11〜13のいずれかに記載の過酸化水素濃度の定量装置。
15.前記白金が、保護コロイド形成剤を0〜200質量ppm含む上記11〜14のいずれかに記載の過酸化水素濃度の定量装置。
16.前記白金が、白金ナノ粒子である上記11〜15のいずれかに記載の過酸化水素濃度の定量装置。
17.前記白金ナノ粒子が、体積平均粒径1〜50nmの粒子である上記16記載の過酸化水素濃度の定量装置。
18.過酸化水素分解触媒が、アニオン交換基を持つ表面に白金を担持したものである上記11〜17のいずれかに記載の過酸化水素濃度の定量装置。
19.前記光酸素センサが、可視光で励起し、蛍光又は燐光で溶存酸素を検出するものである上記11〜18のいずれかに記載の過酸化水素濃度の定量装置。
20.前記過酸化水素を含む試料溶液が連続的に供給されて、過酸化水素濃度が連続的に定量される上記11〜19のいずれかに記載の過酸化水素濃度の定量装置。
As a result of intensive studies to solve the above problems, the present inventors have conceived the method of the present invention and found that the object can be achieved.
That is, the gist of the present invention is as follows.
1. After the sample solution containing hydrogen peroxide is brought into contact with the hydrogen peroxide decomposition catalyst supporting platinum, the dissolved oxygen concentration in the treatment solution is measured by a photo-oxygen sensor, and the excess oxygen in the sample solution is measured from the dissolved oxygen concentration. A method for quantifying hydrogen peroxide, characterized in that the concentration of hydrogen oxide is quantified.
2. The dissolved oxygen concentration in the sample solution containing hydrogen peroxide and the dissolved oxygen concentration in the treatment solution after the platinum-supported hydrogen peroxide decomposition catalyst was brought into contact with the sample solution were measured with an optical oxygen sensor. A method for quantifying hydrogen peroxide, comprising quantifying the hydrogen peroxide concentration in the sample solution from both dissolved oxygen concentrations obtained by the optical oxygen sensor.
3. After supplying the sample solution containing hydrogen peroxide to the optical oxygen sensor and measuring the dissolved oxygen concentration in the sample solution, the sample solution was brought into contact with the hydrogen peroxide decomposition catalyst supporting platinum by the switching means. Thereafter, the dissolved oxygen concentration in the processing solution is measured by the optical oxygen sensor, and the hydrogen peroxide concentration in the sample solution is quantified from both dissolved oxygen concentrations obtained by the optical oxygen sensor. Method for determining hydrogen peroxide.
4. The method for quantifying hydrogen peroxide according to any one of 1 to 3, wherein the sample solution is degassed and then brought into contact with the hydrogen peroxide decomposition catalyst.
5). 5. The method for quantifying hydrogen peroxide according to any one of 1 to 4 above, wherein the platinum contains 0 to 200 ppm by mass of a protective colloid-forming agent.
6). 6. The method for quantifying hydrogen peroxide according to any one of 1 to 5 above, wherein the platinum is platinum nanoparticles.
7). 7. The method for quantifying hydrogen peroxide according to 6 above, wherein the platinum nanoparticles are particles having a volume average particle diameter of 1 to 50 nm.
8). 8. The method for quantifying hydrogen peroxide according to any one of 1 to 7, wherein the hydrogen peroxide decomposition catalyst has platinum supported on a surface having an anion exchange group.
9. 9. The method for quantifying hydrogen peroxide according to any one of 1 to 8 above, wherein the optical oxygen sensor is excited by visible light and detects dissolved oxygen by fluorescence or phosphorescence.
10. 10. The method for quantifying hydrogen peroxide according to any one of 1 to 9, wherein the sample solution containing hydrogen peroxide is continuously supplied, and the hydrogen peroxide concentration is continuously quantified.
11. A sample solution supply means containing hydrogen peroxide, a hydrogen peroxide decomposition tank filled with a hydrogen peroxide decomposition catalyst supporting platinum, a dissolved oxygen measuring means by an optical oxygen sensor, and a dissolved oxygen measuring means by the optical oxygen sensor. A calculating means for calculating the hydrogen peroxide concentration in the sample solution from the measured dissolved oxygen concentration; a means for supplying the sample solution from the sample solution supplying means to the hydrogen peroxide decomposition tank; and the hydrogen peroxide decomposition tank And a means for supplying the processing solution from the above to the dissolved oxygen measuring means by the optical oxygen sensor.
12 Sample solution supply means containing hydrogen peroxide, dissolved oxygen measuring means A using an optical oxygen sensor, a hydrogen peroxide decomposition tank filled with a hydrogen peroxide decomposition catalyst carrying platinum, and dissolved oxygen measuring means B using an optical oxygen sensor And calculating means for calculating the hydrogen peroxide concentration in the sample solution from the dissolved oxygen concentrations measured by the dissolved oxygen measuring means A and B by the optical oxygen sensor, and the sample solution from the sample solution supplying means. Means for supplying dissolved oxygen measuring means A by the optical oxygen sensor; means for supplying effluent from the dissolved oxygen measuring means A to the hydrogen peroxide decomposition tank; and treatment liquid from the hydrogen peroxide decomposition tank. Means for supplying the dissolved oxygen measuring means B by the optical oxygen sensor;
13. Hydrogen peroxide decomposition tank filled with hydrogen peroxide decomposition catalyst supporting platinum, dissolved oxygen measuring means using optical oxygen sensor, dissolved oxygen measuring means using optical oxygen sensor for sample solution containing hydrogen peroxide, or platinum A sample solution supply means having a switching means capable of being supplied to any one of the hydrogen peroxide decomposition tanks filled with the supported catalyst, and a processing solution from the hydrogen peroxide decomposition tank filled with the platinum-supported catalyst as the optical oxygen sensor. Supplying the dissolved oxygen measuring means by the optical oxygen sensor, the dissolved oxygen concentration measured by the dissolved oxygen measuring means by the optical oxygen sensor, and the treatment liquid from the hydrogen peroxide decomposition tank filled with the platinum-supported catalyst to the optical oxygen sensor. And a calculating means for calculating the hydrogen peroxide concentration in the sample solution from the dissolved oxygen concentration measured by the dissolved oxygen measuring means by .
14 14. The hydrogen peroxide concentration quantification apparatus according to any one of the above 11 to 13, wherein the hydrogen peroxide decomposition tank is equipped with a deaeration device.
15. 15. The apparatus for quantitatively determining a hydrogen peroxide concentration according to any one of the above 11 to 14, wherein the platinum contains 0 to 200 mass ppm of a protective colloid-forming agent.
16. 16. The apparatus for determining a hydrogen peroxide concentration according to any one of the above 11 to 15, wherein the platinum is platinum nanoparticles.
17. 17. The hydrogen peroxide concentration quantification apparatus according to 16, wherein the platinum nanoparticles are particles having a volume average particle diameter of 1 to 50 nm.
18. 18. The apparatus for quantitatively determining a hydrogen peroxide concentration according to any one of the above 11 to 17, wherein the hydrogen peroxide decomposition catalyst has platinum supported on a surface having an anion exchange group.
19. 19. The apparatus for quantitatively determining a hydrogen peroxide concentration according to any one of the above 11 to 18, wherein the optical oxygen sensor is excited by visible light and detects dissolved oxygen by fluorescence or phosphorescence.
20. 20. The hydrogen peroxide concentration quantification apparatus according to any one of the above 11 to 19, wherein the sample solution containing hydrogen peroxide is continuously supplied and the hydrogen peroxide concentration is continuously quantified.
本発明によれば、試料溶液中の過酸化水素濃度を、正確に、迅速に、かつ、必要に応じて連続的に定量することができる過酸化水素の定量方法、および過酸化水素の定量装置を提供することができる。 According to the present invention, a hydrogen peroxide quantification method and a hydrogen peroxide quantification apparatus capable of accurately, rapidly, and continuously quantifying the hydrogen peroxide concentration in a sample solution as needed. Can be provided.
本発明においては、できるだけ高い過酸化水素分解能力を持ち、不純物の混入、溶出のない材料を最適な形態で用いると共に、過酸化水素の分解によって発生した酸素のみを測定するようにしたもので、白金を担持した触媒を用いて試料溶液中の過酸化水素を分解し、そのとき発生した溶存酸素を光酸素センサで測定して、試料溶液中の過酸化水素濃度を定量するものであり、以下に本発明の過酸化水素濃度の定量方法および装置を、図1〜4を用いて説明する。
先ず図1は、光酸素センサを2台使用した本発明の一実施態様を示すフロー図であり、光酸素センサAによる溶存酸素測定手段10(以下、単に光酸素センサAと言うことがある。)と、過酸化水素を含む試料溶液を前記光酸素センサAに供給する手段(以下、単に試料溶液供給手段と言うことがある。)3と、白金担持触媒を充填した過酸化水素分解槽(以下、単に過酸化水素分解槽と言うことがある。)2と、光酸素センサBによる溶存酸素測定手段10(以下、単に光酸素センサBと言うことがある。)と、前記光酸素センサAからの流出液を前記過酸化水素分解槽2に供給する手段(以下、単に流出液供給手段と言うことがある。)4と、前記過酸化水素分解槽2からの処理液を前記光酸素センサBに供給する手段(以下、単に処理液供給手段と言うことがある。)5と、前記光センサAおよびBにより測定された溶存酸素濃度から、前記試料溶液中の過酸化水素濃度を演算する演算手段(図示せず)と、を具備する。なお、光酸素センサBからの流出液は、試料溶液排出手段6によってこの測定系から排出される。
In the present invention, a material having as high a hydrogen peroxide decomposition capability as possible and not containing impurities and elution is used in an optimal form, and only oxygen generated by the decomposition of hydrogen peroxide is measured. Hydrogen peroxide in the sample solution is decomposed using a catalyst supporting platinum, and the dissolved oxygen generated at that time is measured with an optical oxygen sensor to quantify the hydrogen peroxide concentration in the sample solution. The method and apparatus for determining the hydrogen peroxide concentration of the present invention will be described with reference to FIGS.
First, FIG. 1 is a flow chart showing an embodiment of the present invention using two optical oxygen sensors. The dissolved oxygen measuring means 10 using the optical oxygen sensor A (hereinafter simply referred to as the optical oxygen sensor A). ), A means for supplying a sample solution containing hydrogen peroxide to the optical oxygen sensor A (hereinafter sometimes simply referred to as a sample solution supply means) 3, and a hydrogen peroxide decomposition tank filled with a platinum-supported catalyst ( Hereinafter, it may be simply referred to as a hydrogen peroxide decomposition tank.) 2, dissolved oxygen measuring means 10 using the optical oxygen sensor B (hereinafter sometimes simply referred to as the optical oxygen sensor B), and the optical oxygen sensor A. Means 4 for supplying the effluent from the hydrogen peroxide decomposition tank 2 (hereinafter sometimes simply referred to as effluent supply means) 4 and the treatment liquid from the hydrogen peroxide decomposition tank 2 for the optical oxygen sensor. Means for supplying to B (hereinafter simply referred to as processing liquid supply means) There are Ukoto.) And 5, the dissolved oxygen concentration measured by the optical sensors A and B, comprises a, an arithmetic unit (not shown) for calculating the concentration of hydrogen peroxide in the sample solution. The effluent from the optical oxygen sensor B is discharged from the measurement system by the sample solution discharge means 6.
次に図2は、本発明の他の実施態様を示すフロー図である。なお、図3および図4においては、共通部材には同一番号を付してある。
図2は、図1に示したような光酸素センサを2台設置する代わりに、試料供給手段に切替手段を配して、光酸素センサ1台で測定することができるようにしたフローを示す。
すなわち、過酸化水素を含む試料溶液を、光酸素センサCによる溶存酸素測定手段10(以下、単に酸素センサCと言うことがある。)に供給する配管3aと、前記過酸化水素分解槽2に供給する配管3bとを設け、かつ、配管3a、3bにそれぞれ切替手段8、9を設けた試料溶液供給手段3と、前記過酸化水素分解槽2からの処理液を、処理液供給手段5により前記酸素センサCに供給するようになされたものである。
このフローによれば、先ず切替弁8を開、切替弁9を閉として、試料溶液を光酸素センサCに供給し、前記試料溶液中の溶存酸素を測定後、前記切替弁8を閉、切替弁9を開として試料溶液の流路を切り替え、過酸化水素分解槽2に供給し、そこで過酸化水素を分解して酸素を発生させた後、その処理液を処理液供給手段5により前記光酸素センサCに供給して前記過酸化水素の濃度を測定することができる。
ここで、図2では、過酸化水素分解槽2に設けられた処理液供給手段5は、前記配管3aに合流するように示されているが、直接光酸素センサCと連結するようにしても良い。また、図2では、切替弁2個を有する切替手段が示されているが、それに限られず、例えば、三方弁1個を用いた切替手段を採用しても良い。
図2のフローを採用すれば、光酸素センサは1台だけ使用すれば良く、より経済性に優れる。
なお、本発明において、各手段の通液速度等が異なる場合には、溶液の調整槽を設ければ良いが、図1、図2においては図示していない。
なお、本発明では、上記の過酸化水素分解触媒と接触させる前に、試料溶液を脱気装置(図示せず。)で脱気すると、測定精度を高めることができるので、好ましい。
このような脱気装置としては、窒素ガスパージ脱気装置、減圧蒸留装置、および膜式脱気装置などを挙げることができる。
Next, FIG. 2 is a flowchart showing another embodiment of the present invention. In FIG. 3 and FIG. 4, the same numbers are assigned to the common members.
FIG. 2 shows a flow in which, instead of installing two optical oxygen sensors as shown in FIG. 1, a switching means is arranged in the sample supply means so that measurement can be performed with one optical oxygen sensor. .
That is, the sample solution containing hydrogen peroxide is supplied to the dissolved oxygen measuring means 10 (hereinafter sometimes simply referred to as oxygen sensor C) by the optical oxygen sensor C, and to the hydrogen peroxide decomposition tank 2. The sample solution supply means 3 provided with the
According to this flow, first, the switching valve 8 is opened, the switching valve 9 is closed, the sample solution is supplied to the optical oxygen sensor C, the dissolved oxygen in the sample solution is measured, and then the switching valve 8 is closed and switched. The flow path of the sample solution is switched by opening the valve 9 and supplied to the hydrogen peroxide decomposition tank 2, where hydrogen peroxide is decomposed to generate oxygen, and then the processing liquid is supplied to the light by the processing liquid supply means 5. The concentration of the hydrogen peroxide can be measured by supplying the oxygen sensor C.
Here, in FIG. 2, the treatment liquid supply means 5 provided in the hydrogen peroxide decomposition tank 2 is shown to join the
If the flow of FIG. 2 is adopted, only one optical oxygen sensor needs to be used, which is more economical.
In the present invention, a solution adjusting tank may be provided when the flow rate of each means is different, but it is not shown in FIGS.
In the present invention, it is preferable to deaerate the sample solution with a deaeration device (not shown) before contacting with the hydrogen peroxide decomposition catalyst because the measurement accuracy can be improved.
Examples of such a degassing device include a nitrogen gas purge degassing device, a vacuum distillation device, and a membrane degassing device.
本発明における過酸化水素を含む試料溶液は、過酸化水素濃度を測定、またはモニタリングしたい溶液であれば、特に限定されないが、例えば、食品、医薬品、紙パルプ、繊維、および電子工業などで使用される過酸化水素を含む洗浄剤、漂白剤、および殺菌消毒剤等が挙げられる。特に、半導体や液晶製造工場で使用される純水や、超純水、排水処理場、下水処理場における処理水や放流水などが挙げられる。これらのうち、本発明は、連続的にモニタリングする必要のある溶液系を対象とする過酸化水素定量手段として、好適に用いられる。 The sample solution containing hydrogen peroxide in the present invention is not particularly limited as long as it is a solution for measuring or monitoring the hydrogen peroxide concentration. For example, it is used in foods, pharmaceuticals, paper pulp, fibers, and the electronics industry. And cleaning agents containing hydrogen peroxide, bleaching agents, and disinfecting agents. In particular, pure water used in semiconductor and liquid crystal manufacturing factories, ultrapure water, wastewater treatment plants, treated water and effluent water in sewage treatment plants, and the like. Among these, the present invention is suitably used as a hydrogen peroxide quantification means for solution systems that need to be continuously monitored.
本発明では、このような過酸化水素を含む対象溶液系から、一部の試料溶液をサンプリングして本発明における光酸素センサや過酸化水素分解槽に供給する。このような試料溶液供給手段3としては、任意の手段を採用すれば良く、市販のサンプリング装置を採用することができる。また、この試料溶液供給手段3には定量ポンプを備え、一定流量の試料溶液を前記測定手段や過酸化水素分解槽に供給するようにする。 In the present invention, a part of the sample solution is sampled from the target solution system containing hydrogen peroxide and supplied to the optical oxygen sensor and the hydrogen peroxide decomposition tank in the present invention. As such a sample solution supply means 3, any means may be adopted, and a commercially available sampling apparatus can be adopted. The sample solution supply means 3 is provided with a metering pump so that a constant flow rate of the sample solution is supplied to the measurement means and the hydrogen peroxide decomposition tank.
サンプリングされた試料溶液は、光酸素センサAまたはCに供給されるが、この光酸素センサAまたはCによる溶存酸素の測定は、過酸化水素濃度の測定精度を上げるため、試料溶液中にすでに含まれている溶存酸素を検出するものであり、予め、溶存酸素がまったく含まれていないか、または溶存酸素量が既知の場合には、特に行う必要がなく、図2の場合には、直接過酸化水素分解槽2に供給し、その後、光酸素センサCにより溶存酸素を測定すれば良い。
以上の説明で、光酸素センサA、BおよびCは、いずれも可視光で励起し、蛍光又は燐光で溶存酸素を検出できるものが好ましい。また、光酸素センサAおよびBは同一物を採用することが好ましい(以下、光酸素センサA、BおよびCをまとめて光酸素センサ1と言うことがある。)。
これに対して、従来の電気化学式の酸素センサを使用すると、装置の立上げ時に平衡状態に達するまでに時間がかかる、流量の制御が難しいなどの理由で測定誤差が大きくなってしまう。
The sample solution sampled is supplied to the optical oxygen sensor A or C. The measurement of dissolved oxygen by the optical oxygen sensor A or C is already included in the sample solution in order to increase the measurement accuracy of the hydrogen peroxide concentration. If the dissolved oxygen is not included at all or the amount of dissolved oxygen is known in advance, it is not necessary to perform this. In the case of FIG. What is necessary is just to measure dissolved oxygen with the optical oxygen sensor C after supplying to the hydrogen oxide decomposition | disassembly tank 2. FIG.
In the above description, it is preferable that the optical oxygen sensors A, B and C are all capable of being excited by visible light and detecting dissolved oxygen by fluorescence or phosphorescence. The optical oxygen sensors A and B are preferably the same (hereinafter, the optical oxygen sensors A, B and C may be collectively referred to as the optical oxygen sensor 1).
In contrast, the use of oxygen sensors of a conventional electrochemical, it takes time to reach equilibrium during startup of the apparatus, the measurement error for reasons such as control of the flow rate is difficult is increased.
可視光で励起し、蛍光又は燐光で溶存酸素を検出できる光酸素センサ1としては、以下のものが例示される。
I.ガラス等の基材上に、酸素センシング材料として、アミノ基を有する疎水性官能基と親水性官能基を有するシランカップリング剤を含む第1層と、ポルフィリン等の脂溶性の機能性物質を含有する乾燥ゲルからなる第2層とを、この順で備えた酸素センサ(特開2006-189271号公報を参照)。
II.ガラス等の基材上に、酸素センシング材料として、ポルフィリン化合物を含むアルキル基またはアリール基を有するシランアルコキシドの加水分解・重合膜を備える光学式酸素センサーチップを装備した酸素センサ(特開2008-14896号公報を参照)。
III.酸素センシング材料として、ルテニウム錯体をゴムやプラスチックに分散させた光学式酸素センサ(特開2002−501363号公報を参照)。
IV.酸素センシング材料として、ルテニウム錯体をシランアルコキシド加水分解・重合物に分散させた光学式酸素センサ(Effect of Processing Temperature on the Oxygen Quenching Behavior of Tris(4,7' - diphenyl - 1,10' - phenanthroline)Ruthenium(II) Sequestered Within Sol-Gel-Derived Xerogel Films. Journal of Sol-Gel Science and Technology 1771-82 2000を参照)。
本発明においては、前記試料溶液をバッチ式でも連続式でも測定可能であるが、特に上記に例示した酸素センサのうち、IおよびIIに記載のセンサは、感度、寿命共に優れており、連続使用にも十分対応できることから、本発明に使用される酸素センサとして好ましい。が、それらに限定されることなく、その他の公知の光酸素センサを採用しても良い。
Examples of the optical oxygen sensor 1 that can be excited by visible light and can detect dissolved oxygen by fluorescence or phosphorescence include the following.
I. Contains a first layer containing a hydrophobic functional group having an amino group and a silane coupling agent having a hydrophilic functional group as an oxygen sensing material on a substrate such as glass and a fat-soluble functional substance such as porphyrin An oxygen sensor provided with a second layer made of dried gel in this order (see JP-A-2006-189271).
II. An oxygen sensor equipped with an optical oxygen sensor chip provided with a hydrolysis / polymerization film of a silane alkoxide having an alkyl group or an aryl group containing a porphyrin compound as an oxygen sensing material on a substrate such as glass (Japanese Patent Laid-Open No. 2008-14896) Issue no.).
III. An optical oxygen sensor in which a ruthenium complex is dispersed in rubber or plastic as an oxygen sensing material (see JP-A-2002-501363).
IV. Effect of Processing Temperature on the Oxygen Quenching Behavior of Tris (4,7 '-diphenyl-1,10'-phenanthroline) Ruthenium (II) Sequestered Within Sol-Gel-Derived Xerogel Films. See Journal of Sol-Gel Science and Technology 1771-82 2000).
In the present invention, the sample solution can be measured either batchwise or continuously. In particular, among the oxygen sensors exemplified above, the sensors described in I and II are excellent in both sensitivity and life, and are continuously used. Therefore, it is preferable as an oxygen sensor used in the present invention. However, it is not limited thereto, and other known optical oxygen sensors may be employed.
このような光酸素センサ1を用いた溶存酸素測定手段の実施態様を図3および図4で説明する。なお、図3および図4においては、共通部材には同一番号を付してある。
図3の光酸素センサ1を含む溶存酸素測定手段10では、励起光源11から照射された励起光のうち、必要以外の不要なスペクトルを励起用フィルタ12によりカットし、バンドルファイバ13を介して前記酸素センシング材料14を照射する。そして酸素センシング材料14で発生した蛍光または燐光の消光作用を利用して、バンドルファイバ13を経由して受光用フィルタ15に送り、そこで励起光の迷光などの不要なスペクトル成分をカットし、所定の波長のみの発光量を選択的に受光器16で検出するように構成されている。なお、試料溶液は試料溶液流路17を通って流れ、途中で、酸素センシング材料14と直接接触するようにされている。
An embodiment of the dissolved oxygen measuring means using such an optical oxygen sensor 1 will be described with reference to FIGS. In FIG. 3 and FIG. 4, the same numbers are assigned to the common members.
In the dissolved oxygen measuring means 10 including the optical oxygen sensor 1 of FIG. 3, unnecessary spectrum other than necessary is cut out of the excitation light irradiated from the
一方、図4においては、励起光源11から、結合レンズ22を介して光ファイバ23に励起光を入射し、光分波合波器24で光ファイバ25に励起光を結合した上で、対物レンズ26を介して前記酸素センシング材料14に照射する。そして酸素センシング材料14で発生した蛍光または燐光の消光作用を利用して、再度対物レンズ26を介して光ファイバ25に結合した後、光分波合波器24で光ファイバ27に結合し、結合レンズ28を介して受光器16で検出されるように構成されている。試料溶液の流れは図3と同じである。
On the other hand, in FIG. 4, the excitation light is incident on the
ここで、励起光源11としては、ガラス基材29表面に分散担持された、後述の光酸素センシング材料14に適した波長の光を出す光源であれば、任意のものを採用することができる。一例としては、緑色LED、白色LED、ハロゲンランプ、放電管、緑色レーザ等が挙げられる。
受光器16としては、光酸素センシング材料14が溶存酸素を検出することにより発生した蛍光または燐光の消光作用を検知できるものであれば、任意のものを使用できるが、一例としてはフォトマルチプライヤ、アバランシェフォトダイオード、フォトダイオード等が挙げられる。
バンドルファイバ13および光ファイバ23、25、27としては、任意の光ファイバが使用できるが、自家蛍光の少ない石英製の大口径光ファイバや石英製のイメージバンドル等が好適な例として示される。
これらの光酸素センサにおいては、酸素による消光作用は、Stern−Volmer則(I=I0[O2](ただし、I:発光量、I0:材料定数、[O2]:酸素濃度)で表され、発光量と酸素濃度は比例する。)に従って、検知されるものである。
Here, as the
As the
Arbitrary optical fibers can be used as the
In these optical oxygen sensors, the quenching action by oxygen is in accordance with the Stern-Volmer rule (I = I 0 [O 2 ] (where I: luminescence, I 0 : material constant, [O 2 ]: oxygen concentration). The amount of luminescence and the oxygen concentration are proportional to each other.)
以上のようにして、予め溶存酸素濃度が測定された試料溶液は、次いで、流出液供給手段4又は配管3bによって、過酸化水素分解槽2に供給される。
ここで用いられる過酸化水素分解槽は、過酸化水素含有液と接触して過酸化水素を分解し、酸素を生成することができる過酸化水素分解触媒7を槽内に充填した槽である。
過酸化水素分解触媒7としては、本発明では、白金粒子が、過酸化水素分解能が高いので、採用される。
同じ白金族金属で、パラジウムは高い過酸化水素分解能力を持つが、同時に水素を吸蔵する性質もあるため、過酸化水素の分解によって生成した酸素が、パラジウム表面の水素と反応して水を生成する。このため、生成した水が妨害して正確に測定できないという問題がある。
一方、白金は、そのような問題がなく、しかもパラジウムに比べて触媒活性が高い。
本発明では、前記白金でも、特に、その体積平均粒径が1〜50nm、好ましくは1.2〜20nmの白金ナノ粒子を使用すると、表面積が増大して接触効率があがり、その結果、過酸化水素分解効率が向上して望ましい。
この体積平均粒径が1nm未満であると、過酸化水素分解活性が低下する恐れがあり、逆に50nmを超えると、金属ナノ粒子の比表面積が小さくなって、やはり分解活性が低下する恐れがある。
さらに、本願では、前記白金が、保護コロイド形成剤を0〜200質量ppm、すなわち、実質的に保護コロイド形成剤を含まないタイプのものが、最大限に触媒活性を発揮することができて好ましい。しかも、保護コロイド形成剤を含まない白金においては、余計な成分を含まないので、有機物が触媒活性の阻害となったり、コンタミを発生したり、副反応を起こしたりことがなく、純水や超純水などの極純度の系における測定においては、極めて重要である。
これらの点から、特に保護コロイド形成剤を含まない白金ナノ粒子は最適である。
The sample solution whose dissolved oxygen concentration has been measured in advance as described above is then supplied to the hydrogen peroxide decomposition tank 2 by the effluent supply means 4 or the
The hydrogen peroxide decomposition tank used here is a tank filled with a hydrogen
In the present invention, platinum particles are employed as the hydrogen
With the same platinum group metal, palladium has a high hydrogen peroxide decomposition ability, but also has the ability to absorb hydrogen, so oxygen generated by the decomposition of hydrogen peroxide reacts with hydrogen on the palladium surface to produce water. To do. For this reason, there exists a problem that the produced | generated water interferes and cannot measure correctly.
On the other hand, platinum does not have such a problem, and has higher catalytic activity than palladium.
In the present invention, even when platinum is used, particularly when platinum nanoparticles having a volume average particle diameter of 1 to 50 nm, preferably 1.2 to 20 nm are used, the surface area is increased and the contact efficiency is increased. It is desirable because hydrogen decomposition efficiency is improved.
If the volume average particle size is less than 1 nm, the hydrogen peroxide decomposition activity may decrease. Conversely, if the volume average particle size exceeds 50 nm, the specific surface area of the metal nanoparticles may decrease, and the decomposition activity may also decrease. is there.
Furthermore, in the present application, the platinum is preferably a protective colloid-forming agent in an amount of 0 to 200 ppm by mass, that is, a type that does not substantially contain the protective colloid-forming agent because it can exhibit the maximum catalytic activity. . In addition, platinum that does not contain a protective colloid-forming agent does not contain extra components, so organic substances do not interfere with catalyst activity, cause contamination, or cause side reactions. This is extremely important for measurement in extremely pure systems such as pure water.
From these points, platinum nanoparticles that do not contain a protective colloid-forming agent are particularly suitable.
本発明では、これらの白金族ナノ粒子をそのまま用いることもできるが、操作性、活性の効率などの問題により、担体を用いて前記ナノ粒子を担持することが好ましい。
前記担体としては、白金族ナノ粒子を担持できるものであれば、限定されず、任意のものを採用することができるが、例えば、マグネシア、チタニア、アルミナ、シリカ−アルミナ、ジルコニア、活性炭、ゼオライト、ケイソウ土、イオン交換樹脂などを挙げることができる。これらの中で、アニオン交換樹脂が下記の理由で、特に好適に用いることができる。
すなわち、白金族ナノ粒子は電気二重層を有し、負に帯電しているので、アニオン交換樹脂に安定に担持されて剥離しにくく、アニオン交換樹脂に担持された白金族ナノ粒子は、過酸化水素の分解除去に対して強い触媒活性を示すからである。
このようなアニオン交換樹脂としては、スチレン−ジビニルベンゼン共重合体を母体とした強塩基性アニオン交換樹脂であることが好ましく、特にゲル型樹脂であることがより好ましい。また、アニオン交換樹脂の交換基は、OH形であることが好ましい。OH形アニオン交換樹脂は、樹脂表面がアルカリ性となり、過酸化水素の分解を促進する。
In the present invention, these platinum group nanoparticles can be used as they are, but it is preferable to support the nanoparticles using a carrier because of problems such as operability and activity efficiency.
The carrier is not limited as long as it can support platinum group nanoparticles, and any carrier can be employed.For example, magnesia, titania, alumina, silica-alumina, zirconia, activated carbon, zeolite, Examples thereof include diatomaceous earth and ion exchange resins. Among these, anion exchange resins can be particularly preferably used for the following reasons.
That is, since the platinum group nanoparticles have an electric double layer and are negatively charged, they are stably supported on the anion exchange resin and difficult to peel off. The platinum group nanoparticles supported on the anion exchange resin are This is because it shows a strong catalytic activity for hydrogen decomposition and removal.
Such an anion exchange resin is preferably a strongly basic anion exchange resin based on a styrene-divinylbenzene copolymer, and more preferably a gel type resin. The exchange group of the anion exchange resin is preferably in the OH form. In the OH-type anion exchange resin, the resin surface becomes alkaline and promotes decomposition of hydrogen peroxide.
本発明において、前記担体、特にアニオン交換樹脂への白金族ナノ粒子の担持量は、0.01〜5質量%であることが好ましく、0.04〜1質量%であることがより好ましい。
白金族ナノ粒子の担持量が0.01質量%未満であると、過酸化水素の分解除去に対する触媒活性が不足するおそれがある。白金族ナノ粒子の担持量は0.2質量%以下で過酸化水素の分解除去に対して十分な触媒活性が発現し、通常は5質量%を超えて白金族ナノ粒子を担持させると、不経済となるうえに、水中への白金の溶出の恐れが出てくる。
本発明においては、白金族ナノ粒子を含む過酸化水素分解触媒の充填方式は、流動床方式でもよいし、固定床方式でも良い。
また、その通液速度は、含まれる過酸化水素の分解効率ができるだけ100%に近づける方が好ましく、空間速度として、通常500/h〜1/h程度とするが、センサーへの通液量と分解効率の観点から、100/h〜10/h程度とするのがより好ましい。
過酸化水素が分解処理され、溶存酸素が発生した処理液は、処理液供給手段5を介して、次いで光酸素センサB、又はCに送られ、そこで、前記と同様にして溶存酸素濃度が測定され、その後、試料溶液排出手段6を介して排出される。
In the present invention, the amount of platinum group nanoparticles supported on the carrier, particularly an anion exchange resin, is preferably 0.01 to 5% by mass, and more preferably 0.04 to 1% by mass.
If the supported amount of platinum group nanoparticles is less than 0.01% by mass, the catalytic activity for the decomposition and removal of hydrogen peroxide may be insufficient. The supported amount of platinum group nanoparticles is 0.2 mass% or less, and sufficient catalytic activity is exhibited for the decomposition and removal of hydrogen peroxide. Usually, when the platinum group nanoparticles are supported exceeding 5 mass%, In addition to becoming an economy, there is a risk of elution of platinum into water.
In the present invention, the filling method of the hydrogen peroxide decomposition catalyst containing platinum group nanoparticles may be a fluidized bed method or a fixed bed method.
Further, it is preferable that the liquid passing rate is as close as possible to the decomposition efficiency of the hydrogen peroxide contained therein, and the space velocity is usually about 500 / h to 1 / h. From the viewpoint of decomposition efficiency, it is more preferably about 100 / h to 10 / h.
The treatment liquid in which hydrogen peroxide is decomposed and dissolved oxygen is generated is then sent to the optical oxygen sensor B or C via the treatment liquid supply means 5, where the dissolved oxygen concentration is measured in the same manner as described above. Thereafter, the sample solution is discharged through the sample solution discharging means 6.
以上のようにして、試料溶液中の過酸化水素が分解される前後の溶存酸素が測定されると、その情報が本発明のコンピュータ等の演算手段に送られる。もちろん、事前に試料溶液中に溶存酸素が含まれていなかったり、既知量であったりすれば、その値をインプットすれば良い。
前記演算手段では、以下の過酸化水素の定量原理に従って、過酸化水素量が演算される。
試料溶液中の過酸化水素と白金族ナノコロイド状金属粒子触媒とが接触すると、次式にしたって過酸化水素が分解して酸素を発生する。
2H2O2 → 2H2O +O2
このように発生した酸素は、試料溶液中の溶存酸素濃度が酸素の溶解濃度に比較して十分に小さい場合には、全量が試料溶液中に溶解するため、過酸化水素分解触媒に接触する前の試料溶液よりも溶存酸素濃度が増加する。
ここで過酸化水素分解触媒の分解効率(=分解触媒に接触した過酸化水素の内、実際に前記反応で分解される過酸化水素の比率)をα、試料溶液中に存在する単位体積あたりの溶存酸素量をM、過酸化水素量をNとすれば、分解触媒に接触後の単位体積あたりの溶存酸素量は、M+α(N/2)と表される。
この増加分 α(N/2)を測定することで、試料溶液中に含まれていた過酸化水素量Nを求めることができる。
過酸化水素分解触媒の分解効率は、前記白金属金属触媒の材質、構造、表面積、担体の材質、担持方法、流速などによって大きく変化する。前述のようにαが1に近い方が発生する溶存酸素量が増えるため、過酸化水素の検出性能があがる。また、試料溶液の流速を下げることで、αを1に近づけることができる。
こうして、求められた結果は、適当な出力手段によって表示したり、印刷したりすれば良い。
As described above, when the dissolved oxygen before and after the hydrogen peroxide in the sample solution is decomposed is measured, the information is sent to the calculation means such as the computer of the present invention. Of course, if the dissolved oxygen is not included in the sample solution or the amount is a known amount, the value may be input in advance.
In the calculation means, the amount of hydrogen peroxide is calculated according to the following hydrogen peroxide quantitative principle.
When hydrogen peroxide in the sample solution comes into contact with the platinum group nanocolloidal metal particle catalyst, hydrogen peroxide is decomposed to generate oxygen according to the following formula.
2H 2 O 2 → 2H 2 O + O 2
When the dissolved oxygen concentration in the sample solution is sufficiently smaller than the dissolved oxygen concentration, the total amount of oxygen thus dissolved is dissolved in the sample solution. The dissolved oxygen concentration increases as compared with the sample solution.
Here, the decomposition efficiency of the hydrogen peroxide decomposition catalyst (= the ratio of hydrogen peroxide actually contacted with the decomposition catalyst to be decomposed by the above reaction) is α, per unit volume present in the sample solution. If the amount of dissolved oxygen is M and the amount of hydrogen peroxide is N, the amount of dissolved oxygen per unit volume after contacting the cracking catalyst is expressed as M + α (N / 2).
By measuring this increase α (N / 2), the hydrogen peroxide amount N contained in the sample solution can be obtained.
The decomposition efficiency of the hydrogen peroxide decomposition catalyst varies greatly depending on the material, structure, surface area, support material, loading method, flow rate, etc. of the white metal catalyst. As described above, the amount of dissolved oxygen generated when α is close to 1 increases, so that the hydrogen peroxide detection performance is improved. Further, α can be made close to 1 by reducing the flow rate of the sample solution.
Thus, the obtained result may be displayed or printed by an appropriate output means.
以上のように、本発明においては、試料溶液を過酸化水素分解触媒で処理する前後での溶存酸素濃度の変化を、可視光を用いた光学式の酸素センサで測定し、溶存酸素濃度差を評価することで、多量な試料溶液においても、過酸化水素濃度を正確に、連続的に、かつ安定的にモニターできる、小型軽量で低価格の過酸化水素の定量方法を実現することができる。 As described above, in the present invention, the change in the dissolved oxygen concentration before and after the sample solution is treated with the hydrogen peroxide decomposition catalyst is measured by an optical oxygen sensor using visible light, and the difference in dissolved oxygen concentration is measured. As a result of the evaluation, it is possible to realize a small, lightweight and low-cost method for determining hydrogen peroxide that can accurately, continuously and stably monitor the hydrogen peroxide concentration even in a large amount of sample solution.
次に、本発明を実施例により、さらに詳細に説明するが、本発明は、この実施例になんら限定されるものではない。
本発明の実施例に使用した装置構成は以下の通り。
I.光酸素センサ
1)酸素センシング材料
可視光で励起可能であり、かつ、酸素消光性をもつ複素環式化合物(ポルフィリン化合物)、遷移金属錯体化合物(ルテニウム(II)錯体)をゾルゲルガラスのマトリクスに分散担持したものを使用。
2.図3に示す光酸素センサ
励起光源は波長530nmの緑色LEDを使用。バンドルファイバには、コア径200μmの7芯バンドルファイバを使用。波長650nmの赤色の燐光に合わせて受光波長を選択し、受光器にはフォトマルチプライヤを使用。
3.図4に示す光酸素センサ
励起光源は波長530nmの緑色LEDを使用。光分波合波器は、カットオフ波長を580nmとした。650nmの赤色の燐光成分のみの発光量を選択的に測定した。受光器にはフォトマルチプライヤを使用。光ファイバには、自家蛍光の少ない石英製の大口径光ファイバ(コア径200μm)を使用。
II.過酸化水素分解槽
スチレン−ジビニルベンゼン共重合体を母体とするOH型強塩基性ゲル型アニオン交換樹脂に、体積平均粒径が3.5nmである白金ナノコロイド金属を0.1質量%の割合で担持した触媒を、容器に20ml充填した。試料溶液の供給速度は空間速度50/hに設定し、分解効率α=100%になるようにした。なお、膜式脱気装置(マクエース、栗田工業社製)を前置した。
III.配管
外部からの酸素の浸透のないステンレス製配管を採用。
なお、前記超純水を手分析によるフェノールフタリ吸光光度法で分析した結果、20,3ppbであった。
EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited to this Example at all.
The apparatus configuration used in the examples of the present invention is as follows.
I. Optical oxygen sensor 1) Oxygen sensing material A heterocyclic compound (porphyrin compound) and transition metal complex compound (ruthenium (II) complex) that can be excited by visible light and have an oxygen quenching property are dispersed in a sol-gel glass matrix. Use supported one.
2. Photo-oxygen sensor shown in FIG. 3 The excitation light source uses a green LED with a wavelength of 530 nm. A 7-core bundle fiber with a core diameter of 200 μm is used for the bundle fiber. The light receiving wavelength is selected according to the red phosphorescence with a wavelength of 650 nm, and a photomultiplier is used for the light receiver.
3. Photo-oxygen sensor shown in FIG. 4 The excitation light source uses a green LED with a wavelength of 530 nm. The optical demultiplexer / multiplexer has a cutoff wavelength of 580 nm. The light emission amount of only the red phosphorescent component at 650 nm was selectively measured. A photomultiplier is used for the receiver. For the optical fiber, a large-diameter optical fiber made of quartz (core diameter 200 μm) with little autofluorescence is used.
II. Hydrogen peroxide decomposition tank Ratio of 0.1% by mass of platinum nanocolloid metal having a volume average particle size of 3.5 nm to OH type strongly basic gel type anion exchange resin based on styrene-divinylbenzene copolymer 20 ml of the catalyst supported in (1) was filled in a container. The supply rate of the sample solution was set to a space velocity of 50 / h so that the decomposition efficiency α = 100%. In addition, a membrane type deaerator (Mac Ace, manufactured by Kurita Kogyo Co., Ltd.) was placed in front.
III. Piping Stainless steel piping that does not penetrate oxygen from outside is adopted.
In addition, it was 20,3 ppb as a result of analyzing the said ultrapure water by the phenolphthali absorption photometry method by manual analysis.
実施例1
図3に示す光酸素センサを装備した図1記載の構成を有する装置で本発明を実施した。
用いた過酸化水素試料溶液は、某半導体製造工場で使用されている超純水で、超純水供給配管の一部に、サンプリング装置を取り付け、UV酸化によるTOC除去の結果、発生した過酸化水素を含む試料溶液を供給した。
なお、酸素濃度は光酸素センサ立上げ後、約5分経過した後の測定値を読み取った。
Example 1
The present invention was implemented with an apparatus having the configuration shown in FIG. 1 equipped with the optical oxygen sensor shown in FIG.
The hydrogen peroxide sample solution used is ultrapure water used in a certain semiconductor manufacturing factory. A sampling device is attached to a part of the ultrapure water supply pipe, and the oxidization generated as a result of TOC removal by UV oxidation. A sample solution containing hydrogen was supplied.
The oxygen concentration was measured after about 5 minutes had elapsed after the optical oxygen sensor was started up.
実施例2
図4の光酸素センサを装備した図1記載の構成を有する装置で、本発明を実施した。
用いた過酸化水素試料溶液は、実施例1と同じものである。
Example 2
The present invention was carried out with an apparatus having the configuration shown in FIG. 1 equipped with the optical oxygen sensor of FIG.
The hydrogen peroxide sample solution used is the same as in Example 1.
実施例3
図3の光酸素センサを装備した図2記載の構成を有する装置で、本発明を実施した。
用いた過酸化水素試料溶液は、実施例1と同じものである。
Example 3
The present invention was implemented with an apparatus having the configuration shown in FIG. 2 equipped with the optical oxygen sensor of FIG.
The hydrogen peroxide sample solution used is the same as in Example 1.
実施例4
図4の光酸素センサを装備した図2記載の構成を有する装置で、本発明を実施した。
用いた過酸化水素試料溶液は、実施例1と同じものである。
Example 4
The present invention was carried out with an apparatus having the structure shown in FIG. 2 equipped with the optical oxygen sensor of FIG.
The hydrogen peroxide sample solution used is the same as in Example 1.
実施例5
過酸化水素分解手段として、保護コロイド形成剤を5000ppm含む白金ナノコロイド(体積平均粒径3.5nm)を用いた以外は、実施例1と同じ条件で過酸化水素量を測定した。
Example 5
The amount of hydrogen peroxide was measured under the same conditions as in Example 1 except that platinum nanocolloid (volume average particle size 3.5 nm) containing 5000 ppm of protective colloid-forming agent was used as the hydrogen peroxide decomposition means.
比較例1
過酸化水素分解手段として、市販の活性炭を用いた以外は、実施例1と同じ条件で過酸化水素量を測定した。
Comparative Example 1
The amount of hydrogen peroxide was measured under the same conditions as in Example 1 except that commercially available activated carbon was used as the hydrogen peroxide decomposition means.
比較例2
過酸化水素分解手段として、パラジウムナノコロイド(体積平均粒径3.5nm)を用いた以外は、実施例1と同じ条件で過酸化水素量を測定した。
Comparative Example 2
The amount of hydrogen peroxide was measured under the same conditions as in Example 1 except that palladium nanocolloid (volume average particle size 3.5 nm) was used as the hydrogen peroxide decomposition means.
比較例3
酸素センサとして、オービスフェア製3600を用い、かつ立上げ後10分経過後の測定値を求めた以外は、実施例1と同じ条件で過酸化水素量を測定した。
Comparative Example 3
The amount of hydrogen peroxide was measured under the same conditions as in Example 1, except that 3600 made by Orbis Fair was used as the oxygen sensor and the measurement value after 10 minutes had elapsed after startup.
以上の結果をまとめて表1に示す。
表1から、本発明の実施例1〜5では、自動分析により、迅速に、かつ正確に超純水中の過酸化水素量を定量することができることが分かる。特に保護コロイドを含む実施例5と、それを含まない実施例1〜4との結果を比較すると、含まないほうが、より精度よく定量することができることがわかる。
実施例に比べて、比較例1〜3では、過酸化水素分解手段、又は酸素センサが本発明とは異なるものを採用したため、精度が劣ることがわかる。
From Table 1, it can be seen that in Examples 1 to 5 of the present invention, the amount of hydrogen peroxide in ultrapure water can be quantified quickly and accurately by automatic analysis. In particular, when the results of Example 5 containing a protective colloid are compared with the results of Examples 1 to 4 that do not contain the protective colloid, it can be seen that it can be quantified more accurately if it is not included.
Compared with the examples, in Comparative Examples 1 to 3, the hydrogen peroxide decomposing means or the oxygen sensor is different from that of the present invention, so that the accuracy is inferior.
以上から、本発明においては、できるだけ高い過酸化水素分解能力を持ち、不純物の混入、溶出のない材料を最適な形態で用いると共に、過酸化水素の分解によって発生した酸素のみを測定するようにすることで、測定精度と測定測度が高められた過酸化水素の定量方法、およびそのための装置が提供されることがわかる。 From the above, in the present invention, a material having the highest hydrogen peroxide decomposition ability and free from impurities mixing and elution is used in an optimum form, and only oxygen generated by the decomposition of hydrogen peroxide is measured. Thus, it can be seen that a method for quantitatively determining hydrogen peroxide with improved measurement accuracy and measurement measure and an apparatus therefor are provided.
食品、医薬品、紙パルプ、繊維、および電子工業などで、洗浄剤や漂白剤、殺菌消毒剤として利用されている過酸化水素の濃度管理用に使用される。また、水処理分野では、過酸化水素による後処理工程における悪影響を防ぐため、あるいは、処理水が放流水として系外に放出される系における過酸化水素の濃度管理用に使用される。特に後者では、連続的に、かつ正確に把握して管理する必要があり、そのような分野に好適に利用することができる。 It is used to control the concentration of hydrogen peroxide, which is used as a cleaning agent, bleach, and disinfectant in food, pharmaceuticals, paper pulp, fiber, and electronics industries. Further, in the field of water treatment, it is used for preventing adverse effects in the post-treatment process due to hydrogen peroxide, or for controlling the concentration of hydrogen peroxide in a system in which treated water is discharged out of the system as effluent water. In particular, the latter needs to be continuously and accurately grasped and managed, and can be suitably used in such a field.
1、A、B、C 光酸素センサ
2 過酸化水素分解槽
3 試料溶液供給手段
3a 配管
3b 配管
4 流出液供給手段
5 処理液供給手段
6 試料溶液排出手段
7 過酸化水素分解触媒
8、9 切替弁
10 溶存酸素測定手段
11 励起光源
12 励起フィルタ
13 バンドルファイバ
14 酸素センシング材料
15 受光フィルタ
16 受光器
17 試料溶液流路
22、28 結合レンズ
23、25、27 光ファイバ
24 光分波合波器
26 対物レンズ
29 ガラス基材
1, A, B, C Optical oxygen sensor 2 Hydrogen peroxide decomposition tank 3 Sample solution supply means
Claims (20)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008304585A JP2010127830A (en) | 2008-11-28 | 2008-11-28 | Method and apparatus for quantifying hydrogen peroxide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008304585A JP2010127830A (en) | 2008-11-28 | 2008-11-28 | Method and apparatus for quantifying hydrogen peroxide |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2010127830A true JP2010127830A (en) | 2010-06-10 |
Family
ID=42328329
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008304585A Pending JP2010127830A (en) | 2008-11-28 | 2008-11-28 | Method and apparatus for quantifying hydrogen peroxide |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2010127830A (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012061443A (en) * | 2010-09-17 | 2012-03-29 | Japan Organo Co Ltd | Apparatus of manufacturing pure water or ultrapure water, and method of manufacturing the same |
JP2012063303A (en) * | 2010-09-17 | 2012-03-29 | Japan Organo Co Ltd | Device and method for measuring hydrogen peroxide concentration |
CN102445417A (en) * | 2011-11-11 | 2012-05-09 | 东南大学 | Integrated dissolved oxygen analyzer and method |
CN104330391A (en) * | 2014-11-04 | 2015-02-04 | 福建医科大学 | Hydrogen peroxide measurement method based on N-acetyl-L-cysteine-gold nanoclusters |
JP2016535267A (en) * | 2013-11-01 | 2016-11-10 | インテグリス−ジェタロン・ソリューションズ・インコーポレイテッド | Dissolved oxygen sensor |
KR20200036273A (en) * | 2018-09-28 | 2020-04-07 | (주) 씨엠테크 | A sterilizing apparatus and a method for measuring concentration of hydrogen peroxide of the sterilizing apparatus |
JP2020176868A (en) * | 2019-04-16 | 2020-10-29 | オルガノ株式会社 | Concentration analyzer |
JP2020176869A (en) * | 2019-04-16 | 2020-10-29 | オルガノ株式会社 | Concentration analyzer |
CN112213289A (en) * | 2019-07-09 | 2021-01-12 | 苏州复氧环保科技有限公司 | Quick-response and completely reversible optical hydrogen peroxide sensor and preparation method thereof |
CN114660136A (en) * | 2022-03-17 | 2022-06-24 | 浙江清华柔性电子技术研究院 | Electrochemical dissolved oxygen sensor and preparation method thereof |
CN116380981A (en) * | 2023-06-07 | 2023-07-04 | 中国电子工程设计院有限公司 | Method for quantitatively determining sub ppb level pollutant by gas phase |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10176207A (en) * | 1996-12-18 | 1998-06-30 | I Betsukusu:Kk | Highly active noble metal cluster |
JP2004194551A (en) * | 2002-12-17 | 2004-07-15 | Tadayuki Imanaka | Method for low-temperature culture of bacterium |
JP2005274386A (en) * | 2004-03-25 | 2005-10-06 | Japan Organo Co Ltd | Hydrogen peroxide analyzer, and hydrogen peroxide analytical method |
JP2007185587A (en) * | 2006-01-12 | 2007-07-26 | Kurita Water Ind Ltd | Method and apparatus for removing hydrogen peroxide |
-
2008
- 2008-11-28 JP JP2008304585A patent/JP2010127830A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10176207A (en) * | 1996-12-18 | 1998-06-30 | I Betsukusu:Kk | Highly active noble metal cluster |
JP2004194551A (en) * | 2002-12-17 | 2004-07-15 | Tadayuki Imanaka | Method for low-temperature culture of bacterium |
JP2005274386A (en) * | 2004-03-25 | 2005-10-06 | Japan Organo Co Ltd | Hydrogen peroxide analyzer, and hydrogen peroxide analytical method |
JP2007185587A (en) * | 2006-01-12 | 2007-07-26 | Kurita Water Ind Ltd | Method and apparatus for removing hydrogen peroxide |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012061443A (en) * | 2010-09-17 | 2012-03-29 | Japan Organo Co Ltd | Apparatus of manufacturing pure water or ultrapure water, and method of manufacturing the same |
JP2012063303A (en) * | 2010-09-17 | 2012-03-29 | Japan Organo Co Ltd | Device and method for measuring hydrogen peroxide concentration |
CN102445417A (en) * | 2011-11-11 | 2012-05-09 | 东南大学 | Integrated dissolved oxygen analyzer and method |
JP2016535267A (en) * | 2013-11-01 | 2016-11-10 | インテグリス−ジェタロン・ソリューションズ・インコーポレイテッド | Dissolved oxygen sensor |
CN104330391A (en) * | 2014-11-04 | 2015-02-04 | 福建医科大学 | Hydrogen peroxide measurement method based on N-acetyl-L-cysteine-gold nanoclusters |
KR102258695B1 (en) * | 2018-09-28 | 2021-05-31 | (주)씨엠테크 | A sterilizing apparatus and a method for measuring concentration of hydrogen peroxide of the sterilizing apparatus |
KR20200036273A (en) * | 2018-09-28 | 2020-04-07 | (주) 씨엠테크 | A sterilizing apparatus and a method for measuring concentration of hydrogen peroxide of the sterilizing apparatus |
JP2020176868A (en) * | 2019-04-16 | 2020-10-29 | オルガノ株式会社 | Concentration analyzer |
JP2020176869A (en) * | 2019-04-16 | 2020-10-29 | オルガノ株式会社 | Concentration analyzer |
JP7252044B2 (en) | 2019-04-16 | 2023-04-04 | オルガノ株式会社 | Concentration analyzer |
JP7333706B2 (en) | 2019-04-16 | 2023-08-25 | オルガノ株式会社 | Concentration analyzer |
CN112213289A (en) * | 2019-07-09 | 2021-01-12 | 苏州复氧环保科技有限公司 | Quick-response and completely reversible optical hydrogen peroxide sensor and preparation method thereof |
CN114660136A (en) * | 2022-03-17 | 2022-06-24 | 浙江清华柔性电子技术研究院 | Electrochemical dissolved oxygen sensor and preparation method thereof |
CN116380981A (en) * | 2023-06-07 | 2023-07-04 | 中国电子工程设计院有限公司 | Method for quantitatively determining sub ppb level pollutant by gas phase |
CN116380981B (en) * | 2023-06-07 | 2023-09-05 | 中国电子工程设计院有限公司 | Method for quantitatively determining sub ppb level pollutant by gas phase |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2010127830A (en) | Method and apparatus for quantifying hydrogen peroxide | |
US9518900B2 (en) | Sample preparation system for an analytical system for determining a measured variable of a liquid sample | |
US20110027893A1 (en) | Method and apparatus for automated determining of chemical oxygen demand of a liquid sample | |
US20130015362A1 (en) | Fluid purification and sensor system | |
JP2010538297A (en) | Carbon measurement in aqueous samples using oxidation at high temperature and pressure | |
JP2014526709A (en) | Method for monitoring and controlling wastewater treatment streams | |
JP7402217B2 (en) | Systems and methods for measuring water composition | |
US20150377772A1 (en) | Aqueous Ozone Monitor Utilizing Gas Stripping | |
JP4538604B2 (en) | Photoreaction tube built-in photoreaction apparatus and water quality monitoring apparatus using the same | |
JP4049801B2 (en) | Flow analysis system that can quantitatively or semi-quantitatively measure elements in a sample | |
JP2006170897A (en) | Chemical oxygen demand measuring method and measuring apparatus | |
JP4722513B2 (en) | Apparatus and method for measuring the concentration of an acid solution containing peracetic acid | |
JP4767064B2 (en) | COD measurement system and chloride ion removal apparatus used therefor | |
JP3291879B2 (en) | Photo-oxidative decomposition apparatus, method and apparatus for analyzing nitrogen compounds and phosphorus compounds in water using the same | |
WO2021250944A1 (en) | Water quality analyzer and water quality analysis method | |
JP4660266B2 (en) | Water quality inspection device | |
US20210372924A1 (en) | Zinc measurement | |
JP3237400B2 (en) | Analyzer for nitrogen compounds and phosphorus compounds in water | |
JP4661232B2 (en) | Total nitrogen measuring method and apparatus | |
JPH06288923A (en) | Analyzer for silica content in water | |
CN116380981B (en) | Method for quantitatively determining sub ppb level pollutant by gas phase | |
US20220034798A1 (en) | Large dynamic range kinetic monitor | |
WO2024142653A1 (en) | Analysis device, analysis method, and ozone decomposer | |
TWI647441B (en) | Analysis equipment and analysis method of total organic carbon content in water | |
JP2024176264A (en) | Water quality analysis device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20110419 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20110419 |
|
A621 | Written request for application examination |
Effective date: 20111025 Free format text: JAPANESE INTERMEDIATE CODE: A621 |
|
A131 | Notification of reasons for refusal |
Effective date: 20120529 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A02 | Decision of refusal |
Effective date: 20121002 Free format text: JAPANESE INTERMEDIATE CODE: A02 |