[go: up one dir, main page]

JP2010122160A - Mercury analyzing apparatus and method therefor - Google Patents

Mercury analyzing apparatus and method therefor Download PDF

Info

Publication number
JP2010122160A
JP2010122160A JP2008298077A JP2008298077A JP2010122160A JP 2010122160 A JP2010122160 A JP 2010122160A JP 2008298077 A JP2008298077 A JP 2008298077A JP 2008298077 A JP2008298077 A JP 2008298077A JP 2010122160 A JP2010122160 A JP 2010122160A
Authority
JP
Japan
Prior art keywords
mercury
tube
sample gas
gas
collecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008298077A
Other languages
Japanese (ja)
Inventor
Ken Matsubara
兼 松原
Hironao Daito
裕直 大東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Instruments Corp
Original Assignee
Nippon Instruments Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Instruments Corp filed Critical Nippon Instruments Corp
Priority to JP2008298077A priority Critical patent/JP2010122160A/en
Publication of JP2010122160A publication Critical patent/JP2010122160A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6402Atomic fluorescence; Laser induced fluorescence
    • G01N21/6404Atomic fluorescence

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

【課題】試料中の水銀を捕集する流路における水銀の残留をなくする水銀分析装置およびその方法を提供し、水銀を高感度かつ高精度で分析することを目的とする。
【解決手段】本発明の水銀分析装置は、試料ガスS中の水銀を捕集する水銀捕集管4に試料ガスSを流す試料ガス導入流路2と、水銀が捕集された水銀捕集管4を加熱して水銀を気化させる加熱気化装置5と、気化された水銀を測定する水銀測定器6と、試料ガス導入流路2の水銀捕集管4の上流側の流路接続部3で接続され、気化された水銀を水銀測定器6に運ぶためのキャリアガスGを流すキャリアガス供給流路7とを備え、流路接続部3は、外管75の中空部に内管25が貫通した二重管であり、試料ガスSまたはキャリアガスGのいずれか一方のガスが内管25の中空部251を流れ、他方のガスが内管25の外壁252と外管75の内壁752の間の管状空間753を流れる二重の流路を有する。
【選択図】図1
An object of the present invention is to provide a mercury analyzer and a method for eliminating mercury residue in a flow path for collecting mercury in a sample, and to analyze mercury with high sensitivity and high accuracy.
A mercury analyzer of the present invention includes a sample gas introduction channel 2 for flowing a sample gas S to a mercury collecting tube 4 for collecting mercury in the sample gas S, and a mercury collecting device for collecting mercury. A heating vaporizer 5 for heating the tube 4 to vaporize mercury, a mercury measuring device 6 for measuring the vaporized mercury, and a flow channel connection 3 on the upstream side of the mercury collecting tube 4 of the sample gas introduction flow channel 2. And a carrier gas supply flow path 7 for flowing a carrier gas G for transporting vaporized mercury to the mercury measuring device 6. The flow path connection portion 3 includes an inner tube 25 in the hollow portion of the outer tube 75. This is a double tube that penetrates, and either the sample gas S or the carrier gas G flows through the hollow portion 251 of the inner tube 25, and the other gas flows between the outer wall 252 of the inner tube 25 and the inner wall 752 of the outer tube 75. It has a double flow path flowing through the tubular space 753 therebetween.
[Selection] Figure 1

Description

本発明は、試料ガス中の水銀を水銀捕集管に捕集後、水銀捕集管を加熱気化装置で加熱して水銀捕集管に捕集された水銀を気化させて分析する水銀分析装置およびその水銀分析方法に関する。特に、原子蛍光分析または原子吸光分析の分野に関する。   The present invention relates to a mercury analyzer for collecting mercury in a sample gas in a mercury collecting tube, and then heating the mercury collecting tube with a heating vaporizer to vaporize the mercury collected in the mercury collecting tube for analysis. And its mercury analysis method. In particular, it relates to the field of atomic fluorescence analysis or atomic absorption analysis.

従来から原子吸光分析法による水銀分析は、長年にわたり環境分析や品質管理分析などで広く使用され、原子蛍光分析法による水銀分析もかなり以前から使用されている。例えば、廃棄物焼却炉や火力発電炉などの煙道排気ガス中の水銀測定が様々な方法でなされている。   Conventionally, mercury analysis by atomic absorption spectrometry has been widely used in environmental analysis and quality control analysis for many years, and mercury analysis by atomic fluorescence analysis has also been used for a long time. For example, mercury in flue exhaust gas from waste incinerators and thermal power reactors is measured by various methods.

例えば、特許文献1では、ガス中の水銀を連続測定している。この測定はゴミ焼却炉の煙突から排出される排ガス中の水銀分析であり、その煙突内に還元装置を構成する配管の先端を臨ませ、吸引ポンプを作動させることにより、前記排ガスが配管から導入されて還元反応器内を通過し、還元された水銀は、排ガスとともに還元装置の配管を経て分析器に送られ、この分析器により水銀の分析が行われる。   For example, in Patent Document 1, mercury in gas is continuously measured. This measurement is an analysis of mercury in the exhaust gas discharged from the chimney of a garbage incinerator. The exhaust gas is introduced from the pipe by facing the tip of the pipe constituting the reduction device in the chimney and operating the suction pump. Then, the mercury reduced and passed through the reduction reactor is sent to the analyzer together with the exhaust gas through the piping of the reduction device, and mercury is analyzed by this analyzer.

しかし、目的や用途によってオフライン測定であるバッチ測定も行われている。従来からバッチ測定用の加熱分解による水銀分析装置がある。例えば、試料を試料容器に入れ、その試料容器を試料加熱炉に挿入し、空気ポンプによって所定流量の空気を流しながら、試料加熱炉で試料を加熱分解し、試料から発生した水銀を水銀捕集管で捕集して、原子吸光分析法または原子蛍光分析法で測定する水銀分析装置がある。また、例えば、ゴミ焼却炉の煙突から排出される排ガスの所定量を吸引ポンプによって流して、試料ガス中の水銀を水銀捕集管で捕集後、原子吸光分析法または原子蛍光分析法で測定する水銀分析装置がある。
特開2001−33434号公報
However, batch measurement, which is offline measurement, is also performed depending on the purpose and application. Conventionally, there is a mercury analyzer by thermal decomposition for batch measurement. For example, a sample is placed in a sample container, the sample container is inserted into a sample heating furnace, and the sample is heated and decomposed in the sample heating furnace while flowing a predetermined flow of air with an air pump, and mercury generated from the sample is collected by mercury. There is a mercury analyzer that collects in a tube and measures it by atomic absorption spectrometry or atomic fluorescence spectrometry. In addition, for example, a predetermined amount of exhaust gas discharged from a chimney of a garbage incinerator is flowed by a suction pump, and mercury in the sample gas is collected by a mercury collecting tube and then measured by atomic absorption spectrometry or atomic fluorescence spectrometry. There is a mercury analyzer.
JP 2001-33434 A

試料ガス中の水銀を水銀捕集管に捕集して測定していると、試料ガス導入口から水銀捕集管までの流路の配管内に水銀が残留し、水銀を含まないガスをサンプリングしても、配管内の残留水銀が水銀捕集管の充填剤に捕らえられることでブランク値が高くなる。特に高濃度の水銀を含むガスをサンプリングした後のブランク測定時にはその現象が顕著に現れ、ブランクを下げるために水銀を含まないガスをサンプリングする空運転を長時間行う必要があり、低濃度の水銀分析が困難になるという問題があった。特に、原子蛍光分析法では微量の水銀を高感度に測定するため、この水銀の残留が測定値に大きく影響する。   When mercury in the sample gas is collected and measured in a mercury collection tube, mercury remains in the flow path from the sample gas inlet to the mercury collection tube, and the mercury-free gas is sampled. Even if the residual mercury in the pipe is trapped by the filler of the mercury collecting pipe, the blank value increases. This phenomenon is particularly noticeable during blank measurement after sampling a gas containing high-concentration mercury, and it is necessary to perform idle operation for a long time to sample a gas that does not contain mercury in order to lower the blank. There was a problem that analysis became difficult. In particular, atomic fluorescence analysis measures a very small amount of mercury with high sensitivity, and this residual mercury greatly affects the measured value.

本発明は前記従来の問題に鑑みてなされたもので、試料中の水銀を捕集する流路における水銀の残留をなくする水銀分析装置およびその方法を提供し、水銀を高感度かつ高精度で分析することを目的とする。   The present invention has been made in view of the above-described conventional problems, and provides a mercury analyzer and a method for eliminating mercury residue in a flow path for collecting mercury in a sample. The purpose is to analyze.

前記目的を達成するために、本発明の水銀分析装置は、試料ガス中の水銀を捕集する水銀捕集管に試料ガスの所定量を流す試料ガス導入流路と、水銀が捕集された前記水銀捕集管を加熱して水銀を気化させる加熱気化装置と、前記加熱気化装置によって気化された水銀を測定する水銀測定器と、前記試料ガス導入流路における前記水銀捕集管の上流側の流路接続部で接続され、前記加熱気化装置によって気化された水銀を前記水銀測定器に運ぶためのキャリアガスを流すキャリアガス供給流路とを備えた試料ガス中の水銀を分析する水銀分析装置であって、前記流路接続部は、外管の中空部に内管が貫通した二重管であり、試料ガスまたはキャリアガスのいずれか一方のガスが前記内管の中空部を流れ、他方のガスが前記内管の外壁と前記外管の内壁の間の管状空間を流れる二重の流路を有する。     In order to achieve the above object, the mercury analyzer of the present invention includes a sample gas introduction channel for flowing a predetermined amount of sample gas into a mercury collecting tube for collecting mercury in the sample gas, and mercury collected. A heating vaporizer for heating the mercury collecting tube to vaporize mercury, a mercury measuring device for measuring mercury vaporized by the heating vaporizer, and an upstream side of the mercury collecting tube in the sample gas introduction channel Mercury analysis for analyzing mercury in a sample gas, comprising a carrier gas supply channel for flowing a carrier gas for transporting the mercury vaporized by the heating vaporizer to the mercury measuring device In the apparatus, the flow path connecting portion is a double tube in which the inner tube penetrates the hollow portion of the outer tube, and either one of the sample gas and the carrier gas flows through the hollow portion of the inner tube, The other gas flows between the outer wall of the inner pipe and the outer Having a dual channel through the tubular space between the inner wall of.

本発明の水銀分析方法は、試料ガス中の水銀を捕集する水銀捕集管に試料ガスの所定量を流す試料ガス導入流路と、水銀が捕集された前記水銀捕集管を加熱して水銀を気化させる加熱気化装置と、前記加熱気化装置によって気化された水銀を測定する水銀測定器と、前記試料ガス導入流路における前記水銀捕集管の上流側の流路接続部で接続され、前記加熱気化装置によって気化された水銀を前記水銀測定器に運ぶためのキャリアガスを流すキャリアガス供給流路とを準備し、前記流路接続部を、外管の中空部に内管が貫通した二重管により形成し、前記試料ガスまたは前記キャリアガスのいずれか一方のガスを前記内管の中空部に流し、他方のガスを前記内管の外壁と前記外管の内壁の間の管状空間に流して試料ガス中の水銀を分析する。   The mercury analysis method of the present invention comprises heating a sample gas introduction channel for flowing a predetermined amount of sample gas into a mercury collection tube for collecting mercury in the sample gas, and the mercury collection tube in which mercury is collected. A vaporizer for vaporizing mercury, a mercury measuring device for measuring mercury vaporized by the vaporizer, and a flow path connecting portion upstream of the mercury collecting pipe in the sample gas introduction flow path. A carrier gas supply channel for flowing a carrier gas for transporting the mercury vaporized by the heating vaporizer to the mercury measuring device, and the inner tube penetrates the hollow portion of the outer tube through the channel connection portion. Formed by a double pipe, and either the sample gas or the carrier gas is allowed to flow through the hollow portion of the inner pipe, and the other gas is tubular between the outer wall of the inner pipe and the inner wall of the outer pipe. Flow through the space to analyze mercury in the sample gas.

本発明の水銀分析装置または水銀分析方法によれば、流路接続部において試料ガス導入流路とキャリアガス供給流路とが独立しており、試料ガスがキャリアガス供給流路に接触しないので、キャリアガスに試料ガスによる残留水銀が含まれず、水銀を高感度かつ高精度で分析することができる。   According to the mercury analyzer or mercury analysis method of the present invention, the sample gas introduction channel and the carrier gas supply channel are independent at the channel connection portion, and the sample gas does not contact the carrier gas supply channel. The carrier gas does not contain residual mercury from the sample gas, and mercury can be analyzed with high sensitivity and high accuracy.

本発明において、試料ガスが前記内管の中空部を流れ、キャリアガスが前記内管の外壁と外管の内壁の間の管状空間を流れることが好ましい。この構成により、内管の内壁の表面積は管状空間の内管の外壁および外管の内壁の表面積に比べかなり小さく、構造が複雑でないので試料ガスS中の水銀が残留せず、吸着も生じにくく配管内面の汚染を防止することができる。このように、残留水銀をなくし汚染を防止できるので、配管を加熱する加熱部材を必要とせずコストダウンを図ることができる。   In this invention, it is preferable that sample gas flows through the hollow part of the said inner tube, and carrier gas flows through the tubular space between the outer wall of the said inner tube, and the inner wall of an outer tube. With this configuration, the surface area of the inner wall of the inner tube is considerably smaller than the surface area of the outer wall of the inner tube of the tubular space and the inner wall of the outer tube, and since the structure is not complicated, mercury in the sample gas S does not remain and adsorption is unlikely to occur. Contamination of the inner surface of the pipe can be prevented. Thus, since residual mercury can be eliminated and contamination can be prevented, a heating member for heating the piping is not required, and the cost can be reduced.

本発明において、前記水銀測定器が原子蛍光分析装置であることが好ましい。水銀測定器を原子蛍光分析装置にすることにより、さらに高感度の分析をすることができる。   In the present invention, the mercury measuring device is preferably an atomic fluorescence analyzer. By using a mercury analyzer as an atomic fluorescence analyzer, analysis with higher sensitivity can be performed.

以下、本発明の第1の実施形態である水銀分析装置について説明する。この水銀分析装置1は、試料ガス中の水銀の含有量を定量する水銀分析装置1であり、図1に示すように、試料ガス導入口21より試料ガスSを導入して試料ガスS中の水銀を捕集する水銀捕集管4に試料ガスSの所定量を流す試料ガス導入流路2と、水銀捕集管4を加熱して捕集された水銀を気化させる加熱気化装置5と、加熱気化装置5によって気化された水銀を測定する水銀測定器6と、試料ガス導入流路2の水銀捕集管4の上流側で流路接続部3によって接続され、加熱気化装置5によって気化された水銀を水銀測定器6に運ぶためのキャリアガスGを流すキャリアガス供給流路7と、水銀捕集管4のガス出口42に接続された測定流路8を備えている。測定流路8は上流側から順に水銀測定器6、ガス切り替え弁81、水銀除去フィルタ82、吸引ポンプ83および第1のガス流量制御手段84を有し、さらにガス切り替え弁81によってキャリアガスGに水銀測定器6を迂回させるバイパス流路9が設けられている。   Hereinafter, a mercury analyzer according to a first embodiment of the present invention will be described. This mercury analyzer 1 is a mercury analyzer 1 that quantifies the content of mercury in a sample gas. As shown in FIG. 1, the sample gas S is introduced from a sample gas inlet 21 and is contained in the sample gas S. A sample gas introduction channel 2 for flowing a predetermined amount of the sample gas S to the mercury collecting tube 4 for collecting mercury, a heating vaporizer 5 for heating the mercury collecting tube 4 to vaporize the collected mercury, The mercury measuring device 6 that measures mercury vaporized by the heating vaporizer 5 is connected to the sample gas introduction flow channel 2 upstream of the mercury collecting tube 4 by the flow channel connecting portion 3, and is vaporized by the heating vaporizer 5. The carrier gas supply channel 7 for supplying the carrier gas G for transporting the mercury to the mercury measuring device 6 and the measurement channel 8 connected to the gas outlet 42 of the mercury collecting tube 4 are provided. The measurement flow path 8 includes a mercury measuring device 6, a gas switching valve 81, a mercury removal filter 82, a suction pump 83, and a first gas flow rate control means 84 in order from the upstream side. A bypass passage 9 for bypassing the mercury measuring device 6 is provided.

試料ガスSは、例えば、煙道排気ガスのように試料自体がガス状である試料に限らず、石英ボートに固体試料を収容して加熱分解装置で加熱分解することによって固体試料中の水銀をガス状にした試料、溶液試料を還元気化法で溶液試料の水銀をガス状にした試料などであってもよい。   The sample gas S is not limited to a sample in which the sample itself is gaseous, for example, flue exhaust gas, but the mercury in the solid sample can be obtained by storing the solid sample in a quartz boat and thermally decomposing it with a thermal decomposition apparatus. It may be a gas sample, a solution sample obtained by reducing vaporization of mercury as a solution sample, or the like.

図2に示すように、流路接続部3は、例えばT字型の三方管31と異径ジョイント32および同径ジョイント33によって試料ガス導入流路2の配管25とキャリアガス供給流路7の配管75が接続されている。詳細には、三方管31の上流側にある異径ジョイント32によって試料ガス導入流路2の配管25と三方管31とが接続され、三方管31の下流側にある同径ジョイント33によって三方管31とキャリアガス供給流路7の配管75とが接続されており、試料ガス導入流路2の配管25が三方管31とキャリアガス供給流路7の配管75の中空部を貫通している。   As shown in FIG. 2, the flow path connecting portion 3 includes, for example, a T-shaped three-way pipe 31, a different diameter joint 32, and a same diameter joint 33, the pipe 25 of the sample gas introduction flow path 2 and the carrier gas supply flow path 7. A pipe 75 is connected. Specifically, the pipe 25 of the sample gas introduction flow channel 2 and the three-way pipe 31 are connected by the different-diameter joint 32 on the upstream side of the three-way pipe 31, and the three-way pipe is connected by the same-diameter joint 33 on the downstream side of the three-way pipe 31. 31 and the pipe 75 of the carrier gas supply flow path 7 are connected, and the pipe 25 of the sample gas introduction flow path 2 passes through the hollow portion of the three-way pipe 31 and the pipe 75 of the carrier gas supply flow path 7.

試料ガス導入流路2の配管25は、例えば外径3mm、内径2mmまたは1mmのテフロン(登録商標)管、三方管31は例えば外径6mm、内径4mmのガラス管、キャリアガス供給流路7の配管75は、例えば外径6mm、内径4mmのテフロン(登録商標)管であり、キャリアガス供給流路7の配管である外管75の中空部に試料ガス導入流路2の配管である内管25が貫通した二重管である。詳細には図3に示すように、試料ガスSが内管25の中空部251を流れ、キャリアガスGが内管25の外壁252と外管75の内壁752の間の管状空間253を流れる二重の流路を形成している。図2に示すように内管25は水銀捕集管4を加熱する加熱気化装置5のヒータ51の近傍まで延伸し、水銀捕集管4の内部に試料ガスSが導入される。三方管31はテフロン(登録商標)製ジョイントであってもよい。   The pipe 25 of the sample gas introduction flow path 2 is, for example, a Teflon (registered trademark) pipe having an outer diameter of 3 mm and an inner diameter of 2 mm or 1 mm, the three-way pipe 31 is, for example, a glass tube having an outer diameter of 6 mm, an inner diameter of 4 mm, and the carrier gas supply flow path 7 The pipe 75 is, for example, a Teflon (registered trademark) pipe having an outer diameter of 6 mm and an inner diameter of 4 mm, and an inner pipe that is a pipe of the sample gas introduction flow path 2 in a hollow portion of the outer pipe 75 that is a pipe of the carrier gas supply flow path 7. Reference numeral 25 denotes a double tube penetrating. Specifically, as shown in FIG. 3, the sample gas S flows through the hollow portion 251 of the inner tube 25, and the carrier gas G flows through the tubular space 253 between the outer wall 252 of the inner tube 25 and the inner wall 752 of the outer tube 75. A heavy flow path is formed. As shown in FIG. 2, the inner tube 25 extends to the vicinity of the heater 51 of the heating vaporizer 5 that heats the mercury collecting tube 4, and the sample gas S is introduced into the mercury collecting tube 4. The three-way pipe 31 may be a Teflon (registered trademark) joint.

この流路接続部3の変形例として、図2に示す内管25の配管材料を耐熱性のある、例えばガラス管にして、図4に示すようにガラス管26の先端をヒータ51によって加熱される水銀捕集管4の充填剤45の近傍まで延伸する。内管25の先端がヒータ51の端部まで延伸することによって、内管25の先端に残留した水銀も確実に気化させることができる。さらに、水銀捕集管4の中まで延伸しているので外管75と区分された領域がさらに広がり、キャリアガスGに残留水銀がより含まれなくなる。   As a modification of the flow path connecting portion 3, the pipe material of the inner tube 25 shown in FIG. 2 is a heat-resistant, for example, glass tube, and the tip of the glass tube 26 is heated by a heater 51 as shown in FIG. It extends to the vicinity of the filler 45 of the mercury collecting tube 4. By extending the tip of the inner tube 25 to the end of the heater 51, the mercury remaining at the tip of the inner tube 25 can be surely vaporized. Furthermore, since it extends to the inside of the mercury collecting tube 4, the region separated from the outer tube 75 further expands, and the residual mercury is less contained in the carrier gas G.

水銀捕集管4には水銀を捕集する充填剤45として、例えば金属水銀と反応してアマルガムを生成する金や銀などの粒状体やウール状細線、金や銀などを表面にコーティングした多孔質担体や海砂などが用いられる。ガス切り替え弁81は水銀の測定時に測定流路8を解放しバイパス流路9を閉鎖する、試料ガスSの水銀を水銀捕集管4に捕集するときはバイパス流路9を解放し測定流路8を閉鎖する。第1のガス流量制御手段84は、例えばマスフローコントローラであり、測定流路8およびバイパス流路9のガス流量を制御する。加熱気化装置5は、水銀を捕集する水銀捕集管4を加熱炉内に収容しており、水銀捕集管4を加熱して捕集された水銀を気化させる。   As a filler 45 for collecting mercury, the mercury collecting tube 4 is a porous material whose surface is coated with granular materials such as gold and silver, wool-like fine wires, gold and silver, etc., which react with metallic mercury to produce amalgam. A quality carrier or sea sand is used. The gas switching valve 81 releases the measurement flow path 8 and closes the bypass flow path 9 when measuring mercury. When collecting the mercury of the sample gas S in the mercury collecting tube 4, the gas switch valve 81 releases the bypass flow path 9 and measures the flow. Road 8 is closed. The first gas flow rate control means 84 is, for example, a mass flow controller, and controls the gas flow rates of the measurement flow path 8 and the bypass flow path 9. The heating vaporizer 5 accommodates a mercury collection tube 4 for collecting mercury in a heating furnace, and heats the mercury collection tube 4 to vaporize the collected mercury.

水銀測定器6は試料ガスS中の水銀の含有量を定量する原子蛍光分析装置6であり、高感度に測定するために、キャリアガスGとしてアルゴンガスGが用いられる。これはキャリアガスGとして空気を用いると、水銀の分析線である紫外線の253.7nm(ナノメートル)が吸収されるためである。そのため通常、試料ガスSから水銀を捕集する段階では空気Gが用いられ、測定段階ではアルゴンガスGが用いられる。   The mercury measuring device 6 is an atomic fluorescence analyzer 6 that quantifies the content of mercury in the sample gas S, and argon gas G is used as the carrier gas G in order to measure with high sensitivity. This is because when air is used as the carrier gas G, 253.7 nm (nanometers) of ultraviolet rays, which are mercury analysis lines, are absorbed. Therefore, normally, air G is used in the stage of collecting mercury from the sample gas S, and argon gas G is used in the measurement stage.

キャリアガス供給流路7はアルゴンガスGを供給するアルゴンボンベなどのアルゴンガス供給源71と、アルゴンガスGの流量を制御する、例えばマスフローコントローラである第2のガス流量制御手段72と、アルゴンガスG中の水銀を除去する水銀除去管73とを有する。水銀除去管73には水銀を捕集する充填剤として、例えば金属水銀と反応してアマルガムを生成する金や銀などの粒状体やウール状細線、多孔質担体の表面に金や銀などをコーティングしたものなどが用いられ、水銀除去フィルタ82には活性炭が充填されている。   The carrier gas supply flow path 7 is an argon gas supply source 71 such as an argon cylinder that supplies the argon gas G, a second gas flow rate control means 72 that controls the flow rate of the argon gas G, for example, a mass flow controller, and an argon gas. And a mercury removal pipe 73 for removing mercury in G. As a filler for collecting mercury, the mercury removing tube 73 is coated with, for example, gold or silver particles or wool-like fine wires that react with metallic mercury to produce amalgam, or gold or silver on the surface of the porous carrier. The mercury removal filter 82 is filled with activated carbon.

図5に示すように原子蛍光分析装置6は、加熱気化装置5で加熱気化された水銀が導入される測定セル62に水銀の分析線を放射する水銀ランプ61と、測定セル62に導入された試料ガスS中に存在する水銀から発生する水銀の蛍光を検出する検出器63と、その検出強度に基づいて試料ガスS中の水銀の含有量を算出する検出処理部64とを備えている。   As shown in FIG. 5, the atomic fluorescence analyzer 6 was introduced into the measurement cell 62 and the mercury lamp 61 that radiates mercury analysis lines into the measurement cell 62 into which the mercury vaporized by heating is introduced. A detector 63 for detecting the fluorescence of mercury generated from the mercury present in the sample gas S and a detection processing unit 64 for calculating the mercury content in the sample gas S based on the detected intensity are provided.

次に、本発明の水銀分析装置1と従来の水銀分析装置との差異を明確にするために、水銀測定器に原子蛍光分析装置を用いた従来の水銀分析装置、特に流路接続部について説明する。   Next, in order to clarify the difference between the mercury analyzer 1 of the present invention and the conventional mercury analyzer, a conventional mercury analyzer using an atomic fluorescence analyzer as a mercury measuring device, particularly a flow path connection portion will be described. To do.

従来の水銀分析装置は流路接続部30が、第1の実施形態の流路接続部3のように外管75の中空部に内管25が貫通した二重管ではなく、図7に示すように、試料ガス導入流路12とキャリアガス供給流路17とが単管の構造の三方管123で接続されている。三方管123は同径ジョイント121、同径ジョイント122によって、例えば外径6mm、内径4mmである試料ガス用テフロン(登録商標)管125と水銀捕集管4とを接続している。   In the conventional mercury analyzer, the flow path connection portion 30 is not a double tube in which the inner tube 25 penetrates the hollow portion of the outer tube 75 as in the flow path connection portion 3 of the first embodiment, but is shown in FIG. As described above, the sample gas introduction channel 12 and the carrier gas supply channel 17 are connected by a three-way tube 123 having a single tube structure. The three-way pipe 123 connects the sample gas Teflon (registered trademark) pipe 125 and the mercury collecting pipe 4 having an outer diameter of 6 mm and an inner diameter of 4 mm, for example, with the same-diameter joint 121 and the same-diameter joint 122.

従来の三方管123では試料ガスS中の水銀が水銀捕集時に同径ジョイント121、122内面および三方管123の内面に残留したり、吸着したりして水銀を含まないガスをサンプリングしても配管内の残留水銀が水銀捕集管4の充填剤45に捕らえられてブランク値が高くなり、特に高濃度の水銀を含むガスをサンプリングした後のブランク測定時にはその現象が顕著に現れ、低濃度の水銀分析が困難であった。   In the conventional three-way pipe 123, even if the mercury in the sample gas S remains on the inner surfaces of the joints 121 and 122 having the same diameter and the inner surface of the three-way pipe 123 or is adsorbed, a gas containing no mercury is sampled. Residual mercury in the pipe is trapped in the filler 45 of the mercury collecting tube 4 and the blank value becomes high. This phenomenon is particularly noticeable during the blank measurement after sampling a gas containing a high concentration of mercury. Analysis of mercury was difficult.

次に、本発明の水銀分析装置1を用いて試料ガスSを分析する分析方法について説明する。図1に示すように、試料ガスSが、例えば0.5L/min.(リットル/分)の流量になるように吸引ポンプ83および第1の流量制御手段84によって試料ガス導入口21から導入され、加熱されていない加熱気化装置5の加熱炉内に収容された水銀捕集管4に入り、水銀が捕集される。このとき、ガス切り替え弁81はバイパス流路9を解放し測定流路8を閉鎖している。   Next, an analysis method for analyzing the sample gas S using the mercury analyzer 1 of the present invention will be described. As shown in FIG. 1, the sample gas S is, for example, 0.5 L / min. Mercury traps introduced from the sample gas inlet 21 by the suction pump 83 and the first flow rate control means 84 so as to have a flow rate of (liter / minute) and housed in the heating furnace of the unheated heating vaporizer 5. Mercury is collected by entering the collecting tube 4. At this time, the gas switching valve 81 releases the bypass flow path 9 and closes the measurement flow path 8.

次に、バイパス流路9をアルゴンガスGによってパージする第1のアルゴンガスパージに入る。キャリアガス供給流路7からアルゴンガスGが、例えば0.5L/min.の流量になるように第2の流量制御手段72によって制御されてキャリアガス供給流路7に導入されてバイパス流路9がアルゴンガスGによってパージされて、バイパス流路9が空気からアルゴンガスGの雰囲気に置換される。このとき、バイパス流路9の流量は第1の流量制御手段84によって例えば0.2L/min.の流量になるように制御されている。   Next, the first argon gas purge for purging the bypass channel 9 with the argon gas G is started. The argon gas G from the carrier gas supply channel 7 is, for example, 0.5 L / min. The flow rate is controlled by the second flow rate control means 72 to be introduced into the carrier gas supply flow path 7, the bypass flow path 9 is purged with the argon gas G, and the bypass flow path 9 is purged from the air with the argon gas G. Replaced with atmosphere. At this time, the flow rate of the bypass passage 9 is set to 0.2 L / min. The flow rate is controlled to be

次に、測定流路8をアルゴンガスGによってパージする第2のアルゴンガスパージに入る。このとき、キャリアガス供給流路7および測定流路8のアルゴンガス流量は第1のアルゴンガスパージのときとそれぞれ同じであり、ガス切り替え弁81は測定流路8を解放しバイパス流路9を閉鎖している。   Next, a second argon gas purge in which the measurement flow path 8 is purged with the argon gas G is entered. At this time, the argon gas flow rates in the carrier gas supply channel 7 and the measurement channel 8 are the same as those in the first argon gas purge, and the gas switching valve 81 releases the measurement channel 8 and closes the bypass channel 9. is doing.

第1および第2のアルゴンガスパージ後、ガス切り替え弁81が測定流路8を解放しバイパス流路9を閉鎖している状態で、加熱気化装置5の加熱炉内の水銀捕集管4を600〜800℃に加熱して加熱気化された水銀を、キャリアガス供給流路7からアルゴンガスGを、例えば0.17L/minの流量で流し、吸引ポンプ83および第1の流量制御手段84によって、例えば0.07L/min.の流量になるように調節して原子蛍光分析装置6の測定セル62に導入して測定する。試料ガスSが導入された測定セル62に水銀ランプ61から水銀の分析線を放射し、検出器63で測定セル62中の存在する水銀から発生する蛍光である水銀の分析線強度を検出し、その検出強度に基づいて検出処理部64で試料ガスS中の水銀を定量する。なお、水銀捕集管4の捕集された水銀だけを気化させ、他のガスを気化させないために水銀捕集管4の水銀捕集時の加熱温度は150〜200℃が好ましい。   After the first and second argon gas purges, the mercury collecting tube 4 in the heating furnace of the heating vaporizer 5 is set to 600 in a state where the gas switching valve 81 releases the measurement channel 8 and closes the bypass channel 9. Mercury heated and vaporized by heating to ˜800 ° C., argon gas G is allowed to flow from the carrier gas supply channel 7 at a flow rate of, for example, 0.17 L / min, and the suction pump 83 and the first flow rate control means 84 are used. For example, 0.07 L / min. The flow rate is adjusted so that the flow rate of the atomic fluorescence analyzer 6 is introduced into the measurement cell 62 and measured. A mercury analysis line is emitted from the mercury lamp 61 to the measurement cell 62 into which the sample gas S has been introduced, and the detector 63 detects the intensity of the mercury analysis line that is fluorescence generated from the mercury present in the measurement cell 62. Based on the detected intensity, the detection processing unit 64 quantifies mercury in the sample gas S. In addition, in order to vaporize only the mercury collected by the mercury collection tube 4 and not to vaporize other gases, the heating temperature at the time of mercury collection of the mercury collection tube 4 is preferably 150 to 200 ° C.

12ng(ナノグラム)の水銀量に相当する所定量の標準試料ガスSを第1の実施形態の水銀分析装置1と従来の水銀分析装置とを用いて上記の分析方法で測定し、その測定直後にブランク測定を各々2回測定したブランク測定値を下表に示す。   A predetermined amount of standard sample gas S corresponding to a mercury amount of 12 ng (nanogram) is measured by the above analysis method using the mercury analyzer 1 of the first embodiment and the conventional mercury analyzer, and immediately after the measurement. The blank measurement values obtained by measuring each blank measurement twice are shown in the table below.

Figure 2010122160
Figure 2010122160

上表に示すように、第1の実施形態の水銀分析装置1で測定したブランク値は従来の水銀分析装置で測定したブランク値に比べて1/10になっており、水銀分析装置1では残留水銀が極めて少なくなっていることが分かる。   As shown in the above table, the blank value measured with the mercury analyzer 1 of the first embodiment is 1/10 compared to the blank value measured with the conventional mercury analyzer, and the mercury analyzer 1 has a residual value. It can be seen that mercury is extremely low.

従来の水銀分析装置の流路接続部30は、上記したように三方管123は同径ジョイント121、ジョイント122によって、例えば外径6mm、内径4mmである試料ガス用テフロン(登録商標)管と水銀捕集管4とが接続されている。そのため、配管の内径が太く試料ガスSとの接触面積が大きく、かつ流路接続部30の構造が複雑であるため、試料ガスS中の水銀が残留しやすいが、第1の実施形態の流路接続部3の内管25は内径も小さく、中空部251にはジョイントなどを有していない直管であり、水銀がほとんど残留しない。したがって、第1の実施形態のように、流路接続部3において水銀の残留をなくすためには試料ガス導入流路2の配管が内管25であり、キャリアガス供給流路7の配管が外管75であるのが好ましい。   As described above, in the flow path connecting part 30 of the conventional mercury analyzer, the three-way pipe 123 has the same diameter joint 121 and the joint 122, for example, a Teflon (registered trademark) pipe for sample gas having an outer diameter of 6 mm and an inner diameter of 4 mm, and mercury. The collection tube 4 is connected. For this reason, the inner diameter of the pipe is large, the contact area with the sample gas S is large, and the structure of the flow path connection portion 30 is complicated. Therefore, mercury in the sample gas S tends to remain, but the flow of the first embodiment The inner pipe 25 of the path connecting part 3 has a small inner diameter, and the hollow part 251 is a straight pipe having no joint or the like, and mercury hardly remains. Therefore, as in the first embodiment, in order to eliminate mercury from remaining in the flow path connection portion 3, the pipe of the sample gas introduction flow path 2 is the inner pipe 25, and the pipe of the carrier gas supply flow path 7 is the outer pipe. A tube 75 is preferred.

第1の実施形態によれば、流路接続部3において試料ガス導入流路2とキャリアガス供給流路7とが独立しており、試料ガスSがキャリアガス供給流路7に接触しないので、キャリアガスGに残留水銀が含まれておらず、水銀を高感度かつ高精度で分析することができる。さらに、試料ガス導入流路2の配管である内管25は内径が細い直管であり、構造が複雑でないので試料ガスS中の水銀が残留せず、吸着も生じにくく配管内面の汚染を防止することができる。このように、残留水銀をなくし汚染を防止できるので、配管を加熱する加熱部材を必要とせずコストダウンを図ることができる。   According to the first embodiment, the sample gas introduction channel 2 and the carrier gas supply channel 7 are independent in the channel connection unit 3, and the sample gas S does not contact the carrier gas supply channel 7. Residual mercury is not contained in the carrier gas G, and mercury can be analyzed with high sensitivity and high accuracy. Further, the inner pipe 25 which is a pipe of the sample gas introduction flow path 2 is a straight pipe having a thin inner diameter, and the structure is not complicated, so that mercury in the sample gas S does not remain and adsorption is difficult to occur, thereby preventing contamination of the inner surface of the pipe. can do. Thus, since residual mercury can be eliminated and contamination can be prevented, a heating member for heating the piping is not required, and the cost can be reduced.

以下、本発明の第2実施形態である水銀分析装置10について説明する。図1に示すように、この水銀分析装置10は、第1の実施形態に係る水銀分析装置1の水銀測定器である原子蛍光分析装置6が原子吸光分析装置60に置き換えられ、キャリアガスGとして空気が用いられる装置であり、その他の構成は水銀分析装置1と同じである。キャリアガス供給流路7は空気Gを供給する、例えば空気圧縮機である空気供給源75と、空気Gの流量を制御する、第2のガス流量制御手段76と、空気中の水銀を除去する水銀除去管77とを有する。原子吸光分析装置60は、図6に示されるように、加熱気化装置5で加熱気化された水銀が導入される測定セル602に水銀の分析線を放射する水銀ランプ601と、水銀ランプ601から放射される分析線の強度を検出する検出器603と、検出器603が検出した分析線の強度に応じて試料ガスS中の水銀の含有量を定量する検出処理部604を備えている。   Hereinafter, the mercury analyzer 10 according to the second embodiment of the present invention will be described. As shown in FIG. 1, the mercury analyzer 10 includes an atomic absorption analyzer 60 that replaces the atomic fluorescence analyzer 6 that is a mercury measuring instrument of the mercury analyzer 1 according to the first embodiment. The apparatus uses air, and the other configuration is the same as that of the mercury analyzer 1. The carrier gas supply channel 7 supplies air G, for example, an air supply source 75 that is an air compressor, a second gas flow rate control means 76 that controls the flow rate of the air G, and removes mercury in the air. And a mercury removal pipe 77. As shown in FIG. 6, the atomic absorption spectrometer 60 radiates from a mercury lamp 601 that emits a mercury analysis line to a measurement cell 602 into which mercury vaporized by heating and vaporizing apparatus 5 is introduced, and radiation from the mercury lamp 601. A detector 603 that detects the intensity of the analytical line to be detected, and a detection processing unit 604 that quantifies the mercury content in the sample gas S according to the intensity of the analytical line detected by the detector 603.

第2の実施形態の水銀分析装置10を用いた水銀の分析方法においては、空気圧縮機75からキャリアガスとして空気Gが供給され、検出器603が検出した水銀ランプ601から放射される分析線の強度に応じて、検出処理部604が試料ガスS中の水銀の含有量を定量する以外は第1の実施形態の方法と同様であるので、説明を省略する。   In the mercury analysis method using the mercury analyzer 10 of the second embodiment, air G is supplied as a carrier gas from the air compressor 75 and the analysis line emitted from the mercury lamp 601 detected by the detector 603 is used. The detection processing unit 604 is the same as the method of the first embodiment except that the detection processing unit 604 quantifies the mercury content in the sample gas S according to the strength, and thus the description is omitted.

第2の実施形態によれば、第1の実施形態と同様の作用・効果を有している。   According to 2nd Embodiment, it has the same effect | action and effect as 1st Embodiment.

なお、上記の実施形態では、試料ガスSが内管25の中空部251を流れ、キャリアガスGが内管75の外壁252と外管75の内壁752の間の管状空間253を流れる二重の流路を形成しているが、試料ガスSが内管75の外壁252と外管75の内壁752の間の管状空間253を流れ、キャリアガスGが内管25の中空部251を流れる二重の流路を形成してもよい。また、上記の実施形態では、波長非分散型の原子蛍光分析装置6または原子吸光分析装置60を図示しているが、本発明においては波長分散型の原子蛍光分析装置または原子吸光分析装置であってもよい。   In the above embodiment, the sample gas S flows through the hollow portion 251 of the inner tube 25 and the carrier gas G flows through the tubular space 253 between the outer wall 252 of the inner tube 75 and the inner wall 752 of the outer tube 75. Although the flow path is formed, the sample gas S flows through the tubular space 253 between the outer wall 252 of the inner tube 75 and the inner wall 752 of the outer tube 75, and the carrier gas G flows through the hollow portion 251 of the inner tube 25. The flow path may be formed. Further, in the above embodiment, the wavelength non-dispersion type atomic fluorescence analyzer 6 or the atomic absorption analyzer 60 is illustrated. However, in the present invention, the wavelength dispersion type atomic fluorescence analyzer or the atomic absorption analyzer is used. May be.

本発明の第1および第2の実施形態である水銀分析装置の概略ブロック図である。It is a schematic block diagram of the mercury analyzer which is the 1st and 2nd embodiment of the present invention. 同水銀分析装置の流路接続部の概略図である。It is the schematic of the flow-path connection part of the same mercury analyzer. 同水銀分析装置の流路接続部の断面図である。It is sectional drawing of the flow-path connection part of the mercury analyzer. 同水銀分析装置の他の流路接続部の概略図である。It is the schematic of the other flow-path connection part of the mercury analyzer. 本発明の第1の実施形態である水銀分析装置の原子蛍光分析装置の概略ブロック図である。1 is a schematic block diagram of an atomic fluorescence analyzer of a mercury analyzer that is a first embodiment of the present invention. 本発明の第2の実施形態である水銀分析装置の原子吸光分析装置の概略ブロック図である。It is a schematic block diagram of the atomic absorption analyzer of the mercury analyzer which is the 2nd Embodiment of this invention. 従来の水銀分析装置の流路接続部の概略図である。It is the schematic of the flow-path connection part of the conventional mercury analyzer.

符号の説明Explanation of symbols

1 10 水銀分析装置
2 試料ガス導入流路
3 30 流路接続部
4 水銀捕集管
5 加熱気化装置
6 60 水銀測定器
7 キャリアガス供給流路
8 測定流路
9 バイパス流路
G キャリアガス
S 試料
DESCRIPTION OF SYMBOLS 1 10 Mercury analyzer 2 Sample gas introduction flow path 3 30 Flow path connection part 4 Mercury collection pipe 5 Heating vaporizer 6 60 Mercury measuring device 7 Carrier gas supply flow path 8 Measurement flow path 9 Bypass flow path G Carrier gas S Sample

Claims (6)

試料ガス中の水銀を捕集する水銀捕集管に試料ガスの所定量を流す試料ガス導入流路と、
水銀が捕集された前記水銀捕集管を加熱して水銀を気化させる加熱気化装置と、
前記加熱気化装置によって気化された水銀を測定する水銀測定器と、
前記試料ガス導入流路における前記水銀捕集管の上流側の流路接続部で接続され、前記加熱気化装置によって気化された水銀を前記水銀測定器に運ぶためのキャリアガスを流すキャリアガス供給流路と、
を備えた試料ガス中の水銀を分析する水銀分析装置であって、
前記流路接続部は、外管の中空部に内管が貫通した二重管であり、試料ガスまたはキャリアガスのいずれか一方のガスが前記内管の中空部を流れ、他方のガスが前記内管の外壁と前記外管の内壁の間の管状空間を流れる二重の流路を有する水銀分析装置。
A sample gas introduction flow path for flowing a predetermined amount of sample gas into a mercury collecting tube for collecting mercury in the sample gas;
A heating and vaporizing apparatus for vaporizing mercury by heating the mercury collecting tube in which mercury is collected;
A mercury measuring device for measuring mercury vaporized by the heating vaporizer;
A carrier gas supply flow for flowing a carrier gas for transporting the mercury vaporized by the heating vaporizer to the mercury measuring device, which is connected to the upstream side of the mercury collecting pipe in the sample gas introduction channel. Road,
A mercury analyzer for analyzing mercury in a sample gas comprising:
The flow path connecting portion is a double tube in which an inner tube passes through a hollow portion of an outer tube, and either one of a sample gas or a carrier gas flows through the hollow portion of the inner tube, and the other gas is A mercury analyzer having a double flow path that flows in a tubular space between an outer wall of an inner tube and the inner wall of the outer tube.
請求項1において、
試料ガスが前記内管の中空部を流れ、キャリアガスが前記内管の外壁と前記外管の内壁の間の管状空間を流れる水銀分析装置。
In claim 1,
A mercury analyzer in which a sample gas flows through a hollow portion of the inner tube, and a carrier gas flows in a tubular space between the outer wall of the inner tube and the inner wall of the outer tube.
請求項1または2において、
前記水銀測定器が原子蛍光分析装置である水銀分析装置。
In claim 1 or 2,
A mercury analyzer in which the mercury measuring instrument is an atomic fluorescence analyzer.
試料ガス中の水銀を捕集する水銀捕集管に試料ガスの所定量を流す試料ガス導入流路と、
水銀が捕集された前記水銀捕集管を加熱して水銀を気化させる加熱気化装置と、
前記加熱気化装置によって気化された水銀を測定する水銀測定器と、
前記試料ガス導入流路における前記水銀捕集管の上流側の流路接続部で接続され、前記加熱気化装置によって気化された水銀を前記水銀測定器に運ぶためのキャリアガスを流すキャリアガス供給流路と、
を準備し、
前記流路接続部を、外管の中空部に内管が貫通した二重管により形成し、
前記試料ガスまたは前記キャリアガスのいずれか一方のガスを前記内管の中空部に流し、他方のガスを前記内管の外壁と前記外管の内壁の間の管状空間に流して試料ガス中の水銀を分析する水銀分析方法。
A sample gas introduction flow path for flowing a predetermined amount of sample gas into a mercury collecting tube for collecting mercury in the sample gas;
A heating and vaporizing apparatus for vaporizing mercury by heating the mercury collecting tube in which mercury is collected;
A mercury measuring device for measuring mercury vaporized by the heating vaporizer;
A carrier gas supply flow for flowing a carrier gas for transporting the mercury vaporized by the heating vaporizer to the mercury measuring device, which is connected to the upstream side of the mercury collecting pipe in the sample gas introduction channel. Road,
Prepare
The flow path connection part is formed by a double pipe in which the inner pipe penetrates the hollow part of the outer pipe,
Either the sample gas or the carrier gas is caused to flow in the hollow portion of the inner tube, and the other gas is caused to flow in a tubular space between the outer wall of the inner tube and the inner wall of the outer tube. Mercury analysis method for analyzing mercury.
請求項4において、
試料ガスを前記内管の中空部に流し、キャリアガスを前記内管の外壁と前記外管の内壁の間の管状空間に流す水銀分析方法。
In claim 4,
A mercury analysis method in which a sample gas is caused to flow in a hollow portion of the inner tube, and a carrier gas is caused to flow in a tubular space between the outer wall of the inner tube and the inner wall of the outer tube.
請求項4または5において、
前記水銀測定器として原子蛍光分析装置を用いる水銀分析方法。
In claim 4 or 5,
A mercury analysis method using an atomic fluorescence analyzer as the mercury measuring instrument.
JP2008298077A 2008-11-21 2008-11-21 Mercury analyzing apparatus and method therefor Pending JP2010122160A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008298077A JP2010122160A (en) 2008-11-21 2008-11-21 Mercury analyzing apparatus and method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008298077A JP2010122160A (en) 2008-11-21 2008-11-21 Mercury analyzing apparatus and method therefor

Publications (1)

Publication Number Publication Date
JP2010122160A true JP2010122160A (en) 2010-06-03

Family

ID=42323624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008298077A Pending JP2010122160A (en) 2008-11-21 2008-11-21 Mercury analyzing apparatus and method therefor

Country Status (1)

Country Link
JP (1) JP2010122160A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103134718A (en) * 2012-12-29 2013-06-05 聚光科技(杭州)股份有限公司 Monitoring system and method of gas state total mercury in smoke
CN104807732A (en) * 2015-05-06 2015-07-29 北京市环境保护监测中心 System and method for measuring mercury in atmospheric particulates
CN105548115A (en) * 2015-12-27 2016-05-04 丁立人 Method for assaying total mercury in soil
WO2023193354A1 (en) * 2022-04-06 2023-10-12 苏州西热节能环保技术有限公司 Mercury sampling apparatus based on active carbon adsorption under high temperature, and control method
US12306095B2 (en) 2023-01-17 2025-05-20 King Fahd University Of Petroleum And Minerals System and method for detecting mercury and total organic carbon in burnt product

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5819250U (en) * 1981-07-30 1983-02-05 日本インスツルメンツ株式会社 Separation detection device for molecular mercury and metallic mercury
JPH06109608A (en) * 1992-09-30 1994-04-22 Yokogawa Electric Corp Heating, vaporizing and introducing equipment
JP2004028628A (en) * 2002-06-21 2004-01-29 Stec Inc Sample supply method and apparatus
JP2008102068A (en) * 2006-10-20 2008-05-01 Nippon Instrument Kk Mercury analyzer and mercury analysis method
JP2008232969A (en) * 2007-03-23 2008-10-02 Nippon Telegr & Teleph Corp <Ntt> Airborne particulate matter measurement device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5819250U (en) * 1981-07-30 1983-02-05 日本インスツルメンツ株式会社 Separation detection device for molecular mercury and metallic mercury
JPH06109608A (en) * 1992-09-30 1994-04-22 Yokogawa Electric Corp Heating, vaporizing and introducing equipment
JP2004028628A (en) * 2002-06-21 2004-01-29 Stec Inc Sample supply method and apparatus
JP2008102068A (en) * 2006-10-20 2008-05-01 Nippon Instrument Kk Mercury analyzer and mercury analysis method
JP2008232969A (en) * 2007-03-23 2008-10-02 Nippon Telegr & Teleph Corp <Ntt> Airborne particulate matter measurement device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103134718A (en) * 2012-12-29 2013-06-05 聚光科技(杭州)股份有限公司 Monitoring system and method of gas state total mercury in smoke
CN103134718B (en) * 2012-12-29 2015-06-10 聚光科技(杭州)股份有限公司 Monitoring system and method of gas state total mercury in smoke
CN104807732A (en) * 2015-05-06 2015-07-29 北京市环境保护监测中心 System and method for measuring mercury in atmospheric particulates
CN105548115A (en) * 2015-12-27 2016-05-04 丁立人 Method for assaying total mercury in soil
WO2023193354A1 (en) * 2022-04-06 2023-10-12 苏州西热节能环保技术有限公司 Mercury sampling apparatus based on active carbon adsorption under high temperature, and control method
US12306095B2 (en) 2023-01-17 2025-05-20 King Fahd University Of Petroleum And Minerals System and method for detecting mercury and total organic carbon in burnt product

Similar Documents

Publication Publication Date Title
EP1877770B1 (en) Method and apparatus for monitoring mercury in a gas sample
US8080083B2 (en) Method and apparatus for converting oxidized mercury into elemental mercury
US7454952B2 (en) Method and apparatus for monitoring mercury in a gas sample
US20090000484A1 (en) Conditioning system and method for use in the measurement of mercury in gaseous emissions
JP2010122160A (en) Mercury analyzing apparatus and method therefor
WO2002021122A1 (en) Method and apparatus for continuous fractional analysis of metallic mercury and water-soluble mercury in a gas
JP2010096753A (en) Mercury collector, mercury collecting unit, mercury analyzer, and its method
JP2010096688A (en) Pyrolytically decomposing apparatus for analyzing mercury, mercury analyzer, and its method
JP5169006B2 (en) Analysis equipment
CN100410649C (en) An online atmospheric mercury analyzer
US20190025266A1 (en) Method for Elemental Analysis
JP2000065699A (en) Analytical sample burner, method for controlling supply of inert gas and oxygen-containing gas in analytical sample burner, and analytical system having sample burner
EP2107371A1 (en) Method for separation of organic halogen, method for measurement of concentration of low-volatile organic halogen, and method for measurement of concentration of dioxin
JP2000065696A (en) Filter device and sulfur analysis system having the filter device
JP2004184191A (en) Method and analyzer for analyzing nitrogen compound in engine exhaust gas
CN109900777A (en) A device and application for rapid online analysis of material combustion product gas composition
JP2005291756A (en) Method and apparatus for analyzing high-boiling organic substances
Urba et al. A pilot study of different materials applied for active sampling of gaseous oxidized mercury in the atmospheric air
US12306095B2 (en) System and method for detecting mercury and total organic carbon in burnt product
JP2000065722A (en) Analysis equipment
JP2006047232A (en) Quantitative analytical method for micro amount of substance in gas, analyzer for quantitative analysis therefor, and sampling method and device therefor
JP4571052B2 (en) A method for collecting and analyzing trace amounts of arsenic in gases
JP2000065721A (en) Analyzing device
JP2708236B2 (en) Analysis of trace carbon, sulfur and phosphorus in metal samples
JPH0367168A (en) Analysis of trace carbon, sulfur, phosphorus in metallic sample and equipment therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130205

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130604